
Theoretical Computer Science 121 (1993) 89-112

Elsevier

89

Computational foundations of
basic recursive function theory*

Robert L. Constablq,

Computer Science Department, Cornell University, Ithaca, NY 14853-7901, USA

Scott F. Smith

Department of Computer Science, The Johns Hopkins University, Baltimore, MD 21218, USA

Abstract

Constable, R.L. and S.F. Smith, Computational foundations of basic recursive function theory,

Theoretical Computer Science 121 (1993) 89-112.

The theory of computability, or basic recursive function theory as it is often called, is usually

motivated and developed using Church’s thesis. Here we show that there is an alternative comput-

ability theory in which some of the basic results on unsolvability become more absolute, results on

completeness become simpler, and many of the central concepts become more abstract. In this

approach computations are viewed as mathematical objects, and theorems in recursion theory may

be classified according to which axioms of computation are needed to prove them.

The theory is about typed functions over the natural numbers, and it includes theorems showing

that there are unsolvable problems in this setting independent of the existence of indexings. The

unsolvability results are interpreted to show that the partial function concept, so important in

computer science, serves to distinguish between classical and constructive type theories (in a different

way than does the decidability concept as expressed in the law of excluded middle). The implications

of these ideas for the logical foundations of computer science are discussed, particularly in the

context of recent interest in using constructive type theory in programming. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1. Introduction

It is widely believed that there is one absolute notion of computability, discovered

in the 1930s by Church, Kleene, Turing, Gtidel and Post and characterized by proofs

that various models of computation (e.g., Turing machines and random access

machines) give rise to the same concept of computability, as well as by a belief in

Correspondence to: R.L. Constable, Computer Science Department, Cornell University, Ithaca, NY

14853-7901, USA. Email: rc@cs.cornell.edu.

* This work was supported in part by NSF grants CCR8502243 and DCR8303327.

0304-3975/93/$06.00 0 1993-Elsevier Science Publishers B.V. All rights reserved

90 R.L. Constable, S.F. Smith

Church’s thesis, which in turn leads to a well-developed theory of unsolvability [S].

This standard theory accepts Church’s thesis, and it is explicitly used by Roger [26] to

develop the theory. We want to present an alternative view.

We have discovered through our attempts to provide a formal foundational theory

for computer science [S, 6,29,30] that there is an interesting alternative to the

standard theory. The goal of this paper is to explain this alternative.

One of the requirements for a theory of the kind we imagine is that it be adequate to

explain all of the basic notions of computation and, where appropriate, relate them to

basic notions of mathematics. So it should explain algorithms and functions, data

types and sets, computations, resource expenditure, unsolvability, etc. It should also

provide the rules to settle what is true about these basic concepts. We call such

theories foundational.

In attempting to design a foundational theory of computation, we found that

specific computing models and their properties are not a suitable basis. Such proper-

ties depend on specific discrete data types, such as natural numbers or strings, and it is

not clear how to generalize them to other data types while preserving their essential

character. The operational models of computability, say, random access machines

(RAMS), specify too much irrelevant and ad hoc detail. Some abstract approaches

[lo, 32, 331 take partial functions to be indexable, which is not justified on a priori

grounds; others are too abstract to be of much relevance to computation. So we had to

look elsewhere for the basis of a computation theory. A natural place to look at is the

theories developed in computer science to reason about functional programs. One

such theory is LCF [15], essentially a theory of typed functional programs (much like

those in the language PCF [25]) based on Scott’s domain theory [28]. Others are the

type theories over the natural numbers such as [21, 141 and Nuprl [6], foundational

theories for mathematics which can be interpreted computationally. In this setting the

notion of an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAindexing is an enumeration of the class of partial functions. It is consistent

to affirm or deny such indexings, but the surprising result is that there is an interesting

notion of unsolvability even if we deny them.

LCF is based on the notion of continuous functions over domains and builds in

a partial order relation as a primitive. This means that one can appeal to continuity

arguments to establish undecidability. Such a theory departs radically from basic

recursive function theory. Among the constructive type theories, only Nuprl thus far

offers a theory of partial functions that can serve as a basis for recursion theory [S].

Here we present a simplified version of part of that theory, omitting the notion of

computational induction.

In some sense indexing-free approach to unsolvability was known to Church and

Kleene at the dawn of the subject because they developed computability theory first in

the context of the untyped l-calculus, as a theory of I-definability. There was no need

for indexings in this theory in order to achieve self-reference nor in order to contem-

plate the existence of functions to decide the halting problem. In fact Kleene has said

[20] that his development of the recursion theorem arose from translating the result

from the ;l-calculus, where it is almost immediate once the Y-combinator is known,

Computational foundations of basic recursive function theory zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA91

into the p-recursion formalism. Note that Kleene even used the same notation {e}(u)

for both theories, meaning the application of function e to argument a in the

I-calculus and meaning the application of the eth partial recursive function to

argument a in his indexed theory of recursive functions.

The unsolvability argument in the untyped &calculus serves as an introduction to

our theory. First, a quick review of the I-calculus is in order. ix.b is the representation

of a function in the ;l-calculus: x is a variable which is the parameter to the function,

and b is the body, which can be an arbitrary expression.f(a) denotes application of

functionfto argument a. For instance, JVy.(J_x.y(x(x)))(~x.y(x(x))) is a A-term. This is

in fact a special term, the Y-combinator; it is a fixed point combinator, i.e.

Y(f) =f(Y(f)) for any function f: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Theorem 1.1. There zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis no I-definable function to decide halting in the untyped kculculus.

Proof. Suppose there existed a function h such that h(x) = 1 if x halted, and h(x) = 0,

otherwise. Define d= Y(Ax. if h(x)= 1 then diverge else 0). Using the fact that Y(d)=

d(Y(d)), d = if h(d) = 1 then diverge else 0. Consider how d executes: if h(d) = 1 then the

if-test succeeds, so d will diverge, but this contradicts the definition of h! Likewise, if

h(d) = 0 then d = 0, again contradicting the definition of h. Therefore, h cannot exist. 0

Consider three approaches to unsolvability. The most basic is the version presented

directly above, involving a notion of function that permits direct self-application.

Functions in classical set theory cannot take themselves as arguments, and the usual

typing of functions (as in Russell’s type theory for instance) precludes self-reference as

well. In order to present the A-calculus arguments in a conventional mathematical

setting, Kleene introduced a second approach based on the concept of an indexing (or

GBdelization, as he saw it) on which the standard recursion theory is based.

