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ABSTRACT
This paper presents a computational framework for risk-based planning of inspections and repairs for 
deteriorating components. Two distinct types of decision rules are used to model decisions: simple decision 
rules that depend on constants or observed variables (e.g. inspection outcome), and advanced decision 
rules that depend on variables found using Bayesian updating (e.g. probability of failure). Two decision 
models are developed, both relying on dynamic Bayesian networks (dBNs) for deterioration modelling. 
For simple decision rules, dBNs are used directly for exact assessment of total expected life-cycle costs. 
For advanced decision rules, simulations are performed to estimate the expected costs, and dBNs are 
used within the simulations for decision-making. Information from inspections and condition monitoring 
are included if available. An example in the paper demonstrates the framework and the implemented 
strategies and decision rules, including various types of condition-based maintenance. The strategies 
using advanced decision rules lead to reduced costs compared to the simple decision rules when condition 
monitoring is applied, and the value of condition monitoring is estimated by comparing the lowest costs 
obtained with and without condition monitoring.

Introduction

The risk-based approach to inspection and maintenance plan-
ning has been applied successfully for offshore oil and gas struc-
tures under the name Risk-Based Inspection (RBI) (Faber, 2002; 
Straub, 2004). The risk-based approach directly considers the 
influence of the deterioration model and the inspection reliability 
on maintenance decisions and component reliability. Decisions 
on inspection schedule and repair criteria are made in order to 
minimise the total expected lifetime costs. In the approach typ-
ically applied, the computations involved are time-consuming, 
and the decisions do not include information from condition 
monitoring (CM) and do not fully exploit information from 
inspections. This is relevant when applying risk-based deci-
sion-making for e.g. offshore wind turbine components, which 
are often monitored or inspected annually. Due to the damage 
tolerant design of e.g. wind turbine blades, not all detected defects 
should necessarily be repaired immediately, but the observations 
could be considered for future decisions (McGugan, Pereira, 
Sorensen, Toftegaard, & Branner, 2015).

The risk-based approach to inspection/maintenance planning 
is based on the Bayesian pre-posterior decision analysis (Raiffa & 
Schlaifer, 1961). In the classical pre-posterior decision analysis, 
there are two decisions. First, a decision on whether or not to 
obtain more knowledge (e.g. make an inspection), and secondly 
a decision on an action (e.g. make a repair). The decision prob-
lem can be solved using either the normal or extensive form, 
but in both cases the costs associated with each branch in the 

decision tree are evaluated. For maintenance planning, the two 
decisions are repeated many times during the lifetime, and the 
number of branches increases exponentially with the number 
of decisions / time steps. The probabilities are typically found 
using Monte Carlo simulations, which are time-consuming, but 
even if each computation was very fast, the computation time 
would still explode, and therefore, approximations are needed 
to solve the problem.

For RBI, Figure 1 shows a typical decision tree. The decision 
problem is solved by using decision rules for the decisions as in 
the extensive form analysis and by applying the same decision 
rules for all time steps. It is possible to significantly reduce the 
number of computations by assuming that repaired components 
act as new components or as components with no detected 
defects (Straub & Faber, 2006). In this approach, the inspection 
outcome is only used for updating the model through the action 
(repair/no repair). For example, if the decision rule for repairs 
is to repair cracks larger than 5  mm, a decision of no repair 
propagates the information that there was no detection of cracks 
larger than 5 mm, but the information of a detected 4 mm crack 
will be lost for instance.

Dynamic Bayesian networks are useful for computational 
efficient deterioration modelling, and failure probabilities can 
be updated very fast based on information from inspections 
and/or CM when all variables are discrete (Jensen & Nielsen, 
2007; Nielsen & Sørensen, 2017). It is straightforward to model 
deterioration models with discrete states such as Markov pro-
cesses. Although the time spent in each state is limited to be 
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a sampling-based inference method which is much more time- 
consuming than inference for discrete Bayesian networks, where 
efficient exact inference methods exist (Nielsen & Sørensen, 2010).

In the simulation-based approach using Bayesian network for 
decision support, it is possible to use more advanced stationary 
decision rules which depend on e.g. the probability of failure, 
but the method is much more time-consuming than the simple 
discrete Bayesian network approach (Nielsen & Sørensen, 2011). 
Time-variant decision policies can be found using the LIMID 
and POMDP approaches. In the LIMID approach, the optimal 
decision policies are found with a single policy updating algo-
rithm, and only one type of decision (inspection or repair) can 
be optimised, as the algorithm will easily get stuck at a local min-
imum otherwise (Nielsen & Sørensen, 2011). Additionally, when 
decision policies and expected costs are found by the LIMID, not 
all previously obtained information is assumed to be available 
when decisions are made; therefore, decision policies should pref-
erably be updated each time new information is obtained. When 
using POMDP, time-invariant decision policies can be found for 
Markov deterioration models. Nielsen and Sørensen (2015) used 
a grid-based approach, but more efficient point-based approaches 
have also been developed (Pineau, Gordon, & Thrun, 2003).

For the framework presented in this paper, the intent was 
to make a robust model framework, able of including different 
strategies for a variety of deterioration models (not only Markov 
models). Two approaches have been selected as the basis for the 
framework presented in this paper: discrete Bayesian networks 
and simulation based using Bayesian networks for decision sup-
port. This paper presents a computational framework for risk-
based maintenance optimisation using Bayesian networks. In 
the framework, deterioration is modelled using dBNs, and two 
types of decision models are included for the computation of 
probabilities of inspections, repairs and failures in each time step:

•  Decision model type 1: Bayesian network based.
•  Decision model type 2: Simulation based (using Bayesian 

networks for decision support).

Decision model type 1 uses Bayesian networks directly to esti-
mate probabilities. These computations are fast and exact given 
the input. This model can be applied for simple decision rules 
that depend on constants or observed variables, e.g. equidistant 
inspections, or repair when the inspection outcome exceeds a 
given threshold. Decision model type 2 uses simulations to 
estimate probabilities and is, therefore, more time-consuming. 
The advantage of decision model type 2 is the ability to include 
advanced decision rules that depend on variables that are updated 
using inspection and CM information, e.g. the probability of 
failure within the next time step. For this decision model, dBNs 
are used within the simulations for updating of the model using 
observations. Various types of strategies including time-based and 
condition-based maintenance based on various types of informa-
tion are implemented in the framework. A numerical example 
illustrates the model framework and the implemented strategies.

