
Computational Fuzzy Extractors

Benjamin Fuller ∗ Xianrui Meng† Leonid Reyzin‡

June 23, 2020

Abstract

Fuzzy extractors derive strong keys from noisy sources. Their security is usually defined information-
theoretically, with gaps between known negative results, existential constructions, and polynomial-time
constructions. We ask whether using computational security can close these gaps. We show the
following:

• Negative Result: Noise tolerance in fuzzy extractors is usually achieved using an information
reconciliation component called a secure sketch. We show that secure sketches are subject to
upper bounds from coding theory even when the information-theoretic security requirement is
relaxed. Specifically, we define computational secure sketches using conditional HILL pseudoen-
tropy (H̊astad et al., SIAM J. Computing 1999). We show that a computational secure sketch
implies an error-correcting code. Thus, HILL pseudoentropy is bounded by the size of the best
error-correcting code. Similar bounds apply to information-theoretic secure sketches.

• Positive Result: We show that our negative result can be avoided by constructing and analyzing
a computational fuzzy extractor directly. We modify the code-offset construction (Juels and
Wattenberg, CCS 1999) to use random linear codes. Security is based on the Learning with
Errors (LWE) problem and holds when the noisy source is uniform or symbol-fixing (that is, each
dimension is either uniform or fixed). As part of the proof, we reduce symbol-fixing security to
uniform error security.

Keywords Fuzzy extractors, secure sketches, key derivation, Learning with Errors, error-correcting
codes, computational entropy, randomness extractors.

1 Introduction

Authentication requires a secret drawn from some high-entropy source. One of the primary building
blocks for authentication is reliable key derivation. Unfortunately, many sources that contain sufficient
entropy to derive a key are noisy and provide similar but not identical secret values at each reading. Ex-
amples of such sources include biometrics [Dau04], measurements of capacitance [TSS+06], timing [SD07],
motion [CM05], and quantum information [BBR88].

Fuzzy extractors [DORS08] derive reliable keys from noisy sources (see [BDK+05, DW09, CKOR10,
CKOR14] for applications of fuzzy extractors). The primitive consists of two algorithms: Generate (used
once) and Reproduce (used subsequently). The Generate (Gen) algorithm takes an input w and produces

∗Email: benjamin.fuller@uconn.edu. University of Connecticut. Work done in part while the author was at MIT Lincoln
Laboratory and Boston University.
†Email: xianru@amazon.com. Amazon Inc. Work done in part while the author was at Apple and Boston University.
‡Email: reyzin@cs.bu.edu. Boston University.

1

a key r and a public value p. The Reproduce (Rep) algorithm is able to reproduce r given p and some
value w′ that is close to w (according to some predefined metric, such as Hamming distance). Crucially
for security, knowledge of p should not reveal r; that is, r should be uniformly distributed conditioned
on p. This feature is needed because p is not secret: for example, in a single-user setting (where the
user wants to reproduce the key r from a subsequent reading w′), it would be stored in the clear; and
in a key agreement application [BDK+05] (where two parties have w and w′, respectively), the natural
solution is to send p between the parties. (More techniques are possible when interactive communication
is permitted; see Dupont et al. for a recent example [DHP+18].)

Fuzzy extractors use ideas from information-reconciliation and privacy amplification [BBR88] and are
defined (traditionally) as information-theoretic objects. Privacy amplification is usually performed with
a randomness extractor [NZ93]. Randomness extractors are well-understood [Sha02]. Polynomial-time
constructions of randomness extractors can extract randomness from all distributions with min-entropy
with the help a short uniform nonsecret seed. A single randomness extractor simultaneously works for
all probability distributions with sufficient entropy. Furthermore, for randomness extractors, the param-
eter gap between negative results, nonconstructive positive results, and polynomial-time constructions is
relatively small.

Unfortunately, the state of fuzzy extractors is murkier. There is no crisp characterization of when
key derivation is possible. Fuller, Reyzin, and Smith [FRS16, FRS20] present one possible notion called
fuzzy min-entropy. They show a non-polynomial-time algorithm that derives a key from each distribution
with fuzzy min-entropy. Woodage et al. [WCD+17] subsequently improved the parameters. As a negative
result, Fuller, Reyzin, and Smith [FRS16, FRS20] and Fuller and Peng [FP19] show families of distributions
where no fuzzy extractor can simultaneously work for the whole family, despite the fact that a fuzzy
extractor exists for each element of the family. Thus, two main open areas of research for information-
theoretic fuzzy extractors are providing polynomial-time constructions and providing constructions that
simultaneously secure many distributions. This work asks:

Can computational security close these gaps?

1.1 Our Contribution

We consider the sketch-then-extract paradigm used in most fuzzy extractor constructions. This paradigm
combines a secure sketch and a randomness extractor. A secure sketch is a one-round information-
reconciliation protocol. It allows recovery of the original value w from any nearby value w′. A randomness
extractor is then run on w to produce uniform bits. One could replace the usual, information-theoretic,
randomness extractor with a computational one [Kra10, BDK+11, DSGKM12] (constructed, for example,
by applying a pseudorandom generator to the output of an information-theoretic extractor), but a compu-
tational extractor helps only if the conditional min-entropy of w conditioned on the sketch is high enough
(else, the computational extractor has no security). Since the security losses due to secure sketches are
usually much higher than due to randomness extraction, the secure sketch becomes the bottleneck.

We ask if a computational secure sketch can overcome information-theoretic lower bounds. The most
natural relaxation of the min-entropy requirement of the secure sketch is to require HILL entropy [HILL99]
(namely, that the distribution of w conditioned on the sketch be indistinguishable from a high-min-entropy
distribution). Under this definition, one could use a randomness extractor to obtain r from w, resulting
in a pseudorandom key.

2

Negative Result We prove in Theorem 3.6 that the entropy loss of such computational HILL secure
sketches is subject to coding bounds that are similar to the ones that constrain information-theoretic
secure sketches. More precisely, for every secure sketch that retains m bits of computational entropy,
there is an error-correcting code with 2m−2 codewords. This error-correcting code can then be used to
instantiate an information-theoretic secure sketch.

The idea is that, by definition of HILL entropy, an adversary should not be able to distinguish a pair
w, p from x, p where x is drawn from a distribution with actual entropy conditioned on p. For most points
w′ close to w, the output of Rec(w′, p) = w. Thus, the same must be true for points x drawn conditioned
on a given p (or else we could build a distinguishing adversary), forcing the distribution of x conditioned
on p to function as an error-correcting code.

Alternative Computational Definitions for Secure Sketches We define computational secure
sketches via HILL entropy. A natural question is whether a weaker definition of security for secure
sketches could avoid the negative result. A minimum condition is computational unpredictability of w
given p [HLR07]. If such a definition is used, one can instantiate sketch-and-extract with a reconstructive
extractor [BSW03, HLR07] (one way to build such an extractor is via repeated, independent applications
of the Goldreich-Levin hardcore function [GL89]). Constructing secure sketches with computational
unpredictability of w given p, or proving negative results about them, is a fascinating open problem.

Let us briefly discuss two other alternative definitions of pseudoentropy, called inaccessible entropy
[HRVW09, HHR+10] and next-block pseudorandomness [VZ12, HRV13]. Inaccessible entropy measures
the difference between the entropy of w conditioned on p and the ability of an adversary to find other
values w∗ that are consistent with p. Since inaccessible entropy is bounded above by actual entropy it is
not clear how to adapt this tool.

Next-block pseudorandomness asks that the distribution of each symbol wi of w is indistinguishable,
conditioned on w1, ..., wi−1, p, from some distribution Xi such that the sum of the conditional entropies
of Xi is high enough. Next-block pseudorandomness is used in building pseudorandom generators from
one-way functions. It may be possible to build a good fuzzy extractor from this definition by modifying
the subsequent extraction procedure, perhaps using techniques from [VZ12, HRV13]. However, it may be
that secure sketches based on this indistinguishability-style definition are subject coding-theory bounds
similar to those for secure sketches based on HILL entropy, and this definition will not lead to improved
constructions. Resolving these questions is another fascinating open problem.

For now, to avoid our negative result, we focus on directly constructing a computational fuzzy extrac-
tor. That is, in our construction, we will show that the output key r is indistinguishable from uniform
(conditioned on p). To avoid the negative result for secure sketches, the pair (r, p) must be one-way in
the value w.

Positive Result We construct the first fuzzy extractor whose security relies on computational security
arguments (Juels and Sudan suggested using computational security in [JS06]). The construction can
derive a key r whose length is at least the entropy of the source w. Our construction is for the Hamming
metric and uses the code-offset construction [JW99],[DORS08, Section 5] used in prior work, but with
two crucial differences. First, the key r is not extracted from w like in the sketch-and-extract approach;
rather w “encrypts” r in a way that is decryptable with the knowledge of some close w′ (this idea is
similar to the way the code-offset construction is presented in [JW99] as a “fuzzy commitment”). Our
construction uses private randomness within Gen, which is allowed in the fuzzy extractor setting but not
for noiseless randomness extraction. Second, the code used is a random linear code, which allows us to

3

use the Learning with Errors (LWE) assumption due to Regev [Reg05, Reg10, Reg09] and derive a longer
key r.

For security, we rely on the result of Döttling and Müller-Quade [DMQ13], which shows the hardness
of decoding random linear codes when the error vector comes from the uniform distribution, with each
coordinate ranging over a small interval. This allows us to use w as the error vector, assuming it is
uniform. There have been subsequent works on uniform error LWE [BGM+16, BLRL+18]; however as
we discuss in Section 4.2, these changes do not substantively effect our parameters. We also use a result
of Akavia, Goldwasser, and Vaikuntanathan [AGV09], which says that LWE has many hardcore bits, to
hide r.

Because we use a random linear code, our decoding is limited to guessing a subset of locations and
checking if it contained errors. Unfortunately, we cannot utilize the results that improve the decoding
radius through the use of trapdoors (such as [Reg05, Reg09]), because in a fuzzy extractor, there is no
secret storage place for the trapdoor (in particular, Gen cannot pass a secret to Rep). If improved decoding
algorithms are obtained for random linear codes, they will improve the error-tolerance of our construction.
However, the problem of generally decoding random linear codes is NP-hard [BMvT78].

The construction is secure whenever w is drawn from an error distribution that makes the deci-
sional version of the LWE problem hard. Toward this end, we show the hardness of LWE when some
dimensions of the error vector are fixed (and adversarially known), which may be of independent inter-
est (Theorem 5.2). This allows w to come from a symbol-fixing source [KZ07] (each dimension is either
uniform or fixed).

1.2 Subsequent Work

Subsequent to the introduction of computational fuzzy extractors in the conference version of this work
[FMR13], other works built computational fuzzy extractors for noisy sources for which no efficient
information-theoretic construction is known (e.g., [CFP+16]). Under strong cryptographic assumptions
(semantically secure graded encodings), a polynomial-time computational fuzzy extractor exists for every
source where the distance metric is computable in the complexity class NC1 [BCKP17].

A desirable property for fuzzy extractors is reusability [Boy04], which guarantees that a user can
securely enroll the value w with multiple independent providers to get values r1, p1,, rρ, pρ. Even
with noise between different enrollments, each key ri should be private conditioned on the rest of the
values. Boyen showed strong negative results on information-theoretically secure reuseable fuzzy extrac-
tors [Boy04].

