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Abstract 

Background: Phase contrast magnetic resonance imaging (PC-MRI) is used clini-

cally for quantitative assessment of cardiovascular flow and function, as it is capable 

of providing directly-measured 3D velocity maps. Alternatively, vascular flow can be 

estimated from model-based computation fluid dynamics (CFD) calculations. CFD pro-

vides arbitrarily high resolution, but its accuracy hinges on model assumptions, while 

velocity fields measured with PC-MRI generally do not satisfy the equations of fluid 

dynamics, provide limited resolution, and suffer from partial volume effects. The pur-

pose of this study is to develop a proof-of-concept numerical procedure for construct-

ing a simulated flow field that is influenced by both direct PC-MRI measurements and 

a fluid physics model, thereby taking advantage of both the accuracy of PC-MRI and 

the high spatial resolution of CFD. The use of the proposed approach in regularizing 3D 

flow fields is evaluated.

Methods: The proposed algorithm incorporates both a Newtonian fluid physics 

model and a linear PC-MRI signal model. The model equations are solved numerically 

using a modified CFD algorithm. The numerical solution corresponds to the optimal 

solution of a generalized Tikhonov regularization, which provides a flow field that 

satisfies the flow physics equations, while being close enough to the measured PC-MRI 

velocity profile. The feasibility of the proposed approach is demonstrated on data from 

the carotid bifurcation of one healthy volunteer, and also from a pulsatile carotid flow 

phantom.

Results: The proposed solver produces flow fields that are in better agreement with 

direct PC-MRI measurements than CFD alone, and converges faster, while closely 

satisfying the fluid dynamics equations. For the implementation that provided the 

best results, the signal-to-error ratio (with respect to the PC-MRI measurements) in the 

phantom experiment was 6.56 dB higher than that of conventional CFD; in the in vivo 

experiment, it was 2.15 dB higher.

Conclusions: The proposed approach allows partial or complete measurements to be 

incorporated into a modified CFD solver, for improving the accuracy of the resulting 

flow fields estimates. This can be used for reducing scan time, increasing the spatial 

resolution, and/or denoising the PC-MRI measurements.
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Background

Knowledge of blood flow patterns in the human body is a critical component in car-

diovascular disease research and diagnosis. Two different approaches to 3D flow assess-

ment are currently available to the researcher and clinician: direct, model-independent 

velocity mapping using phase contrast magnetic resonance imaging (PC-MRI)  [1–3] 

or Doppler ultrasound, and model-based computational fluid dynamics (CFD) calcu-

lations  [4–16]. Among the direct methods, PC-MRI has gained prominence in recent 

years due to its unrestricted 3D anatomical coverage and minimal operator depend-

ence [1, 17–19]. �e connection between MRI-based complex blood flow analysis (such 

as, turbulence  [20] and helical blood flow  [21]) and MRI-based biomarkers (such as, 

wall shear stress [22–24] and pressure gradients  [25–29]) with disease progression and 

diagnosis are active and promising areas of research. However, PC-MRI provides limited 

spatial and temporal resolutions, which inevitably impacts the accuracy of MRI-based 

hemodynamic parameter estimates [30].

CFD is an alternative that has been used to predict flow patterns in various vascu-

lar geometries, including intracranial aneurysms [10], the thoracic aorta [11], and the 

carotid bifurcation, both in models [12–15] and in vivo [16]. �e equations describing 

Newtonian fluid flow are solved numerically for specified boundary and initial condi-

tion data. Such approach provides arbitrarily high spatial and temporal resolution, and 

is in principle capable of estimating flow fields for arbitrarily complex vessel geometries. 

Absolute hemodynamic parameter estimates can be obtained directly from the high-res-

olution flow fields produced by CFD, obviating the need for data smoothing or interpo-

lation schemes.

�e accuracy of conventional CFD routines hinges on many modeling assumptions 

that are not strictly true for in vivo vascular flow, including rigid vessel walls and uni-

form blood viscosity. Indeed, the proper choice of the underlying physics model is itself 

an open research question [10]. CFD predictions have so far shown variable agreement 

with PC-MRI measurements [10, 11, 13, 15], and the applicability of CFD to robust flow 

estimation is still being debated.

�e use of fluid mechanics techniques for improving PC-MRI data is an active 

research field. Several algorithms from the literature use regularizations based on curl 

and divergence of the velocity field, which are associated with the irrotationality and 

incompressibility characteristics of the fluid flow, respectively. �ese include algorithms 

capable of improving streamlines [31, 32], and also algorithms for denoising the PC-MRI 

data [33–36].

However, the solutions found by those methods do not necessarily satisfy the Navier-

Stokes momentum equation. Other authors integrated point-based measurements 

within a CFD solver, by adding a “force” term to the momentum equations that is pro-

portional to the difference between predicted and measured velocities for a given grid 

point  [37–39]. �ey used such an approach to integrate, respectively, Doppler-ultra-

sound velocity measurements and cerebral aneurysm blood flow MRI data into a CFD 

solver.

More recently, a method to accelerate 4D cardiac flow MRI using CFD simulations 

was proposed. �e image model was generated by integrating numerical blood flow 

simulations (calculated using openFOAM  [40]) into the MRI image-reconstruction 
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algorithm [41]. However, this approach can not guarantee that the fluid physics model 

(momentum and continuity equations) is satisfied by the reconstructed velocity map.

Conventional CFD uses medical imaging data only to specify the vessel geometry and 

the flow at the inlet and outlet boundaries, or other previously known initial and bound-

ary condition data, and uses the assumed fluid physics model to find the solution in the 

interior of the calculation domain [28]. �e goal of this work is to develop a more gen-

eral, flexible and easy to implement numerical framework for harnessing additional PC-

MRI velocity measurements to construct a more robust and potentially more accurate 

CFD-based solution, considering PC-MRI data as ground truth. �e proposed method 

is able to make use of full (or incomplete) PC-MRI measurements of one or more veloc-

ity components within the entire 3D volume. �is is achieved through generalized Tik-

honov regularization  [42], obtaining a numerical solution that is close enough to the 

measured flow data; satisfies the fluid physics equations; reduces noise; and, in the clini-

cal environment, can be used to reduce scan time.

Finally, this work is presented as a proof of concept of the CFD–MRI combined solver. 