Computational framework

This section presents the computational framework for risk-based 
maintenance planning. The framework has been implemented in 
Matlab (The MathWorks, 2006). Figure 2 illustrates the structure 

geometrically distributed for Bayesian network models, it is pos-
sible to model semi-Markov models with other sojourn time dis-
tributions by adding virtual substates (Welte, 2009) or by using 
graphical duration models (Donat, Leray, Bouillaut, & Aknin, 
2010). Deterioration processes with continuous parameters 
can be modelled by discretising the damage size and variables 
(Nielsen, 2013; Straub, 2009). In this way, dBNs can be used 
to model a variety of deterioration processes including non- 
Markovian models with time-invariant parameters.

Bayesian networks have previously been applied in relation to 
maintenance planning with the use of various approaches. Weber, 
Theilliol, Aubrun, and Evsukoff (2006) used dBNs for model-based 
fault diagnosis by estimating failure probabilities using several 
sensors, but did not consider costs in the decision-making. Iung, 
Véron, Suhner, and Muller (2005) used dBNs to estimate the effect 
of different time-based maintenance strategies on the performance 
of a considered sub-process. Bouillaut, Francois, and Dubois 
(2013) used Bayesian networks to evaluate maintenance strategies 
for underground rails based on diagnoses from several sources, and 
included condition-based maintenance where maintenance actions 
were based on the outcome of ultrasonic inspections. Friis-Hansen 
(2000) used influence diagrams based on Bayesian networks for 
inspection planning for fatigue cracks in offshore jacket structures.

Nielsen and Sørensen (2014) summarised several approaches 
for risk-based inspection and maintenance planning: decision 
tree, crude Monte Carlo simulations, discrete Bayesian networks, 
Markov chain Monte Carlo simulation (MCMC), simulation based 
using Bayesian network for decision support, limited memory 
influence diagrams (LIMID), and partially observable Markov 
decision processes (POMDP). Apart from the first two methods, 
they are all based on Bayesian networks. The methods using dis-
crete Bayesian networks and MCMC can both be used to estimate 
total maintenance costs for simple stationary strategies, but MCMC 
does not require a discretisation of the continuous variables as 
the discrete Bayesian network approach does. Instead, MCMC is 
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Figure 1. Typical decision tree for RBI.
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of the framework. The three blocks in the top row represent the 
inputs: ‘specific costs’, ‘specification of models’ and ‘strategy 
and parameters’. The ‘specific costs’ are the expected costs of an 
inspection, a preventive repair, and a corrective repair following 
failure, including all contributors such as spare parts, personnel, 
vessel, fuel and lost revenue. In the block ‘specification of models’, 
the probabilistic models for deterioration, repair, inspection and 
CM are defined in terms of conditional probability distributions, 
as explained in the next section. In the last input block ‘strategy 
and parameters’, the strategies and associated parameters are 
chosen. A total of 13 strategies are implemented in the model 
framework and will be presented in the section ‘Strategies’.

Once the input is defined, the probabilities of inspections, 
repairs and failures for each time step can be estimated. This is 
done using one of the two decision models shown in the sec-
ond row in Figure 2. These decision models are the core of the 
framework. They estimate the probabilities of inspections, repairs 
and failures for each time step based on the specified models, 
strategies and decision parameters. Subsequently, the obtained 
probabilities are combined with the specific costs of inspection, 
repair and failure in order to obtain the total expected costs 
during the planned lifetime (lifetime costs). This is done for all 
candidate strategies and associated decision parameters, and the 
one yielding the lowest lifetime costs is the optimal strategy in 
the risk-based approach.

Specification of models

As dBNs are used for calculating probabilities, the input models 
need to be given as conditional probability distributions for each 
node, conditioned on the parent nodes, i.e. the nodes that point 
to a given node. Figure 3 shows the basic dBN including all nodes 
used in the framework. This dBN does not model any decision 
rules directly and is the dBN used for decision model type 2. For 
decision model type 1, decision rules are directly modelled in the 
network, and the dBN will differ for each strategy.

The nodes included in the model are as follows:

•  Di: damage size
•  DR,i: damage size after any repairs
•  Mi: model parameter

•  Ri: repair decision.
•  Ii: inspection outcome
•  IM,i: CM outcome
•  ID,i: inspection decision

The first four nodes are included for all strategies, and the pres-
ence of the last three nodes depends on the strategy applied. Two 
nodes (Di and DR,i) are included for the damage size in each time 
step (i) so as to include repairs in the model. Repairs are assumed 
to be performed in the beginning of a time step if a decision is 
made on preventive repair or if failure occurred during the last 
time step. Both repair types are applied between nodes Di and 
DR,i, and deterioration is applied between DR,i and Di+1.

Deterioration model
The deterioration model is specified in terms of four probability 
distributions:

•  P(M0): prior distribution for initial value of model 
parameter.

•  P(D0): prior distribution for initial damage size.
•  P(Mi|Mi−1): conditional probability distribution for model 

parameter given the value of the model parameter in the 
previous time step.

•  P(Di|DR,i−1,  Mi): conditional probability distribution for 
damage size given the damage size after repairs in the 
previous time step, and given the value of the model 
parameter.

If nodes Di and DR,i each has nD states, and node Mi has nM states, 
P(M0) and P(D0) are vectors of size nM and nD, respectively. 
P(Mi|Mi−1) is a matrix of size nM × nM, and P(Di|DR,i−1, Mi) is 
a three-dimensional matrix of size nD × nD × nM. If the model 
parameter Mi is time-invariant, the distribution P(Mi|Mi−1) is 
the identity matrix of size nM. If there are no stochastic model 
parameters in the deterioration model (i.e. for a Markov model), 
the node Mi could be omitted, but for simplicity it is included 
as a scalar value.

Repair model
The repair model is specified in terms of the conditional proba-
bility distribution P(DR,i|Di, Ri) for the damage size after repairs 

Postprocessing

Specification of models Strategy and
parameters

Decision model type 1:
Bayesian network

Decision model type 2:
Simulations

Specific costs

Expected lifetime O&M
costs

Figure 2. Structure of computational framework.
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(3)  Equidistant inspections, repairs based on inspection 
outcome.

(4)  Inspections based on CM outcome, repairs based on 
inspection outcome.