Apon et al. [ACEK17] showed that the construction presented in this paper achieves a weak form
of reusability if it is modified so that the random code is a global parameter (instead of being created
as part of Gen). They also show how to augment the reusability using either a random oracle or LWE-
based symmetric encryption techniques. Other subsequent work used different cryptographic techniques
to construct reusable computational fuzzy extractors [CFP+16, WLH18, ABC+18, WL18].

Our security arguments are based on the learning-with-errors assumption with q > 2. Herder et
al. [HRvD+17] present a similar construction when q = 2 that reduces to a form of learning parity with
noise [BFKL93]. Herder et al.’s construction is secure when the bits of w are independent Bernoulli
trials. They also show security when w comes from a class of affine transformations [HRvD+17, Section
7]. Lastly, Huth et al. [HBG+17, HBG+16, HBM+17] implemented our construction on multiple devices,
including a constrained 8-bit microcontroller.

4

1.3 Differences between [FMR13] and this work

The same authors published a conference version of this work in Asiacrypt 2013 [FMR13]. That work
did not include proofs or a detailed discussion of parameters. The theorem statement and the underlying
proof in Section 3 had a minor error (pointed out by Yasunaga and Yuzawa [YY14]). This version
corrects the theorem statement and proof. There was also a second negative result for secure sketches
that is superseded by a more recent result in [FRS16]; this is discussed in Section 3. Additionally, the
conference version focused on extracted key length for high-entropy inputs as the sole reason to move to
computational security. Since the conference version, it became evident that there are other important
reasons. In particular, there is a large gap between known negative results for information-theoretic
fuzzy extractors and positive constructions. There are many sources of practical importance, such as
the iris [SSF19] and physical unclonable functions [JHR+17], for which the best known information-
theoretic fuzzy extractors provide little or no security. Since the publication of the conference version of
this paper, computational constructions [JHR+17, SSF19] have been able to provide meaningful, albeit
modest, security for such sources, while adding additional properties such as reusability. Lastly, this
version discusses more recent results on uniform-error LWE and their applicability to our setting (in
Section 4.2).

2 Preliminaries

For a random variable X = X1||...||Xn where each Xi is over some alphabet Z, we denote by X1,...,k =
X1||...||Xk. The min-entropy of X is

H∞(X) = − log(max
x

Pr[X = x]),

and the average (conditional) min-entropy [DORS08, Section 2.4] of X given Y is

H̃∞(X|Y) = − log

(
E
y∈Y

max
x

Pr[X = x|Y = y]

)
.

The statistical distance between random variables X and Y with the same domain is

∆(X,Y) =
1

2

∑
x

|Pr[X = x]− Pr[Y = x]|.

For a distinguisher D (or a class of distinguishers D) we write the computational distance between X
and Y as δD(X,Y) = |E[D(X)]− E[D(Y)]|. We denote by Dssec the class of randomized circuits which
output a single bit and have size at most ssec. For a metric space (M, dis), the (closed) ball of radius t
around x is the set of all points within radius t, that is, Bt(x) = {y|dis(x, y) ≤ t}. If the size of a ball in a
metric space does not depend on x, we denote by |Bt(·)| the size of a ball of radius t. For the Hamming
metric over Zn, |Bt(·)| =

∑t
i=0

(
n
i

)
(|Z| − 1)i. Un denotes the uniformly distributed random variable on

{0, 1}n. Usually, we use bold letters for vectors or matrices, capitalized letters for random variables, and
lowercase letters for elements in a vector or samples from a random variable. We use poly(n) to denote
some polynomial function of n and ngl(n) to denote some negligible function of n.

2.1 Fuzzy Extractors and Secure Sketches

We now recall definitions and lemmas from the work of Dodis et al. adapted to allow for a small probability
of error [DORS08, Sections 8]. Let M be a metric space with distance function dis.

5

Definition 2.1. An (M,m, `, t, ε)-fuzzy extractor with error δ is a pair of randomized procedures, “gen-
erate” (Gen) and “reproduce” (Rep), with the following properties:

1. The generate procedure Gen on input w ∈ M outputs an extracted string r ∈ {0, 1}` and a helper
string p ∈ {0, 1}∗.

2. The reproduction procedure Rep takes an element w′ ∈M and a bit string p ∈ {0, 1}∗ as inputs.

3. Correctness: for every pair w,w′ such that dis(w,w′) ≤ t, for (R,P)← Gen(w), then Rep(w′, P) = R
with probability (over the coins of Gen,Rep) at least 1 − δ. If dis(w,w′) > t, then no guarantee is
provided about the output of Rep.

4. Security: for any distribution W on M of min-entropy m, the string R is nearly uniform even for
those who observe P : if (R,P)← Gen(W), then
SD((R,P), (U`, P)) ≤ ε.

A fuzzy extractor is efficient if Gen and Rep run in expected polynomial-time.

We ask whether better parameters can be achieved by considering a fuzzy extractor with a compu-
tational security requirement. We therefore relax the security requirement of Definition 2.1 to require a
pseudorandom output instead of a truly random output. We also modify the definition so that we can
specify a general class of sources for which the fuzzy extractor is designed to work, rather than limiting
ourselves to the class of sources with a given min-entropy m, as in definitions above. This modification
can also be applied to definitions of information-theoretic secure sketches and fuzzy extractors.

Definition 2.2 (Computational Fuzzy Extractor). Let W be a family of probability distributions overM.
A pair of randomized procedures “generate” (Gen) and “reproduce” (Rep) is a (M,W, `, t)-computational
fuzzy extractor that is (ε, ssec)-hard with error δ if Gen and Rep are a fuzzy extractor with the security
property replaced with the following:

4. Security: for any W ∈ W, the string R is pseudorandom conditioned on P , that is,

δDssec ((R,P), (U`, P)) ≤ ε.

Each efficient fuzzy extractor is a computational fuzzy extractor.

Remark Fuzzy extractor definitions make no guarantee about Rep behavior when the distance between
w and w′ is larger than t. In the information-theoretic setting this seemed inherent as the “correct” R
should be information-theoretically unknown conditioned on P . However, in the computationally setting
this is not true. Looking ahead, in our construction R is information-theoretically determined conditioned
on P (with high probability over the coins of Gen). Our Rep algorithm will never output an incorrect
key (with high probability over the coins of Gen) but may not terminate. However, it is not clear this is
the desired behavior. For this reason, we leave the behavior of Rep ambiguous when dis(w,w′) > t.

2.2 Secure sketches

Secure sketches are the main ingredient in the construction of most fuzzy extractors. Secure sketches
produce a string s that does not decrease the entropy of w too much, while allowing recovery of w from
a close w′:

6

Definition 2.3. An (M,m, m̃, t)-secure sketch with error δ is a pair of randomized procedures, “sketch”
(SS) and “recover” (Rec), with the following properties:

1. The sketching procedure SS on input w ∈M returns a bit string s ∈ {0, 1}∗.

2. The recovery procedure Rec takes an element w′ ∈M and a bit string s ∈ {0, 1}∗.

3. Correctness: if dis(w,w′) ≤ t, then Pr[Rec(w′,SS(w)) = w] ≥ 1− δ (probability over the coins of SS
and Rec).

4. Security: for any distribution W overM with min-entropy m, the value of W can be recovered by the
adversary who observes SS(W) with probability no greater than 2−m̃. That is, H̃∞(W |SS(W)) ≥ m̃.

A secure sketch is efficient if SS and Rec run in expected polynomial-time.

In the above definition, the errors are chosen before the algorithms are run. Correctness is not
guaranteed if the error pattern between w and w′ depends on the output of the algorithms. A fuzzy
extractor can be produced from a secure sketch and an average-case randomness extractor. An average-
case extractor is a generalization of a strong randomness extractor [NZ93, Definition 2]) (Vadhan [Vad12,
Problem 6.8] showed that all strong extractors are average-case extractors with a slight loss of parameters):

Definition 2.4. Let χ1, χ2 be finite sets. A function ext : χ1 × {0, 1}d → {0, 1}` is an (m, ε)-average-
case extractor if for all pairs of random variables X,Y over χ1, χ2 such that H̃∞(X|Y) ≥ m, then
∆((ext(X,Ud), Ud, Y), (U`, Ud, Y)) ≤ ε.

Lemma 2.5. Assume (SS,Rec) is an (M,m, m̃, t)-secure sketch with error δ, and let ext :M×{0, 1}d →
{0, 1}` be a (m̃, ε)-average-case extractor. Then the following (Gen,Rep) is an (M,m, `, t, ε)-fuzzy extractor
with error δ:

• Gen(w) : generate x← {0, 1}d, set p = (SS(w), x), r = ext(w;x), and output (r, p).

• Rep(w′, (s, x)) : recover w = Rec(w′, s) and output r = ext(w;x).

3 Impossibility of Computational Secure Sketches

In this section, we show that a sketch that retains HILL entropy implies a large error-correcting code.
For inputs that have full entropy this immediately implies a sketch that retains nearly the same amount
of min-entropy. HILL entropy is a commonly used computational notion of entropy [HILL99]. It was
extended to the conditional case by Hsiao, Lu, Reyzin [HLR07]. Here we recall a weaker definition due
to Gentry and Wichs [GW11] (the term relaxed HILL entropy was introduced in [Rey11]); since we show
impossibility even for this weaker definition, impossibility for the stronger definition follows immediately.

Definition 3.1. Let (W,S) be a pair of random variables. W has relaxed HILL entropy at least k
conditioned on S, denoted HHILL-rlx

ε,ssec (W |S) ≥ k if there exists a joint distribution (X,Y), such that

H̃∞(X|Y) ≥ k and δDssec ((W,S), (X,Y)) ≤ ε.

Intuitively, HILL entropy acts like as average min-entropy for all computationally bounded observers.
Thus, redefining secure sketches using HILL entropy is a natural relaxation of the original information-
theoretic definition; in particular, the sketch-and-extract construction in Lemma 2.5 would yield pseudo-
random outputs if the secure sketch ensured high HILL entropy. We will consider secure sketches that

7

retain relaxed HILL entropy: that is, we say that (SS,Rec) is a HILL-entropy (M,m, m̃, t) secure sketch
that is (ε, ssec)-hard with error δ if it satisfies Definition 2.3, with the security requirement replaced by
HHILL-rlx
ε,ssec (W |SS(W)) ≥ m̃.

Unfortunately, we will show below that such a secure sketch implies an error correcting code with
approximately 2m̃ points that can correct t random errors (see [DORS08, Lemma C.1] for a similar bound
on information-theoretic secure sketches). For the Hamming metric, our result essentially matches the
bound on information-theoretic secure sketches of [DORS08, Proposition 8.2]. In fact, for the Hamming
metric on the uniform distribution, HILL-entropy secure sketches imply information-theoretic ones with
similar parameters, and, therefore, the HILL relaxation gives no advantage.

The intuition for building error-correcting codes from HILL-entropy secure sketches is as follows. In
order to have HHILL-rlx

ε,ssec (W |SS(W)) ≥ m̃, there must be a distribution X,Y such that H̃∞(X|Y) ≥ m̃ and
(X,Y) is computationally indistinguishable from (W, SS(W)). Sample a sketch s ← SS(W). We know
that SS followed by Rec likely succeeds on W |s (i.e., Rec(w′, s) = w with high probability for w ← W |s
and w′ ← Bt(w)). Consider the following experiment: 1) sample y ← Y , 2) draw x ← X|y and 3)
x′ ← Bt(x). By indistinguishability, Rec(x′, y) = x with high probability. This means we can construct a
large set C from the support of X|y. C will be an error correcting code and Rec an efficient decoder. We
can then use standard arguments to turn this code into an information theoretic sketch.