All simulations herein were made using the finite volume method and SIMPLER algo-

rithm in Cartesian grids, with unrealistic assumptions about the blood flow model, 

such as rigid walls and Newtonian viscosity. Nevertheless, the optimal numerical solu-

tion proposed in this work is general enough to be implemented: for any type of dis-

cretization method, such as finite differences, finite volume or finite element; for steady 

or unsteady flow; and, for any realistic physics model, such as non-Newtonian viscosity, 

elastic vessel walls, or slightly compressible flow. Even in the most realistic model, the 

discretization (finite differences, finite volume or finite elements) of the nonlinear set of 

differential equations produces a large and sparse system of linear equations, that forms 

the basis of the proposed numerical solution. �e feasibility of the proposed approach is 

demonstrated on data from the carotid bifurcation of one healthy volunteer, and from a 

pulsatile carotid flow phantom. Two implementations of the regularized computational 

solution were evaluated and compared: one using only the PC-MRI data corresponding 

to the main velocity component (z axis); and another, using PC-MRI data corresponding 

to all three velocity components.

Theory

Blood �ow model

�e general model for fluid motion in 3D Euclidian space is given by the Navier–Stokes 

momentum equation [43]:

where ρ is the fluid density, �ν = (u, v,w) is the flow velocity vector (u, v, and w are the 

velocity components associated with spatial axes x, y, and z, respectively), t is time, 

∇ is the gradient operator, p is the hydrodynamic pressure, τ̂ is the stress tensor, and 
�b represents the body forces acting on the fluid during the flow. �e stress tensor rep-

resents the momentum transferred in virtue of the molecular motions and interac-

tions within the fluid. It is a function of the scalar invariants of the strain rate tensor 

ê = (1/2)
[

∇�ν + (∇�ν)T
]

, where T denotes the transpose operation. For an incompressible 

(1)ρ

(

∂�ν

∂t
+ �ν · ∇�ν

)

= −∇p − ∇ · τ̂ + �b,
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fluid, it can be written as τ̂ = −µ(ê) ê, where the scalar µ(ê) is the generalized Newto-

nian viscosity for a given ê.

In this work, blood is modeled as a Newtonian, incompressible and isothermal fluid, 

with constant viscosity µ and constant density ρ. We are also assuming that there are no 

body forces acting on the blood flow. �en, the simplification of the general momentum 

equation, Eq. (1), provides our blood model equation [43]:

where � is the Laplacian operator.

Since there are no sources of blood inside an artery, the flow field must also satisfy 

mass conservation [43], which is expressed by the continuity equation:

SIMPLER algorithm

Equations (2) and (3) must be solved for the unknown scalar field variables u, v, w, and 

p. �ose equations are non-linear and coupled, and attempting to solve them directly in 

one step is a formidable, if not impossible, task.

�e semi-implicit method for pressure-linked equations revised (SIMPLER) algo-

rithm [44] is a well-known and established numerical routine for solving the momentum 

and continuity equations, subject to given boundary and initial conditions. It belongs 

to a class of algorithms capable of solving the non-linear coupled fluid dynamic equa-

tions, which also includes the SIMPLE, SIMPLEC, and PISO algorithms  [45]. For our 

purposes, SIMPLER’s major advantage is that it does not require an initial guess for the 

pressure field; instead an initial estimate of the velocity field is used.

�e discretization of the momentum equation, Eq. (2), forms the basis of the iterative 

CFD routine, yielding three linear systems. Let N be the total number of grid points in 

the discrete 3D calculation domain, i.e., in a rectangular grid, N = Nx · Ny · Nz, where 

Nx, Ny, and Nz represent the number of grid points along the x, y, and z axes, respec-

tively. �en, for the n-th iteration, we have:

where Su,n−1, Sv,n−1, and Sw,n−1 are N × N  square hepta-diagonal sparse matrices, each 

containing previous iteration information about all three velocity components, as well as 

the values of the density and viscosity constants; the three N × 1 column vectors un, vn , 

and wn store the current iteration of the u, v, and w velocity component values, respec-

tively, associated with all grid points in the 3D calculation domain (Fig. 1); and each of 

the constant N × 1 column vectors fu,n−1, fv,n−1, and fw,n−1 contains previous iteration 

information about all three velocity components, current iteration pressure difference 

values, and the physical parameters ρ and µ.

(2)ρ

(

∂�ν

∂t
+ �ν · ∇�ν

)

= −∇p + µ��ν,

(3)∇ · �ν = 0.

(4)Su,n−1un = fu,n−1

(5)Sv,n−1vn = fv,n−1

(6)Sw,n−1wn = fw,n−1,
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�e main difficulty when attempting to predict the flow of an incompressible fluid is 

that there is no equation for pressure. Hence, a discretized pressure equation is deduced 

applying Eqs. (4), (5), and (6) in the discretized continuity equation, giving rise to a dis-

cretization of the following Poisson equation:

where δt is the time step, i.e. the time increment between iterations (this is further dis-

cussed in the next section). For a given time instant t = ti, convergence is achieved when 

∇ · �ν = 0. �e pressure field is updated at each iteration based on the current velocity 

field estimate, and hence does not appear explicitly in Eqs. (4), (5), and (6). It is impor-

tant to note that u, v, and w values must be defined on regular grids, staggered by half 

a grid spacing (along the three directions) with respect to the grid on which pressure 

values are defined. �is is to avoid non-physical wiggle solutions for the pressure and 

velocity fields [44].

�e steps of the SIMPLER algorithm, for a given time instant t = ti, are summarized in 

Algorithm 1. A detailed explanation of the discretization of the Navier–Stokes equations 

is provided in Refs. [44, 45].

(7)�p =
1

δt
∇ · �ν,
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Fig. 1 Discretization of the velocity component u on the computational grid, and representation as a 

stacked column vector
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Algorithm 1 Steps of the SIMPLER algorithm, for a given time instant t = ti.

[44]

1 Begin with a initial guess for the velocity components, u0, v0, and w0.
2 Using Eqs. (4), (5), and (6), the final velocity component estimates from the previous iter-

ation (un−1, vn−1, and wn−1) — or the initial guess, if this is the first iteration — and
pressure field pn = 0 (pn is a N × 1 stacked column vector, as illustrated in Fig. 1; and 0 is
the N × 1 null vector), find a first estimate of un, vn, and wn.