(5)  No inspections, repairs based on Pf.
(6)  Equidistant inspections, repairs based on Pf.
(7)  Inspections based on Pf, repairs based on Pf.
(8)  Inspections based on Pf, repairs based on inspection 

outcome.
(9)  No inspections, repairs based on ED.
(10)  Equidistant inspections, repairs based on ED.
(11)  Inspections based on ED, repairs based on ED.
(12)  Inspections based on ED, repairs based on inspection 

outcome.

Equidistant inspections (or repairs) can be defined in two 
ways: as the number of inspections in the lifetime or as the 
time between inspections. For shorter inspection intervals, e.g. 
6 months, one year or two years, the natural choice is to define 
it in terms of time between inspections. In contrast, for larger 
inspection intervals where only two or three inspections are per-
formed during the lifetime, it is more natural to let the number 
of inspections be the decision variable and then schedule the 
inspections so the time between inspections is the same as the 
time before the first inspection and after the last inspection.

For decision rules based on CM outcome, inspection out-
come, Pf, or ED, the decision parameter is the threshold value for 
when inspections/repairs should be made. For decisions based 
on Pf, an additional parameter is the reference time for Pf, for 
example one month or one year. For decision model type 2 there 
are two additional parameters: (1) is CM included (yes/no)? and 
(2) are pre-inspections necessary for repairs (yes/no)? If CM 
is included, CM outcomes are assumed to be obtained in each 
time step, and the deterioration model is updated on that basis. 
If pre-inspections are necessary for repairs, the repair decision 
will always be ‘no repair’ if no inspection is performed in that 
time step.

Type 1 decision model: Bayesian network

In the type 1 decision model, dBNs are used directly for the com-
putation of probabilities of inspections, repairs and failures in 
each time step. To do so, the strategies are implemented directly 
in the dBNs, which is possible for strategies 0–4. This is done in 
two distinct ways depending on the decision rules used in the 
strategy. For decision rules based on CM or inspection outcome, 
the decision rules are modelled using a link from the node for 
the CM or inspection outcome (IM,i or Ii) to the node for the 
inspection or repair decision (ID,i or Ri).

The distribution for the decision is then given conditioned on 
the CM or inspection outcome. Equidistant inspections are mod-
elled by assigning a probability of one for the state ‘inspection’ 
in the node ID,i for time steps with scheduled inspections, and 
zero in the time steps with no scheduled inspections. Equidistant 
repairs are modelled in the same way by assigning probabilities 
for the Ri nodes. The dBNs for strategies 0–4 are constructed 
following the description above and shown in Figure 4.

given the damage size before repairs and given the repair deci-
sion. The node Ri for the preventive repair decision has two states: 
‘no repair’ and ‘repair’, and thereby the distribution P(DR,i|Di, Ri) 
is a matrix of size nD × nD × 2. The repair model controls the 
quality of the repair. If perfect repairs are assumed, the distribu-
tion for the damage size would return to the distribution for the 
initial damage size after a repair. However, the framework also 
allows for imperfect repairs to be modelled.

Inspection model
The inspection model defines the reliability of the inspection 
method. The inspection model is given in terms of the condi-
tional probability distribution P(Ii|Di, ID,i) for the inspection out-
come given the damage size and inspection decision. The node 
Ii has nI states, and the node ID,i has two states for ‘no inspec-
tion’ and ‘inspection’, respectively. The distribution is a matrix 
of size nI × nD × 2. The last state of Ii is the dummy outcome ‘no 
inspection’ if no inspection is made. The other nI − 1 states are 
the possible outcomes when an inspection is made.

Condition monitoring model
The CM outcomes are assumed to be independent given the dam-
age size. The CM model is, therefore, given as the conditional 
probability distribution P(IM,i|Di) for the CM outcome given the 
damage size. If there are nIM

 possible CM outcomes, the distribu-
tion is a matrix of size nIM

× nD.

Strategies

Each strategy is defined in terms of one decision rule for inspections 
and one decision rule for preventive repairs. In total, 13 strategies 
have been implemented. Strategies 0–4 only use simple decision 
rules, and therefore both decision model types can be used for the 
computations. Strategies 5–12 also include advanced decision rules 
where the decision depends on the probability of failure (Pf) or the 
expected damage size (ED). Therefore, decision model type 2 must 
be used. Strategy 0 only includes corrective maintenance, and the 
remaining strategies use variants of preventive maintenance:

(0)  Corrective maintenance only.
(1)  No inspections, equidistant repairs.
(2)  No inspections, repairs based on CM outcome.

D
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I
1
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M
1

M
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M
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R
1

ID1
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D
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Figure 3.  Basic dBN including all nodes used in the framework, and used for 
decision model type 2. Di: damage size, DR,i: damage size after any repairs, Mi: 
model parameter, Ii: inspection outcome, IM,i: CM outcome, ID,i: inspection decision, 
Ri: repair decision.
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probabilities. The distribution P(Ri|Di) will depend on the strat-
egy (the distributions for the inspection and repair decision) and 
on the distribution for the CM model and inspection model. In 
case equidistant inspections (or repairs) are used, the distribution 
P(Ri|Di) will not be identical for all time steps as repairs will only 
be possible in time steps with scheduled inspections (or repairs). 
In this case, the Bayesian network is not formally at dBN as the 
conditional probability distributions need to be equal for all time 
steps to be a dBN. However, the same algorithms can be applied.

Each time slice is connected to the past only through the nodes 
Di and Mi, and the nodes in each time slice are, therefore, inde-
pendent of all other past nodes given the nodes Di and Mi in their 
time slice. Therefore, to find the marginal probabilities for each 
node in the network, the joint distribution P

(
Di,Mi

)
 is found 

sequentially based on the joint distribution for the previous time 
step P(Di−1, Mi−1) and the conditional probability distributions for 
the nodes Di, Mi, Ri−1 and DR,i−1. This can be done by first taking 
the product of the probability distributions to obtain the joint dis-
tribution of all nodes in the previous time step and Di and Mi and 
then by marginalising out the nodes from the previous time step:

 

This procedure is time-demanding and memory-consuming as a 
six-dimensional matrix is made. A more effective algorithm can 
be made using variable elimination where variables are margin-
alised out as soon as possible:

 

In this version of the algorithm, the maximum number of dimen-
sions to handle simultaneously is four, and this version has been 
implemented in the framework. The algorithm is an exact infer-
ence algorithm inspired by the forward operation presented by 
Straub (2009) and by the forward operation of the frontier algo-
rithm and interface algorithm presented by (Murphy, 2002).