In this paper we offer a third approach to these ideas based on the concept that

computations can be treated as objects and typed. We modify the above argument by

directly adding a fixed-point operator, fix, which avoids the use of self-reference

necessary to define Yin the untyped A-calculus. This allows the above computation

d to be typed, and the unsolvability of the halting problem may then be proven (see

Section 3.1).

2. A theory of computing

2.1. Nature of the theory

Although the concept of an algorithm is central, we treat it as a metanotion in this

theory, i.e. algorithms are those terms which denote functions. Two algorithms are

equal only if they have the same “structure”, but we do not formalize either algorithm

or this equality in the object theory here, although it is ultimately desirable to capture

92 R.L. Constable. S.F. Smith

such concepts in this framework. We represent in the theory those mathematical

objects that algorithms compute, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnumbers andfunctions; iffand g compute functions

then asfunctions they are equal precisely iff(a) = g(u) for all a in the domain offand g.

This is thus an extensional notion of equality. For simplicity and for comparison to

the standard theories, we have three base types, N, the nonnegative integers zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1,2, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. . . ;

1, the type with one element; and 2, the type with two elements. The theory is higher

order in that if S and Tare types, then so is S+ T, the type of all computable functions

from S into T. S is the domain type and T the range type of these functions. Thus far,

this theory is closely related to the typed J-calculus [16] and to PCF [25].

The types defined above are basic; in addition, associated with each type T is it’s

“bar type”, denoted i? Intuitively, r represents the computations of elements of type

T treated as equal if they yield the same result. But it is not necessary to construe bar

types as computations of elements, as will be seen in the semantics section below.

It is significant that the bar types are defined after the basic types. We first

understand the ordinary mathematical objects, then we come to understand com-

putations of them. This means in the case of functions, for instance, that we under-

stand total functions before we understand the partial functions.

2.2. Possible interpretations of the theory

A theory of the kind presented here can be understood at a foundational level, and

it makes sense to regard the axioms as the final arbiter of meaning. This is the

approach taken in ITT [Zl], Nuprl [6] and in Section 2.4 below. It is also possible to

provide a concrete computational semantics for the theory by defining an operational

relations set to mean that s is the result of evaluating or computing t, and then

defining type membership and equality using this notion of computation [l]. Such an

interpretation is given in Section 2.5 below. Although the theory is consistent with

respect to such models, we do not mean to suggest that a computation theory must be

based on such concrete notions. It is also sensible to interpret this theory over an

intuitive and abstract constructive theory of functions and types (or sets). The basic

concept could be that of a mental construction. In such an account, the notion of

algorithm, computable function, and type are open-ended. This theory is consistent

for such a semantics as well.

2.3. The syntax

The syntactic categories are variables, terms, and types.

If r, s, t, f are terms and x is a variable, we may construct the terms

0, 1, 2, . . . the numerical constants,

Ix.t an abstraction,

s(t) application,

s; t sequentiulization,

Computational foundations of basic recursive function theory 93

succ(r) successor, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

predecessor,

zero(r; s; t) a decision term, and

.fw) the jixed point term.

2x.t binds free occurrences of x in t. x occurs free in the body of the function, t, if it

appears, yet is not bound by yet another I therein. We use notation b[a/x] to express

the act of taking the term b and replacing all free occurrences of variable x by the term

a, being careful to rename bound variables in b to avoid free variables in a becoming

bound (capture). A term is closed if it has no free variables. For this paper, small letters

except w-z denote terms, and w-z denote variables. Sequentialization s ; t denotes the

execution of s followed by the execution oft. zero is a test of r for 0 value, returning s if

r is 0 and t if r is some other number. The precise meanings of the terms will be made

clear below. Note, this language is essentially call-by-name PCF [27,25] with the

addition of a sequencing operator, s ; t.’

Associated with terms are the base types

N, the natural numbers,

1, the unit type,

2, the boolean type,

and, inductively, if S and T are types, then

S-+T the function space, and

s the bar type,

and also types, provided that S itself is not a bar type in the second clause. In this

paper, capital letters denote types.

2.4. The theory

Meaning is given to the types and terms via assertions. A collection of axiomatic

principles is then given which defines the precise meaning of the assertions. The

syntax, assertions, and principles together define the theory of computability that is

the center of this paper.

1 Sequencing is needed because we adopt a call-by-name semantics. In PCF which uses call-by-value, the

effect of s; t is accomplished by (Ix.t)(s) where x is not free in t.

94 R.L. Constable, S.F. Smith

We may assert the following properties of types and terms.

l s = tE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT, meaning terms s and t are equal members of type T,

l teT, meaning t is a member of T and in fact defined, in terms of the previous

assertion, as t = t e T,

l t 1, meaning a converges, and

l t r, meaning a diverges, in fact defined as meaning a does not converge.

The axiomatic principles for deriving truths in the theory are as follows.

Function introduction: If b [t/x] = b’ [t’/x’] EB for arbitrary t = t ‘EA, then

/lx.b=W .b’EA+B.

Function elimination: Iff=f’EA+B and a =~‘EA, thenf(a) =f’(a’)EB.

Bar introduction: If ai iff a’ 1, and al implies a = a’E A, then a = a’EA.

Bar elimination: If U=U’E~ and al, then u=u’~A.

Fixed point: Iff=f’EA-+& thenJix(f)=Jix(f’)EA.

Equality: -=--E- is a partial equivalence relation, i.e. it is transitive and sym-

metric.

(N, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1,2): N is a type of natural numbers zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1,2, . . . , 2 is the subtype of N with

members 0 and 1, and 1 is the subtype of N with member 0. Principles on these objects

are taken as givens, e.g. pred and succ compute predecessors and successors (the

predecessor of zero is zero), and induction on numbers is taken to be sound.

Logic: Constructive principles of logical reasoning may be used. Shorthand nota-

tion for logical expressions include “Vt : T.. .” meaning “for all t in type T . . .“,

“3t:T...” meaning “there exists a t in type T.. .“, & meaning and, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV meaning or,

* meaning implies, and o meaning if and only if.

Beta: (Ax.b)(u)= b[u/x]EA.

Fix: jix(f)=f($x(f))~A.

Sequence: a; b=beA, provided al.

Strictness: If any of succ(a), pred(u), a(b), zero(u; b; c), zero@ a; b), or zero(n; b; a)

(where n is 1,2, . ..) terminates, then u also must terminate.

Value: al if UEN or if aeA+B.

Divergence: lfix(/zx.x)l.