3 Using Eq. (7) and the velocity field found in step 2, find an estimate of the pressure field, pn.
4 Using Eqs. (4), (5), and (6), the final velocity component estimates from the previous itera-

tion (un−1, vn−1, and wn−1) — or the initial guess, if this is the first iteration — and the
pressure field found in step 3, find an updated estimate of un, vn, and wn.

5 Using Eq. (7) and the velocity field found in step 4, find an updated estimate of pn.
6 Using the pressure field found in step 5, find the final estimate of the velocity field, adding

α∇pn — where α is a relaxation factor — to each of the velocity component estimates (un,
vn, and wn).

7 Repeat from step 2 until convergence, i.e., ∇ · = 0, where is the vector field represented
by the velocity component estimates (un, vn, and wn) found in step 6.

Note that correcting the pressure field after step 6 is pointless, as it will be reset to a null vector
when step 2 is repeated.

Methods

Algorithm implementation

On constructing the numerical solution of the unsteady Navier–Stokes equation, we 

assume that a velocity field and the boundary conditions at a given time instant t = t0 

are known. For this initial set of data, the numerical solution for the next time step 

t1 = t0 + δt is constructed, and it converges toward the solution when the continuity 

equation is satisfied (step 7 in Algorithm 1). Starting with the solution for t1, the same 

iterative procedure is repeated to obtain the solution for t2 = t1 + δt, and so forth. In 

this manner, a time-dependent flow field is computed.

In unsteady flow simulations of the Navier–Stokes equations by implicit numeri-

cal routines, the nature of the transient SIMPLER iterative procedures is equivalent to 

steady-state SIMPLER calculations applied, until convergence, for each time instant [45]. 

In other words, solving transient problems using SIMPLER is equivalent to solving suc-

cessive steady-state problems. Moreover, steady-state calculations may be interpreted 

as pseudo-transient solutions with spatially-varying time steps [45]. In other words, the 

steady-state solutions are, in practice, unsteady solutions, considering a virtual time step 

δt with fixed boundary conditions and initial data. �is approach has been used by many 

recent authors [13, 16, 37–39]. While this was the numerical strategy adopted in this 

work, the approach proposed here can also be used for unsteady flow predictions.

�e steady-state solution �ν∞ corresponding to a given cardiac phase (a temporal frame 

within the cardiac cycle) is calculated using the MRI-measured inlet and outlet velocities 

for that cardiac phase. CFD calculations begin with an initial guess for �ν, and simulations 

are carried forward in time until convergence, i.e.:

given a suficiently small ε (�·� denotes vector magnitude) and suficiently small time 

step δt. Note that, here, time t is a simulation-only parameter, and is unrelated to time 

(8)
��ν(t + δt) − �ν(t)�

δt
< ε,
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instants within the cardiac cycle. It is also not related with the iteration steps (n) of the 

SIMPLER algorithm (Algorithm 1), since the entire algorithm—with multiple iterations 

until convergence criterion ∇ · �ν = 0 is satisfied—is performed at each time instant t, 

until the convergence criterion shown in Eq. 8 is satisfied. At this point, �ν∞ is obtained. 

If multiple cardiac phases were to be reconstructed, then �ν∞ would be independently 

calculated for each cardiac phase.

Our implementation of the SIMPLER algorithm was validated with the bidimensional 

lid-driven cavity flow problem, known in the literature as a benchmark for testing CFD 

algorithms [46–48]. All algorithms were implemented in Matlab (�e MathWorks, Inc., 

Natick, MA, USA). Linear systems were solved using the biconjugate gradients stabi-

lized method.

Proposed numerical solution

In this paper, we solve for a simulated velocity field, �ν∞ = (u∞, v∞,w∞), that is close 

enough to the MRI-measured vector field �νmri = (umri, vmri,wmri), and satisfies the fluid 

dynamics equations, Eqs. (2) and (3).

Let M be the total number of voxels in the reconstructed �νmri 3D velocity field, i.e., 

M = Mx · My · Mz, where Mx, My, and Mz represent the number of voxels along the x, y, 

and z axes, respectively. Consider umri, vmri, and wmri as the stacked M × 1 column vec-

tors with the PC-MRI measurements. Since the numerical solution of the Navier–Stokes 

continuity-equation system is based on the solution of linear systems, we propose that 

our numerical optimal solution is obtained by minimizing, for each velocity component, 

at iteration n, the following equations:

�e first term on the right hand side of Eqs. (9)–(11) is related to the numerical solution 

of the Navier–Stokes continuity equations, and the second term is related to the com-

parison between the numerical solution and the PC-MRI velocity field. �e S matrices 

and f  vectors are defined in Eqs. (4)–(6), but note that we dropped the “n − 1” subscripts 

for simplicity and clarity; these are updated by velocity and pressure values calculated in 

the previous iteration. Coefficients �u, �v, and �w are regularization factors, which weight 

consistance with PC-MRI data against conformance with the momentum equations. 

Matrices Ŵu, Ŵv, and Ŵw are of size M × N , and model the blurring effects due to finite 

k-space coverage in PC-MRI (this is further discussed below), while adjusting the num-

ber of points on the CFD grid in order to allow a comparison between �νn and �νmri. In this 

approach, the number of grid points in the CFD and MRI grids are not necessarily the 

same; we can use a finer grid in CFD than in MRI, for example. �e optimal solutions for 

Eqs. (9)–(11) are straightforward [42], and given by

(9)Ju(un) =
1

2
||Suun − fu||

2 +
�u

2
||Ŵuun − umri||

2

(10)Jv(vn) =
1

2
||Svvn − fv||

2 +
�v

2
||Ŵvvn − vmri||

2

(11)Jw(wn) =
1

2
||Swwn − fw||2 +

�w

2
||Ŵwwn − wmri||

2
.
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To understand the construction of the Ŵ matrices, consider that in the absence of noise, 

artifacts, and distortions, the MRI-measured vector field �νmri = (umri, vmri,wmri) is a 

blurred version of the true vector field �ν = (u, v,w). For the u component, for example, 

we can write:

where ∗ denotes convolution, and blurring kernel ψu(x, y, z) is the point-spread function 

associated with the k-space coverage that was used when measuring umri. Similarly, we 

can write vmri = v ∗ ψv and wmri = w ∗ ψw. If all three PC-MRI velocity components are 

measured using the same k-space coverage, then ψu = ψv = ψw. For a 3DFT acquisition, 

these spatial blurring kernels are equal to

where δx, δy and δz are the spatial resolutions of �νmri along the x, y, and z axis, 

respectively.