The probability of inspection, repair and failure for each time 
step is found subsequently based on the distribution P

(
Di,Mi

)
. 

First, the marginal distribution P
(
Di

)
 is found by:

 

(1)

P
(
Di,Mi

)
=

∑
DR,i−1

∑
Di−1

∑
Ri−1

∑
Mi−1

P
(
Di|DR,i−1,Mi

)
P
(
DR,i−1|Di−1,Ri−1

)

×P
(
Ri−1|Di−1

)
P
(
Mi|Mi−1

)
P
(
Di−1,Mi−1

)

(2)

P
(
Di,Mi

)
=

∑
DR,i−1

P
(
Di|DR,i−1,Mi

)∑
Di−1

×
∑
Ri−1

P
(
DR,i−1|Di−1,Ri−1

)
P
(
Ri−1|Di−1

)

×
∑
Mi−1

P
(
Mi|Mi−1

)
P
(
Di−1,Mi−1

)

(3)P
(
Di

)
=

∑
Mi

P
(
Di,Mi

)

Algorithm
The dBNs in Figure 4 can be used directly for the assessment of 
probabilities using exact inference algorithms. However, as the 
network structures are slightly different, the algorithms used to 
calculate probabilities would be slightly different for each net-
work. To simplify the framework, each network is instead col-
lapsed to the network shown in Figure 5. This way the same 
algorithm can be used for all strategies in the type 1 decision 
model. In the collapsed network, the nodes for CM outcome, 
inspection outcome and inspection decision are omitted and 
instead a link is added from the node for the damage size (Di) 
to the node for the repair decision (Ri).

This can be done since the node Ri is independent of all 
other nodes, given node Di, and it is not necessary to enter evi-
dence into any nodes (including the omitted) to compute the 
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Figure 4. Bayesian networks for decision rules (a) 0–1, (b) 2, (c) 3 and (d) 4 in the 
type 1 decision model. Di: damage size, DR,i: damage size after any repairs, Mi: 
model parameter, Ii: inspection outcome, IM,i: CM outcome, ID,i: inspection decision, 
Ri: repair decision.
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Figure 5. Collapsed Bayesian networks for decision rules 0–4 in the type 1 decision 
model. Di: damage size, DR,i: damage size after any repairs, Mi: model parameter, 
Ri: repair decision.
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within each simulation to update the distribution for the damage 
size, each time CM or inspection outcomes are received. This is 
necessary to use the advanced decision rules that depend on Pf 
or ED.

Algorithm
For strategies 5–12, the dBN is maintained in each time step 
using information on CM and inspection outcomes and inspec-
tion and repair decisions. In the following, capital letters denote 
stochastic variables and lower-case letters denote realisations of 
stochastic variables. As for the type 1 decision model, the algo-
rithm is an exact inference algorithm inspired by the forward 
operation of the frontier and interface algorithm (Murphy, 2002; 
Straub, 2009). However, for the type 2 decision model, evidence 
is included using Bayes rule. Evidence is obtained for four nodes 
in each time step: The nodes for decisions on inspections ID,i 
and repairs Ri, and the nodes for observations from CM IM,i and 
inspections Ii.

The evidence on repairs is used when calculating the distribu-
tion P

(
Di,Mi

)
 based on the distribution from the previous time 

step. Otherwise, the algorithm is similar to the algorithm used 
for the type 1 decision model:

 

The evidence used herein is the repair decision, ri−1, for time 
step i − 1. To include evidence from CM and inspections, Bayes 
rule must be applied to update P

(
Di,Mi

)
. It is only necessary to 

update P
(
Di,Mi

)
 as all other nodes are independent on IM,i, Ii 

and ID,i, given Di and Mi. When CM is available, the distribution 
P
(
Di,Mi

)
 is updated based on CM outcome iM,i in the following 

way:
 

where ‘  ‘ means ‘proportional to’. Subsequently, the distribution 
is scaled to sum to one. In reality, the distribution is not only 
conditioned on IM,i = iM,i, but on all past CM and inspection out-
comes and decisions, and the same counts for P(Di, Mi). This is 
omitted from the notation for simplicity and is also omitted from 
the following equations. Similarly, the distribution is updated 
based on inspection outcome ii:

 

where iD,i is equal to zero when no inspections are made and 
equal to one when an inspection is made.

For each simulation, the procedure is as follows (where points 
marked with asterisk (*) only applies for advanced decision 
rules):

•  Draw value of d0 from the distribution P
(
D0

)
.

•  Draw value of m0 from the distribution P
(
M0

)
.

•  Calculate initial distribution: P
(
D0,M0

)
= P

(
D0

)
P
(
M0

)
.*

(9)

P
(
Di,Mi

)
=

∑
DR,i−1

P
(
Di|DR,i−1,Mi

) ∑
Di−1

P
(
DR,i−1|Di−1,Ri−1 = ri−1

)

×
∑
Mi−1

P
(
Mi|Mi−1

)
P
(
Di−1,Mi−1

)

(10)
P
(
Di,Mi|IM,i = iM,i

)
∝ P

(
Di,Mi, IM,i = iM,i

)
= P

(
Di,Mi

)
P
(
IM,i = iM,i|Di

)

(11)
P
(
Di,Mi|Ii = ii

)
∝ P

(
Di,Mi, Ii = ii

)
= P

(
Di,Mi

)
P
(
Ii = ii|Di, ID,i = iD,i

)

The probability that failure happened during the previous time 
step is equal to the probability of Di being in the state ‘fault’ (the 
last state). The marginal probability distribution for the node Ri 
is found by:

 

The probability of repair for time step i is equal to the proba-
bility of being in the state ‘repair’ (the second state) for node Ri. 
The probability of inspection is always zero for strategies 0–2; 
for strategy 3 where inspections are equidistant, the probability 
is either zero or one. For strategy 4, the marginal distribution for 
the node ID,i is found by:

 

For strategies 3 and 4, the probability of inspection for time step 
i is equal to the probability of being in the state ‘inspection’ (the 
second state) for node ID,i.