For instance, ~x(Ax.succ(x))~~ may be shown as follows: first, recall that tET is

defined as t = tET. By the fixed point principle, it then suffices to show

Ix.succ(x)~~+N, which follows from the function introduction principle if under the

assumption nEN we may show succ(n)EN. From bar introduction, suppose succ(n)l

and show succ(n)EN: by strictness nJ., so by bar elimination, nEN, so by a basic

property of numbers, succ(n)EN. It is also useful to observe that Jix(lx.succ(x))~,

because if it converged, by bar elimination and the above derivation it would be a

number, but it corresponds to no natural number, as can easily be verified by induction.

Consider also the example of I ; 3 where I is the term known to diverge,$x(Ax.x).

This element belongs to any bar type since assuming that it converges implies, by the

sequence rule, that I converges; this contradicts the divergence rule. The above rules

Computational foundations of basic recursive function theory 95

are not complete for the computational semantics we give below, but they are enough

to develop the computability theory we want.

The most important rule for our purposes is the fixed point rule. A wide collection

of partial functions may be typed with this rule, including all partial recursive

functions.’ The rule is also critical in the proof of the existence of unsolvable

problems: in a theory with this rule removed, it would be possible to interpret the

function spaces to be classical set-theoretic functions. The fixed point principle is

powerful, and it can in fact be too powerful in some settings: in a full type theory such

as Nuprl, it is inconsistent to allow all functions to have fixed points. There, the

principle must be restricted to take fixed points over a collection of admissible types

only [29]. In this theory the type structure is simple enough that all types are

admissible.

2.5. The computational semantics

A precise semantics can be given for this theory by defining a reduction relation and

then inductively classifying terms into types based on their values. This semantics

shows the principles given in the previous section to be sound.

To evaluate computations, some notion of a machine is necessary; a relation is

defined for this purpose. Let vtt mean that term v is the value of executing or

reducing t using a sequence of head-reductions. 3 This relation is defined in Fig. 1.

Note that the only possible values in this computation system are numbers and

lambda abstractions. Also note that if the conditions for reduction are not met, then

the computation aborts; it does not diverge. For instance, a(c) will abort if a does not

U+ t is the least-defined relation having the following properties zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

n+n where n is 0, 1, 2,

1x.btkc.b

~+succ(a) iff n+a and n plus one is u

vtpred(a) iff n+a and n minus one is v;O minus 1 is 0

vtzero(a; b; c) iff nta and if n is 0 then vtb else vtc

v-a(c) iff Ix.b+-a and vtb[c/x]

v+@ (f) iff v+f(f;x(f))

vta;b iff al and v+b

Fig. 1. Evaluation.

‘It is easy to see that all partial recursive functions from N to N are typeable, for example all the

p-recursive definitions can be immediately translated into these terms.

3 Head-reduction corresponds to call-by-name semantics for function calls.

96 R.L. Constable, SF. Smith

evaluate to a A-term. Thus 2(l) does not compute to anything, nor does succ(lx.x).

For this presentation, as in [26] we treat aborting computation as divergent. We

could distinguish abortion as a separate case without changing the results, but this

would be an unnecessary complication.

For example, lettingfbe Ay.Ax.zero(x; 0; y(pred(x))), we know$x(f)(l) computes as

follows:

0+3x(f)(l) iff

OtAx.zero(x; O;Bx(f)(pred(x)))(l) iff

O+zero(l; O;jx(f)(pred(l))) iff

O+Jix(f)(pred(l)) iff

OtAx.zero(x; O;fix(f)(pred(x)))(pred(l)) iff

O+zero(pred(l); O;$x(f)(pred(pred(1)))) iff

O+zero(O; O;jx(f)(pred(pred(l)))) iff

0~0, which is obvious.

Therefore, O+jx(f)(l).

Define termination t 1 as (st t) for some s. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Definition 2.1. Define s = t E Tfor s and t closed terms by induction on types as follows:

s=tETiff

if T is 1, then 0+-s and Ott,

if T is 2, then bcs and bet for b either 0 or 1,

if T is N, then ncs and net for some n one of 0, 1,2, . . . ,

if T is A+B, then Ix.bts and 2y.b ct and for all a and ~‘EA, u=a’~ A implies

b [a/x] = b’ [a’/~] E B,

if T is 2, then (sJ iff t 1) and sJ implies s= tEA.

Some simple observations about this definition are now made. a=beN means

a and b both evaluate to the same natural number n. If &N-+2, 12x.bef and if

EN, b[n/x]E2. Since f(n) and b[n/x] both have the same values when computed,

f(n)~2 as well.fis thus a total function mapping natural numbers to either 0 or 1, as

expected. ~EN+Z, on the other hand, means f(n)eZ for some number n, so by the

clause above defining bar types,f(n) could diverge, so the function might not be total.

Thus, there are distinct types for partial and total functions.

Theorem 2.2. For all types T,

(i) iftETund u--t and ucs, then t=seT,

(ii) if s=tET then t=seT,

(iii) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAif s=teTand t=uET then s=u~T.

Computational foundations of basic recursive function theory 91

Theorem 2.3. The theory is provably sound under the interpretation of the assertions

given by the computational semantics.

This is easy to prove, because each of the principles enumerated in Section 2.4 is

valid in the computational semantics (see [29] for the details, applying to an even

richer theory). The computational semantics thus gives one sound interpretation of

the theory, but this does not preclude other interpretations.

3. Basic results

3.1. Overview

Our plan for this section is to examine certain basic concepts and results from

recursive function theory over natural numbers, say, as presented in [26,31], and to

show they have analoges in the theory just defined. We start with undecidability

results, then look at analogs of recursively enumerable sets, and then of reduction and

completeness.

The unsolvability results are particularly easy to understand in this theory. We can

argue that there is no term in the theory to solve the “halting problem” for functions

&N-m, say, for specificity, the problem “doesf(0) halt?” One way to express this

problem is to notice that for every suchJ; f(0) belongs to N. So we are equivalently

asking for any computation teN, whether we can tell if t halts, i.e. whether there is

a function hER-+2 such that h(t)= 1 iff t halts. The answer is no, because if we assume

that h exists, then we define the function

d =jx(Ax.zero(h(x); 1; I)EN,

where, as before, I is some element of N known to diverge such as jix(2t.t). deN

follows by the fixed point principle because the body is in the type N-+N. By

computing the J;x term, we have d=zero(h(d); 1; _L)E~. If h(d)=O, then d should

diverge, but in fact d = 1; so it converges, and we reach a similar contradiction if

h(d)= 1. So the assumption that h exists leads to a contradiction.

