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SUMMARY

This paper presents a framework for solving the regularized 20-moment equations consisting of a set
of transport-like governing equations, the required constitutive closure, re-casting of the equations in
second-order partial derivative form and derivation of additional wall boundary conditions. Couette flow
results reveal that good agreement occurs between the 20-moment equations and direct simulation Monte
Carlo data. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The viable manufacture of miniaturized devices, on the order of microns or sub-microns, has
been made possible through recent technological developments. However, these advances have
not been matched by an improved fundamental understanding of the rich multiphysics occurring
in micro-electro-mechanical systems (MEMS) [1]. In particular, microscale gas flows provide
a lot of challenges in terms of predicting correctly and efficiently many of the observed non-
equilibrium phenomena.

Non-equilibrium effects occur when the mean free path, �, is similar to the characteristic
length of the flow domain, e.g. channel height, H . The Knudsen number, Kn=�/H , is a dimen-
sionless parameter characterizing non-equilibrium effects in gas flows and identifies the various
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regimes [2]. For 0.1<Kn<10, the flow is in the transition regime, and the Navier–Stokes–Fourier
(NSF) equations are no longer considered to be valid due to the onset of various non-equilibrium
effects. Alternative approaches are needed to model flows in this regime by means of either
discrete methods or extended continuum modelling. Discrete methods such as direct simulation
Monte Carlo (DSMC) provide a stochastic solution to the nonlinear Boltzmann equation but are
known to be computationally intensive, especially for the low-speed flows typically encountered in
MEMS [3].

The method of moments, developed by Grad [4], replaces the Boltzmann equation with a
hierarchy of partial differential equations (PDEs) particularly providing closure for 13 equations
(G13) where on top of the conservation equations of mass, momentum and energy additional
balance laws for viscous stress and heat flux were derived. Torrilhon and Struchtrup [5] and
Struchtrup [6, 7] provided a different closure through regularization of Grad’s equations (R13),
which provide better resolution of non-equilibrium phenomena and are proven to be stable both
in space and time. Gu and Emerson [8] cast the equations in a second-order PDE form and
provide Maxwellian type wall boundary conditions (WBCs) [9]. Noticeable improvements over
the classical NSF solutions were observed. This study follows a similar strategy using a regu-
larized 20-moment (R20) equation set, which is derived together with the constitutive closure.
Subsequently, the equations are re-cast in a second-order PDE form and additional WBCs are
provided.

2. R20 EQUATIONS

The conservation equations for mass, momentum and energy in terms of position, xi , and time, t ,
are given by
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where �i j is the Kronecker delta, � is the density, vi is the flow velocity, p=�� is the pressure
and �= RT is the specific energy related to the specific gas constant, R, and temperature, T . D/Dt
is the material derivative and repeated indices indicate a tensor contraction. Relations for viscous
stress, �i j , and heat flux, qi , are required in order to close the above five-moment equation set.
The governing equations for �i j and qi derived by Grad [4] are expressed here together with an
additional transport equation for mi jk , where for Maxwell molecules,
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where Ri j , �, mi jk and �i jkl are higher-order moments and the angular brackets 〈〉 represent
the traceless part of a tensor. Regularization for the first five moments yields the NSF equations,
as indicated by the single underlined terms in Equations (4) and (5). A similar regularization
procedure on a 13-moment set would yield constitutive expressions similar to those derived by
Torrilhon and Struchtrup [5], where
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From Equations (4)–(6), it can be shown that a closure relationship is required for Ri j , � and
�i jkl , indicated by the double-underlined terms. Equations (8) and (9) are used to provide closure
relationships for Ri j and �, whereas mi jk will be solved in its full transport form requiring a
closure for �i jkl . The quantities Ri j , mi jk and �i jkl are traceless, dropping any angular brackets for
clarity. Using a generic moment framework, regularization [7] and a production term for Maxwell
molecules [10], it can be shown that [11]
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In this paper, Equation (10) is used to close Equation (6).
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3. NUMERICAL PROCEDURE

Equations (1)–(5) can be re-cast in conservative form to yield similar expressions to those proposed
by Gu and Emerson [8]. Using a similar procedure, Equation (6) is re-cast in conservative form
where the convective, diffusive and source terms are identified by solving mi jk as a specific
deviation from mi jk

