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ABSTRACT

General relativistic force-free electrodynamics is one possible plasma-limit employed to analyze energetic outflows in which strong
magnetic fields are dominant over all inertial phenomena. The amazing images of black hole (BH) shadows from the Galactic Center
and the M87 galaxy provide a first direct glimpse into the physics of accretion flows in the most extreme environments of the universe.
The efficient extraction of energy in the form of collimated outflows or jets from a rotating BH is directly linked to the topology of
the surrounding magnetic field. We aim at providing a tool to numerically model the dynamics of such fields in magnetospheres
around compact objects, such as BHs and neutron stars. To do so, we probe their role in the formation of high energy phenomena
such as magnetar flares and the highly variable teraelectronvolt emission of some active galactic nuclei. In this work, we present
numerical strategies capable of modeling fully dynamical force-free magnetospheres of compact astrophysical objects. We provide
implementation details and extensive testing of our implementation of general relativistic force-free electrodynamics in Cartesian and
spherical coordinates using the infrastructure of the EINSTEIN TOOLKIT. The employed hyperbolic/parabolic cleaning of numerical
errors with full general relativistic compatibility allows for fast advection of numerical errors in dynamical spacetimes. Such fast
advection of divergence errors significantly improves the stability of the general relativistic force-free electrodynamics modeling of

BH magnetospheres.
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1. Introduction

Relativistic, magnetically dominated plasma is a basic ele-
ment of the environments around neutron stars (Goldreich &
Julian 1969; Michel 1973; Scharlemann & Wagoner 1973;
Contopoulos et al. 1999), especially around magnetars (Lamb
1982; Thompson & Duncan 1995; Beloborodov & Thompson
2007) and black holes (BHs; Blandford & Znajek 1977), includ-
ing the accretion disks surrounding them (MacDonald & Thorne
1982; Thorne et al. 1986; Beskin 1997) and their outflows
(Takahashi et al. 1990; Lee et al. 2000; Punsly 2001; Lyutikov
2009). Interest for the environments surrounding neutron stars
and BHs has recently been sparked due to the overwhelming
amount of new observations available, for example, in supermas-
sive BHs (Event Horizon Telescope Collaboration 2019a,b) and
magnetars (Turolla et al. 2015; Kaspi & Beloborodov 2017). If
magnetic fields dominate the dynamics, all inertial and thermal
plasma contributions can be neglected. Thus, the only role of
the plasma is to support the electromagnetic fields. Magnetic
fields govern all plasma dynamics; the currents are not merely
induced by the drift of the matter distribution but are completely
determined by the electromagnetic fields. Under the aforemen-
tioned conditions, the plasma becomes force-free (e.g., Uchida
1997). In this series of papers, we present comprehensive tech-
niques for the modeling of force-free astrophysical plasma. We
will point out various caveats of this regime with transparency.
They are outweighed by the clear advantages of the force-free
regime, such as numerical robustness in high magnetization.

Article published by EDP Sciences

This is especially the case whenever it becomes important to
know what the plasma is actually doing (on micro-scales), for
example, the screening of nonideal electric fields or magnetic
reconnection.

The correct interpretation of recent breakthrough observa-
tions requires building up a solid theoretical understanding of
the astrophysical scenarios mentioned above. Due to their com-
plexity and system size, they are well suited for numerical
approaches. Two principal formulations for numerically mod-
eling astrophysical plasma under force-free conditions have
emerged in recent years (see a detailed review in Paschalidis
& Shapiro 2013). Komissarov (2004) suggests the time evolu-
tion of the full set of Maxwell’s equations, where the magnetic
induction and displacement encode the general relativistic space-
time geometry as non-vacuum effects. This formulation has also
been employed by Pétri (2016) and in an implementation relying
on spectral methods (PHAEDRA, Parfrey et al. 2015, 2017). Fur-
thermore, Palenzuela et al. (2010) and Carrasco & Reula (2017)
carried out simulations in spherical geometries and higher-order
finite difference approximations. McKinney (2006) introduced a
formulation that is based on an adaptation of general relativis-
tic magnetohydrodynamics (GRMHD) to evolve the magnetic
field as well as Poynting fluxes in time. As such, it was imple-
mented, for example, in the GRMHD code HARM (Gammie et al.
2003). Paschalidis & Shapiro (2013) improved upon the formu-
lation introduced in McKinney (2006) by explicitly accounting
for the orthogonality relation between the magnetic field and the
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Poynting flux. A similar approach was implemented by Etienne
et al. (2017) in the GIRAFFE code provided in the EINSTEIN
TooLKIT' (LofHer et al. 2012). For this project, we have imple-
mented the Maxwell equations evolution system in general rel-
ativity using the infrastructure of the EINSTEIN TOOLKIT. To
this end, we developed a new code for the numerical integration
of the equations of general relativistic force-free electrodynam-
ics (GRFEE) in dynamically evolving spacetimes. This tool has
already been applied to the study of the dynamics in magneto-
spheres around compact objects (Mahlmann et al. 2019, 2020).
In this series of papers, we will extensively review implementa-
tion details and characterize the numerical properties of our new
code.

The EINSTEIN TOOLKIT infrastructure, which was originally
designed for Cartesian coordinates, has recently been adapted to
support spherical coordinates (Mewes et al. 2018, 2020). For cer-
tain applications in the realm of astrophysical compact objects,
it is beneficial to exploit coordinates that reflect the approxi-
mate symmetries these systems possess. Spherical coordinates
provide a coordinate system that enhances the accuracy of the
employed method. Starting from the so-called reference metric
approach, we write the evolution equations such that they corre-
spond to conservation laws in a conformally related metric. We
then use suitable finite volume discretizations (in Cartesian and
spherical coordinates, Cerdd-Duran et al. 2008) for the integra-
tion of intercell fluxes in our time-marching scheme. Alterna-
tive approaches have been employed, for example, by Montero
et al. (2014) and Mewes et al. (2020), wherein all information
about the underlying coordinate system is encoded in geometri-
cal source terms.