There is nothing special about N in the argument except that there is an element

such as HEN. So the argument in general applies to any type T with some element

toET. If we assume there is he%2 such that h(t)= 1 iff t converges, then we may

define

d =f(Ax.zero(h(x); to; I))E ?;.

The argument makes essential use of the self-referential nature offix(which has

the type i= where f is of type T+L? This simple unsolvability argument cannot

be expressed in a classical type theory which takes A-B to denote the type of

all functions from A into B, because in that case there surely is a function T-+2

solving the halting problem. This argument thus also shows that the constructive

98 R.L. Constable. S.F. Smith

type-theoretic notion of partial function differs in some fundamental way from the

classical notion.

In this type-theoretic setting we can establish other unsolvability results by reduc-

tion, and a version of Rice’s theorem, which summarizes these results, can be proved.

In general, the theory unfolds along the lines of basic recursive function theory. In

a computation theory based on domains such as LCF, there is an axiom stating that

all functions are monotone with respect to the domain partial order. From this axiom

it is easy to show that no term of LCF can compute the halting function h above

because it is not monotone. Computing theory done this way does not bear such

a strong resemblance to recursive function theory.

We consider any subcollection of terms in a type T to be a class of terms of T. In

formal language theory, the concept of an acceptable set is important; that idea is

captured here by saying that a class CT over a type T is acceptable iff CT consists of

those values on which a partial function with domain T converges. We can define

a kind of complement of an acceptable class CT as being those values on which

a partial function with domain T diverges. A complete acceptable class may be

defined, and it is surprising that in this context, any nontrivial acceptable set is

complete. This is essentially a consequence of the extensional equality of bar types;

details follow.

3.2. Classes

Many of the theorems in the paper are about classes of elements over a type. For

example, we consider the class K of all convergent elements of m; this is written as

{x:N 1 xl >. Although such classes can be defined formally, say in type theory [4,21]

or in set theory, we prefer an informal treatment which is applicable to a variety of

formalizations. The notation we use for a class CT over a type T is (x: T I P(x)} where

P(x) is a predicate in x. We say tE{x:TJ P(x)} for tET when P(t) holds.

3.3. Unsolvability

We say that a class is decidable when there is a (total computable) function to

determine when an element of the underlying type belongs to the class. A simple way

to define this follows. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Definition 3.1. CT is decidable iff

3f: T+2. Vx:T. XEC~ 0 f(x)= 1E2.

In the world of standard recursive function theory, the decidable classes over N are

a small subset of the set of all subsets of N. They are at the bottom of the Kleene

hierarchy and form the lowest degree in the classification of these sets by reducibility

orderings. We shall see that in this theory they too form a “small” subset of the set of

all classes over N, and more generally over any type T.

Computational foundations of basic recursive function theory 99 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Definition 3.2. Let KF= {x: TI xl}.

Theorem 3.3 (Unsolvability). For all types T which have members, meaning some tOE T,

KT is not decidable.

Proof. See Section 3.1. 0

The class of diverging computations is also not decidable.

Definition 3.4. Let diuKT= (x: r(x 7 >.

Theorem 3.5. For any type T with members, divKp is not decidable.

Proof. This is just like Theorem 3.3; assume h decides membership and look at

d=jx(Ax.zero(h(x); I; to)) where toeT. 0

There are other kinds of unsolvable problems. For example, consider functions

&S-+T where S and T have members. Then the class

of the functions that halt on at least one of their inputs, is not decidable. To see this,

suppose it were decidable. Then we could decide KT because for each XE r we can

build anfES+ T which is the constant function returning x, i.e.fis Ay.x, and we notice

that gy:S.f(y)J iff xl. So if hE(SG+T)+2 decides W s_r then Ax.h(ly.x)EF+2 decides

KT. W e have proved:

Theorem 3.6 (Weak halting). For any types S and T with members, (f: S+TI 3x: S.

f(x) J> is not decidable.

The proof proceeded by reducing the class KT to the class W ,,r. This is a general

method of establishing unsolvability, characterized by this definition.

Definition 3.7. Class Cs is reducible to class CT, written Cs<CT, iff there is a function

fES-+T such that Qx:S. XEC, o f(x)ECT.

Fact 3.8. 5 is reflexive and transitive.

For Theorem 3.6, the mapping function isf= 2x.ly.x. When reducing to a class over

a bar type, say CT, the reduction function ~ES+T might yield a nonterminating

computation, so it is a partial function. It seems unnatural to use partial functions for

reduction, but there is no harm in this because we can always replace them by total

functions into the type l-+ i? That is, givenfeS+ T, replace it by geS+(l-+ r) where

g(x) = Ily.f(x), and y does not occur free inJ This gives an equivalent total reduction

100 R.L. Constable, S.F. Smith

because zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtECf o Ix.t~C,,T: the “dummy” lambda abstraction serves to stop

computation.

Rice’s theorem summarizes the unsolvability results by characterizing the decidable

classes of computations over any bar type in a strong way. In this setting, Rice’s

theorem says that all decidable classes of computations are trivial. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Definition 3.9. For any type T call a class CT triuiai iff

(VX.T.XEC~) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV (Vx: T.1 (xEC,)).

Theorem 3.10 (Rice). For all types T, CT is decidable iff CT is trivial.

Proof. (-c) This follows directly, for Ix.1 characterizes the maximal class, and Ax.0

characterizes the minimal (empty) one.

(a) supposefET+2 decides CT. Sincefis total,f(.L)=O orf(l)= 1; show for the

casef(l) = 0 that the class must be minimal, and forf(_L) = 1 that it must be maximal.

Casef(_L) =O: Show C is trivial by showing it is minimal, i.e. Vt: i?f(t)=O. Let teT

be arbitrary. We may show f(t)=0 arguing by contradiction because the equality is

decidable. So, assume f(t) ~0. divKi; may then be shown to be decidable using the

function

h = 2x.f (x ; t)E T-*2.

For h to characterize dioKF means h(x)= 0 o XT.

(9) h(x)=0 impliesf(x; t)=O. Supposing x_l,f(x; t)=f(t)=O, but this contradicts

our assumption, so XT.

(0 XT means h(x)=f(x; t)=f(l)=O. divK,is not decidable by Theorem 3.5, so we

have a contradiction.