To make this intuition precise, we need an additional technical condition: sampling a random neighbor
of a point is efficient.

Definition 3.2. We say a metric space (M, dis) is (sneigh, t)-neighborhood samplable if there exists a
randomized circuit Neigh of size sneigh that for all t′ ≤ t, Neigh(w, t′) outputs a random point at distance
t′ of w.

We review the definition of a Shannon code [SWBH49]:

Definition 3.3. Let C be a set over space M. We say that C is a (t, ε)-Shannon code if there exists
an efficient procedure Rec such that for all t′ ≤ t and for all c ∈ C, Pr[Rec(Neigh(c, t′)) 6= c] ≤ ε. To
distinguish it from the average-error Shannon code defined below, we will sometimes call it a maximal-error
Shannon code.

This is a slightly stronger formulation than usual, in that for every size t′ < t we require the code to
correct t′ random errors.1 Shannon codes work for all codewords. We can also consider a formulation
that works for an “average” codeword.

Definition 3.4. Let C be a distribution over space M. We say that C is an (t, ε)-average error Shannon
code if there exists an efficient procedure Rec such that for all t′ ≤ t Prc←C [Rec(Neigh(c, t′)) 6= c] ≤ ε.

An average error Shannon code is one whose average probability of error is bounded by ε. See [CT06,
Pages 192-194] for definitions of average and maximal error probability. An average-error Shannon code
is convertible to a maximal-error Shannon code with a small loss. We use the following pruning argument
from [CT06, Pages 202-204]:

1In the standard formulation, the code must correct a random error of size up to t, which may not imply that it can
correct a random error of a much smaller size t′, because the volume of the ball of size t′ may be negligible compared to
the volume of the ball of size t. For codes that are monotone (if decoding succeeds on a set of errors, it succeeds on all
subsets), these formulations are equivalent. However, we work with an arbitrary recover functionality that is not necessarily
monotone.

8

Lemma 3.5. Let C be a (t, ε)-average error Shannon code with recovery procedure Rec such that H∞(C) ≥
k. There is a set C′ with |C′| ≥ 2k−1 that is a (t, 2tε)-(maximal error) Shannon code with recovery procedure
Rec.

Proof. Let C be the (t, ε)-average error Shannon code with recovery procedure Rec such that H∞(C) ≥ k.
Then for all t′ ≤ t ∑

c∈C
Pr[C = c] Pr[c′ ← Neigh(c, t′) ∧ Rec(c′) 6= c] ≤ ε.

For c denote by εc,t′ = Pr[c′ ← Neigh(c, t′) ∧ Rec(c′) 6= c]. Then by Markov’s inequality:

Pr
c∈C

[
εc,t′ ≤ 2t E

c←C
[εc,t′]

]
= Pr

c∈C

[
εc,t′ ≤ 2tε

]
≥ 1− 1

2t

Let C ′t′ denote the of set all c ∈ C where εc,t′ ≤ 2tε. Note that Prc←C [c ∈ C ′t′] ≥ 1− 1
2t . Define the set

C ′
def
=

⋂
1≤t′≤t

C ′t′ .

Since ∀t′,Prc←C [c ∈ C ′t′] ≥ 1 − 1
2t then Prc←C [c ∈ C ′] ≥ 1

2 . Since H∞(C) ≥ k, we know |C ′| ≥
2k−1 (otherwise Prc←C [c ∈ C ′] =

∑
c∈C′ Pr[C = c] would be less than 2k−1 1

2k
= 1/2). This completes the

proof of Lemma 3.5.

We can now formalize the intuition above and show that a sketch that retains m̃-bits of relaxed HILL
entropy implies a good error correcting code with nearly 2m̃ points.

Theorem 3.6. Let (M, dis) be a metric space that is (sneigh, t)-neighborhood samplable. Let (SS,Rec) be
an HILL-entropy (M,m, m̃, t)-secure sketch that is (ε, ssec)-secure with error δ. Let srec denote the size
of the circuit that computes Rec. If ssec ≥ t(sneigh + srec), then there exists a value s and a set C with
|C| ≥ 2m̃−2 that is a (t, 4t(ε+ tδ))-Shannon code with recovery procedure Rec(·, s).

Proof. Let W be an arbitrary distribution of min-entropy m. Let (X,Y) be a joint distribution such that
H̃∞(X|Y) ≥ m̃ and

δDssec ((W, SS(W)), (X,Y)) ≤ ε ,

where ssec ≥ t(sneigh + srec). One such (X,Y) must exist by the definition of conditional HILL entropy.
Define D as:

1. Input w ∈M, z ∈ {0, 1}∗, t.

2. For all 1 ≤ t′ ≤ t:
w′ ← Neigh(w, t′).

If Rec(w′, z) 6= w output 0.

3. Output 1.

9

By correctness of the sketch Pr[D(W, SS(W)) = 1] ≥ 1− tδ. Since

δD((W, SS(W)), (X,Y)) ≤ ε,

we know Pr[D(X,Y) = 1] ≥ 1 − (ε + tδ). Let Xy denote the random variable X|Y = y. By Markov’s
inequality, there exists a set SY such that Pr[Y ∈ SY] ≥ 1/2 and for all y ∈ SY , Pr[D(Xy, y) = 1] ≥
1− 2(ε+ tδ).

Because H̃∞(X|Y) ≥ m̃, we know that Ey←Y maxx Pr[Xy = x] ≤ 2m̃. Applying Markov’s inequality
to the random variable maxx Pr[Xy = x], there exists a set S′Y such that Pr[y ∈ S′Y] > 1/2, and for all
y ∈ S′Y , H∞(Xy) ≥ m̃− 1 (we can use the strict version of Markov’s inequality here, because the random
variable maxx Pr[Xy = x] is positive). Fix one value y ∈ SY ∩ S′Y (which exists because the sum of
probabilities of SY and S′Y is greater than 1). Thus, for all such that t′, 1 ≤ t′ ≤ t,

Pr
x←Xy

[x′ ← Neigh(x, t′) ∧ Rec(x′, y) = x] ≥ 1− 2(ε+ tδ).

Thus, Xy is a (t, 2(ε + tδ))-average error Shannon code with recovery Rec(·, y) and 2m̃−1 points. The
statement of the theorem follows by application of Lemma 3.5.

For the Hamming metric, any Shannon code (as defined in Definition 3.3) can be converted into an
information-theoretic secure sketch (as described in [DORS08, Section 8.2] and references therein). The
idea is to use the code offset construction, and convert worst-case errors to random errors by randomizing
the order of the symbols of w first, via a randomly chosen permutation π (which becomes part of the
sketch and is applied to w′ during Rec). The formal statement of this result can be expressed in the
following Lemma (which is implicit in [DORS08, Section 8.2]).

Lemma 3.7. For an alphabet Z, let C over Zn be a (t, δ)-maximal error Shannon code. Then there exists
a (Zn,m,m− (n log |Z| − log |C|), t) secure sketch with error δ for the Hamming metric over Zn.

Putting together Theorem 3.6 and Lemma 3.7 means that for the Hamming metric a HILL-entropy
secure sketch implies an information-theoretic one:

Corollary 3.8. Let Z be an alphabet. Let (SS,Rec) be an (ε, ssec)-HILL-entropy (Zn, m, m̃, t)-secure
sketch with error δ for the Hamming metric over Zn, with Rec′ of circuit size srec. If ssec ≥ t(srec +
n log |Z|), then for any m′ there exists a (Zn,m′,m′− (n log |Z|−m̃)−2, t) (information-theoretic) secure
sketch with error 4t(ε+ tδ).

In Corollary 3.8 we make no claim about the efficiency of the resulting (SS,Rec), because the proof of
Theorem 3.6 is not constructive.

The conference version of this work contained an upper bound on the unpredictability of a computa-
tional secure sketch [FMR13, Theorem 2]. Roughly, the result said that the sketch had unpredictability
at most n log |Z| − log |Bt(·)|. This bound was based on a simple adversary that guesses a random point.
Fuller, Reyzin, and Smith [FRS16, Definition 3] introduced fuzzy min-entropy which measures an adver-
saries success when provided with the functionality of a secure sketch. Fuzzy min-entropy is formally
defined as

Hfuzz
t,∞ (W)

def
= − log

(
max
w′

Pr[W ∈ Bt(w′)]
)
.

Fuzzy min-entropy is maximized for the uniform distribution where Hfuzz
t,∞ (Un) = n log |Z|− log |Bt(·)|.

This matches the bound of [FMR13, Theorem 2] for the uniform distribution but provides tighter bounds
for other distributions. Thus, the prior unpredictability bound has been strictly improved and is omitted.

10

Avoiding the Bound The bound arises because Rec must function as decoder for any indistinguishable
distribution. The lower bound is strongest for high entropy sources. If a source contains only codewords
(of an error correcting code), no sketch is necessary. This same situation occurs when considering lower
bounds for information-theoretic sketches [DORS08, Appendix C]. In the Introduction, we discuss whether
one could construct secure sketches that retains other forms of pseudoentropy.

Fuzzy extractors are not required to output the same point; they can instead output a consistent r. If
some efficient algorithm can take the output of the reproduce algorithm Rep and efficiently transform it
back to w, the lower bound applies. This means that we need to consider constructions that are hard to
invert (either information-theoretically or computationally). This intuition was formalized by Yasunaga
and Yuzawa [YY14] who show a similar result if Rep is invertible to some potential w∗.

A natural way to avoid this result is if Rec outputs a fresh random variable. Such an algorithm
is called a computational fuzzy conductor. See Kanukurthi and Reyzin [KR09] for the definition of a
fuzzy conductor and Canetti et al. [CFP+16] for the computational version. The definition replaces the
pseudorandomness condition in Definition 2.2 with a HILL entropy requirement.

Our construction (in Section 4) has pseudorandom output and immediately satisfies definition of a
computational fuzzy extractor (Definition 2.2). Canetti et al. first use a conductor and then a computa-
tional extractor [CFP+16, Construction 2].

4 A Computational Fuzzy Extractor based on LWE

As stated in the introduction, our construction of a computational fuzzy extractor treats the input w
(drawn from the source W) as the noise term added to a codeword of a random linear code. Thus,
the security of our construction depends on the distribution given by W . In this section we consider a
uniform source W ; we consider other distributions in Section 5. Our construction uses the code-offset
construction [JW99], [DORS08, Section 5] instantiated with a random linear code over a finite field Zq.
Let Decodet be an algorithm that decodes a random linear code with at most t errors. We present such
an algorithm in Section 4.3.

Construction 4.1. Let n be a security parameter and let m ≥ n. Let q be a prime. Define Gen,Rep as
follows:

Gen

1. Input: w ←W
(W is distributed over Zmq).

2. Sample A ∈ Zm×nq and x ∈
Znq uniformly.

3. Compute p = (A,Ax + w)
and r = x1,...,n/2.

4. Output (r, p).

Rep

1. Input: (w′, p)
(where d(w,w′) ≤ t).

2. Parse p as (A, c); let b = c− w′.

3. Let x = Decodet(A,b).

4. Output r = x1,...,n/2.

We know that decoding a random linear code is NP-hard [BMvT78]. For this construction to be secure,
it should be computationally hard to decode a random linear code with errors distributed according to
W . In fact, we need more: we actually need to show that X1,...,n/2 are hardcore bits. That is, we need

δDssec ((X1,...,n/2, P), (Un/2 log q, P)) ≤ ε.