This work is organized as a series of papers. This manuscript
(Paper I) reviews the general theory of GRFFE and our imple-
mentation using the infrastructure of the EINSTEIN TOOLKIT.
The second paper (Mahlmann et al. 2021, Paper II) focuses on
the characterization of the numerical diffusivity of our algorithm.
Sections 2.1 and 2.2 lay out the theory background of GRFFE
and introduce an augmented conservative system of partial dif-
ferential equations (PDEs). We discuss the implementation of
this system in our scientific code in the EINSTEIN TOOLKIT in
Sect. 3. Different finite volume integrators used for full sup-
port of both Cartesian and spherical coordinates are reviewed
in Sects. 3.1.1 and 3.1.2. We discuss two key ingredients for the
successful numerical integration of GRFFE, namely the preser-
vation of force-free conditions and the cleaning of numerical
errors, in Sects. 3.3 and 3.5. Section 4 assembles a suite of tests
for the numerical calibration and characterization of our code.
We demonstrate its ability to reproduce the basic dynamics of
force-free configurations (Sect. 4.1). We further demonstrate the
code’s potential for modeling astrophysical plasma in magne-
tar and BH magnetospheres in Sect. 5. Finally, we outline dis-
tinct features of the presented methods as well as implications
for GRFFE schemes in general in Sect. 6.

2. General relativistic force-free electrodynamics

The following sections as well as the code implementation in
the EINSTEIN TOOLKIT employ units where My = G = ¢ = 1,
which sets the respective time and length scales to be 1 M, =
493 x 10°°s = 1477.98 m. This unit system is a variation
of the so-called system of geometrized units (as introduced in
Appendix F of Wald 2010), with the additional normalization of
the mass to 1 M, (see also Mahlmann et al. 2019, on unit conver-

1 http://www.einsteintoolkit.org
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sion in the EINSTEIN TOOLKIT). In the following, Latin indices
denote spatial indices, running from 1 to 3; Greek indices denote
spacetime indices, running from O to 3 (0 is the time coordinate).
The Einstein summation convention is used.

2.1. General relativity preliminaries

To numerically solve the field equations of general relativity,
a fully covariant formulation is not optimal. Instead, to arrive
at a Cauchy initial value problem that can be evolved forward
in time, it is common to introduce a 3+1 split of spacetime
(e.g., Darmois 1927; Gourgoulhon 2012; Tondeur 2012, and ref-
erences therein). In doing so, the four-dimensional spacetime,
characterized by the metric tensor 8uvs is foliated with a set of
nonintersecting timelike hypersurfaces X;, namely level surfaces
of the scalar field ¢ (denoting the time coordinate). We denote the
future-pointing, timelike normal on X, as n,,. It is defined through

the constituting relation
an'Vyt =1,

ey

where V,, denotes the spacetime covariant derivative built from
8uv- The lapse function « indicates the separation in proper time
between two hypersurfaces. The spatial three-metric y;; is the
projection of the spacetime metric g,, onto X;:

@

Trajectories of constant spatial coordinates across different
hypersurfaces X, define the time vector along them:

# = an* + p-.

yij = (g + nni)(g" + n'njguy = gij.

3

The component S is the shift four-vector, which denotes the
spacelike displacement in the direction perpendicular to n*,
required to reach the original base coordinate in a hypersurface
X, after leaving X,. The shift vector satisfies §“n, = 0 by defini-
tion, but it is otherwise arbitrary, as is the lapse function. Choos-
ing the time coordinate such that # = (1, 0, 0, 0), the components
of the normal vector n* and its (metric) dual n, (assuming the
metric signature is +1) can be expressed in terms of lapse and
shift as follows:

= (l,_ﬁ), n, = (-,0,0,0). @)

a o«
The line element of the spacetime may be written in terms
of the lapse, shift, and spatial metric in the 3+1 formalism
(Lichnerowicz 1944; Foures-Bruhat 1952; York et al. 1979) as

ds® = —a?df + y;; (dx' + Blde) (dx/ + Bldr). 5)
The spacetime metric g, is given by:

—P+BB B
gw=( « o fjj). (©)

In this foliation, the Einstein equations can be cast into a set of
evolution and constraint equations (see, e.g., Alcubierre 2008;
Baumgarte & Shapiro 2010; Gourgoulhon 2012, for textbook
introductions). One of the most widely used formulations to
numerically solve the Einstein equations in 3+1 form is the so-
called Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formula-
tion (Shibata & Nakamura 1995; Baumgarte & Shapiro 1999).
It evolves the conformally related metric ¥;; and the conformal
factor e*, which are related by

Yij = 3_4¢7ij, @)
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where the conformal factor ¢* can be written as
1
e =(y/y)7. ®)

Here, y and ¥ are the determinants of the spatial and conformally
related metric, respectively. The BSSN formalism also intro-
duces the conformally related extrinsic curvature and the confor-
mal connection functions as evolved variables. Throughout this
work, we fix ¥ to be constant in time (the so-called Lagrangian
choice, Brown 2005):

dy = 0. €))

Thus, the time dependence of the spatial metric determinant is
encoded only in the corformal factor, as /y = €% +/y. Keeping
¥ fixed to its initial value simplifies expressions in the GRFFE
evolution equations. This choice is particularly useful when inte-
grating GRFFE in spherical coordinates, as we elaborate below.