Case f(l)= 1: Show C is maximal, i.e. Vt : i=‘. f(t)= 1. This case is similar to the

previous except that the output of the reduction function h is switched to make it

h=Ax.zero(f(x;t); 1; O)ET-+2. 0

3.4. Acceptable classes

One of the basic concepts in the study of formal languages is that of an acceptable

set. For example, the regular sets are those accepted by a finite automaton, and the

deterministic context-free languages are those accepted by deterministic pushdown

automata. It is a major result of standard recursive function theory that the recurs-

ively enumerable sets (r.e. sets) are exactly those accepted by Turing machines. In this

setting, an acceptable class is one whose elements can be recognized by a partial

function. The following definition sets forth the idea in precise terms.

Computational foundations of basic recursive function theory zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA101 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Definition 3.11. A class CT is converge-acceptable or just acceptable iff

jf: T+i. Vx:T. XEC, 0 f(x)J.

A class CT is diverge-acceptable iff

3f: T+i. Vx: T. XEC~ e f(x)?.

The canonical acceptable class is K,, and we may now prove the following theorem.

Theorem 3.12. For all types T, K, is acceptable.

Proof. The accepting function f is 2x.(x; O)eT+i, which converges exactly when its

argument x converges. q

The diverge-acceptable classes are needed to deal with the idea of the complement

of an acceptable class. In a constructive setting, there is often no single concept to

replace the classical idea of a complement. In classical recursion theory, complements

have the property that for any subset S of N, any element of N either lies in S or in its

complement, i.e. if -S denotes the complement, then Vx:N. XES V XE -S. But taken

constructively this definition says that membership in S is decidable. In the case of

acceptable but not decidable classes S, we cannot in general say that -S is not

acceptable. The diverge-acceptable classes serve as an analog of a complement.

Theorem 3.13. For any type T with members, divKT is diverge-acceptable.

Proof. The diverge-acceptor function f is 2x.(x ; 0)~ %+i. 0

We also know that divKFiis not acceptable, so div acts like a complement. K~is not

diverge-acceptable either.

Theorem 3.14. For any type T with members,

(i) KT is not diverge-acceptable.

(ii) divKf is not acceptable.

Proof. For (i), suppose f diverge-accepted Kr and toE T, define

d=jix(Ax.(f(x); t,,))ET.

d _1 iff d r follows directly, which is a contradiction. The proof of (ii) is similar. 0

3.5. Unions and intersections

We may take unions, intersections, and negations of classes, defined as follows.

102 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR.L. Constable. S.F. Smith zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Definition 3.15.

CE -AT iff CET & c$A=,

ceATuBT iff CEA, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV CEB,,

ctzAT c BT iff 1 (&AT & c$BT),

ceATnBT iff CEA~ & CEB~.

The weak union CE AT c BT is useful because it is not always possible to form a strong

union constructively; this requires that we may decide which class each term falls in.

The decidable classes over any type T are closed under union, intersection and

negation.

Theorem 3.16 (Decidable boolean operations). For any type T and for any decidable

classes AT, BT over T, the union, A,u BT, intersection ATn BT, and complement -AT

are also decidable.

Proof. Suppose that fA accepts AT andf, accepts BT; then

Lx.zero(&(x); 1; 0)

accepts -AT,

Ilx.zero(fA(x); zero(fB(x); 0; 1); 1)

accepts ATu BT, and

Ix.zero(&(x); 0; zero(fs(x); 0; 1))

accepts ATnBT. 0

The acceptable classes over any type Tare closed under intersection, namely, iffA

accepts AT andf, accepts BT, then Ax.f,(~);f~(x) accepts A,n BT. Iff, andfB accept

by divergence, then this composite function also accepts the weak union AT G BT. One

might expect the acceptable classes to be closed under union as well, since in standard

recursion theory the r.e. sets are closed under union. But the standard result requires

that we dovetail the computationfA(x) with the computationfB(x). That is, we runfA

for a fixed number of steps, thenfs for some number, then zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfA for a fixed number of

steps, then fs for some number, then fA again, then fB, etc., until one of them

terminates. In the theory presented so far, this cannot be done because we do not

have access to the structure of the computation. We will discuss this situation further

in Section 4.2 where we add a new operator to the theory which captures certain

aspects of dovetailing. So the best we can claim now is the following theorem (proved

above).

Computational foundations of basic recursive function theory zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA103 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Theorem 3.17 (Intersection of acceptable classes). For any type T, the acceptable

classes over Tare closed under intersection, and the diverge-acceptable classes are closed

under weak union.

3.6. Complete classes

In standard recursive function theory, a class such as KN is complete in the sense

that any acceptable class can be reduced to it. The idea of completeness has been very

important and led to such notions as complete sets for various complexity classes,

e.g. polynomial time complete sets. Here, there is also an interesting notion of

completeness.

Definition 3.18. Call a class CT acceptably-complete if CT is acceptable and for all

types S and acceptable classes Ds, Ds is reducible to CT, i.e. Ds <Cr. Likewise, CT is

diverge-acceptably complete if CT is diverge-acceptable and for all types S and diverge-

acceptable classes Ds, Ds 5 Cr.

Theorem 3.19 (Complete classes). For all nonempty types T,

(i) KT is acceptably-complete and

(ii) divKt is diverge-acceptably complete.

Proof. (i) LetfET+i accept Kp, and suppose toET and Ds is an arbitrary acceptable

class with acceptor function g. Then, define the reduction function

m=As.(g(s);tO)ES-+T.

For arbitrary SES, it must be that SD, o m(s)EKF, i.e. g(s)lof(m(s))l.

(*) g(s)J. *m(s)=&,, sof(m(s))J (we know toEKT).

(e) f(m(s))l means m(s)1 sincefcharacterizes KT, so g(s); t,,J, meaning g(s)l.

(ii) This proof is similar to that of(i). 0

4. A family of computation theories

We envision a family of computation theories, each with a different basis for what

constitutes computation. The basic theory of the previous section can be extended in

numerous ways; each extension gives rise to a different collection of theorems, all

extensions of the basic results of the previous section. These extensions are separate,

because it may be desirable not to accept certain of them. The computational facts on

which particular theorems depend is an interesting issue in its own right, carving up

the mass of theorems of standard recursion theory into smaller clusters. We will add

some axioms about uniform behavior of computations, add the ability to dovetail and

to count the steps of computations, and add nonmathematical intensional types which

extend the scope of reasoning.

104 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR.L. Constable, S.F. Smith

It is possible to consider an even more basic computation theory where there is

a Kleene least number operator p to define partial functions instead ofjx. All Turing

computable functions are defnable in this theory, but it does not account for the

self-referential nature of computation, and there are no inherently unsolvable prob-

lems like those found here.