We want the CFD-estimated vector field �ν∞ = (u∞, v∞,w∞) to be an accurate repre-

sentation of the true vector field �ν. If this is so, then we should expect umri ≈ u∞ ∗ ψu, 

vmri ≈ v∞ ∗ ψv, and wmri ≈ w∞ ∗ ψw. �e discretization of these equations yields three 

linear systems. �en, using the same notation introduced earlier, for the nth iteration of 

the CFD algorithm, we can write:

�e coefficients of Ŵu, Ŵv, and Ŵw are calculated from ψu, ψv, and ψw, respectively. If all 

three PC-MRI velocity components are measured using the same k-space coverage, and 

reconstructed onto identical grids, then Ŵu = Ŵv = Ŵw.

�e MRI-guided CFD estimate corresponding to one cardiac phase was calculated as 

a steady-state solution �ν∞. All three components of the PC-MRI velocity field �νmri meas-

ured at the z positions at the boundaries of the calculation domain were used as inlet 

and outlet boundary conditions for that cardiac phase. Note that this steady state solu-

tion �ν∞ is the closest fit in the least-squares sense to the direct PC-MRI measurements 

that satisfy both momentum equation (Eq.  2) and continuity equation (Eq.  3). �is is 

(12)un =

(

S
T
u Su + �uŴ

T
u Ŵu

)

−1(

S
T
u fu + �uŴ

T
u umri

)

(13)vn =

(

S
T
v Sv + �vŴ

T
v Ŵv

)

−1(

S
T
v fv + �vŴ

T
v vmri

)

(14)wn =

(

S
T
wSw + �wŴ

T
wŴw

)

−1(

S
T
w fw + �wŴ

T
wwmri

)

.

(15)umri(x, y, z) = u(x, y, z) ∗ ψu(x, y, z),

(16)ψ(x, y, z) = sinc

( x

δx

)

× sinc

(

y

δy

)

× sinc

(

z

δz

)

,

(17)umri ≈ Ŵuun

(18)vmri ≈ Ŵvvn

(19)wmri ≈ Ŵwwn.
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guaranteed by the fact that the optimal solutions Eqs. (12)–(14) are solved in each itera-

tion of the SIMPLER algorithm (steps 2 and 4, in Algorithm 1), and by the convergence 

criterion (step 7).

In each of our experiments, all three PC-MRI velocity components were measured 

using the same k-space coverage, and reconstructed onto identical grids. In the phan-

tom experiments, we used the same grid size for both �νmri and �ν∞, because the phantom 

data were measured with high spatial resolution. In these experiments, �νmri was recon-

structed without zero-padding, i.e., onto δx × δy × δz voxels, and the CFD grid points 

were defined at the center of each of �νmri’s voxels. Hence, Ŵu = Ŵv = Ŵw was defined as 

an identity matrix. In the in vivo experiments, �νmri was reconstructed using 2-fold zero-

padding along each of the spatial axes, since the data was acquired with low spatial reso-

lution. �en, Ŵ was an N × N  symmetric matrix, with coefficients calculated from the 

point spread function ψ(x, y, z), defined in Eq.  (16). �is infinite support point spread 

function was truncated by multiplication with the box function

where rect (w) = 1, if −1 ≤ w ≤ 1, and rect (w) = 0, otherwise.

Experimental setup: phantom demonstration

PC-MRI data of a pulsatile carotid flow phantom (Phantoms by Design, Inc., Both-

ell, WA) (Fig.  2) were obtained with high spatial resolution and high signal–to–noise 

ratio, from four time-resolved 3DFT FGRE image volumes (three acquired each with a 

velocity encoding bipolar gradient on one of the three axes, and one without a bipo-

lar gradient). �e scan parameters were: 0.5 × 0.5 × 1.0  mm3 spatial resolution; FOV 

4.0 × 3.5 × 5.0  cm3; TR 11.4  ms; flip angle 8.5◦; temporal resolution 91.2  ms; VENC 

50 cm/s; 40 min per scan; 9 NEX. �e data were acquired on a GE Discovery MR750 

3T system (50  mT/m and 200  T/m/s max gradient amplitude and slew rate), with a 

32-channel receive-only head coil array (Nova Medical, Inc., Wilmington, MA, USA). 

�e through-slab (z) axis was oriented along the S/I direction. �e phantom’s pulse cycle 

was set to 60 bpm.

(20)B(x, y, z) = rect

( x

2δx

)

× rect

(

y

2δy

)

× rect

(

z

2δz

)

,

Fig. 2 a Pulsatile carotid flow phantom (Phantoms by Design, Inc., Bothell, WA, USA) used to validate the 

proposed method; b pump controller that regulates flow frequency and gating signal; c air pump that gener-

ates the flow inside the phantom
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Only the temporal frame corresponding to peak flow was reconstructed. PC-MRI 

velocity component maps umri, vmri and wmri were calculated using data from all chan-

nels of the receive coil array. �e lumen was segmented by manually outlining the vessel 

borders from a stack of 2D axial images, obtained from the reconstructed 3D volume. 

A few voxels presented phase-wrap artifacts; these voxels were manually identified and 

their velocities were corrected by adding 2π to their values.

�e combined solver calculations assumed fluid viscosity of µ = 0.005  Pa s and 

density of ρ = 1100  kg/m3 (these values were provided by the phantom manufac-

turer). Calculations were performed with time step δt = 0.1 ms on a Cartesian grid of 

0.5 × 0.5 × 1.0 mm3 voxel size.

�e CFD simulation domain was rectangular, of size 32.5 × 9.0 × 41.0 mm
3. Each iter-

ation required about 10 seconds of computation time on an Intel Core i7 processor run-

ning at 2.8 GHz.

�ree simulated steady-state velocity fields �ν∞ were obtained:

1. using the conventional SIMPLER algorithm, i.e., not using the PC-MRI data to con-

strain the CFD solution (�νmri was used only as inlet and outlet velocities for the 

geometry);

2. using the velocity component associated with the main flow axis (z) measured with 

PC-MRI (wmri) to constrain the CFD solution (u and v components were determined 

solely from the fluid physics model); and

3. using all three velocity components measured with PC-MRI (umri, vmri, and wmri) to 

constrain the CFD solution.