2.2. Maxwell’s equations in conservative form

The evolution of the full set of Maxwell’s equations is one
possibility? to deal with electrodynamics in general relativity
(Komissarov 2004):

V,F" = M, (10)
Vv, =0, (11)

where F* is the Maxwell tensor and *F*” is its dual, defined as:

*FIIV = %n,UWMF/I{, (12)
where
7Y% = —(—g)  Pluvacl, Mvag = (-9 [uvacl. (13)

Here, [uvA{] is the completely antisymmetric Levi-Civita sym-
bol with [0123] = +1 and g the determinant of the spacetime
metric g,,. I* is the electric current four-vector associated with
the charge density p = —n,[* = al’, and the current three vec-
tor J' = al'. A covariant definition of the current four-vector is
(Komissarov 2004)

JE =21y (14)

where we use the standard terminology I = %(1 Y — IFY).
We note that p is the charge density as measured by the normal
(Eulerian) observer defined by n*. The current density 3-vector
as measured by the Eulerian observer is the projection of /# onto
the hypersurface Z,:

Ji=g ') =a (I + pB). (15)
Komissarov (2004) introduces a set of vector fields, which are
analogous to the electric and magnetic fields, E and B, and elec-
tric displacement and magnetic induction, D and B, of the elec-
trodynamic theory of continuous media (see, e.g., Jackson 1999,

Sect. 1.4). They have the following spatial components in a 3 + 1
decomposition of spacetime:

E;= Fy, (16)
. 1 ..
Bl = Eelijjk, (17)
1 ...
D = Eelkoj, (18)
H; = "F. (19)

2 Another evolution scheme, developing energy fluxes rather than elec-
tric fields, was employed by e.g., McKinney (2006) or Etienne et al.
(2017).

Following the convention in, for example, Baumgarte & Shapiro
(2003), the four-dimensional volume element induces a volume
element on the hypersurfaces of the foliation:

abc _ abc _ Oabc
e = = .

—on (20)

In the previous expression, e # 0 only for spatial indices, thus,
we can write e'* = —an"* = [ijk]/ \fy.

Using the definitions (17) and (18) in the time components
of Egs. (10) and (11), one obtains the familiar constraints

divD = p,
divB = 0.

2
(22)

We separately evolve the charge continuity equation, which is
obtained from the covariant derivative of Eq. (10),

v,I" = 0, (23)

to ensure the conservation of the (total) electric charge in the
computational domain, as well as the compatibility of the charge
distribution obtained numerically, with the currents that they
generate (see also the detailed discussion in Paper II). If this is
not done, the difference |divD — p| may grow unbounded with
time due to the accumulation of numerical errors (Munz et al.
1999).

Embodied in the definitions (16)—(19) one finds the follow-
ing vacuum constitutive relations (Komissarov 2004):

E=aD+B8xB,
H=aB-8xD.

(24)
(25)
We may now write the Maxwell tensor as measured by the Eule-

rian observer in terms of the electric, D¥, and magnetic, B*, field
four-vectors (cf. McKinney 2006; Antén et al. 2006):

F* = p' D" — D'’ — ™ Byny, (26)
FF = —nB + B'n” — " Dny, 27)
which satisfy

D" = F*'n, =(0,D), (28)
B ="F"n, =(0,B'). (29)

For later reference, we provide two Lorentz invariants of the
Faraday tensor, namely:

“F'F,, = 4D'B,,
F"F,, = 2(B*-D?).

(30)
&1V}

In order to build up a stationary magnetic configuration (as, e.g.,
in the magnetosphere around a compact object), it is necessary
to guarantee that there are either no forces acting on the system
or, more generally, that the forces of the system are in equilib-
rium. Except along current sheets the latter condition implies
that the electric four-current /* satisfies the force-free condition

(Blandford & Znajek 1977):
FuI" = 0. (32

Equation (32) is equivalent to a vanishing Lorentz force density

Jfu on the charges measured by the Eulerian observer:
v, 7%, =-Ful"=-f,=0. (33)

Also, Eq. (32) can be seen as a system of linear equations,
the nontrivial solution (i.e., non-electrovacuum or equivalently,
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I” # 0, cf. the discussion in Paschalidis & Shapiro 2013) of
which demands that the determinant of F),, vanishes. Since
detFy,, = (*FWF“")Z/ 16 = (D”B,,)z, the force-free condition
(32) reduces to

FurF" =0, (34)
or, equivalently (see Eq. 30)
D'B, = 0. (35)

Hence, the component of the electric field parallel to the mag-
netic always vanishes. Since detF,, = O, the rank of F,,
(regarded as a 4 X 4 matrix) is two, provided F, has nonva-
nishing components. If a“ is a zero eigenvector of F,,, ie.,
F,a" = 0, then another null eigenvector orthogonal to a*
is b* = "FMa,, and the Faraday tensor can be expressed as
Fuy = nNuasa'b® (cf. Komissarov 2002). Hence, it admits a
two-dimensional space of eigenvectors associated with the null
eigenvalue (cf. Uchida 1997). These zero eigenvectors are time-
like if the Lorentz invariant F,, F*” is positive (Uchida 1997).
The sign of the invariant F,, F*” is not unanimously defined
for generic electromagnetic four-vectors B* and D*. To chose
the sign of the invariant, it is useful to consider the force-free
approximation as a low inertia limit of relativistic MHD. This
means that a physical force-free electromagnetic field should be
compatible with the existence of a velocity field of the plasma.
Recalling that the plasma four-velocity #* is a unit time-like vec-
tor (u'u, = —1), and that the Lorentz force is f, o F,u’", a
physical force-free electromagnetic field (f, = 0) must satisfy
Fyu” = 0 (we note that this is also required by the ideal MHD
condition). Hence, the sign of the Lorentz invariant F,, F*” (see
Eq. (31)) should consistently be positive, namely
FF* = 2(B* - D) > 0. (36)

In the introduced language of the full system of Maxwell’s equa-
tions in 3 + 1 decomposition, (35) and (36) read

D-B=0,
B2-D?>0.