4.1. Uniformity principles

There are two uniformity principles which allow functions applied to diverging

computations to be more precisely characterized. Let r = I, then:

vfiA+B. f(T)1 * Va:A.f(a)~, (I)

vfiA+B. f(T)T =3 Va:A.(f(a)J *al). (II)

There are two justifications for these principles. The first justification explicitly uses

the computational semantics and the evaluation relation c defined therein.

Theorem 4.1. SemunticuZly, I and II are true.

Proof. (I) Whenf(t)J, the argument t must not have been computed, for that would

mean in an extensional setting that the computation would have to diverge. If the

argument was not computed, it could be anything, so zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVu:ii.f(u)J.

(II) The argument tofcould not have been ignored, becausefis not a constant

function. Therefore, the argument must have been computed, so if f(a)l, al as

well. 0

The other justification follows if we accept Markov’s principle, 1 t T =S t 1. These

results are then directly provable, with no need to take a semantic viewpoint.

Markov’s principle is not constructively valid, but those readers who accept classical

principles of reasoning can take Theorem 4.2 as an unconditional proof of the

uniformity principles.

Theorem 4.2. Murkov’s principle a I & II.

Proof. (I) Take an arbitraryfEA-+B, withf(t)J. Supposef(u)f for arbitrary a~& we

will show a contradiction. Note that a # t, because otherwisef(u)J.; and by Markov,

we may thus conclude al. We now assert K,- is diverge-acceptable. Define its

diverge-accepting function h = Ax.f(x ; a); OEA+i. We only need to show

Vt:A.h(t)fotl,

and this follows from the definition of h:

Computational foundations of basic recursive function theory 105

But this is a contradiction, for K.J is not diverge-acceptable (Theorem 3.14).

Therefore, if(a) t, which by Markov allows us to conclude f(a)l.

(II) Assumef(t) t andf(a) 1; we show a _1 by showing 1 at. Suppose a 7; thenf(a) t

because a = t, contradicting our assumption. 0

A strong characterization of the acceptable classes over bar types may now be

given. Accepting functions f~ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF-vi are required to map equal computations to the

same result, and we show below that this means all nontrivial classes must be

complete.

Definition 4.3. CT is strongly nontrivial o 3to: T. tO~CT & 1 Vt: T. ~EC,.

Theorem 4.4 (Acceptability characterization). CT is acceptable and CT is strongly

nontrivial =+ C_T is acceptably-complete.

Proof. CT is acceptable means that for all t, the acceptor functionfc(T)l o &Ci;.

Also, by the nontriviality assumption toeCi;.

We may assertfc(t)t: iffc(r)l, then by I we have Vt: F.fc(t)J, contradicting the

nontriviality of Cr. toi then follows by II.

We next show CT is acceptably-complete. Let Ds be an arbitrary acceptable class,

with an accepting function f&+i. It must be true that D,<Q. Let m be

l.t.(fD(t); to)ES+T. For m to be the reduction function it must satisfy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(*) Suppose fdt)l; then CL&); to)= to, so fcW))=fXM~); ~o)=_M~o), which
converges because tOECT.

(0 Supposef,(f&); to)J; by uniformity II, that meansf,(t); to& sofD(t)l. 0

Using Rice’s theorem (Theorem 3.10), we may prove

Corollary 4.5. For all types T, CT is acceptable * CT is decidable zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV c C i; is acceptably

complete.4

Proof. For acceptable C, this is equivalent to proving

1 C is decidable * 11 C is acceptably complete.

By Theorem 4.4, we have

11 C is strongly nontrivial = 11 C is acceptably complete,

4A V c B is a classical disjunction, 7 (1 A & 7 B).

106 R.L. Constable, SF. Smith

and the corollary will thus follow from

1 C is decidable =E- 11 C is strongly nontrivial.

We prove this by showing

1 C is decidable = 1 C is trivial

and

i C is trivial =- ii C is strongly nontrivial,

both of which follow by straightforward propositional reasoning. 0

4.2. Dovetailing computations

In the basic theory, there is no possibility of dovetailing computations. In standard

recursion theory, two computations may be dovetailed with the aid of a universal

machine, but this theory is not endowed with such a machine, so we directly add

dovetailing. We define the dovetailing constructor a 11 b to simultaneously compute

a and b. Here, we only give the computational semantics and prove facts at the

semantic level, but an axiomatization is also possible.

Definition 4.6. Define a new computation relation v L t which has all of the clauses of

Fig. 1, and with the additional clause

vLa[Ib o vka zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV vLb.

The computation relation & is not a function: 1 L 1112, and 2 & 1112. Such

multivalued terms make no sense inhabiting our existing types, so we redefine vet as

a deterministic restriction of the above relation:

Definition 4.7. Redefine vet as follows:

w-t iff v L t & Vu’. v’ l- t =z- 0’ is v.

Redefine t 1 as

tLiff%.vLt.

The type system over this computation system is then defined as in Definition 2.1. It

is possible to dovetail computations where one or both may have no value at all; this

is reflected in

Computational foundations of basic recursive function theory zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA107

Fact 4.8. a/Ib~Tifa~T& kT&(aJ & bJ=z-a is b).

A more liberal use of parallelism would be allowed if there were types which could

have multivalued terms as inhabitants.

With dovetailing, we may enlarge our collection of acceptable classes. Most impor-

tantly, acceptable classes are now provably closed under union.

Theorem 4.9. CT is acceptable & DT is acceptable * CTuDT is acceptable.

Proof. The accepting function for CTuDT is Ax._&(x) /I fD(x)ET+i. 0

By a similar argument, diverge-acceptable classes can be shown to be closed under

intersection.

Using fixpoints, it is possible to dovetail infinitely many computations.

Theorem 4.10. {g :N+N I3n:N. g(n)J} is acceptable.

Proof. The accepting function is

Lg.Jix(ih.ix.(g(x) ; 0) II h(x + l))(O)~(N-tm)-i,

which computes to

This computation terminates just in case g(n) terminates for some n. q

In standard recursion theory, if a class is acceptable and diverge-acceptable, it is

also decidable, because we compute both and know one or the other will halt for any

element of the domain. This does not follow constructively because it is impossible to

say that one or the other will halt. It is however provable using Markov’s principle, as

the following theorem demonstrates.

Theorem 4.11. Markov’s principle implies

CT is acceptable and CT is diverge-acceptable * CT is decidable.