11

Furthermore, this construction is only useful if Decodet can be efficiently implemented.
The rest of this section is devoted to making these statements precise. We first review some properties

of random linear codes in Section 4.1. We then describe the LWE problem and the security of our
construction in Section 4.2. We describe one possible polynomial-time Decodet (which corrects more errors
than is possible by exhaustive search) in Section 4.3. In Section 4.4, we describe parameter settings that
allow us to extract as many bits as the input entropy, resulting in a lossless construction. In Section 4.5,
we compare Construction 4.1 to using a sketch-and-extract approach (Lemma 2.5) instantiated with a
computational extractor.

4.1 Properties of Random Linear Codes

For correctness of our construction, we need a random linear code to have high distance with overwhelming
probability. We will use the q-ary entropy function, denoted Hq(x) and defined as Hq(x) = x logq(q −
1)− x logq x− (1− x) logq(1− x). Note that H2(x) = −x log2 x− (1− x) log2(1− x). In the region [0, 1

2]
for any value q′ ≥ q, Hq′(x) ≤ Hq(x). The following theorem is standard in coding theory:

Theorem 4.2. [Gur10, Theorem 8] For prime q, δ ∈ [0, 1−1/q), 0 < ε < 1−Hq(δ) and sufficiently large
m, the following holds for n = d(1−Hq(δ)− ε)me. If A ∈ Zm×nq is drawn uniformly at random, then the
linear code with A as a generator matrix has rate at least (1−Hq(δ)− ε) and relative distance at least δ
with probability at least 1− e−Ω(m).

Our setting is the case where m = poly(n) ≥ 2n and δ = O(logn
n). This setting of parameters satisfies

Theorem 4.2:

Corollary 4.3. Let n be a parameter and let m = poly(n) ≥ 2n. Let q be a prime and τ = O(mn log n).
For large enough values of n, when A ∈ Zm×nq is drawn uniformly, the code generated by A has distance

at least τ (and relative distance τ/m = δ = O(log n/n)) with probability at least 1− e−Ω(m) ≥ 1− e−Ω(n).

Proof. Let c be some constant. Let δ = τ/m = c logn
n . We show the corollary for the case when m =

2n (increasing the size of m only increases the relative distance). It suffices to show that for sufficiently
large n, there exists ε > 0 where 1 −Hq(

c logn
n) − ε = 1/2 or equivalently that Hq(

c logn
m) < 1/2, as then

setting ε = 1/2−Hq(
c logn
n) satisfies Theorem 4.2. For sufficiently large n:

• c logn
n < 1/2, so we can work with the binary entropy function H2.

• c logn
n < .1 < 1/2 and thus Hq(

c logn
n) < Hq(.1).

Putting these statements together, for large enough n, Hq(
c logn
n) < Hq(.1) < H2(.1) < 1/2 as desired.

This completes the proof.

We also need that random matrices are full rank with high probability. We use the following claim (tech-
niques from Cooper [Coo00]):

Lemma 4.4. Let q ≥ 2 be a prime. Let α, β ∈ Z+ and let S
$← Zα×(α+β)

q be uniform. Then Pr[rank(S) =
α] > 1− q−β.

Proof. Let pi be the probability that the ith row is linearly dependent on the previous i− 1 rows. By the
union bound, the probability that α rows are linearly dependent is bounded by

∑α
i=1 pi. Since i− 1 rows

12

can span a space of size at most qi−1, the probability pi that a randomly chosen ith row is in that space
is at most qi−1/qα+β. So

Pr[rank(S) < α] =
α∑
i=1

qi−1

qα+β
=
qα − 1

q − 1

1

qα+β
< q−β.

4.2 Security of Construction 4.1

The LWE problem was introduced by Regev [Reg05, Reg10, Reg09] as a generalization of “learning parity
with noise.” For a thorough discussion of the LWE problem and related lattice problems (which we do not
define here) see [Reg05, Reg09]. We now recall the decisional version of the problem.

Definition 4.5 (Decisional LWE). Let n be a security parameter. Let m = m(n) = poly(n) be an integer
and q = q(n) = poly(n) be a prime2. Let A be the uniform distribution over Zm×nq , X be the uniform
distribution over Znq , and χ be an arbitrary distribution on Zmq . The decisional version of the LWE problem,
denoted dist-LWEn,m,q,χ, is to distinguish the LWE distribution (A,AX+χ) from the uniform distribution
over (Zm×nq ,Zmq).

We say that dist-LWEn,m,q,χ is (ε, ssec)-secure if any (probabilistic) distinguisher of size ssec can dis-
tinguish the LWE instances from uniform with advantage no more than ε.

Regev [Reg05, Reg09] shows that dist-LWEn,m,q,χ can be reduced to approximately solving lattice
problems known as GAPSVP and SIVP when the distribution χ of errors is Gaussian. Let Ψ̄ρ be the
discretized Gaussian distribution with variance (ρq)2/2π, where ρ ∈ (0, 1) with ρq > 2

√
n. If GAPSVP

and SIVP are hard to approximate (on lattices of dimension n) within polynomial factors for quantum al-
gorithms, then dist-LWEn,m,q,Ψ̄mρ is secure. (Later, Peikert [Pei09] together with Brakerski et al. [BLP+13]

showed security of LWE based on hardness of approximating lattice problems for classical, rather than
quantum, algorithms.)

The above formulation of LWE requires the error term to come from the discretized Gaussian distri-
bution. For our purposes, we use a different formulation, due to Döttling and Müller-Quade [DMQ13],
which shows security of LWE when errors come from the uniform distribution over a small interval, under
the same assumptions.3 This allows us to directly encode w as the error term in an LWE problem by
splitting it into m blocks. The size of these blocks is dictated by the following result of Döttling and
Müller-Quade.

Theorem 4.6. [DMQ13, Theorem 6] Let n be a security parameter. Let q = q(n) = poly(n) be a prime
and m = m(n) = poly(n) be an integer with m ≥ 3n. Let σ ∈ (0, 1) be an arbitrarily small constant and
let ρ = ρ(n) ∈ (0, 1/10) be such that ρq ≥ 2n1/2+σm. Define the value α = ρ/(mnσ). Then define χ as
the uniform distribution over [−ρq, ρq]m. If dist-LWE(n,m,q,Ψ̄mα) is secure then dist-LWE(n,m,q,χ) is secure.

To extract pseudorandom bits, we use a result of Akavia, Goldwasser, and Vaikuntanathan [AGV09]
to show that X has many simultaneously hardcore bits. The result says that if dist-LWE(n−k,m,q,χ) is
secure then any k coordinates of X in a dist-LWE(n,m,q,χ) instance are hardcore. We state their result for
a general error distribution (noting that their proof does not depend on the error distribution).

2Unlike in common formulations of LWE, where q can be any integer, we need q to be prime for decoding.
3Micciancio and Peikert provide a similar formulation in [MP13]. The result of Döttling and Müller-Quade provides better

parameters for our setting.

13

Lemma 4.7. [AGV09, Lemma 2] Let χ be a distribution over Zmq . Suppose that dist-LWE(n−k,m,q,χ) is
(ε, ssec) secure, then

δDssec′ ((X1,...,k,A,AX + χ), (U,A,AX + χ)) ≤ ε ,

where U denotes the uniform distribution over Zkq , A denotes the uniform distribution over Zm×nq , X
denotes the uniform distribution over Znq , X1,...,k denote the first k coordinates of x, and s′sec ≈ ssec− n3.

The security of Construction 4.1 follows from Theorem 4.6 and Lemma 4.7 when parameters are set
appropriately (see Theorem 4.11), because we use the hardcore bits of X as our key.

Improved Uniform LWE reductions Subsequent to the conference version of this work [FMR13],
Bogdanov et al. [BGM+16] and Bai et al. [BLRL+18] presented additional reductions from uniform LWE
to standard LWE with a discretized Gaussian error distribution. For the purposes of this work, the
most important change is that they require a smaller uniform interval. Bogdanov et al.’s result requires
ρ = Ω(mα/

√
log n) and a multiplicative dimensionality loss of log n (in the underlying Gaussian LWE).

Bai et al. has a slighly worse ρ = Ω(mα/ log n) but with no dimensionality loss. Bai et al’s main theorem
is the following:

Theorem 4.8. [BLRL+18, Theorem 5.1] Let n be a security parameter and let m be a positive integer.
Let α, ρ > 0 be real numbers with ρ = Ω(mα/ log n). Let q be some prime positive integer. Furthermore,
suppose that

• m > (n log q)/(log(α+ ρ)−1) and

• q = poly(m,n).

Let χ be the uniform distribution over [−θq, θq]m where θ = 1
q bqρc. Then if dist-LWE(n,m,q,Ψ̄mα) is secure

then dist-LWE(n,m,q,χ) is secure.

The main differences between the result of Bai et al. [BLRL+18] and Döttling and Müller-Quade [DMQ13]
are two fold (ignoring the difference between ρ and θ).

1. The noise magnitude required in Döttling and Müller-Quade is ρ ≥ nΩ(1)mα while in Bai et al. it
is ρ ≥ (mα)/ log n.

2. The required number of samples in Bai et al. is m ≥ Ω(n log q/ log(α+ ρ)−1) while in Döttling and
Müller-Quade it is m ≥ 3n.

In this work, our goal is to extract a key that is as long as the input source. In standard formulations
(with α = 2

√
n/q), substituting parameters, one has that:

log(α+ ρ)−1 = log
q

qα+ qρ
= log

(
q

2
√
n+m

√
n/ log n

)
= log q − log(2

√
n+m

√
n/ log n).

Thus, the term
log q

log(α+ ρ)−1
=

log q

log q − log
(

2
√
n+ m

√
n

logn

) .
Suppose that q = Ω(nc) for some c > 3/2. Then it is possible for above equation to be bounded by some
constant and thus m = Ω(n). Verifying this is slightly complex as there is a circular relationship: m is

14

lower bounded by a quantity including ρ which is lower bounded by a quantity including m. As long as
q = Ω(nc) for some c > 3/2, this system is satisfiable for m = Ω(n). This means for large enough q, one
can reduce the required noise from size ρq = Ω(n3/2+o(1)) to ρq = n3/2/ log n. Appendix A and B present
parameters using Theorem 4.6 due to Döttling and Müller-Quade. This parameterization can be slightly
improved using Bai et al.’s result. However, this improvement is small compared to how parameters
depend on the number of errors to be corrected and the desired running time.

4.3 Efficiency of Construction 4.1

Construction 4.1 is useful only if Decodet can be efficiently implemented. We need a decoding algorithm
for a random linear code with t errors that runs in polynomial-time. We present a simple Decodet that
runs in polynomial-time and can correct t errors. Note that correcting t = Θ(log n) errors corresponds to
correcting at least

(
n
t

)
(q − 1)t error patterns which is superpolynomial.

Construction 4.9. We consider a setting of (n,m, q, χ) where m ≥ 3n. We describe Decodet:

1. Input A,b = Ax + w − w′

2. Randomly select rows without replacement i1, ..., i2n ← [1,m].

3. Restrict A,b to rows i1, ..., i2n; denote these Ai1,...,i2n ,bi1,...,i2n.

4. Find n rows of Ai1,...,i2n that are linearly independent. If no such rows exist, output ⊥ and stop.

5. Denote by A′,b′ the restriction of Ai1,...,i2n ,bi1,...,i2n (respectively) to these rows. Compute x′ =
(A′)−1b′.

6. If b−Ax′ has more than t nonzero coordinates, go to step (2).

7. Output x′.

The algorithm is an information set decoding algorithm. Lee and Brickel [LB88], Berman and Karpin-
ski [BK02] and Peters [Pet10] optimize the above algorithm by 1) selecting rows in a a structured way
to improve probability of linear independence, 2) swapping out rows rather than starting from scratch,
and 3) saving partial Gaussian elimination results (for computing the inverse). These techniques improve
concrete efficiency but do not asymptotically improve the number of errors that can be corrected in poly-
nomial time. As noted by [CG99, Pei06], when m = Θ(n), any algorithm that operates generically on the
elements of AX + (w − w′) can be efficient only when t = O(log n), establishing a hurdle to asymptotic
improvement.