37
(38)

Condition (38) implies that the magnetic field is always stronger
than the electric field. Equivalently, one can classify the degen-
erate electromagnetic tensor as magnetic since condition (36)
guarantees that there exists a frame in which an observer at rest
measures zero electric field (cf. Uchida 1997). This observer
is the comoving observer with four-velocity #* in the ideal
MHD Ilimit. In GRFFE, such a frame exists but is not unique
(McKinney 2006; Paschalidis & Shapiro 2013).

The challenge of maintaining the physical constraints of
divB = 0 and divD = p in numerical simulations has been
reviewed throughout the literature (e.g., Dedner et al. 2002;
Mignone & Tzeferacos 2010), and applied to GRFFE, for exam-
ple, by Komissarov (2004) and the relativistic MHD regime,
e.g., by Palenzuela et al. (2009) and Miranda-Aranguren et al.
(2018). Following Palenzuela et al. (2009, 2010) as well as
Mignone & Tzeferacos (2010), we suggest to modify the system
of Maxwell’s equations (Egs. (10) and (11)) in the following way
(cf. Alic et al. 2012):

V, (F* + g™ ®) = I + ko ®,
V, (F*™ + sP) = t'xyP.

(39)
(40)

Here, the definition of # is given in the previous expressions en
in Eq. (3), and we define s = cfly’” — n'n”. ¢, corresponds

AS57, page 4 of 22

to a speed of propagation of the divergence cleaning errors
(see below); xp and ky are adjustable constants that control
the parabolic damping of the aforementioned numerical errors.
The scalar potentials ¥ and @ are ancillary variables employed
to control the errors in the elliptic constrains divB = 0 and
divD = p, respectively. This is implemented in practice by aug-
menting the system of Maxwell’s equations with extra evolu-
tion equations for @ and ¥. Contracting Eq. (40) with V,, yields
for the simplified case of stationary spacetimes (cf. Komissarov
2004):

-kwV¥=V,V, (*F’“' + (ciy’” - n”nv) ‘P)
A (ciy’“ - n"nv) b4
V.V -V, V,n"g" n, ¥
GV VY + V, VP,

(41)

This compares to telegrapher equations, used for example to
describe signal propagation in lossy wires. In this analogy, xy
and ¢y, are the parameters controlling the damping and advection
of numerical errors (Mignone & Tzeferacos 2010). We stress
the correspondence of ¢, with a finite propagation speed for
divergence errors (Mignone & Tzeferacos 2010) and their decay
according to the damping factor «y. For ¢, chosen equal to the
speed of light, Eq. (11) reduces to the evolution system given in
Palenzuela et al. (2009).

The augmented system of Maxwell Equations (Eqs. (39)
and (40)), can be written as a system of balance laws of the form

where V is the covariant derivative with respect to the confor-
mally related metric, ¥ (Eq. (7)). C denotes the vector of con-
served variables, ¥/ the flux vectors, S, the geometrical and
current-induced source terms, and finally S are the potentially
stiff source terms (cf. Komissarov 2004, App. C2). We note that
each of these quantities consists of elements in a multidimen-
sional space. In general, the conserved variables are derived from
the so-called primitive variables; primitive variables are usually
the quantities measured by the Eulerian observer, namely p, B,
and D, as well as the numerical cleaning potentials ¥ and ®.
Adapting the notation used by Cerda-Duran et al. (2008) and
Montero et al. (2014), we specify the components of Eq. (42) in
terms of the determinant of a reference metric y. We define the
conserved variables as

L p
Q ¥
c=|Pl=e 2| & | (43)
b Y| B+ %ﬁ{
d' Di— Eﬁl
with their corresponding fluxes
aJ’
B/ - Ypi
Fi = 5 \/% -(D7+ 287) (44)

EFEL + (0121)/’7 - ninj)‘P
- (eiijk + agij(l))
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For the source terms, the split according to Eq. (42) yields the
source terms S, and the potentially stiff source terms Sg:

0
- a¥r), s*
S = e6¢ \/2 aq)r;lvg,ﬂv —-p
V1 —avr,s
a®r, ¢ - J'

, (45)

0
— | —akyV
S, = 77/ —akp®

4 0
0

(46)

In the previous expressions, ng are the Christoffel symbols of
the Levi-Civita connection associated with the spacetime metic
&uv- In both Cartesian and spherical coordinates, we always make
the initial choice ¥(t = 0) = ¥, so that, due to the Eq. (9), the ratio
¥/¥ = 1 throughout the evolution. This is an algebraic constraint
for the components of the conformally related metric ¥;; and is
continuously enforced in the spacetime evolution by making the
replacement

Vi = (1D Y @7)

at every sub-step of the time integration.

2.3. The force-free current

In force-free electrodynamics there is no uniquely defined rest
frame for the fluid motion (e.g., Uchida 1997; McKinney 2006;
Paschalidis & Shapiro 2013; Shibata 2015); the electromag-
netic current /* cannot be determined by tracking the veloc-
ity of charges throughout the domain. Rather, the enforcement
of the force-free conditions (37), and (38) determines a suit-
able current. The conservation condition (implicitly embodied
in Maxwell’s equations)

L,D-B)=n"V,(D-B)=0, 48)
where £, is the Lie derivative with respect to n* is equivalent to
0; (D - B) = 0. Together with conditions (37) and (38), it can be
combined to obtain an explicit expression for the so-called force-
free current Iﬁ‘F (cf. McKinney 2006; Komissarov 2011; Parfrey
et al. 2017):

L
B 2
B
B

The current is one important closure relation for GRFFE. In
this form, Eq. (49) induces primitive variable derivatives to the
source terms. Such nonconservative splitting — chipping off parts
of the flux terms — requires diligent attention and is prone to have
a significant impact on the quality of the numerical evolution. We
dedicate Sect. 3.4 and a large part of Paper II (Mahlmann et al.
2021) to the implementation of current closure.