Proof. Suppose f accepts CT, and g diverge-accepts CT. Then define the following

function to dovetail the two:

r=ix.(f(x); l)Il(g(x);O)ET+Z.

Before proceeding, we check to make sure r is of the indicated type. For arbitrary x, we

wish to show (f(x); 1))I (g(x);O)EZ. Using Fact 4.8, we only need to show

(f(x); 1)l & (g(x);O)l == (f(x); l)=(g(x);O@2.

108 R.L. Constable. SF. Smith

But, the antecedent will never be true, for thenf(x) and g(x) would both converge by

Markov, but that means XEC and x$C, a contradiction. If I is to decide C, Y must be

total. By Markov, we only need show that for arbitrary x, r does not diverge. Suppose

r(x)?; then, by the definition of 11, (f(x); l)t and (g(x);O)f, meaning x#C and 1 (x#C),

a contradiction. Thus, rE T+2. It is easy to see that r in fact decides C. 0

4.3. Measuring computations

Terminating computations are generally accepted to be composed of a finite

number of discrete steps. However, there is nothing in the basic theory which asserts

this finiteness. Many results about computations hinge on their finite nature, and it is

therefore worthwhile to extend the theory to explicitly assert finiteness. To construc-

tively assert that each terminating computation is finite is to assert that it has some

finite step count n. We must also assert that this step count is unique, which all but

restricts the computation system to being deterministic. In the computational seman-

tics this gives rise to a three-place evaluation relation. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Definition 4.12. Define the following evaluation relations:

v C t iff t evaluates to v in n or fewer steps

tl” iff 30.0 C t

tt” iff 7 tJ”.

c is then redefined as

m-t iff 3n.v C t.

The type system is defined as in Definition 2.1, using this new notion of evaluation.

The equality relation and the definition of types is just as in Definition 2.1 (thus

equality is extensional). But the computation theory is now nonextensional, because

computations have a property besides their value, their step count. Terms with equal

values may have differing step counts. Such computation systems are said to be

intensional, Since the step counts constructively exist, we may add an untyped term to

the computation system to count steps; but we cannot type it. Such a counter would

diverge if the computation diverged, so instead we add a more powerful total term:

Definition 4.13. Extend the definition of computation in Fig. 1 by adding the follow-

ing clauses:

Occomp(t)(n) 0 tt”

l+comp(t)(n) 0 tJ”.

Computational foundations of basic recursive function theory zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA109 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Fact 4.14. W e may characterize camp by

(3n:N. lccomp(t)(n)) o tl.

With camp, we have enough power to define a deterministic dovetailing construc-

tor, 11:

Definition 4.15. a(\ b =$x(Ad.A . n zero(comp(a)(n); zero(comp(b)(n); d(n+ 1); b); a))(O)

This function returns whichever of a or b first terminates, and is typed as in

Section 4.2.

It is now possible to prove that some classes which do not involve bar types are

unsolvable because certain uses of camp are typeable:

Definition 4.16.

V={~:N-+NI~~:N.~(~)=~EN},

divV={f:N+N(Vn:N.f(n)=kN}.

It is easy to show

Fact 4.17. V is acceptable and divV is diverge-acceptable.

More importantly, we may prove

Theorem 4.18. V is not decidable.

Proof. Suppose V was decidable, with a decision function .sE(N-+N)+Z. We may

then construct hEN+2 to solve the halting problem:

h = Ax.s(An.comp(x)(n)).

We assert

Vx:N. XL o h(x)=lE2.

(a) Suppose xl. We wish to show h(x)= 1, which by definition means

s(lln.comp(x)(n))= 1, which in turn means 3n:N. camp(x)(n)= HEN. This follows dir-

ectly from Fact 4.14.

(-=) Suppose h(x)= 1, meaning 3n:N. camp(x)(n)= HEN, so xi. 0

The intensional nature of camp opposes the extensional nature of functions in this

theory, which restricts the uses of camp which can be typed, and hence the class of

functions that may use camp. For example, we may not show KS V, because the

expected reduction m = Ilx.ln.comp(x)(n) is not in the type N+(N+N). This is because

x = YEN does not mean x and y have an equal number of computation steps, so m(x)

110 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR.L. Constable, S.F. Smith

might be different from m(y). To fully incorporate camp and other possible principles

for keeping track of computational resources, the type system must then be extended

to allow nonextensional functions, but that task is beyond the scope of this paper.

5. Related work

Abstract recursion theory is a rich area of research, with many varied approaches to

be found, some of them related to our work (for a review, see [9]). However, all

postulate the indexability of computations which leads to the universal machine and

S-M-n theorems, absent in our approach. We mention here two different approaches.

Wagner [33] has developed an algebraic account of computability, the Uniformly zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Rejlexive Structure, or URS. This theory was elaborated and extended by Strong [32],

Friedman [12], and Barendregt [2]. This theory is essentially a theory of combinators

with an if-then construct to compare terms and an explicit diverging element *. From

this, the universal machine and S-m-n theorems can be proved.

Another account which has more resemblance to this work is Platek’s inductive

definability approach to recursion theory [24], further expounded by Feferman [lo]

and Moschovakis [22]. In this typed theory, types are interpreted as sets, and

functions are taken to be partial maps from sets to sets which are monotone;

monotonicity guarantees that the class of functions will be closed under fixed points,

which means that a rich class of computations much like the ones of this paper may be

interpreted to lie in this structure. Beyond this initial point, their approach completely

diverges from that of this paper. Recursion theory cannot be carried out in a setting

where functions are interpreted as sets, for there is no structure to the computations:

all functions with the same input-output behavior are identified. They thus proceed

by considering conditions under which enumerations will in fact exist, and under such

conditions they prove the universal machine and S-m-n theorems. This approach is

more ad hoc than a foundational theory should be.

6. Conclusions

The constructive recursive function theory (CRFT) of this paper is quite different

from the standard theory. More importantly, the standard theory assumes an index-

ing of all partial recursive functions, which allows the universal machine theorem

to be proved. It also uses Church’s thesis to confer absoluteness and relevance to

the results. In CRFT it is the fixed point principle, a more directly self-referential fact

than the universal machine theorem, which leads to unsolvable problems. The fixed

point principle gives basic unsolvability results, and each additional assumption gives

rise to another collection of theorems, as our results demonstrate. As suggested in

the introduction, it is also possible to study unsolvability in the untyped A-calculus,

where there can be self-reference without indexings and the results are abstract.

Computational foundations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof basic recursive function theory zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA111

A development of recursion theory similar to that of this paper could also be

undertaken in such a setting.