The distribution P
(
Ri|Di

)
 depends on the strategy. For strat-

egy 0 in all states of Di, there are no preventive repairs and Ri is 
always in the state ‘no repair’ (the first state). For strategy 1, equi-
distant repairs are used and Ri is in the state ‘repair’ (the second 
state) in all states of Di in time steps with scheduled repairs, and 
in the state ‘no repair’ (the first state) for all other time steps. For 
strategy 2, repairs are made based on the CM outcome, and the 
distribution is obtained by:

 

For strategy 3, the distribution is obtained by:
 

where ID,i is in the state ‘inspection’ for time steps with scheduled 
inspections, and in the state ‘no inspection’ for other time steps. 
For strategy 4, the distribution is obtained by:

 

Type 2 decision model: simulations

In the type 2 decision model, simulations are used to estimate the 
probabilities of inspections, repairs and failures in each time step. 
The estimated probabilities are not the exact results as for the type 
1 decision model, instead they are the observed frequencies (i.e. 
the number of simulations with inspections, repairs or failures 
in each time step) divided by the total number of simulations. 
The accuracy and computation time increase with the number 
of simulations. In addition to the overall frequency of inspec-
tions, repairs and failures in each time step, the total number of 
inspections, repairs and failures for each simulation is also saved 
for the computation of confidence intervals for the lifetime costs.

The type 2 decision model can be used for all strategies and 
uses the same input models as the type 1 decision model. All 
decision rules are applied as logic rules within the simulations. 
For strategies 0–4, only simple decision rules are used and no 
dBN is needed. For strategies 5–12, the dBN in Figure 3 is used 

(4)P
(
Ri

)
=

∑
Di

P
(
Ri|Di

)
P
(
Di

)

(5)P
(
ID,i

)
=

∑
IM,i

P
(
ID,i|IM,i

)∑
Di

P
(
IM,i|Di

)
P
(
Di

)

(6)P
(
Ri|Di

)
=

∑
IM,i

P
(
Ri|IM,i

)
P
(
IM,i|Di

)

(7)P
(
Ri|Di

)
=

∑
Ii

P
(
Ri|Ii

)∑
ID,i

P
(
Ii|Di, ID,i

)
P
(
ID,i

)

(8)

P
(
Ri|Di

)
=

∑
Ii

P
(
Ri|Ii

)∑
ID,i

P
(
Ii|Di, ID,i

)∑
IM,i

P
(
ID,i|IM,i

)
P
(
IM,i|Di

)
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be compared to the costs of a condition monitoring system. The 
planned lifetime of the wind farm is assumed to be 20 years. For 
simplicity, discounting is not included.

Generally, the models and costs used in this example are fic-
tive, but realistic. For an actual case study, the costs should be 
estimated based on the weather on the location, the applied ves-
sels, repair methods, inspection methods, and should consider 
system effects in this relation. The models should be estimated 
based on available data and knowledge of the applied techniques 
for e.g. inspections and condition monitoring. Such a case study 
is beyond the scope of this work, and a comprehensive case study 
is planned to be published in a separate paper. In this paper, the 
intention of the example is to provide the reader with a clear idea 
of the capabilities of the model framework.

Specification of models

The node Di for the damage size has seven states (0–6) where the 
last state is ‘fault’. The damage size is measured on a relative scale 
from zero to one where defects larger than one are in the state ‘fault’. 
The six non-faulty states are of equal size. Initially, the damage 
size is assumed to be within the interval covered by the first state. 
Therefore, the prior distribution for initial damage size is as follows:

 

The node Mi for the model parameter has three possible states: 
m1 = 0.7, m2 = 1.0 and m3 = 1.3. The prior distribution for the 
initial value of the model parameter is assumed to be uniform:

 

The model parameter is assumed to be time-invariant. Therefore, 
the conditional probability distribution for the model parameter 
given the model parameter in the previous time step is the iden-
tity matrix of size three:

 

For the deterioration model, it is assumed that it is only pos-
sible to transfer one state in each time step (one month), and 
the transition probability is p·M for all states. The conditional 
probability distribution for the damage size given the damage 
size in the previous time step and given the value of the model 
parameter is as follows:

(12)P
(
D0

)
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

0

0

0

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

(13)P
(
M0

)
=

⎡⎢⎢⎣
1∕3

1∕3

1∕3

⎤⎥⎥⎦

(14)P
(
Mi|Mi−1

)
=

⎡⎢⎢⎣
1 0 0

0 1 0

0 0 1

⎤⎥⎥⎦

•  For each time step i:

  Draw monitoring outcome iM,i from P(IM,i|Di = di).
  Update distribution P

(
Di,Mi

)
 using Bayes rule.*

  Make decision on inspection iD,i based on the decision 
rule.

  Draw inspection outcome ii from P(Ii|Di = di, ID,i = iD,i).
  Update distribution P

(
Di,Mi

)
 using Bayes rule.*

  Make decision on repair ri based on the decision rule.
  Draw dR,i from P(DR,i|Di = di, Ri = ri).
  Draw di+1 from P(Di+1|DR,i = di, Mi+1 = m0).
  Update distribution P

(
Di+1,Mi+1

)
 using the algorithm 

for deterioration and repairs.*

After each simulation, the contribution to the overall frequen-
cies of inspections, repairs and failures is found as one divided 
by the number of simulations for time steps with inspections, 
repairs or failures. These frequencies of inspections, repairs and 
failures approximate the probability of inspections, repairs and 
failures. In the same way, the marginal distribution for the dam-
age size can be found for each time step based on the contribution 
from each of the simulated values di.

Postprocessing

When the probability of inspection, repair and failure has been 
found for each time step using one of the decision models, the 
total expected lifetime costs can be found using the specific costs 
of an inspection, a repair and a failure by multiplication. For 
decision model type 2, confidence intervals are found for the total 
expected costs using the total number of inspections, repairs and 
failures for each simulation.

The specific costs should include all direct and indirect costs 
related to the events such as costs of spare parts, salary to tech-
nicians, lease of equipment and lost revenue. The costs could 
vary with time due to seasons or discounting. When the total 
expected costs have been found for each candidate strategy and 
associated parameters, the optimal strategy is identified as the 
one leading to lowest expected costs.