In practice, the combination of the force-free current (49)
as a source-term to Eq. (10) — or Eq. (39) if we consider the
augmented system of equations — with numerically enforcing
conditions (37) and (38) restricts the evolution to the force-free
regime. The discussion of techniques to ensure a physical (cf.
McKinney 2006) evolution of numerical force-free codes is a

Ik = pn* + prop nyDy Bg

+ T]aﬁ/lg—l’lg— (BA;[;BQ - DA;BDQ) . (49)

recurrent topic that can be found throughout the literature (e.g.,
Lyutikov 2003; Komissarov 2004; Palenzuela et al. 2010; Alic
et al. 2012; Paschalidis & Shapiro 2013; Carrasco & Reula 2017,
Parfrey et al. 2017; Mahlmann et al. 2019). We review one of
these techniques in Sect. 3.3.

3. Numerical methodology

Our GRFFE method uses the framework of the EINSTEIN
TooLKIT (Loffler et al. 2012). The EINSTEIN TOOLKIT is an
open-source software package utilizing the modularity of the
CACTUS? code (Goodale et al. 2003), which enables the user to
specify so-called THORNS in order to set up customized simula-
tions and provides (basic) adaptive mesh refinement (AMR) via
the CARPET* driver (Goodale et al. 2003; Schnetter et al. 2004).
The spacetime evolution is performed using the MACLACHLAN?
thorn (Brown et al. 2009) as an implementation of the BSSN for-
malism. Recently, numerical relativity in spherical grids has been
successfully enabled on the traditionally Cartesian EINSTEIN
TOOLKIT by the new implementation of SPHERICALNR
(Mewes et al. 2018, 2020), which is built upon a reference-
metric formulation of the BSSN equations (Brown 2009;
Montero & Cordero-Carriéon 2012; Baumgarte et al. 2013).
We make use of a variety of open-source thorns within the
EINSTEIN TOOLKIT, such as the apparent horizon finder
AHFINDERDIRECT (Thornburg 2004), the extraction of quasilo-
cal quantities QUASILOCALMEASURES (Dreyer et al. 2003), and
the efficient SUMMATIONB YPARTS thorn (Diener et al. 2007).

In our code, the time update of the system of PDEs (see
Eq. (42)) is done applying the method-of-lines (e.g., LeVeque
2007) implemented in the EINSTEIN TOOLKIT thorn MOL. For
the numerical test shown in this paper we make use of the fourth-
order accurate (not strictly TVD) Runge-Kutta method imple-
mented in the thorn MOL.

To ensure the conservation properties of the algorithm, it
is critical to employ refluxing techniques correcting numerical
fluxes across different levels of mesh refinement (e.g., Collins
et al. 2010). Specifically, we make use of the thorn REFLUXING®
in combination with a cell-centered refinement structure
(cf. Shibata 2015). We highlight the fact that employing the
refluxing algorithm makes the numerical code 2—4 times slower
for the benefit of enforcing the conservation properties of the
numerical method (especially of the charge). Refluxing also
reduces the numerical instabilities, which tend to develop at
mesh refinement boundaries (Mahlmann et al. 2019, 2020).

This section reviews in detail techniques that are inherently
important components of GRFFE. Apart from these, we use a
wide range of numerical recipes, such as higher-order mono-
tonicity preserving (MP) reconstruction at cell interfaces (Suresh
& Huynh 1997) and the cleaning of numerically induced diver-
gence and charges.

3.1. Finite volume integration

We solve Eq. (42) by discretizing its integral over the vol-
ume V of a cell of our numerical mesh (cf. LeVeque 2007,

http://www.cactuscode.org
https://bitbucket.org/eschnett/carpet/src/master/
http://www.cct.lsu.edu/~eschnett/McLachlan/
Refluxing at mesh refinement interfaces by Erik Schnet-
ter: https://svn.cct.lsu.edu/repos/numrel/LSUThorns/
Refluxing/trunk

w B W

=)
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Mignone 2014; Marti & Miiller 2003),

3;(C>+lf dA -F =(S,) +(Ss). (50)
V Jav

Here, () denotes the volume average of a quantity. The diver-
gence term V; 7/ appearing in Eq. (42) is integrated by apply-
ing Stoke’s theorem and summing up the reconstructed fluxes F
through the cell interfaces with respective area elements dA.

In practice, we approximate volume averages by cell-
centered values for each grid element. We identify each of these
elements by the indices (i, j, k) that correspond to the locations
X; = xXo+iAx,y; = yo+jAy, and zx = zo+kAx. Ax, Ay, and Az rep-
resent the (uniform) numerical grid spacing in each coordinate
direction. The quantities (xo,yo,Z29) denote the coordinates of
an arbitrary reference point in 3D. Face-centered quantities are
indicated by the subscript of a half-step added to the respective
index. For example, subscript i + 1/2 denotes the value located
at the face between the two elements (i, j, k) and (i + 1, j, k). If
no subscript is provided, we refer to the cell-centered values.