Type theory is a natural setting for recursion theory; its generality gives an

absoluteness and relevance to the results. The results generalize to types such as

ordinals, trees, infinite lists, and real numbers, without the need to build new accounts

for each type.

CRFT also impacts type theory because the types cannot now be given purely

classical interpretations: if A+B were all set-theoretic functions from A to Bu (r },

fixed points could not exist for all functions. The concept of partial function in CRFT

thus serves to distinguish classical from constructive type theory in a way different

from the presence or absence of the law of the excluded middle. In a type theory such

as Nuprl [4] where mathematical propositions can be represented via types, the

excluded middle law itself is inconsistent in the presence of partial types: if we had

a method of determining for all propositions P whether P were true or false, we could

use this to show some term t either halts or does not, which contradicts the unsolvabil-

ity of the halting problem.

Acknowledgment

We would like to thank Elizabeth Maxwell for her cheerful patience in preparing

this manuscript and for learning LaTeX. We also appreciate the insightful comments

of Stuart Allen and David Basin in discussions of this work.

References

?

111

PI

c31

c41

c51

C61

c71

C81

c91

Cl01

S.F. Allen, A non-type-theoretic semantics for type-theoretic language, Ph.D. Thesis, Computer

Science Department, Cornell Univ., 1987. Also as Computer Science Department Tech. Report, TR

87-866, Cornell Univ., Ithaca, NY, 1987.

H. Barendregt, Normed uniformly reflexive structures, in: Lambda-calculus and Computer Science

Theory, Lecture Notes in Computer Science, Vol. 37 (Springer, Berlin, 1975) 272-286.

D.A. Basin, An environment for automated reasoning about partial functions, in: 9th Internat. Conf

On Automated Deduction, Lecture Notes in Computer Science, Vol. 310 (Springer, Berlin, 1988)

101-110.

‘p.L. Constable, A constructive theory of recursive functions, Computer Science Department Tech-

hical Report, TR 73-186, Cornell University, Ithaca, NY, 1973.

R.L. Constable and S.F. Smith, Partial objects in constructive type theory, in: Symp. on Logic in

Computer Science (1987) 183-193.

R.L. Constable et al., Zmplementing Mathematics with the Nuprl Proof Development System (Prentice-

Hall, Englewood Cliffs, NJ, 1986).

T. Coquand and G. Huet, Constructions: A higher order proof system for mechanizing mathematics,

EUROCAL 85, Linz, Austria, April 1985.

M. Davis, ed., The Undecidable (Raven Press, Hewlett, NY, 1965).

A.P. Ershov, Abstract computability on abstract structures, in: Algorithms in Modern Math and

Computer Science, Lecture Notes in Computer Science, Vol. 122 (Springer, New York, 1981) 397420.

S. Feferman, Inductive schemata and recursively continuous functionals, in: Logic Colloquium ‘76

(North-Holland, Amsterdam, 1977) 373-392.

112 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR.L. Constable, S.F. Smith

[11] J.E. Fenstad, Recursion Theory: An Axiomatic Approach (Springer, Berlin, 1980).

& Friedman, Axiomatic recursive function theory, in: Logic Colloquium ‘69 (North-Holland, Amster- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Cl31

Cl41

WI

Cl61

Cl71

Cl81

Cl91

c201

c211

dam, 1974) 385404.

J.Y. Girard, Une extension de l’interprktation de Giidel a l’analyse, et son application a I’Climination

des coupures dans l’analyse et la thdorie des types, in: J.E. Fenstad, ed., Proc. 2nd Scandinavian Logic

Symposium (North-Holland, Amsterdam, 1971) 63-92.

J.-Y. Girard, Y. Lafont and P. Taylor, Proofs and Types (Cambridge University Press, Cambridge,

1988).

M. Gordon, R. Milner and C. Wadsworth, Edinburgh LCF: a mechanized logic of computation.

Lecture Notes in Computer Science, Vol. 78 (Springer, New York, 1979).

J.R. Hindley and J.P. Seldin, Introduction to Combinators and I-Calculus (Cambridge University

Press, Cambridge, 1986).

C.A.R. Hoare and D.C.S. Allison, Incomputability, Computing Surveys, Vol. 4, 1972, 169-178.

S.C. Kleene, Introduction to Metamathematics (Van Nostrand, Princeton, NJ, 1952).

S.C. Kleene, Recursive functionals and quantifiers of finite type I, Trans. Amer. Math. Sot. 91 (1959)

l-52.

S.C. Kleene, Origins of recursive function theory, in: Proc. 20th Annual Symp. on the Foundations of

Computer Science (IEEE, New York, 1979) 371-382.

P. Martin-Liif, Constructive mathematics and computer programming, in: Proc. 6th Internat. Cong.

for Logic, Methodology, and Philosophy of Science (North-Holland, Amsterdam, 1982) 153-175.

[22] Y.N. Moschovakis, Abstract recursion as a foundation for the theory of algorithms, Computation and

Proof Theory (Aachen, 1983), Lecture Notes in Mathematics, Vol. 1104 (Springer, New York, 1984)

289-364.

[23] E. Palmgren, Domain interpretations of Martin-Liif’s partial type theory, Ann. Pure Appk Logic 48

(1990) 135-196.

[24] R.A. Platek, Foundations of recursion theory, Ph.D. Thesis, Stanford University, 1966.

[25] G.D. Plotkin, LCF considered as a programming language, Theoret. Comput. Sci. 5 (1977) 223-257.

[26] H. Rogers, Jr., Theory of Recursive Functions and Effectioe Computability (McGraw-Hill, New York,

1967).

[27] D.S. Scott, A type-theoretical alternative to ISWIM, CUCH, OWHY, Theoret. Comput. Sci. 121

(1993) 411-440, this volume.

[28] D. Scott, Data types as lattices, SIAM J. Comput. 5 (1976) 522-587.

[29] S.F. Smith, Partial objects in type theory, Tech. Report 88-938, Ph.D. Thesis, Department of

Computer Science, Cornell University, 1988.

[30] S.F. Smith, Partial objects in constructive type theory, submitted.

[31] R.I. Soare, Recursively Enumerable Sets and Degrees (Springer, New York, 1987).

[32] H. Ray Strong, Algebraically generalized recursive function theory, IBM J. Res. Develop. 12 (1968)

465475.

[33] E.G. Wagner, Uniformly reflexive structures: On the nature of Giidelizations and relative computabil-

ity, Trans. Amer. Math. Sot. 144 (1969) l-41.