Example

In this section, a numerical example illustrates the model frame-
work, the implemented strategies and how to specify the models. 
The type of component considered in this example could be an 
offshore wind turbine component where life safety is assumed 
not to be an issue in relation to failures, and cost-benefit opti-
misation can be performed without considering minimum 
reliability requirements. However, the total costs of a corrective 
repair following failure including lost revenue are assumed to 
be significantly larger (€400  k) than the costs of a preventive 
repair (€30.0 k). The price of an inspection is assumed to be €800 
(Salmon, 2015). The costs of online condition monitoring are not 
included in the estimated costs. Instead, the value of information 
from condition monitoring is computed, and this value should 
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If an inspection is made and a defect is detected, it is assumed 
that the damage size is categorised correctly. Thereby, the only 
uncertainty is the probability of detection, which depends on the 
size of the defects. The inspection model when inspections are 
made (ID,i = 1) is assumed to:

 

For the CM outcome, there are four possible states: 1: no 
detection, 2: low alarm, 3: high alarm and 4: fault. The fault out-
come comes with certainty when the damage size is in the fault 
state. The overall probability of alarm is assumed to increase with 
damage sizes 0, 0, 0.1, 0.2, 0.4, 0.8, 1. Unless the damage size is 
fault, the probability of high alarm given that there is an alarm 
is assumed to increase with sizes 0, 0, 0.2, 0.4, 0.6, 0.8, 0. These 
probabilities are assumed not to include false alarms. A false 
alarm rate of 3% is included independent of damage size (the 
state fault excluded), divided on 2% chance of false low alarm 
and 1% chance of false high alarm. The resulting conditional 
probability distribution for the CM outcome given the damage 
size is as follows:

 

Results

With the models defined, the optimal strategy can be found from 
a set of candidate strategies and parameters. For strategies 0–4, 
both decision model types can be used, and for strategies 5–12, 
only the type 2 model can be used. Initially, the optimal decision 
parameters are found for strategies 0–4 using the type 1 decision 
model, and the type 2 decision model is run for the optimal 
parameters for comparison/validation. Figure 6 shows the total 
expected lifetime costs for each strategy for both decision model 
types. For decision model type 2, 10,000 simulations have been 
used, and the 95% confidence intervals for the total expected 
costs are shown, assuming normally distributed total costs.

Note that the shown confidence intervals are for the expected 
value of the total lifetime costs, not for the total lifetime costs. 

(19)P
(
Ii|Di, ID,i = 1

)
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0.6 0.2 0.1 0.05 0.02 0

0 0.4 0 0 0 0 0

0 0 0.8 0 0 0 0

0 0 0 0.9 0 0 0

0 0 0 0 0.95 0 0

0 0 0 0 0 0.98 0

0 0 0 0 0 0 1

0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(20)

P
(
IM,i|Di

)
=

⎡⎢⎢⎢⎢⎣

0.97 0.97 0.87 0.77 0.57 0.17 0

0.02 0.02 0.10 0.14 0.18 0.18 0

0.01 0.01 0.03 0.09 0.25 0.65 0

0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎦

 

The mean value of the transition probability (p) is chosen to 
result in a mean time to failure of 20  years. As there are six 
transitions from the initial state to fault, the probability is: 
p =

6

20⋅12months
= 0.025∕month.

The repair model is given as the conditional probability for 
the damage size after any repair, given the damage size before any 
repairs and given the repair decision. If the node for the repair 
decision is in the state ‘zero’ (no preventive repair), the distribu-
tion is equal to the identity matrix except for the last column. If 
the damage size is in the state ‘fault’ prior to any repairs, a perfect 
corrective repair is assumed to be made, and the damage size 
transfers to the initial state:

 

If the node for the repair decision is in the state one, a perfect 
preventive repair is assumed to be made, returning the damage 
size to the initial state:

 

The inspection model is the conditional probability distribu-
tion for the node for the inspection outcome given the damage 
size and the inspection decision. The node for the inspection 
outcome has one more state than the node for the damage size. 
The first state is ‘0: no detection’, and the last state is ‘7: no inspec-
tion’. Between those, there are six states for detection of defects 
of sizes 1 to 6. If no inspection is made (ID,i = 0), the outcome of 
the inspection is ‘no inspection’:

 

(15)

P
(
Di|DR,i−1,Mi = mk

)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − p ⋅mk 0 0 0 0 0 0

p ⋅mk 1 − p ⋅mk 0 0 0 0 0

0 p ⋅mk 1 − p ⋅mk 0 0 0 0

0 0 p ⋅mk 1 − p ⋅mk 0 0 0

0 0 0 p ⋅mk 1 − p ⋅mk 0 0

0 0 0 0 p ⋅mk 1 − p ⋅mk 0

0 0 0 0 0 p ⋅mk 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

(16)P
(
DR,i|Di, Ri = 0

)
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 1

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

(17)P
(
DR,i|Di, Ri = 1

)
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

(18)
P
(
Ii|Di, ID,i = 0

)
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

1 1 1 1 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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during the 10,000 simulations. However, 10,000 simulations are 
sufficient to estimate the total expected costs, as the contribution 
from failures is insignificant compared to the contribution from 
preventive repairs, as is evident from Figure 6.

The width of the confidence intervals for the expected value 
will go towards zero, as the number of simulations goes towards 
infinite. If too few simulations have been made, this would be 
evident from the width of the confidence intervals. The total costs 
obtained using the two methods are generally very similar, and 
the exact results found using the type 1 decision model are gen-
erally within the 95% confidence intervals found using the type 
2 decision model. For strategy 0, only corrective maintenance 
is used, and this results in large costs, €228 k. The lowest costs 
when using simple decision rules are €39.5 k obtained in strategy 
4 where inspections are made based on the CM outcomes, and 
preventive repairs are made based on the inspection outcomes.

The differences between the models and strategies are clearly 
seen when considering the direct outcome from the decision 
models: the probabilities/frequencies of inspections, repairs and 
failures in each time step. Figures 7–11 illustrate these differences 
for strategies 0–4. For strategies without inspections or preven-
tive repairs, the frequency for those is always zero; therefore, 
the figures for these strategies are not shown. The probabilities 
found using decision model 1 are the exact results as they are 
found using dBNs. They are shown using a solid line although 
the results are discrete, for easier distinction between the two 
decision models.

For strategy 0, Figure 7 shows the probability/frequency of 
failure for each time step. The probability of failure gradually 
increases, but stagnates near the end of the lifetime. The results 
found using simulations are scattered, but generally approximate 
the exact results well. A more accurate estimate can be obtained 
by increasing the number of simulations.

Strategy 1 (Figure 8) uses scheduled preventive repairs. The 
probability of failure is gradually increasing, but drops to the 
initial value after preventive repairs. The probability of preven-
tive repairs is one in the time steps where repairs are scheduled; 
otherwise, it is zero.