3.1.1. Cartesian coordinates

The system of Eqgs. (43)—(46) is specified to its application in

Cartesian coordinate systems (x, y, z) by setting \ﬁ = 1. In this
case, the cell volume is

V =AxxAy XAz, (51)
and the area elements are denoted by
dA = (Ay X Az, Ax X Az, Ax X Ay). (52)

Equation (50) is approximated by evaluating the fluxes F as
reconstructed averages at cell interfaces:

1 Fl,—F
_f JA . F ~ 12
\% F1% A.X

F
+

F F

¥ oy
j+1/2 j-1/2

Ay

X
i—1/2
1/+

12— F

Z
k=172
Az '

(53)

3.1.2. Spherical coordinates

In spherical coordinates (r, 6, ¢), \/)7/ = 72 sin @, and the cell vol-
ume is

3

A.
V= —Tr X Acos 6 X Ad, (54)

where Ar3 = 13

i r?_l/z and Acos 6 = cos 012 — cos 01 2.
The numerical stability of the spacetime integral in Eq. (50) crit-
ically depends on the balancing of coordinate singularities, such
as the polar axis and the origin of the spherical coordinate sys-
tem. We guarantee an exact evaluation of metric contributions
at the location of the cell-interfaces by transforming the recon-
structed fluxes F to an orthonormal basis. The area elements in
an orthonormal basis are denoted by

dA = (rsin 0 X AO X Ag, rsin 0 x Ar x Ag,r X Arx A). (55)
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Equation (50) is approximated by evaluating the fluxes F as
reconstructed averages in an orthonormal basis at cell interfaces:

N

lf dA-F~ 3 ri2+1/2 Flop— ri2—1/2 L
\% F1% Ar3
3Ar2 sinbpp £ ) —singp FY
C2AR Acosé
g ng
B 3A7 A0 Frp = Fioip (56)
2Ar3 Acos@ A¢ )

In analogy to the above, we use Ar> = r?2

P
) : 12 r;,l/z.'The recon-
structed fluxes F (coordinate basis) are related to their orthonor-

mal counterparts F by the following relations:

Fr=F, F'=rxF F?®=rxsingxF°. (57)

3.2. Numerical fluxes across cell Interfaces

We employ an approximate (HLL) Riemann solver (Harten et al.
1997) to derive the numerical fluxes at the cell interfaces:

LFIU) - AFI U + 4,4 (U -U)
A — A ’

F/ =

(58)

Here, U* and U~ correspond to the reconstructed (conserved)
variables at the cell interfaces. A, are given by the minimal or
maximal wave speeds:

+=max(0,w), A_-=min(0,w). (59)
In flat space, the propagation speeds for the conservative scheme
derived from Eqgs. (10) and (11) are 4, = 1 and A_ = —1. Charac-
teristic speeds of the force-free electrodynamics equations have
been obtained, e.g., by Komissarov (2002) and Carrasco & Reula
(2016). For the GRFFE system of Eqgs. (43) to (46), the charac-
teristic speeds w are

B xayi m=3 (EVI)
w=| Bitcay’ m=1 (EVI) |- (60)
w, m=1 (EVII)

Here, we do not employ the summation convention; by m we
denote the multiplicity of the respective eigenvalues. The speeds
EVI correspond to the coordinate velocity of light as defined by
Cordero-Carrién et al. (2008). The other two eigenspeeds (EVII)
account for the propagation of the divergence cleaning potentials
at speed cy,. Finally, EVIII corresponds to the wavespeed induced
by the continuity equation of charge conservation, which is at
most the coordinate velocity of light (EVI).

3.3. Preservation of force-free conditions

Across the literature (e.g., Komissarov 2004; Alic et al. 2012;
Parfrey et al. 2017) we find various modifications in the def-
inition of I* to drive the numerical solution of the system of
PDEs (Egs. (10) and (11)) toward a state that fulfills the mag-
netic dominance condition (38) by introducing a suitable cross-
field conductivity. This effectively augments condition (48) used
to determine expression (49) by a recipe to avoid (numerically)
building up violations of the perpendicularity condition (37).

A straightforward way to guarantee the preservation of the
D - B = 0 constraint is the introduction of a numerical correc-
tion to the electric field after every time step of the evolution. In
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practice, this correction is also applied after every intermediate
step of the employed time-integration method. To this end, the
electric field (D) is projected onto the direction perpendicular to
the magnetic field (B) in every point of the numerical mesh (e.g.,
Palenzuela et al. 2010):

) . B
D eDk(élk—Bkﬁ). (61)

Alternatively, dissipative currents (induced by so-called driver
terms) may ensure the evolution of the electromagnetic
fields toward physically allowed (force-free) configurations.
Using driver terms, the numerical evolution does not guar-
antee that the electromagnetic fields are exactly force-free
after every time-step. However, violations of force-free con-
ditions are significantly reduced. While Komissarov (2004,
2011), and Alic et al. (2012) introduce a modified Ohm’s
law with a suitably chosen cross-field dissipation, Parfrey
et al. (2017) modify the force-free currents in Eq. (49) with
additional dissipation driving the evolution toward a target
(D-B =0 in ideal FFE) configuration without further models
for cross-field dissipation. They generalize the conservation of
Eq. (37) by introducing a target current fulfilling the following
equation:

£,B-D) =« (a’an~B—D~B). (62)
Here, «; is the decay rate driving the left-hand side of Eq. (48)
toward the target value and 7 is a dissipation coefficient for the
electric field, which is parallel to the current.

As for the preservation of the B> — D?> > 0 condition (38),
one can also employ an algebraic correction of the electric field
after every step of the time evolution. Following Palenzuela et al.
(2010), the electric field (D) is rescaled in every point of the
numerical mesh to the length of the magnetic field (B) in a qual-
itatively similar manner as in Eq. (61):

DD 1—®o()+@®<x)), 63)

ID|

where O is the Heaviside function, y = D? — B? (other choices
of the functional dependence ® that maintain strict magnetic
dominance have been employed, e.g., by Paschalidis & Shapiro
2013). Again, an alternative is employed by Komissarov (2011),
and Alic et al. (2012), introducing driver terms for additional
dissipative currents, also for the conservation of the B> —D? > 0
condition.