Each step is computable in time O(n3). For Decodet to be efficient, we need t to be small enough so
that with probability at least 1

poly(n) , none of the 2n rows selected in step 2 have errors (i.e., so that w and

w′ agree on those rows). If this happens, and Ai1,...,i2n has rank n (which is highly likely), then x′ = x,
and the algorithm terminates. However, we also need to ensure correctness: we need to make sure that
if x′ 6= x, we detect it in step 6. This detection will happen if b−Ax′ = A(x− x′) + (w − w′) has more
than t nonzero coordinates. It suffices to ensure that A(x − x′) has at least 2t + 1 nonzero coordinates
(because at most t of those can be zeroed out by w − w′), which happens whenever the code generated
by A has distance 2t+ 1.

Setting t = O(mn log n) is sufficient to ensure efficiency. Random linear codes have sufficient distance

with probability 1− e−Ω(n) (the exact statement is in Corollary 4.3), so this also ensures correctness. The
formal statement is below:

15

Lemma 4.10. Let d be a positive constant and assume that dis(W,W ′) ≤ t where t ≤ d(mn −2) log n. Then
Decodet runs in expected time O(n4d+3) operations in Zq (this expectation is over the choice of random
coins of Decodet, regardless of the input, as long as dis(w,w′) ≤ t). It outputs X with probability 1−e−Ω(n)

(this probability is over the choice of the random matrix A and random choices made by Decodet).

Proof. Note that Decodet will stop if w and w′ agree on all the rows selected in Step 2 (it may also stop
for other reasons—namely, in step 4; but we do not use this fact to bound the expected running time).
The probability of each selected row having an error is at most t

m−i where i is the number of rows already
selected. That is,

Pr[i1, ..., i2n have no errors] ≥
2n−1∏
i=0

(
1− t

m− i

)
≥

2n−1∏
i=0

(
1−

d
(
m
n − 2

)
log n

m− i

)

≥
2n−1∏
i=0

(
1− d log n

n

(
m− 2n

m− i

))
≥

2n−1∏
i=0

(
1− d log n

n

)

=

(
1− d log n

n

)2n

=

((
1− d log n

n

) n
d logn

)2d logn

≥ 1

42d logn
=

1

n4d
.

(The second-to-last step holds as long as n ≥ 2d log n.) Because at each iteration, we select 2n rows
independently at random, the expected number of iterations is at most n4d; each iteration takes O(n3)
operations in Zq, which gives us the expected running time bound. The probability that Decodet outputs
⊥ is bounded by

Pr[Decodet →⊥]

≤
∞∑
j=1

Pr[Decodet →⊥ in jth iteration of step 4]

=

∞∑
j=1

Pr[Decodet continues to j iters. ∧ rank(Ai1,...,i2n) < n]

≤
∞∑
j=1

Pr[i1, ..., i2n had errors j − 1 times ∧ rank(Ai1,...,i2n) < n]

=
∞∑
j=1

Pr[i1, ..., i2n had errors j − 1 times] · Pr[rank(Ai1,...,i2n) < n]

≤
∞∑
j=1

(
1− 1

n4d

)j−1

· q−n

= n4de−Ω(n)

= e−Ω(n) .

The fourth line from the bottom follows from the fact that the locations of the errors are assumed to
be independent of the sketch, and therefore independent of the matrix A. The third line from the

16

bottom follows from Claim 4.4 when β = n; note that, because we use the union bound and evaluate the
probability separately for each value of j, we can treat Ai1,...,i2n as a randomly chosen 2n × n matrix,
ignoring the fact that these matrices are correlated.

We claim that if the code generated by A has distance at least 2t + 1, then Decodet will output ⊥
or the correct x′ = x. Indeed, suppose x′ 6= x. Since A(x − x′) has at least 2t + 1 nonzero coordinates
by the minimum distance of the code generated by A, and at most t of those can be zeroed out by the
addition of w − w′, such an x′ will not pass Step 6.

The probability that the code generated by A has distance lower than 2t + 1 is at most e−Ω(n) (see
Corollary 4.3), and the probability of outputting ⊥ is also e−Ω(n) (computed above). This gives the
correctness bound for Decodet.

4.4 Lossless Computational Fuzzy Extractor

We now state a setting of parameters that yields a lossless construction. We split W into m blocks each
of size log ρq (from Theorem 4.6) with

|W | = H∞(W) = m log ρq.

Our key consists of hardcore bits of X (namely, coordinates X1,...,k) and is of size k log q (from Lemma 4.7).
Thus, to get |W | = |X1,...,k| we need k log q = m log ρq. While the vector w is of higher dimension than
the vector X, each coordinate of w is sampled using fewer bits than each coordinate of X. Thus, by
increasing the size of q (while keeping ρq fixed) we can set k log q = m log ρq, yielding a key of the same
size as our source. The formal statement is below.

Theorem 4.11. Let n be a security parameter and let the number of errors t = c log n for some positive
constant c. Let d be a positive constant (giving us a tradeoff between running time of Rep and |w|). Con-
sider the Hamming metric over the alphabet Z = [−2b−1, 2b−1], where b = log 2(c/d+2)n2 = O(log n). Let
W be uniform over M = Zm, where m = (c/d+ 2)n = O(n). There is a setting of q = poly(n,m) such
that if dist-LWE(n,m,q,Zm) is (ε, ssec)-secure, then Construction 4.1 is a (M,W,m log |Z|, t)-computational

fuzzy extractor that is (ε, ssec)-hard with error δ = e−Ω(n). The generate procedure Gen takes O(n2)
operations over Zq, and the reproduce procedure Rep takes expected time O(n4d+3) operations over Zq.

Proof. Security follows by combining Theorem 4.6 and Lemma 4.7; efficiency follows by Lemma 4.10. For
a more detailed explanation of the various parameters and constraints see Appendix A.

4.5 Comparison with computational-extractor-based constructions

As mentioned in the Introduction, an alternative approach to building a computational fuzzy extractor is
to use a computational extractor (e.g., [Kra10, BDK+11, DSGKM12]) in place of the information-theoretic
extractor in the sketch-and-extract construction. We will call this approach sketch-and-comp-extract. (A
simple example of a computational extractor is a pseudorandom generator applied to the output of an
information-theoretic extractor; note that LWE-based pseudorandom generators exist [AIK06, AIK08].)

This approach (specifically, its analysis via Lemma 2.5) works as long as the amount of entropy m̃
of w conditioned on the sketch s remains high enough to run a computational extractor. However, as
discussed in Section 3, m̃ decreases with the error parameter t due to coding bounds. There are practical
sources, such as the iris [BH09, Section 5], where after sketch losses there is too little entropy left to run
a computational extractor once s is known.

17

In contrast, our approach does not require the entropy of w conditioned on p = (A,AX+w) to be high
enough for a computational extractor. The key difference in our approach is that instead of extracting
from w, we hide secret randomness using w. Computational extractors are not allowed to have secret
randomness [Kra10, Definition 3].

Additionally, our construction has a unique feature: security need not depend on the error-tolerance
t. Instead the time to recover is determined by t.

Unfortunately, LWE parameter sizes require relatively long w and our construction demonstrates a
low error tolerance. However, we believe the conceptual framework can lead to better constructions. As
an example, Herder et al. [HRvD+17] achieve practical error correction using a random linear code. Their
decode algorithm uses extra information in the source to pinpoint dimensions unlikely to have an error
(called confidence information).

5 Extending to Nonuniform Sources

We note that Construction 4.1 is secure whenever the source W is an LWE admissible distribution, mean-
ing that using W as the error vector in LWE makes decoding/distinguishing computationally hard. (The
instance has to be sufficiently hard for there to be a large number of hardcore bits.) Towards this end,
we show hardness of LWE when a small number of dimensions of the error vector are fixed. We recall the
notion of a symbol fixing source (from [KZ07, Definition 2.3]):

Definition 5.1. Let W = (W1, ...,Wm+α) be a distribution where each Wi takes values over an alphabet
Z. We say that it is a (m + α,m, |Z|) symbol fixing source if for α indices i1, . . . , iα, the symbols Wiα

are fixed, and the remaining m symbols are chosen uniformly at random. Note that H∞(W) = m log |Z|.

Symbol-fixing sources are a very structured class of distributions. However, extending Construction 4.1
to such a class is not obvious. Although symbol-fixing sources are deterministically extractable [KZ07],
we cannot first run a deterministic extractor before using Construction 4.1. This is because we need to
preserve distance between w and w′ and an extractor must not preserve distance between input points.
Instead, we directly show the security of LWE with symbol-fixing sources. The following theorem states
that dist-LWE with symbol-fixing sources is implied by the standard dist-LWE (but for n and m reduced
by the amount of fixed symbols).

Theorem 5.2. Let n be a security parameter, m,α, and q be polynomial in n, where q is a prime, and
β ∈ Z+ be such that q−β is negligible in n. Let U denote the uniform distribution over Zm for an alphabet
Z ⊂ Zq, and let W denote an (m + α,m, |Z|) symbol fixing source over Zm+α. If dist-LWEn,m,q,U is
secure, then dist-LWEn+α+β,m+α,q,W is also secure.

Theorem 5.2 also holds for an arbitrary error distribution (not just uniform errors) in the following
sense. Let χ′ be an arbitrary error distribution. Define χ as the distribution where m dimensions
are sampled according to χ′ and the remaining dimensions have some fixed error. Then, security of
dist-LWEn,m,q,χ′ implies security of dist-LWEn+α+β,m+α,q,χ. We show this stronger version of the theorem
below.

The intuition for this result is as follows. Providing a single sample with no error “fixes” at most a
single variable. Thus, if there are significantly more variables than samples with no error, search LWE
should still be hard. We are able to show a stronger result that dist-LWE is still hard. The nontrivial
part of the reduction is using the additional α + β variables to “explain” a random value for the last α
samples, without knowing the other variables. The β parameter is the slack needed to ensure that the
“free” variables have the influence on the last α samples.

18

Proof of Theorem 5.2. We assume that all of the fixed blocks are located at the end and their fixed value
is 0. If the blocks are fixed to some other value, the reduction is essentially the same. In the reduction,
the distinguisher is allowed to depend on the source and can know the positions of the fixed blocks and
their values. For a matrix A we will denote the i-th row by ai. For a set T of column indices, we denote
by AT the restriction of the matrix A to the columns contained in T . Similarly, for a vector x we denote
by xT the restriction of x to the variables contained in T . We use similar notations for the complement
of T , denoted T c. For a matrix or vector we use T to denote the transpose. We use i as an index into
matrix rows and the error vector and j as an index into matrix columns and the solution vector.

Let n be a security parameter, and m, q, α be polynomial in n. Let β be such that q−β is negligible in n.
All operations are computed modulo q, and we omit “ mod q” notation. Let χ′ be some error distribution
over Zmq and let χ over Zm+n

q be defined by sampling χ′ to obtain values on dimensions 1, ...,m and then
appending α 0s.