�e first approach is equivalent to making �w = �u = �v = 0; in the second approach, 

we used �w = 1 and �u = �v = 0; in the third approach, we used �u = �v = �w = 1 . All 

three approaches used all three components of the PC-MRI velocity field �νmri measured 

at the z positions at the boundaries of the calculation domain as inlet and outlet bound-

ary conditions. �e number of iterations until convergence for the above simulations 

was 89, 40 and 5 iterations, respectively.

Experimental setup: in vivo demonstration

PC-MRI data of the carotid bifurcation of one healthy volunteer were obtained from four 

time-resolved 3DFT FGRE image volumes (three acquired each with a velocity encoding 

bipolar gradient on one of the three axes, and one without a bipolar gradient). �e scan 

parameters were: 1.0 × 1.0 × 2.5 mm3 spatial resolution; FOV 7.5 × 12.0 × 36.0 cm3; TR 

7.0 ms; flip angle 15◦; temporal resolution 56 ms; VENC 160 cm/s; 7 min per scan; 1 

NEX. �e data were acquired on a GE Signa 3T EXCITE HD system (40 mT/m and 150 

T/m/s max gradient amplitude and slew rate), with a 4-channel neck receive coil array. 

�e through-slab (z) axis was oriented along the S/I direction. �e institutional review 

board of the University of Southern California approved the imaging protocols. �e sub-

ject was screened for MRI risk factors and provided informed consent in accordance 

with institutional policy.

Only the cardiac phase corresponding to peak flow was reconstructed. PC-MRI veloc-

ity component maps umri, vmri and wmri were calculated using data from only one chan-

nel of the receive coil array. Residual linear velocity offsets in each velocity component 
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map (e.g., due to eddy-currents) were removed by performing a linear fit to manually 

defined 3D regions containing only stationary tissue. �e lumen was segmented by man-

ually outlining the vessel borders from a stack of 2D axial images, obtained from the 

reconstructed 3D volume.

�e combined solver calculations assumed blood viscosity µ = 0.0032 Pa s and density 

of ρ = 1060 kg/m3 [49]. Calculations were performed with time step δt = 0.25 ms on a 

Cartesian grid of 0.50 × 0.50 × 1.25  mm3 voxel size. �e CFD simulation domain was 

rectangular, of size 30 × 37 × 125  mm3 (the PC-MRI data was cropped to match this 

grid size). Each iteration required about 180 s of computation time on an Intel Core i7 

processor running at 2.8 GHz.

�ree simulated steady-state velocity fields �ν∞ were obtained, using the same three 

approaches used in the phantom experiment. �e number of iterations until conver-

gence for the simulations was 1058, 190 and 6, respectively.

Quantitative evaluation

�e CFD-simulated velocity fields were quantitatively compared with the PC-MRI 

measurements by means of the signal-to-error ratio (SER). �e SER measures the ratio 

between the energy of the signal and the energy of the estimation error. We considered 

the PC-MRI velocity field, �νmri = (umri, vmri,wmri), as our ground-truth “signal”; conse-

quently, the estimation error is the vector difference between the CFD-estimated veloc-

ity field, �ν∞ = (u∞, v∞,w∞), and the ground-truth field, �νmri. �us, the SER is calculated 

(in decibels) as:

where integers i, j, and k represent grid-point indexes along the x, y, and z axes, respec-

tively. Similarly, the SER was also calculated individually for each of the velocity compo-

nents, as:

Using these SER values, the three CFD approaches—pure CFD, CFD driven by one PC-

MRI velocity component, and CFD driven by all three PC-MRI velocity components—

were quantitatively evaluated and compared.

(21)SER�ν = 10 log10





�

i,j,k

�

��νmri(i, j, k)
�

�

2

�

i,j,k

�

��ν∞(i, j, k) − �νmri(i, j, k)
�

�

2



,

(22)SERu = 10 log10

(
∑

i,j,k umri(i, j, k)2

∑

i,j,k [u∞(i, j, k) − umri(i, j, k)]2

)

(23)SERv = 10 log10

(
∑

i,j,k vmri(i, j, k)2

∑

i,j,k [v∞(i, j, k) − vmri(i, j, k)]2

)

(24)SERw = 10 log10

(
∑

i,j,k wmri(i, j, k)2

∑

i,j,k [w∞(i, j, k) − wmri(i, j, k)]2

)

.
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Evaluation of denoising properties

Under our hypothesis, CFD simulations provide a smooth, noise-free flow field. �ere-

fore, we expect that the proposed approach can be used as a denoising mechanism for 

PC-MRI flow assessment. In order to verify the denoising effects of the combined solver, 

we added zero-mean Gaussian noise with standard deviation 8 cm/s to the phantom’s 

measured velocity field, �νmri.

�is noisy flow field was used to constrain the CFD calculations, using the approach 

in which all three velocity components measured with PC-MRI are used. In this experi-

ment, we used �u = �v = �w = �; and four different values of � were evaluated: 5 × 10
−9 , 

5 × 10
−8, 5 × 10

−7, and 5 × 10
−6. �e SER between the proposed approach and the 

original PC-MRI measurements was calculated, and compared with the SER of the noisy 

flow field. �e pure CFD approach, in which the noisy PC-MRI data are used only as 

inlet and outlet velocities for the geometry, was also evaluated (this is equivalent to mak-

ing � = 0).

�e phantom data was used in this denoising experiment, because it was acquired 

using 9 NEX—which results in high signal-to-noise ratio (SNR), while the in vivo data 

was acquired using only 1 NEX. �e noise levels on the phantom’s measured velocity 

components—estimated as the standard deviation in regions of uniform mean veloc-

ity—are lower than 3 cm/s; while the SNR of the magnitude images exceeds 26 dB. �e 

velocity-to-noise ratio (VNR) [50, 51] for the u and w components reach 28 and 31 dB, 

respectively (the VNR for the v component was not calculated, because v is approxi-

mately null over the entire geometry).

Finally, in order to justify our denoising experiment, we analyze the noise distribution 

in PC-MRI images. We note that, from a maximum likelihood perspective, Eqs. (9)–(11) 

assume that the PC-MRI data is degraded by Gaussian noise. Under certain conditions, 

one can prove that velocity field noise in PC-MRI satisfies a zero-mean Gaussian distri-

bution  [52]. �erefore, the additive noise acting on the velocity fields can be assumed 

to be Gaussian distributed [27, 52]. Hence, the proposed minimization is well-suited in 

terms of the MR noise distribution.