Our GRFFE scheme employs, by default, the algebraic cor-
rection of electric fields in every (intermediate) step of the
time evolution as given by Egs. (61) and (63). However, in
Mahlmann et al. (2019) we resorted to a suitably chosen resis-
tivity model (in analogy to Komissarov 2004) replacing the
instant algebraic cutback of the electric displacement field by
a gradual relaxation of force-free violations. For a review on
the interpretation of constraint violations in GRFFE, we refer to
Mahlmann et al. (2019).

3.4. Treatment of the parallel current

The last term in Eq. (49) is the component of the current parallel
to the magnetic field, with the spatial projection

. B-(VXB)-D-(VxD)
= B.
BZ

(64)

We have empirically found (see Paper II) that the discretization
of the parallel current is one of the main sources of numeri-
cal diffusivity in our code in certain tests. Indeed, the presence
of derivatives of conserved quantities in the parallel current
(Eq. 49) makes the practical evaluation of this term cumber-
some in numerical simulations. This has brought some authors
(e.g., Yu 2011) to ignore it completely (i.e., assuming j; = 0),
and removing the accumulated parallel component of the electric
field employing an algebraic procedure akin to that of Eq. (61).
However, this specific strategy of Yu (2011) did not yield sat-
isfactory results when employed with the numerical framework
described in this paper.

The order of the discretization of the derivatives has to be
comparable with the order of accuracy of the spatial reconstruc-
tion. Otherwise, the global order of accuracy of the scheme
decreases (see Sect. 2.1 of Paper II). In the previous applica-
tions of our code (Mahlmann et al. 2019, 2020) and indepen-
dently of the order of the spatial reconstruction, we employed a
fourth-order accurate discretization of the partial derivatives in
Eq. (49). In case of the (exemplary) sweep in the x direction,
the finite difference discretization is of the following form (for
uniform grids):

oA 4th
% -

i

Aip—8A; 1 +8Ai11 — A
12 X Ax ’

(65)

where A denotes a quantity on the numerical mesh (e.g., D or B)
and the respective locations are labeled as in Sect. 3.1. In Paper
II, we will evaluate the improvements by changing the discretiza-
tion of j; according to the sixth-order and eighth-order accurate
formulae

a_A 6lh~ _Ai—3 + 9Ai—2 — 45Ai—1 + 45Ai+1 - 9Ai+2 + Ai+3 (66)
ox ; -~ 60 X Ax ’
oA 8‘h~ 3A;_4 — 32A;.53 + 1684, — 6724,
ox ), 840 X Ax
672A;41 — 168A;40 + 32A:43 — 34144
* 840 x Ax ' ©7

3.5. Cleaning of numerical errors

We extend the augmented evolution equations by a hyper-
bolic/parabolic divergence error cleaning with the possibility of
having a hyperbolic advection speed, c;, > 1 (see below), as sug-
gested by Mignone & Tzeferacos (2010). In order to minimize
violations of divB = 0 in spacetimes containing BHs, we find
it beneficial to employ 1 < ¢; < 2. In practice, a propagation
speed within this interval does not limit the time step strongly,
since the numerical evolution of the BSSN equations usually
demands Courant—Friedrichs—Lewy (CFL) factors significantly
smaller than unity (say fecm. ~ 0.1-0.3) and, often, choosing
cp > 1 allows somewhat larger values of the same. Hence, we
choose to advect numerical errors of this constraint with a speed
faster than the speed of light (typically, ¢, = 2) to significantly
reduce the numerical noise. We employ the same scheme with
cp = 1 for the cleaning of numerically induced errors in charge
conservation by the scalar potential \P'.

The variables «g and k¢ are damping rates, introducing
time scales that act in addition to the advection time scales
of the hyperbolic conservation laws of the augmented GRFFE
system (Eqgs. (43)—(46)). In order to deal with the potential
stiffness introduced by the parabolic damping numerically, we
employ a time step splitting technique (Strang splitting, see, e.g.,
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LeVeque 2007), which has been applied previously to GRFFE by
Komissarov (2004). Prior to and after the method-of-lines time
integration’, we evaluate the equations

P () = Poexp [—a2/<q)cht],
Q) = Qyexp [—QZK\FI] ,

(68)
(69)

for a time r = Ar/2. We find it beneficial to choose a large
value for kg, in some cases ~200, effectively dissipating charge
conservation errors on very short time scales (and justifying the
time-splitting approach). As for the divergence cleaning, we con-
ducted a series of tests, optimizing ky to yield stable and con-
verging evolution for all shown resolutions, ultimately resorting
to ky = 0.125-0.25 (see also Mahlmann et al. 2019).

4. Numerical tests

We present several tests with results that specifically depend on
the various numerical methods (e.g., reconstruction, cleaning of
numerical errors) available in our new code. Since the code is
genuinely 3D, in 1D and 2D simulations, the surplus dimen-
sions are condensed to the extension of one cell by applying
appropriate boundary conditions to them. If not stated otherwise,
all plasma fields at the remaining boundaries are either extrap-
olated linearly or the (outer) boundary itself is located suffi-
ciently far away from the grid-region of interest, so that a simple
copy boundary is enough. For dynamical spacetime evolutions,
we use radiation (Sommerfeld) boundary conditions (see, e.g.,
Alcubierre et al. 2003) for all evolved spacetime fields at the
outer boundary of the domain. Section 4.1 reviews the 1D tests
of signal propagation and stability in GRFFE following the work
by Komissarov (2004) and Yu (2011) closely. In Sect. 4.2 we
probe the correct representation of force-free plasma wave inter-
actions by reproducing key results by Li et al. (2019). All tests
in this section are performed in a fixed background Minkowski
spacetime. The initial value of the charge density is computed as
p = divD and the cleaning potentials are set to ¥ = ® = 0.