Let D be a distinguisher that breaks dist-LWE(m+α),(n+α+β),q,χ with advantage ε > 1/poly(n). Let A

denote the uniform distribution over Z(m+α)×(n+α+β)
q , X denote the uniform distribution over Z(n+α+β)

q ,
and U denote the uniform distribution over Zm+α

q . Then

|Pr[D(A,AX + χ) = 1]− Pr[D(A, U) = 1]| > ε.

We build a distinguisher that breaks dist-LWEm,n,q,χ. Let A′ denote the uniform distribution over
Zm×nq , X ′ denote the uniform distribution over Znq , and U ′ denote the uniform distribution over Zmq . We
will build a distinguisher D′ of polynomial size for which

|Pr[D′(A′,A′X ′ + χ′) = 1]− Pr[D′(A′, U ′) = 1]| > (ε− ngl(n))(1− ngl(n))

≥ ε− ngl(n). (1)

D′ will make a single call to D, so we focus on how to prepare a random block-fixing instance for D from
the instance that D′ is given. The code for D′ is given in Figure 1.

The distinguisherD′ has an advantage when S is of rank α. This occurs with overwhelming probability:

Lemma 5.3. Let S
$← Zα×(α+β)

q be randomly generated. Then Pr[rank(S) = α] ≥ 1− ngl(n).

Proof. Direct result of Claim 4.4 because q−β is negligible in n.

The probability that a random S is not full rank is negligible in n, so the distinguisher D must still
have an advantage when the matrix S is full rank. That is,

|Pr[D(A,AX + χ) = 1|rank(S) = α]− Pr[D(A, U) = 1|rank(S) = α]| > ε− ngl(n).

It suffices to show that D′ prepares a good instance for D conditioned on S being full rank. We show
this in the following three claims:

1. If A′ is a random matrix then A is a random matrix subject to the condition that rank(S) = α.

2. If b′ = A′x′ + e′ for uniform A′ and x′, then ∃x (uniformly distributed and independent of A and
e′) such that b = Ax + e, where ei = e′i for 1 ≤ i ≤ m and ei = 0 otherwise.

3. If the conditional distribution b′ |A′ is uniform, then the conditional distribution b |A is also
uniform.

19

1. Input A′,b′, where A′
$← Zm×nq and b′ is either uniform over Zmq or b′ = A′x′ + e′ for e′

$← χ′

and uniform x′
$← Znq .

2. Choose R
$← Zα×nq uniformly at random. Initialize Q ∈ Zm×(α+β)

q to be the zero matrix.

3. Let b∗ = (b′, b∗m+1, . . . , b
∗
m+α), for uniformly chosen (b∗m+1, . . . , b

∗
m+α)

$← Zαq .

4. Choose S
$← Zα×(α+β)

q uniformly at random.

If rank(S) < α, stop and output a random bit.

5. Find a set of α linearly independent columns in S. Let T be the set of indices of these columns.

6. For all 1 ≤ j ≤ α+ β, j /∈ T :

Choose xn+j
$← Zq uniformly at random.

For i = 1, ...,m:

Choose Qi,j
$← Zq uniformly at random.

Set b∗i = b∗i + Qi,jxn+j .

7. Initialize A∗ =

(
A′ Q

R S

)
.

8. For i = 1, ...,m:

Choose a row vector γi ← Z1×α
q uniformly at random.

Set ai ← a∗i + γi(R||S)

Set bi ← b∗i + γi(b
∗
m+1, ..., b

∗
m+α)T

9. For i = m+ 1, . . . ,m+ α:

Set ai ← a∗i

Set bi = b∗i .

10. Output D(A,b).

Figure 1: A distinguisher D′ for LWE using a distinguisher D for LWE with a block fixing source

20

Claim 5.4. The matrix A is distributed as a uniformly random choice from the set of all matrices whose
bottom-right α× (α+ β) submatrix S satisfies rank(S) = α.

Proof. The bottom α rows of A (namely, R|S) are randomly generated (conditioned on rank(S) = α).
The top left m× n quadrant of A is also random because it is produced as a sum of a uniformly random
A′ with some values that are uncorrelated with A′. The submatrix of the top-right m× (α+β) quadrant
corresponding to QT c (recall this is the restriction of Q to the columns that are not in T) is also random
because it is initialized with random values to which some uncorrelated values are then added. It is
important to note that all these values are independent of γi values.

Thus, we restrict attention to the m × α submatrix of A that corresponds to QT in A∗ (note that
these values are 0 in A∗). Consider a particular row i. That row is computed as γiST . Since ST is a
full rank square matrix and γi is uniformly and independently generated, that row is also uniform and
independent of other entries in A.

Lemma 5.5. If D′ is provided with input distributed as A′,b′ = A′x′ + e′ then b = Ax + e, where

• ei = e′i for 1 ≤ i ≤ m,

• ei = 0 for m < i ≤ m+ α,

• xj = x′j for 1 ≤ j ≤ n,

• and xj is uniform and independent of A and e′ for n < j ≤ n+ α+ β,

Proof. Partially define x as xj = x′j if 1 ≤ j ≤ n and xj as the value generated in step 6 for j > n and
j 6∈ T . Define the remaining variables xT as the solution to the following system of equations.

STxT =

b
∗
m+1
...

b∗m+α

−Rx′ − ST cxT c . (2)

A solution xT exists as ST is full rank. Moreover, it is uniform and independent of A and e, because
b∗m+1, . . . , b

∗
m+α are uniform and independent of A and e.

We now show that b∗ = A∗x + e. All entries in matrix Q corresponding to variables in T are set to
zero. Thus, the values of xT do not affect b∗i for 1 ≤ i ≤ m. The values of xT c are manually set, and
Qi,jxj is added to the corresponding b∗i . Thus, for 1 ≤ i ≤ m, we have b∗ = A∗x + e. For m < i, this
constraint is also satisfied by the values of xT set in Equation 2.

Thus, it remains to show that step 8 preserves this solution. We now show that for all rows 1 ≤ i ≤ m,
if b∗i = a∗ix + ei then bi = aix + ei. Recall the other rows are not modified. We have the following for
1 ≤ i ≤ m:

aix + ei = (a∗i + γi(R||S)) x + ei

= a∗ix + ei + γi(R||S)x

= b∗i + γi(R||S)x

21

Recall that bi = b∗i + γi(b
∗
m+1, ..., b

∗
m+k). We consider the product (R||S)x. It suffices to show that

(R||S)x = (b∗m+1, ..., b
∗
m+α),

(R||S)x = R

x1
...

xn

+ ST cxT c + STxT

= R

x1
...

xn

+ ST cxT c +

b
∗
m+1
...

b∗m+α

−R

x1
...

xn

− ST cxT c

=

b
∗
m+1
...

b∗m+α

 .

This completes the proof of the claim.

Lemma 5.6. If the conditional distribution b′ |A′ is uniform, then b |A is also uniform.

Proof. Since R,S, and Q are chosen independently of b′, the distribution b′ |A∗ is uniform. Let b∗ be
the vector generated after step 6. Its first m coordinates are computed by adding the uniform vector b′ to
values that are independent of b∗, and its remaining α coordinates b∗m+1, . . . , b

∗
m+α are chosen uniformly.

Thus b∗ |A∗ is uniform.
Let Γ represent the matrix formed by γi. It is independent of b∗ and A∗, so b∗ | (A∗,Γ) is uniform. Let

Γ′ =

(
Im Γ

0 Iα

)
. Note that b = Γ′b∗. Since b∗ | (A∗,Γ) is uniform, and Γ′ is invertible, b | (A∗,Γ) must

also be uniform. Since A is a deterministic function of A∗ and Γ (assuming Step 5 is deterministic—if not,
we can fix the coins used), the distribution b |A is the same as b | (A∗,Γ) and is thus also uniform.

To sum up, the reduction D′ runs in polynomial-time and Claims 5.4, 5.5, and 5.6 show that when
rank(S) = α, then D′ properly prepares the instance for D. Thus,∣∣Pr[D′(A,AX + χ) = 1]− Pr[D′(A, U) = 1]

∣∣
=
∣∣Pr
[
D′(A′,u′) = 1|rank(S) = α

]
− Pr

[
D′(A′,A′x + e) = 1|rank(S) = α

]∣∣
· Pr[rank(S) = α]

= |Pr[D(A,AX + χ) = 1|rank(S) = α]− Pr[D(A, U) = 1|rank(S) = α]|
· Pr[rank(S) = α]

≥ (ε− ngl(n))(1− ngl(n)) ≥ ε− ngl(n)

(where the second line follows because D′ outputs a random bit when rank(S) < α). Thus, Equation (1)
is satisfied, which completes the proof.

Theorem 5.2 allows us to construct a lossless computational fuzzy extractor from block-fixing sources, as
shown in the following theorem:

Theorem 5.7. Let n be a security parameter and let t = c log n for some positive constant c. Let d ≤ c
be a positive constant and consider the Hamming metric over the alphabet Z = [−2b−1, 2b−1], where
b ≈ log 2(c/d + 2)n2 = O(log n). Let M = Zm+α where m = (c/d + 2)n = O(n) and α ≤ n/3. Let W

22

be the class of all (m + α,m, |Z|)-symbol fixing sources. There is a setting of q = poly(n) such that if
dist-LWE(n,m,q,Zm) is (ε, ssec)-secure, then Construction 4.1 is an (M,W,m log |Z|, t)-computational fuzzy

extractor that is (ε, ssec)-hard with error δ = e−Ω(n). The generate procedure Gen takes O(n2) operations
over Zq, and the reproduce procedure Rep takes expected time O(n4d+3 log n) operations over Zq.

Proof. Security follows by Lemmas 4.6 and 4.7 and Theorem 5.2 . Efficiency follows by Lemma 4.10. For
a more detailed explanation of parameters see Appendix B.

Note: A similar theorem for the case of a single fixed dimension was shown in the concurrent work by
Brakerski et al. [BLP+13, Lemma 4.3]. The proof techniques of Brakerski et al. can be extended to
multiple fixed dimensions, improving the parameters of Theorem 5.2. Roughly, the idea is to randomly
generate R||S as before. Instead of just appending these rows to A′, the matrix A is formed by multiplying
A′ by an invertible matrix U ∈ Zn×nq . Then R||S is appended. This approach creates more flexibility in
finding a vector x that explains the matrix. The advantage of this approach is that only R||S has to be
full rank instead of the submatrix S. This removes the need for the β extra dimensions in the theorem
statement. The original formulation is formalized above.

Acknowledgements

The authors are grateful to Jacob Alperin-Sheriff, Ran Canetti, Yevgeniy Dodis, Nico Döttling, Daniele
Micciancio, Jörn Müller-Quade, Chris Peikert, Oded Regev, Adam Smith, and Daniel Wichs for helpful
discussions, creative ideas, and important references. In particular, the authors thank Nico Döttling for
describing his result on LWE with uniform errors.

This work is supported in part by National Science Foundation grants 0831281, 1012910, 1012798,
and 1849904. The work of Benjamin Fuller is sponsored in part by the United States Air Force under
Air Force Contract FA8721-05-C-0002. Opinions, interpretations, conclusions and recommendations are
those of the authors and are not necessarily endorsed by the United States Government.

References

[ABC+18] Quentin Alamélou, Paul-Edmond Berthier, Chloé Cachet, Stéphane Cauchie, Benjamin
Fuller, Philippe Gaborit, and Sailesh Simhadri. Pseudoentropic isometries: A new frame-
work for fuzzy extractor reusability. In AsiaCCS 2018, 2018.