Results

Phantom demonstration

Figure  3 shows a qualitative velocity-map comparison between the PC-MRI phantom 

measurements and the three simulated results. �e PC-MRI velocity field does not sat-

isfy the continuity equation, since its divergence is nonzero within the lumen (Fig. 3a). 

�e pure CFD solution produced a velocity field that satisfies the physical model, but is 

considerably smoother than the PC-MRI measurements (Fig. 3b). Using one MRI-meas-

ured velocity component (wmri) to guide the CFD simulation resulted in a solution that is 

qualitatively more similar to the MRI-measured field, while still satisfying the continuity 

and momentum equations (Fig. 3c). Even better agreement was achieved when all three 

MRI-measured velocity components (umri, vmri, and wmri) were used to guide the CFD 

simulation (Fig. 3d). �ese improvements can be also appreciated on a vector field visu-

alization of the flow field over the entire tridimensional volume (Fig. 4).

Table 1 shows the SER between the phantom experiment results from each of the three 

CFD approaches, relative to the MRI-measured velocity field. �e approach using only 
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one PC-MRI velocity component (wmri) to drive the CFD calculations (labeled “CFD 

+ 1D”) provided a 11.09 dB improvement in SER relative to pure CFD (labeled simply 

“CFD”) with respect to the w component; however, the improvement was only 1.81 dB 

when considering all three components. �e approach using all three PC-MRI velocity 

components (umri, vmri, and wmri) to drive the CFD calculations (labeled “CFD + 3D”) 

provided a 6.56 dB improvement in SER relative to pure CFD when considering all three 

components, while still providing a 8.02 dB improvement when considering only the w 

component.

Note that, for each of the CFD approaches, the SER was lower for the u and v compo-

nents than it was for w (Table 1). �is can be explained by the fact that the same VENC 

was used for measuring all three PC-MRI velocity components (which implies similar 

noise levels), but the velocities along the z axis are considerably higher than those along 

the x and y axes (the energy of wmri was 11.42 dB higher than that of umri, and 15.72 dB 

higher than that of vmri). As a consequence, the SNR of wmri is substantially higher than 

that of umri and vmri. �us, even if the energy of the absolute error between the CFD-

estimated velocities and the MRI-measured velocities was the same for the three com-

ponents, SERw would be higher than SERu and SERv. Also, note that CFD approaches 

provide a smooth, (ideally) noise-free velocity field, but the SER was calculated with 

respect to a noisy PC-MRI field. �is means that the denoising properties of the CFD 

approaches could actually hurt the SER, especially if noise levels are relatively high when 

.ν∇
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Fig. 3 Velocity maps for the individual velocity components (u, v, and w) and divergence map of the velocity 

field (�ν), for an axial slice at the bifurcation of the carotid flow phantom: a PC-MRI; b CFD; c CFD guided by 

PC-MRI data corresponding to the main velocity component (wmri); and d CFD guided by PC-MRI data cor-

responding to all three velocity components (umri, vmri, and wmri)
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compared to the velocity values (this is the case for the u and v components). However, 

denoising is a desirable feature, so this does not necessarily indicate an unwanted result.

Figure 5 and Table 2 show the results of the experiment in which the denoising prop-

erties of the proposed approach were evaluated. CFD calculations were constrained 

by all three PC-MRI velocity components, with added Gaussian noise. �e combined 

(a) (b)

(c) (d)

0 45

 velocity magnitude (cm/s)

20

Fig. 4 Vector field visualization of the velocity field (�ν) over the entire tridimensional volume of the carotid 

flow phantom: a PC-MRI; b CFD; c CFD guided by PC-MRI data corresponding to the main velocity compo-

nent (wmri); and d CFD guided by PC-MRI data corresponding to all three velocity components (umri, vmri, and 

wmri). The dotted line in a indicates the position of the slice shown in Figs. 3 and 5

Table 1 Signal-to-error ratio (in dB) between  the phantom experiment results from  each 

of the three CFD approaches—pure CFD (labeled “CFD”); CFD driven by one PC-MRI veloc-

ity component (labeled “CFD + 1D”); and CFD driven by all three PC-MRI velocity compo-

nents (labeled “CFD + 3D”), relative to the MRI-measured velocity �eld

SER values were calculated according to Eqs. (21)–(24)

CFD CFD + 1D CFD + 3D

SERu 2.97 4.16 (↑) 6.74 (↑)

SERv −0.25 −0.30 (≈) 2.03 (↑)

SERw 5.44 16.53 (↑↑) 13.46 (↑)

SER�ν 6.57 8.38 (↑) 13.13 (↑↑)
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Table 2 Signal-to-error ratio (in dB) between  noisy and  original PC-MRI measurements; 

and between the MRI-guided CFD estimates and the original PC-MRI measurements

Additive zero-mean Gaussian noise with standard deviation of σ = 8 cm/s was used. CFD estimates were obtained using the 

combined solver with di�erent values of the weight parameter �, constrained by the noisy PC-MRI measurements. All three 

PC-MRI velocity components were used to guide the CFD calculations. SER values were calculated according to Eqs. (21)–

(24)

Noisy CFD CFD+3D CFD+3D CFD+3D CFD+3D

PC-MRI � = 0 � = 5 × 10
−9

� = 5 × 10
−8 � = 5 × 10

−7
� = 5 × 10

−6

SERu 0.80 2.66 2.87 3.22 2.34 1.75

SERv −2.46 −0.50 −0.41 −0.39 −1.18 −1.67

SERw 4.64 5.03 5.82 7.20 5.88 5.06

SER�ν 5.71 6.39 6.94 8.18 7.85 6.94

v
elo

city
 (cm

/s)

-5
0

+
5

0
0

v
elo

city
 (cm

/s)

-5
0

+
5

0
0

v
elo

city
 (cm

/s)

-5
0

+
5

0
0

v
elo

city
 (cm

/s)

-5
0

+
5

0
0

v
elo

city
 (cm

/s)

-5
0

+
5

0
0

v
elo

city
 (cm

/s)

-5
0

+
5

0
0

v
elo

city
 (cm

/s)

-5
0

+
5

0
0

wvu

(b)

(c)