In strategy 2 (Figure 9), a threshold for the CM outcome deter-
mines when it is time for preventive repairs. The probability of 
preventive repairs first increases and then stagnates at a constant 
value after approximately 6 years. For this strategy, the proba-
bility of failure for each time step is too low to be approximated 
well by using 10,000 simulations, as only two failures happened 
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Figure 6. Total expected lifetime costs for strategies 0–4 found using both decision 
model types. Results found using decision model type 2 are marked with an 
asterisk (*). The black vertical lines indicate 95% confidence intervals.
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Figure 7. Probability/frequency of failure (PF) for each time step for decision model 
1 (1: dBN) and 2 (2: Simulations) for strategy 0.
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Figure 8. Probability/frequency of (a) repair (PR) and (b) failure (PF) for each time 
step for decision model 1 (1: dBN) and 2 (2: Simulations) for strategy 1.
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Figure 9. Probability/frequency of (a) repair (PR) and (b) failure (PF) for each time 
step for decision model 1 (1: dBN) and 2 (2: Simulations) for strategy 2.
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For strategies 5–12, only decision model type 2 can be used 
as a threshold for either the probability of failure or the expected 
damage size is used as decision parameter. Strategies 5–8 use 
the probability of failure, and strategies 9–12 use the expected 
damage size, but apart from that, strategies 5–8 are equal to strat-
egies 9–12. When a threshold value for the probability of failure 
is used, the reference time can be chosen. For comparison, the 
decision model type 2 has been run for strategies 5–8 with a ref-
erence time of both 1 and 12 months, and the results are shown 
in Figure 13. The two reference times generally give similar costs, 
but a reference time of 12 months gives slightly lower costs; the 
following will use a reference time of 12 months.

In the costs shown, the cost of CM is not included. Therefore, 
it would be an additional cost for strategies using information 
from CM. The value of CM can be found as the difference 
between the optimal strategy using CM, and the optimal strat-
egy not using CM. This corresponds to the value of information 
(VoI) (Raiffa & Schlaifer, 1961). Strategies 5–12 can be used both 
with and without CM. Therefore, the strategies relevant without 
CM are 0, 1, 3 and 5–12. Of these, 0, 1, 5 and 9 do not include 
inspections. Strategies with CM are 2, 4 and 5–12. Of these, 2, 5 
and 9 do not include inspections.

Table 1 presents the optimal decision parameters and total 
costs for each strategy without CM, and Figure 14 depicts the 
total expected costs for preventive strategies without CM, divided 
on inspections, preventive repairs, and failures. Strategies with-
out inspections are bundled, and strategies with equidistant 

In strategy 3 (Figure 10), inspections are equidistant, and 
repairs are made following inspections when the inspection out-
come exceeds a threshold. The probability of preventive repairs 
is non-zero in time steps with inspections. It increases the first 
10  years, then stagnates. The probability of failure generally 
increases between inspections and drops immediately follow-
ing inspections.

In strategy 4 (Figure 11), inspections are made when a thresh-
old for the condition monitoring outcome is exceeded, and pre-
ventive repairs are made when a threshold for the inspection 
outcome is exceeded. All probabilities gradually increase and 
then stagnate after approximately 10 years. As for strategy 2, the 
probability of failure per time step is low, but the contribution to 
the total expected costs is also low; therefore, 10,000 simulations 
are sufficient to estimate the costs.

Generally, the optimal decision parameters for each strategy 
are found from a discrete set of candidates as the parameters 
yielding the lowest expected lifetime costs. It has been examined 
manually for each strategy that the range of the parameters has 
been sufficient, i.e. the found optimum should be an internal 
point, unless the minimum or maximum value used is a fixed 
boundary, e.g. the largest CM outcome before the outcome cor-
responding to failure. As an example, Figure 12 shows the total 
costs for each candidate set of parameters for strategy 3. The 
minimum expected lifetime costs are obtained when an inspec-
tion interval of 12 months is used and when all defects of size 4 
or above are repaired preventively.
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Figure 10. Probability/frequency of (a) inspection (PI), (b) repair (PR) and (c) failure 
(PF) for each time step for decision model 1 (1: dBN) and 2 (2: Simulations) for 
strategy 3.
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Figure 11. Probability/frequency of (a) inspection (PI), (b) repair (PR) and (c) failure 
(PF) for each time step for decision model 1 (1: dBN) and 2 (2: Simulations) for 
strategy 4.
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without inspections, the strategies using advanced decision rules 
result in much lower costs (€39.0–40.5 k) than strategy 2 using 
simple decision rules (€112.7  k). For equidistant inspections, 
preventive repairs made based on the probability of failure (strat-
egy 6) result in larger costs (€41.1 k) than when based on the 
expected damage size (strategy 10) (€38.8 k). However, the opti-
mal inspection interval is very large (120 months), and similar 
costs are obtained when not using inspections at all. Therefore, 
with the models considered in this example, equidistant inspec-
tions are not a good option when CM is used. For the remaining 
strategies, the CM outcome is considered when decisions on 
inspections are made. For strategy 4, the best of the strategies 
with only simple decision rules, a threshold value for the CM out-
come is used for decisions on inspections, and the costs obtained 
are €39.5 k. Slightly lower costs are generally obtained when the 
inspection decision is made based on the probability of failure 
or expected damage size. The lowest costs (€34.9 k) are obtained 
for strategy 7.

The value of CM can be found as the difference in costs 
between the best strategy with and without CM. If only sim-
ple strategies are considered, the best without CM is strategy 3 
(€51.5 k), and the best strategy with CM is strategy 4 (€39.5 k). 
Hereby, the value of CM is estimated to €12.0 k. When advanced 
strategies are also considered, the best overall strategy without 
CM is strategy 7 (€50.0 k), and with CM strategy 7 (€34.9 k). This 
results in a CM value of €15.1 k. These values are the expected 

inspections are bundled. Without CM, the three preventive 
strategies without inspections (1, 5 and 9) result in similar costs, 
approximately €85 k. The three strategies with equidistant inspec-
tions (3, 6, 10) all use an interval of 12 months and result in sim-
ilar costs, approximately €52 k. Of the four remaining strategies, 
a threshold for the probability of failure is used for inspections 
for strategies 7 and 8, and a threshold for the expected damage 
size is used for strategies 11 and 12. For strategy 7, the lowest 
costs are obtained (€50 k), and the costs for strategy 8 are similar.