[ACEK17] Daniel Apon, Chongwon Cho, Karim Eldefrawy, and Jonathan Katz. Efficient, reusable
fuzzy extractors from LWE. In International Conference on Cyber Security Cryptography
and Machine Learning, pages 1–18. Springer, 2017.

[AGV09] Adi Akavia, Shafi Goldwasser, and Vinod Vaikuntanathan. Simultaneous hardcore bits and
cryptography against memory attacks. In Omer Reingold, editor, Theory of Cryptography,
volume 5444 of Lecture Notes in Computer Science, pages 474–495. Springer Berlin Heidel-
berg, 2009.

[AIK06] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. On pseudorandom generators with
linear stretch in NC 0. Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, pages 260–271, 2006.

23

[AIK08] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. On pseudorandom generators with
linear stretch in nc 0. Computational Complexity, 17(1):38–69, 2008.

[BBR88] Charles H. Bennett, Gilles Brassard, and Jean-Marc Robert. Privacy amplification by public
discussion. SIAM journal on Computing, 17(2):210–229, 1988.

[BCKP17] Nir Bitansky, Ran Canetti, Yael Tauman Kalai, and Omer Paneth. On virtual grey box
obfuscation for general circuits. Algorithmica, 79(4):1014–1051, 2017.

[BDK+05] Xavier Boyen, Yevgeniy Dodis, Jonathan Katz, Rafail Ostrovsky, and Adam Smith. Secure
remote authentication using biometric data. In EUROCRYPT, pages 147–163. Springer,
2005.

[BDK+11] Boaz Barak, Yevgeniy Dodis, Hugo Krawczyk, Olivier Pereira, Krzysztof Pietrzak, François-
Xavier Standaert, and Yu Yu. Leftover hash lemma, revisited. In Advances in Cryptology–
CRYPTO 2011, pages 1–20. Springer, 2011.

[BFKL93] Avrim Blum, Merrick Furst, Michael Kearns, and Richard J Lipton. Cryptographic prim-
itives based on hard learning problems. In Advances in Cryptology – CRYPTO, pages
278–291. Springer, 1993.

[BGM+16] Andrej Bogdanov, Siyao Guo, Daniel Masny, Silas Richelson, and Alon Rosen. On the hard-
ness of learning with rounding over small modulus. In Theory of Cryptography Conference,
pages 209–224. Springer, 2016.

[BH09] Marina Blanton and William MP Hudelson. Biometric-based non-transferable anonymous
credentials. In International Conference on Information and Communications Security,
pages 165–180. Springer, 2009.

[BK02] Piotr Berman and Marek Karpinski. Approximating minimum unsatisfiability of linear equa-
tions. In Proceedings of the thirteenth annual ACM-SIAM symposium on Discrete algorithms,
pages 514–516. Society for Industrial and Applied Mathematics, 2002.

[BLP+13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé. Classical
hardness of learning with errors. In Proceedings of the 45th annual ACM symposium on
Symposium on theory of computing, pages 575–584. ACM, 2013.

[BLRL+18] Shi Bai, Tancrède Lepoint, Adeline Roux-Langlois, Amin Sakzad, Damien Stehlé, and Ron
Steinfeld. Improved security proofs in lattice-based cryptography: using the Rényi diver-
gence rather than the statistical distance. Journal of Cryptology, 31(2):610–640, 2018.

[BMvT78] Elwyn Berlekamp, Robert McEliece, and Henk van Tilborg. On the inherent intractability
of certain coding problems. IEEE Transactions on Information Theory, 24(3):384 – 386,
May 1978.

[Boy04] Xavier Boyen. Reusable cryptographic fuzzy extractors. In Proceedings of the 11th ACM
conference on Computer and communications security, CCS ’04, pages 82–91, New York,
NY, USA, 2004. ACM.

[BSW03] Boaz Barak, Ronen Shaltiel, and Avi Wigderson. Computational analogues of entropy. In
11th International Conference on Random Structures and Algorithms, pages 200–215, 2003.

24

[CFP+16] Ran Canetti, Benjamin Fuller, Omer Paneth, Leonid Reyzin, and Adam Smith. Reusable
fuzzy extractors for low-entropy distributions. In Advances in Cryptology –EUROCRYPT,
pages 117–146. Springer, 2016.

[CG99] Ran Canetti and Shafi Goldwasser. An efficient threshold public key cryptosystem secure
against adaptive chosen ciphertext attack. In Advances in Cryptology – EUROCRYPT,
pages 90–106. Springer, 1999.

[CKOR10] Nishanth Chandran, Bhavana Kanukurthi, Rafail Ostrovsky, and Leonid Reyzin. Privacy
amplification with asymptotically optimal entropy loss. In Proceedings of the 42nd ACM
Symposium on Theory of Computing, pages 785–794, New York, NY, USA, 2010. ACM.

[CKOR14] Nishanth Chandran, Bhavana Kanukurthi, Rafail Ostrovsky, and Leonid Reyzin. Privacy
amplification with asymptotically optimal entropy loss. Journal of the ACM (JACM),
61(5):1–28, 2014.

[CM05] Claude Castelluccia and Pars Mutaf. Shake them up!: A movement-based pairing protocol
for CPU-constrained devices. In Proceedings of the 3rd international conference on Mobile
systems, applications, and services, pages 51–64. ACM, 2005.

[Coo00] Colin Cooper. On the rank of random matrices. Random Structures & Algorithms, 16(2):209–
232, 2000.

[CT06] Thomas M. Cover and Joy A. Thomas. Elements of information theory. Wiley-InterScience,
2nd edition, 2006.

[Dau04] John Daugman. How iris recognition works. Circuits and Systems for Video Technology,
IEEE Transactions on, 14(1):21 – 30, January 2004.

[DHP+18] Pierre-Alain Dupont, Julia Hesse, David Pointcheval, Leonid Reyzin, and Sophia Yakoubov.
Fuzzy password-authenticated key exchange. In Advances in Cryptology – EUROCRYPT,
pages 393–424. Springer, 2018.

[DMQ13] Nico Döttling and Jörn Müller-Quade. Lossy codes and a new variant of the learning-
with-errors problem. In Thomas Johansson and Phong Q. Nguyen, editors, Advances in
Cryptology – EUROCRYPT, volume 7881 of Lecture Notes in Computer Science, pages
18–34. Springer, 2013.

[DORS08] Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam Smith. Fuzzy extractors: How
to generate strong keys from biometrics and other noisy data. SIAM Journal on Computing,
38(1):97–139, 2008.

[DSGKM12] Dana Dachman-Soled, Rosario Gennaro, Hugo Krawczyk, and Tal Malkin. Computational
extractors and pseudorandomness. In Theory of Cryptography, pages 383–403. Springer,
2012.

[DW09] Yevgeniy Dodis and Daniel Wichs. Non-malleable extractors and symmetric key cryptog-
raphy from weak secrets. In Proceedings of the 41st annual ACM Symposium on Theory of
Computing, pages 601–610, New York, NY, USA, 2009. ACM.

25

[FMR13] Benjamin Fuller, Xianrui Meng, and Leonid Reyzin. Computational fuzzy extractors. In
Advances in Cryptology – ASIACRYPT, pages 174–193. Springer, 2013.

[FP19] Benjamin Fuller and Lowen Peng. Continuous-source fuzzy extractors: Source uncertainty
and insecurity. In 2019 IEEE International Symposium on Information Theory (ISIT), pages
2952–2956. IEEE, 2019.

[FRS16] Benjamin Fuller, Leonid Reyzin, and Adam Smith. When are fuzzy extractors possible? In
Advances in Cryptology – ASIACRYPT, pages 277–306. Springer, 2016.

[FRS20] Benjamin Fuller, Leonid Reyzin, and Adam Smith. When are fuzzy extractors possible?
IEEE Transactions on Information Theory, 2020.

[GL89] Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way functions. In
Proceedings of the 21st annual ACM Symposium on Theory of Computing, pages 25–32,
1989.

[Gur10] Venkatesan Guruswami. Introduction to coding theory - lecture 2: Gilbert-Varshamov
bound. University Lecture, 2010.

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from all
falsifiable assumptions. In Proceedings in the 43rd annual ACM Symposium on the Theory
of Computation, pages 99–108, 2011.

[HBG+16] Christopher Huth, Daniela Becker, Jorge Guajardo, Paul Duplys, and Tim Güneysu. Se-
curing systems with scarce entropy: LWE-based lossless computational fuzzy extractor for
the IoT. IACR Cryptology ePrint Archive, 2016:982, 2016.

[HBG+17] Christopher Huth, Daniela Becker, Jorge Guajardo, Paul Duplys, and Tim Güneysu. LWE-
based lossless computational fuzzy extractor for the internet of things. In Hardware Oriented
Security and Trust (HOST), 2017 IEEE International Symposium on, pages 154–154. IEEE,
2017.

[HBM+17] Christopher Huth, Daniela Becker, Jorge Guajardo Merchan, Paul Duplys, and Tim
Güneysu. Securing systems with indispensable entropy: LWE-based lossless computational
fuzzy extractor for the internet of things. IEEE Access, 5:11909–11926, 2017.

[HHR+10] Iftach Haitner, Thomas Holenstein, Omer Reingold, Salil Vadhan, and Hoeteck Wee. Uni-
versal one-way hash functions via inaccessible entropy. In Advances in Cryptology – EURO-
CRYPT, pages 616–637. Springer, 2010.

[HILL99] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudorandom
generator from any one-way function. SIAM Journal on Computing, 28(4):1364–1396, 1999.

[HLR07] Chun-Yuan Hsiao, Chi-Jen Lu, and Leonid Reyzin. Conditional computational entropy, or
toward separating pseudoentropy from compressibility. In EUROCRYPT, pages 169–186,
2007.

[HRV13] Iftach Haitner, Omer Reingold, and Salil Vadhan. Efficiency improvements in construct-
ing pseudorandom generators from one-way functions. SIAM Journal on Computing,
42(3):1405–1430, 2013.

26

[HRvD+17] Charles Herder, Ling Ren, Marten van Dijk, Meng-Day Yu, and Srinivas Devadas. Trapdoor
computational fuzzy extractors and stateless cryptographically-secure physical unclonable
functions. IEEE Transactions on Dependable and Secure Computing, 14(1):65–82, 2017.

[HRVW09] Iftach Haitner, Omer Reingold, Salil Vadhan, and Hoeteck Wee. Inaccessible entropy. In
Proceedings of the 41st annual ACM Symposium on Theory of Computing, pages 611–620.
ACM, 2009.

[JHR+17] Chenglu Jin, Charles Herder, Ling Ren, Phuong Nguyen, Benjamin Fuller, Srinivas Devadas,
and Marten van Dijk. FPGA implementation of a cryptographically-secure puf based on
learning parity with noise. Cryptography, 1(3):23, 2017.

[JS06] Ari Juels and Madhu Sudan. A fuzzy vault scheme. Designs, Codes and Cryptography,
38:237–257, 2006.

[JW99] Ari Juels and Martin Wattenberg. A fuzzy commitment scheme. In Sixth ACM Conference
on Computer and Communication Security, pages 28–36. ACM, November 1999.

[KR09] Bhavana Kanukurthi and Leonid Reyzin. Key agreement from close secrets over unsecured
channels. In Advances in Cryptology – EUROCRYPT, pages 206–223, 2009.