(a)

(d)

(e)

(f)

(g)

Fig. 5 Velocity maps for the individual velocity components (u, v, and w), for an axial slice at the bifurca-

tion of the carotid flow phantom: a PC-MRI; b PC-MRI with added Gaussian noise (σ = 8 cm/s); c pure CFD 

solution using noisy PC-MRI data as inlet and oulet velocities; d CFD guided by the noisy PC-MRI data, with 

� = 5 × 10
−9; e CFD guided by the noisy PC-MRI data, with � = 5 × 10

−8; f CFD guided by the noisy PC-MRI 

data, with � = 5 × 10
−7; g CFD guided by the noisy PC-MRI data, with � = 5 × 10

−6



Page 16 of 23Rispoli et al. BioMed Eng OnLine  (2015) 14:110 

solver improved the SER of each individual velocity component, for all different weight 

parameters we evaluated (Table  2). �e CFD solution constrained by PC-MRI using 

� = 5 × 10
−8 (Fig. 5e) provides a velocity field that is less noisy and visually more similar 

to the measured PC-MRI velocity field (Fig.  5a) than the pure CFD solution obtained 

using the noisy PC-MRI velocity field as boundary data (Fig.  5c). Using smaller val-

ues of � (Fig. 5d) results in solutions that are closer to the pure CFD solution (Fig. 5c). 

Using larger values of � (Figs. 5f, g) results in solutions that are closer to the noisy MRI 

data used to constrain the solution (Fig. 5b). �ese results can be appreciated quanti-

tatively on Table 2. Relative to the noisy PC-MRI velocity field, the overall (�ν) SER gain 

was 1.23 dB for � = 5 × 10
−9; 2.47 dB for � = 5 × 10

−8; 2.14 dB for � = 5 × 10
−7 ; and 

1.23  dB for � = 5 × 10
−6. Moreover, all constrained CFD solutions presented bet-

ter quantitative results than pure CFD. �e overall (�ν) SER gain, relative to pure CFD, 

was 0.55 dB for � = 5 × 10
−9; 1.79 dB for � = 5 × 10

−8; 1.46 dB for � = 5 × 10
−7; and 

0.55 dB for � = 5 × 10
−6.

�ese results illustrate the potential of the proposed numerical framework also as a 

denoising technique for PC-MRI.

In vivo demonstration

Figure  6 provides a qualitative velocity-map comparison between the PC-MRI in  vivo 

measurements and the three simulated results. As in the phantom experiment, the 

PC-MRI velocity field does not satisfy the continuity equation, since its divergence is 

nonzero within the lumen (Fig.  6a). �e pure CFD solution produced a velocity field 

that satisfies the physical model, but differs considerably from the PC-MRI measure-

ments (Fig. 6b). Using one MRI-measured velocity component (wmri) to guide the CFD 

simulation resulted in a solution that is qualitatively more similar to the MRI-measured 

field, while still satisfying the continuity and momentum equations (Fig. 6c). Even better 

agreement was achieved when all three MRI-measured velocity components (umri, vmri, 

and wmri) were used to guide the CFD simulation (Fig. 6d). �ese improvements can be 

also appreciated on a vector field visualization of the flow field over the entire tridimen-

sional volume (Fig. 7).

Table 3 shows the SER between the in vivo experiment results from each of the three 

CFD approaches, relative to the MRI-measured velocity field. �e approach using only 

one PC-MRI velocity component (wmri) to drive the CFD calculations (labeled “CFD 

+ 1D”) provided a 9.79  dB improvement in SER relative to pure CFD (labeled simply 

“CFD”) with respect to the w component; however, the SER was only 0.76  dB higher 

when considering all three components, since the agreement with PC-MRI for the v 

component was made worst. �e approach using all three PC-MRI velocity components 

(umri, vmri, and wmri) to drive the CFD calculations (labeled “CFD + 3D”) improved the 

SER for all three components, by 0.24, 0.59, and 6.00 dB, respectively; as a result, there 

was a 2.15 dB overall improvement in SER relative to pure CFD, and a 1.39 dB improve-

ment relative to CFD guided only by wmri. As in the phantom experiments, the SER was 

lower for the u and v components than it was for w, for all three CFD approaches. �is 

can again be explained by the fact that the same VENC was used for all three veloc-

ity components, while the velocities along the z axis are considerably higher than those 

along the x and y axes (the energy of wmri was 29.76  dB higher than that of umri, and 
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27.09  dB higher than that of vmri), and is a direct (and desirable) consequence of the 

denoising properties of the proposed approach, as previously discussed.

Discussion

�e proposed methodology uses the three-dimensional SIMPLER algorithm with Car-

tesian uniform meshes to perform blood flow simulations under the influence of three-

dimensional MRI-measured velocity profiles. �e combined MRI–CFD methodology 

attempts to correct the MRI-measured flow field, forcing it to satisfy the fluid mechan-

ics equations. �e choice of the SIMPER algorithm and Cartesian discretization was 

u v w .ν∇
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Fig. 6 Velocity maps for the individual velocity components (u, v, and w) and divergence map of the velocity 

field (�ν), for a slice perpendicular to the carotid bifurcation of a healthy volunteer: a PC-MRI; b CFD; c CFD 

guided by PC-MRI data corresponding to the main velocity component (wmri); and d CFD guided by PC-MRI 

data corresponding to all three velocity components (umri, vmri, and wmri)
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performed in order to facilitate implementation of the algorithm. We showed that the 

proposed technique provides better agreement with the PC-MRI measurements than 

pure CFD simulations. We also showed that this MRI-guided CFD approach can be used 

as a means of reducing noise in the PC-MRI measurements. It can also be used to reduce 

computation time: when all three MRI-measured velocity components are used to guide 

the CFD simulations, only a few iterations are required for convergence, i.e., for finding 

the flow field that is the most similar to the PC-MRI measurements (in the least squares 

sense) while satisfying the fluid mechanics equations.