However, for strategies 11 and 12, the costs are larger (€70 k). 
The large difference between strategies 7–8 and 11–12 is quite 
surprising, because the strategies are almost equal, except that 
different measures/statistics related to the damage size is used. 
Nonetheless, as CM is not included, the distribution for the 
damage size is quite uncertain, and the probability of failure is a 
better measure of the upper tail than the expected damage size 
and relates closer to the costs. Therefore, decisions made using 
this variable for optimisation provide lower costs.

With CM included, the results are shown in Table 2 and Figure 
15. The three strategies without inspections are bundled, and the 
strategies with equidistant inspections are bundled. For strategies 
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Figure 12.  Total expected lifetime costs for strategy 3 for each set of decision 
parameters: Inspections intervals: 6, 12, 18, 24 and 36 months, repair threshold for 
inspection outcome: 2, 3, 4 and 5.
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Figure 13. Total expected lifetime costs for strategies 5–8. The subscribed numbers 
are the reference time for the probability of failure in months.

Table 1. Optimal decision parameters and lifetime costs for strategies without CM.

Strategy

Optimal inspec-
tion decision 

parameter

Optimal repair 
decision param-

eter Lifetime costs (k€)
0 – – 228.2
1 – 2 repairs 85.7
5 – Pf = 0.02 87.6
9 – ED = 0.4 84.4
3 12 months I = 4 51.5
6 12 months Pf = 0.03 52.6
10 12 months ED = 0.7 52.2
7 Pf = 0.01 Pf = 0.03 50.0
8 Pf = 0.01 I = 4 51.6
11 ED = 0.35 ED = 0.4 70.4
12 ED = 0.35 I = 2 69.8
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Figure 14. Total expected lifetime costs for preventive strategies without CM.
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When condition monitoring was included, the strategies 
using advanced decision rules for the planning of inspections 
performed best; strategies using the probability of failure or 
expected damage size gave similar results, but 12% could be saved 
compared to the simple strategy where inspection decisions were 
made based on the most recent condition monitoring outcome 
alone. The value of condition monitoring was 26% higher when 
advanced decision rules were used. These results are specific to 
the costs and models used in the example, and the presented 
framework can be used for assessment of total costs, optimal 
strategy and value of condition monitoring for other examples 
where the required models and costs can be specified.

For industrial implementation of the model framework, a tool 
with a graphical user interface could be developed for use by the 
strategic maintenance manager. He would need to provide the 
input to the model, for example with help from modules devel-
oped for this purpose. The tool could then be used for assessment 
of expected lifetime costs for relevant strategies and could, there-
fore, support decisions on maintenance strategies. If he decides to 
use simple strategies, these are straightforward to implement. For 
advanced decision rules, the daily maintenance manager would 
need access to a decision tool based on Bayesian networks con-
tinuously updated using condition monitoring and inspection 
outcomes, in order to apply the advanced decision rules.

The current version of the framework only includes the pos-
sibility of one preventive repair type, and one inspection type. 
In both cases, the framework could be extended by allowing the 
nodes Ri and ID,i to have more states than two. For example, three 
states for the repair node: ‘no repair’, ‘repair’ and ‘exchange’, to 
model different reliability for repairs and component exchanges. 
For example, the reliability of a component after an imperfect 
repair will be lower than for a new component.

The framework also only allows for one stochastic parameter 
to be included in the deterioration model. However, extension to 
more parameters is possible, although it requires modification of 
the algorithms. Another relevant extension could be to include 
correlation between condition monitoring outcomes. This could 
be done by adding a link between adjacent IM nodes or by add-
ing a time-invariant node for the reliability of the CM method. 
This implementation would also require a modification of the 
algorithms as an extra node would be needed to make the future 
independent from the past.

Another limitation of the framework is that it only consid-
ers one failure mode. To obtain an optimal maintenance strat-
egy, system effects should be included. To avoid computational 
intractability, system effects could be included in an approximate 
way, for example in relation to costs, by using a modular mod-
elling approach. The costs of inspections, repairs and exchanges 
could be reduced if operations requiring similar equipment are 
bundled. The probability of being able to bundle operations could 
be estimated based on the expected number of operations in 
each time step.
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lifetime benefits of CM. These should be compared to the lifetime 
costs of CM, which would include initial costs of sensors and 
data infrastructure, installation of the system and operation and 
maintenance of the system.

Conclusions

This paper presented a computational framework for risk-based 
maintenance planning using Bayesian networks. The framework 
allows for computation of optimal strategies for inspections and 
preventive repairs when probabilistic models for deterioration, 
repairs, inspections and condition monitoring are available in 
addition to the specific costs of inspections, preventive repairs 
and failures, which could be time variant.

In the example, lower costs were obtained for all preventive 
strategies compared to corrective maintenance only, and strat-
egies using inspections or CM performed much better than 
scheduled repairs. When no condition monitoring was availa-
ble, the best strategy using only simple decision rules performed 
similar to the best strategy using advanced decision rules. The 
best simple strategy (strategy 3) used equidistant inspections 
and repairs when the inspection outcome exceeded a threshold. 
The best advanced strategy (strategy 7) used inspections and 
repairs when the probability of failure exceeded thresholds. It 
was not important whether a reference period of 1 or 12 months 
was used, but the strategies using the probability of failure in 
some cases performed much better than the strategies using the 
expected damage size.

Table 2. Optimal decision parameters and lifetime costs for strategies with CM.

Strategy

Optimal inspec-
tion decision 

parameter

Optimal repair 
decision param-

eter Lifetime costs (k€)
2 – IM = 3 112.7
5 – Pf = 0.03 40.5
9 – ED = 0.7 39.0
6 120 months Pf = 0.1 41.1
10 120 months ED = 0.7 38.8
4 IM = 3 I = 4 39.5
7 Pf = 0.03 Pf = 0.03 34.9
8 Pf = 0.02 I = 4 35.5
11 ED = 0.7 ED = 0.7 36.4
12 ED = 0.7 I = 4 35.8

2 5 9 6 10 4 7 8 11 12

Strategy no.

0

10

20

30

40

50

60

70

80

90

C
os

ts
 [

k 
eu

ro
]

Inspection
Repair
Failure

Figure 15. Total expected lifetime costs for preventive strategies with CM.
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