[Kra10] Hugo Krawczyk. Cryptographic extraction and key derivation: The HKDF scheme. In
Advances in Cryptology–CRYPTO 2010, pages 631–648. Springer, 2010.

[KZ07] Jesse Kamp and David Zuckerman. Deterministic extractors for bit-fixing sources and
exposure-resilient cryptography. SIAM Journal on Computing, 36(5):1231–1247, 2007.

[LB88] Pil Joong Lee and Ernest F Brickell. An observation on the security of mceliece’s public-key
cryptosystem. In Workshop on the Theory and Application of of Cryptographic Techniques,
pages 275–280. Springer, 1988.

[MP13] Daniele Micciancio and Chris Peikert. Hardness of SIS and LWE with Small Parameters. In
Advances in Cryptology - CRYPTO 2013, Lecture Notes in Computer Science. 2013.

[NZ93] Noam Nisan and David Zuckerman. Randomness is linear in space. Journal of Computer
and System Sciences, pages 43–52, 1993.

[Pei06] Chris Peikert. On error correction in the exponent. In Theory of Cryptography Conference,
pages 167–183. Springer, 2006.

[Pei09] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem: ex-
tended abstract. In Proceedings of the 41st annual ACM Symposium on Theory of Comput-
ing, pages 333–342, New York, NY, USA, 2009. ACM.

[Pet10] Christiane Peters. Information-set decoding for linear codes over Fq. In International
Workshop on Post-Quantum Cryptography, pages 81–94. Springer, 2010.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In
Proceedings of the 37th annual ACM Symposium on Theory of Computing, pages 84–93,
New York, NY, USA, 2005. ACM.

27

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
Journal of the ACM (JACM), 56(6):1–40, 2009.

[Reg10] Oded Regev. The learning with errors problem (invited survey). Annual IEEE Conference
on Computational Complexity, 0:191–204, 2010.

[Rey11] Leonid Reyzin. Some notions of entropy for cryptography. In Information Theoretic Security,
pages 138–142. Springer, 2011.

[SD07] G. Edward Suh and Srinivas Devadas. Physical unclonable functions for device authenti-
cation and secret key generation. In Proceedings of the 44th annual Design Automation
Conference, pages 9–14. ACM, 2007.

[Sha02] Ronen Shaltiel. Recent developments in explicit constructions of extractors. Bulletin of the
EATCS, 77(67-95):10, 2002.

[SSF19] Sailesh Simhadri, James Steel, and Benjamin Fuller. Reusable authentication from the iris.
In Information Security Conference, pages 465–485, 2019.

[SWBH49] Claude E. Shannon, Warren Weaver, Richard E. Blahut, and Bruce Hajek. The mathematical
theory of communication, volume 117. University of Illinois press Urbana, 1949.

[TSS+06] Pim Tuyls, Geert-Jan Schrijen, Boris Skoric, Jan Geloven, Nynke Verhaegh, and Rob
Wolters. Read-proof hardware from protective coatings. In Louis Goubin and Mitsuru
Matsui, editors, Cryptographic Hardware and Embedded Systems - CHES 2006, volume 4249
of Lecture Notes in Computer Science, pages 369–383. Springer Berlin Heidelberg, 2006.

[Vad12] Salil Vadhan. Pseudorandomness. Foundations and Trends in Theoretical Computer Science.
Now Publishers, 2012.

[VZ12] Salil Vadhan and Colin Jia Zheng. Characterizing pseudoentropy and simplifying pseudo-
random generator constructions. In Proceedings of the 44th annual ACM Symposium on
Theory of Computing, pages 817–836. ACM, 2012.

[WCD+17] Joanne Woodage, Rahul Chatterjee, Yevgeniy Dodis, Ari Juels, and Thomas Ristenpart. A
new distribution-sensitive secure sketch and popularity-proportional hashing. In Advances
in Cryptology–CRYPTO, pages 682–710. Springer, 2017.

[WL18] Yunhua Wen and Shengli Liu. Reusable fuzzy extractor from LWE. In Australasian Con-
ference on Information Security and Privacy, pages 13–27. Springer, 2018.

[WLH18] Yunhua Wen, Shengli Liu, and Shuai Han. Reusable fuzzy extractor from the decisional
Diffie–Hellman assumption. Designs, Codes and Cryptography, pages 1–18, 2018.

[YY14] Kenji Yasunaga and Kosuke Yuzawa. On the possibilities and limitations of computational
fuzzy extractors. Cryptology ePrint Archive, Report 2014/605, 2014. http://eprint.iacr.
org/.

28

http://eprint.iacr.org/
http://eprint.iacr.org/

A Parameter Settings for Construction 4.1

In this section, we explain the different parameters that go into our construction. In Theorem 4.11 we
give a parametrization that yieldslossless fuzzy extractor from a security parameter n and an error t. In
this section, we discuss constraints imposed by 1) efficient decoding 2) maintaining security of the LWE
instance and 3) ensuring no entropy loss of the construction. We begin by reviewing the parameters that
make up our construction:

• |W |: The length of the source.

• t: Number of errors that can be supported.

• n: LWE security parameter (i.e., number of field elements in X), which must be greater than some
minimum value n0 for security.

• q: The size of the field.

• ρ: The fraction of the field needed for error sampling.

• m: The size of each number of samples in the LWE instance.

• k: The number of hardcore elemebnts in X (from Lemma 4.7).

We will split the source |W | into m blocks each of size 2ρq + 1 (that is, |W | = m log(2ρq + 1)). We focus
on t, n, q, ρ, and m noting that |W | = m log(2ρq + 1). As stated above we have three constraints:

• Maintain security of LWE. Theorem 4.6 says that we get security for all n greater than some
minimum n0 and q = poly(n) and ρq ≥ αnσmq. For convenience we consider αq = 2

√
n as needed

in the original Regev reduction [Reg05, Reg09]. The only reason to increase ρq over this minimum
amount (other than security) is if the number of errors in W decreases with a slightly larger block
size. We ignore this effect and assume that ρq = 2n1/2+σm.

• Maintain efficient decoding of Construction 4.9. Using Lemma 4.10, this means that t ≤ d log n(m/n−
2).

• Minimize entropy loss of the construction. We will output X1,...,k so the entropy loss of the construc-
tion is |W | − |X1,...,k|. We want the entropy loss to be zero, that is, |W | = |X1,...,k|. Substituting,
one has m log(2ρq + 1) = k log q.

Collecting constraints we can support any setting where t, n, q, ρ,m, k satisfy the following constraints (for
constants d, f):

n0 < n− k

t ≤ d log n
(m
n
− 2
)

q = nf

ρq = 2n1/2+σm

m log(2ρq + 1) = k log q

29

Substituting q = nf and ρq = 2n1/2+σm yields the following system of equations:

n0 < n− k

t ≤ d log n
(m
n
− 2
)

m log(4n1/2+σm+ 1) = k log nf

This is the most general form of our construction, we can support any n, t,m that satisfy these equations
for constants d, f . However, the last equation may have no solution for f constant. Putting the last
equation in terms of f one has:

n0 < n− k

t ≤ d log n
(m
n
− 2
)

f =
m

k

log 4n1/2+σm+ 1

log n

To ensure f is a constant, we set t = c log n for some constant c and that k = n/g for some constant
g > 1. Finally we assume that m is the minimum value such that t ≤ d log n(m/n− 2) (that is, there are
only as many dimensions as necessary for decoding using Lemma 4.10):

n0 < n− k

m =
(c/d+ 2)n log n

log n
=
(c
d

+ 2
)
n

f =
m

k

log 4n1/2+σm+ 1

log n
=
g(c+ 2d)

d

log(4(c+2d)
d n3/2+σ + 1)

log n
= O(1)

Assuming n− k = n(1− 1/g) > n0 and letting t = c log n we get the following setting:

m =
(c
d

+ 2
)
n

q = nf = n
(m
k

log(4n1/2+σm+1)
logn

)
= poly(n)

ρq = 2n1/2+σm = 2(
c

d
+ 2)n3/2+σ

Note, that f > m
k ≥

m
n ≥

(c/d+2)n
n ≥ 3 as long as d < c (this also ensures that m ≥ 3n, as required

for Lemma 4.10 to hold). Since ρq = 2n1/2+σm = O(n5/2) in our setting ρ = O(n−1/2). Thus, for large
enough settings of parameters ρ is less than 1/10 as required by Theorem 4.6.

Furthermore, we get decoding using O(n4d+3) Zq operations. We can output a k fraction of X and the
bits will be pseudorandom (conditioned on A,AX + W). The parameter g allows is a tradeoff between
the number of dimensions needed for security and the size of the field q. In Theorem 4.11, we set g = 2
and output the first half of X. Setting 1 < g < 2 achieves an increase in output length (over the input
length of W). We also (arbitrarily) set σ = 1/2 to simplify the statement of Theorem 4.11, making
ρq = 2(c/d+ 2)n2.

30

B Parameter Settings for Theorem 5.7

We repeat parameter settings for block fixing sources. We now have m + α as the number of samples,
while n+ α+ ω(1) is the number of variables. We can support any setting where t, n, q, ρ,m, k, α satisfy
the following constraints (for β = ω(1) and constants d, f):

n0 < n− k − α− β

t ≤ d log n
(m
n
− 2
)

q = nf

ρq = 2n1/2+σm

m log(2ρq + 1) = k log q

Substituting q = nf and ρq = 2n1/2+σm yields the following system of equations:

n0 < n− k − α− β

t ≤ d log n
(m
n
− 2
)

m log(4n1/2+σm+ 1) = k log nf

As before we can support any setting any n, t,m, α that satisfy these equations for β = ω(1) and constants
d, f . However, the last equation may have no solution for f constant. Putting the last equation in terms
of f one has:

n0 < n− k − α− β

t ≤ d log n
(m
n
− 2
)

f =
m

k

log(4n1/2+σm+ 1)

log n

To ensure f is a constant, we set t = c log n for some constant c and that k, α = n/3 and β = log n.
Finally we assume that m is the minimum value such that t ≤ d log n(m/n − 2) (that is, there are only
as many dimensions as necessary for decoding using Lemma 4.10):

n0 < n/3− log n

m =
(c/d+ 2)n log n

log n
= (

c

d
+ 2)n

f =
m

k

log(4n1/2+σm+ 1)

log n
=
(

3(
c

d
+ 2)

) log(4(cd + 2)n3/2+σ + 1)

log n
= O(1)

Assuming n/3− log(n) > n0 and letting t = c log n we get the following setting:

m = (
c

d
+ 2)n

q = nf = n
m
n

log(4n1/2+σm+1)
logn = poly(n)

ρq = 2n1/2+σm = 2(
c

d
+ 2)n3/2+σ

As before we arbitrarily set σ = 1/2, giving ρq = 2(cd + 2)n2. Also, if c < d then we get efficient
decoding and ρ = o(1) satisfying the conditions of Theorem 4.6.

31

	Introduction
	Our Contribution
	Subsequent Work
	Differences between fuller2013computational and this work

	Preliminaries
	Fuzzy Extractors and Secure Sketches
	Secure sketches

	Impossibility of Computational Secure Sketches
	A Computational Fuzzy Extractor based on LWE
	Properties of Random Linear Codes
	Security of Construction 4.1
	Efficiency of Construction 4.1
	Lossless Computational Fuzzy Extractor
	Comparison with computational-extractor-based constructions

	Extending to Nonuniform Sources
	Parameter Settings for Construction 4.1
	Parameter Settings for Theorem 5.7