0 80

 velocity magnitude (cm/s)

40

(a)

(c)

(b)

(d)

Fig. 7 Vector field visualization of the velocity field (�ν) over the entire tridimensional volume of the carotid 

bifurcation of a healthy volunteer: a PC-MRI; b CFD; c CFD guided by PC-MRI data corresponding to the main 

velocity component (wmri); and d CFD guided by PC-MRI data corresponding to all three velocity compo-

nents (umri, vmri, and wmri). The dotted line in a indicates the position of the slice shown in Fig. 6

Table 3 Signal-to-error ratio (in dB) between  the in  vivo experiment results from  each 

of the three CFD approaches—pure CFD (labeled “CFD”); CFD driven by one PC-MRI veloc-

ity component (labeled “CFD + 1D”); and CFD driven by all three PC-MRI velocity compo-

nents (labeled “CFD + 3D”), relative to the MRI-measured velocity �eld

SER values were calculated according to Eqs. (21)–(24)

CFD CFD + 1D CFD + 3D

SERu 0.51 0.50 (≈) 0.75 (↑)

SERv −1.51 −1.87 (↓) −0.92 (↑)

SERw 4.74 14.53 (↑↑) 10.74 (↑)

SER�ν 4.13 4.89 (↑) 6.28 (↑↑)
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We believe that the proposed method can also be used as a technique for reducing 

scan time. �e proposed methodology allows the use of only part of the velocity meas-

urements obtained with MRI to guide computational solutions by appropriately choos-

ing the Ŵ matrices in Eqs. (12)–(14). In this paper, we used identical grids for MRI and 

CFD. �erefore, the Ŵ matrices were square with size N × N . In each of the following 

suggested approaches, at least one of the Ŵu, Ŵv or Ŵw matrices may be of size M × N  , 

with M < N . Possible approaches for reducing scan time include: (1) acquiring the 

MRI data with reduced spatial resolution, and using the MRI-guided CFD simulation to 

improve the spatial resolution; (2) measuring portion(s) of the volume (e.g., carotid inlet 

and outlets) with full spatial resolution, while measuring the rest of the volume with 

reduced spatial resolution; (3) acquiring only a few slices along the bifurcation, and using 

the MRI-guided CFD simulation to fill in the gaps; (4) measuring one or two velocity 

components with full spatial resolution, while measuring the other component(s) with 

reduced spatial resolution; (5) measuring one or two velocity components across the 

entire volume, while measuring the other component(s) for only a few slices; and (6) any 

combination of these approaches. We plan to explore these ideas in future studies.

It is well known that blood is a non-Newtonian fluid, therefore its viscosity is not uni-

form. While there exists many constitutive models and studies in the literature regarding 

the non-Newtonian rheological properties of blood [43, 53, 54], no gold-standard con-

stitutive model exists, and the assumption of constant whole blood viscosity is common 

practice  [13, 16, 33, 37, 55, 56]. �erefore, we used the Newtonian blood flow model 

(constant whole blood viscosity), which greatly simplified the implementation.

It is often desirable to estimate the wall shear rate at the carotid bifurcation. Deter-

mining wall shear rates from CFD simulation results would require using highly refined 

meshes around the neighborhood of the vessel wall. Our implementation of the SIM-

PLER algorithm does not allow using spatially-varying grid spacing, and the mesh is uni-

form all over the integration domain. Using a very fine grid over the entire integration 

domain is possible, in principle. However, this would drastically increase the computa-

tional complexity, and could make the proposed methodology impractical in a clinical 

environment, for example.

Finally, the proposed approach does not take the effects of vessel wall elasticity into 

consideration. While the pulsatile carotid flow phantom we used has rigid tube walls, the 

human carotid vessel wall is generally elastic. While there exists blood flow CFD simula-

tion methods that incorporate elastic wall effects [57, 58], the assumption of rigid vessel 

walls is another common practice  [13, 16, 33, 37, 55]. �e SIMPLER algorithm imple-

mented in this work uses a Cartesian uniform mesh, and does not allow the use of the 

elastic wall models.

Both wall shear stress calculations and elastic vessel walls could be properly addressed 

with an implementation using finite elements—which would allow an easier adaptation of 

the mesh near the wall and also allow simulating the effects of fluid–structure interaction. 

Despite the fact that the implementation of a finite-element solver would be substantially 

more complex than our implementation, all the proposed methodology described in 

this proof of concept paper can still be applied in the same fashion, since the problem of 

solving the set of differential equations in a finite element discretization is replaced by a 

sparse system of linear equations similar to the ones obtained in this work.
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In future works, this MRI-guided CFD methodology for unsteady flow will be imple-

mented on FreeFem++,1 a partial differential equation solver capable of solving the 

Navier–Stokes equations using finite elements [59]. FreeFem++ allows access to the lin-

ear systems that can be modified in order to make use of the principles introduced here. 

With this approach, we expect more general, higher-quality solutions, allowing the cal-

culation of biomarkers, such as wall shear stress, since FreeFem++ can handle different 

types of triangular finite elements, large varieties of linear system solvers, and automatic 

mesh adaptation. Note that there are other free software that could be used to reproduce 

this methodology, such as openFOAM,2 which uses finite volume discretization. Both 

FreeFem++ and openFOAM allow modifications of the linear systems, and have CFD 

solvers already implemented, which could facilitate the implementation of the method-

ology proposed in this study [40, 59].

All the assumptions and simplifications disscussed above (Newtonian blood flow, 

imprecise geometry, non-compliant walls) contribute non-linearly to the differences 

observed between CFD solutions and MRI-measured velocity fields. Using the MRI-

measured velocity field to constrain the CFD solution indirectly addresses these sim-

plifications, and provides a more realistic CFD solution. However, we are still unable to 

clearly identify the main factors responsible for the disagreement between MRI-meas-

ured and CFD-computed velocity fields. Nevertheless, an implementation using a more 

robust solver, as proposed above, could improve on these limitations and further reduce 

the gap between MRI-measured and CFD-computed results.

Conclusion

We have proposed a framework for obtaining flow field estimates that are influenced by 

both PC-MRI measurements and a fluid physics model. �e results showed that the pro-

posed technique provides better agreement with the PC-MRI measurements than pure 

CFD simulations, and has reduced computation time (faster convergence). MRI-guided 

CFD can be used to correct the MRI-measured flow field, forcing it to satisfy the fluid 

mechanics equations. It can also be used as a means of reducing noise in the PC-MRI 

measurements, and has potential as a method for reducing scan time.

�e proposed framework offers a general approach to in vivo blood flow assessment, 

that is complementary to improvements in PC-MRI acquisition and reconstruction 

techniques, and can be applied to the study and diagnosis of a broad range of cardiovas-

cular flow mapping applications.
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