R13, where �ci jk =mi jk−mi jk
R13. After some algebraic manipulation, with

recursive use of tensor identities and substituting Equations (7) and mi jk =�ci jk+mi jk
R13 in

Equations (6) and (10), it can be shown that for steady state

��ci jkvl
�xl︸ ︷︷ ︸

convective term

− �
�xl

(
2400�

5033

�ci jk
�xl

)
︸ ︷︷ ︸

diffusive term

=−3p�ci jk
2�

− �
�xl

(mi jk
R13vl)− �Ei jkl

�xl
− 3

7

�R〈i j R13

�xk〉
−3ml〈i j

�vk〉
�xl︸ ︷︷ ︸

source term

(11)

where

Ei jkl = 2400�

5033p

(
−�ci jk

��

�xl
−�

�mi jk
R13

�xl
−�

�mi jl

�xk
−�

�mikl

�x j
−�

�m jkl

�xi
+ 4�

�
m〈i jk

��

�xl〉

+ 4

�
m〈i jk

��l〉m
�xm

+ 12

7
��(i j

�mkl)m

�xm
−12��〈i j

�vk

�xl〉
− 233p

800��
�〈i j�kl〉

)
(12)

Round brackets around subscripts (i jkl) in Equation (12) indicate symmetrized tensors. In this
form, additional WBCs for ci jk are required through arguments on mi jk .

4. MAXWELLIAN WBCs FOR mi jk

WBCs for vi , T , �i j and qi , suitable for a 13-moment set, were derived by Gu and Emerson [8]
using a Grad 35-moment distribution function and a Maxwellian scattering kernel at the wall.
The Maxwellian kernel is applicable to odd moments with respect to the normal velocity to the
wall, C2, so that the half flux integrals remain valid in the limit of a vanishing accommodation
coefficient, � [4]. For a one-dimensional case, the number of independent variables is reduced
to 12 and the moments considered at the wall are 	=(C2, C2C1, C2C2, C2C1C1, C2C1C2C2,
C2C2C2, C2C2C1, C2C4, C2C1C1C1, C2C2C1C1, C2C1C1C1C2C2, C2C2C2C2), where C1
is the peculiar velocity of molecules parallel to the wall. The boundary conditions are equivalent
to those derived by Gu and Emerson [8] with the exception of �22 and additional expressions for
mi jk , where
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where v1s is the slip velocity, 
=√
�/2(2−�)/� and the subscript w represents a wall condition

yielding a density according to
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and a specific wall energy of �w = RTw.

5. RESULTS

Figure 1 compares Couette flow results for the proposed R20 equations against DSMC data and
the results by Gu and Emerson [8] for Kn=0.25 and a Mach number of 0.32. Argon was used as
a model gas for a plate separation of 0.048m at a pressure of 0.532 Pa with the wall temperatures
set at Tw =273K. No empirical corrections were imposed on the WBCs both on those derived by
Gu and Emerson [8] and the additional conditions derived in this study.

6. DISCUSSION AND CONCLUSIONS

Figures 1(a), (c) and (e) show that the spurious behaviour close to the wall, reported for the R13
equations [8], is significantly attenuated with the R20 theory. Non-equilibrium effects are most
significant in the Knudsen layer, a kinetic boundary layer occurring in close proximity to solid
walls. This might indicate that larger moment sets improve the physical description of rarefied gas
flows by making use of an extended approximation of the distribution function. The additional
equations solved in combination with the newly derived boundary conditions are strongly coupled
with the stress equation and contribute better to the diffusive process for stress, hence improving
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Figure 1. Couette flow results for Kn=0.25; profiles for (a) tangential velocity, (b) temperature, (c) shear
stress, (d) heat fluxes, (e) m111, m122 and (f) �1112, �1222.

the agreement with the DSMC data. However, from Figure 1(b), it is evident that the temperature
profile is not so well resolved. It is unclear as yet whether this model artefact is a result of the
constitutive theory or misrepresentation of the solid-wall treatment or a combination of both. From
consideration of the constitutive theory, it can be seen that the closure relationships for the heat

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 56:1433–1439
DOI: 10.1002/fld



COMPUTATIONAL FRAMEWORK FOR THE REGULARIZED 20-MOMENT EQUATIONS 1439

flux equation are common between the R13 and R20 theories. Resolution of these closure terms in
their full transport form, by making use of a regularized 26-moment equation set, should improve
the prediction of the temperature profile.
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