4.1. Testing the 1D reconstruction methods

GRFFE allows two modes of plasma waves (Komissarov 2002;
Punsly 2003; Li & Beloborodov 2015; Li et al. 2019): Alfvén
waves that transport energy, charge, and current along magnetic
field lines and fast waves that correspond to the linearly polar-
ized waves of vacuum electrodynamics (see also Sect. 3.2). The
following set of 1D problems is selected to demonstrate (a) the
correct propagation of fast waves, (b) the formation of a current-
sheet when magnetic dominance breaks down and (c) the correct
modeling of stationary Alfvén waves that do not transport energy
across magnetic field lines (cf. Li et al. 2019). In problem (c),
the wave can only diffuse due to a finite numerical resistivity if
the force-free conditions are not preserved (see Paper II). The
numerical solution to all these problems critically depends on
the employed reconstruction algorithms. Since our code employs
numerical reconstruction in 1D sweeps across all dimensions, we
consider the following suite of 1D tests a fundamental measure
for the performance of our GRFFE scheme. We verify (in the
sense of Roache 1997) the correct implementation of the recon-
struction methods evaluating the convergence order from several

7 Specifically, we add the exact evaluation of stiff source terms before
the scheduling bin MOL_STEP and before MOL_POSTSTEP. The latter
has to be restricted to the last intermediate step of the method-of-lines
integration.
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data-sets with increasing resolution. Specifically, we evaluate the
(global) difference measure (cf. Antén et al. 2010)

1
et = —x E u® —ubl,
N i|’ ’|

where u“ and u” are the one-dimensional vectors (of N elements)
of the considered evolved quantity at different levels of resolu-
tion, a,b € [1,2,3]. We denote the resolution on each of these
levels by Axy, Axp, Axs, where Axs/Ax, = Axp/Ax;. With level
1 being the level with the finest resolution, the (empirical) order
of convergence is then defined as (see also Bona et al. 1998):

IOg (623 /612)
" log (Axz/Axy)’

(70)

(71)

Unless stated otherwise, in the following tests we employ a
fourth-order accurate discretization of the parallel current jj.

4.1.1. (Degenerate) current sheet test

Komissarov (2004) examines two variations of a current sheet
problem, one of which has a solution in force-free electrodynam-
ics, while the other violates the force-free condition (Egs. (37),
and (38)). The tests for physical current sheets (Fig. 1) and
degenerate current sheets (Fig. 2) are initialized by the following
set of data:

By x<0

D=0, B=(10,5,00), B),:{_BO >0

(72)
If By < 1, there exists a force-free solution given by two fast
waves traveling at the speed of light (see Fig. 1, also Fig. C2
in Komissarov 2004). For By > 1 the solution is dominated by
an increasing cross-field conductivity that locks B> — D? to zero
in a current sheet located at x = 0. At this location, the preser-
vation of the force-free conditions (Sect. 3.3) becomes impor-
tant for the field dynamics, namely it changes the structure of
the propagating waves. The states bounded by the fast waves
are terminated at the current sheet and a standing field reversal
remains (see Fig. 2, cf. Fig. C2 in Komissarov 2004). We take
advantage of this test to compare the performance of two dif-
ferent reconstruction schemes: The second-order accurate, slope
limited TVD reconstruction with a monotonized central (MC)
limiter (van Leer 1977), and the seventh-order accurate mono-
tonicity preserving (MP7, Suresh & Huynh 1997) reconstruction.

From the results of the presented tests (Figs. 1 and 2), we
draw the following conclusions. Fast electromagnetic waves
propagate correctly at the speed of light. For a resolution similar
to the one employed in Komissarov (2004), where Ax = 0.015,
the time evolution of the (degenerate) current sheet is in good
qualitative agreement with the literature (Komissarov 2004;
Yu 2011). For resolutions below the lowest presented resolu-
tion (i.e., for Ax > 0.05) the wave structure of the presented
test quickly smears out.

Conservation of force-free conditions in the degenerate cur-
rent sheet test is working well and agrees with similar tests
throughout the literature (see Fig. 3). While monotonicity pre-
serving reconstruction is slightly more oscillatory than, for
example, monotonized central flux limiters, the higher-order
schemes allow a steeper resolution of wave-fronts and current
sheets. While the order of convergence of the (more diffusive)
MC reconstruction approaches the formal theoretical order of
convergence (O = 2), the order of convergence degrades below
its theoretical value for MP7.
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Fig. 1. Current sheet test (Komissarov 2004; Yu 2011) as described by
the initial data in Eq. (72) on a x € [-2,2] grid (fcm. = 0.25) at = 1.0
for By = 0.5 and different resolutions. Two fast waves emerge from
the original discontinuity and propagate outward with the speed of light
(analytical position of the waves are indicated by dashed vertical lines).
The order of convergence, O is indicated according to Eq. (71). Top:
MP7 reconstruction. Bottom: MC reconstruction.

Although some degradation of the order of convergence is
expected in non-smooth regions of the flow (e.g., the discontinu-
ities associated with fast or Alfvén waves), the algebraic enforce-
ment of the violated force-free conditions seems to have a large
impact on the computed value of O. Very likely, such algebraic
enforcement is the main source of deviation from the theoretical
expectations regarding the order of convergence.

Given the previous statements, the developed GRFFE code
passes the 1D (degenerate) current sheet test.

4.1.2. Three-wave and stationary alfvén wave test

Komissarov (2002), Yu (2011) and Paschalidis & Shapiro (2013)
suggest the three-wave problem (or a variant thereof, see Fig. 4)
as a test for force-free electrodynamics. The initial discontinuity
at x = 0O splits into two fast discontinuities and one stationary
Alfvén wave. This effectively combines the previously intro-
duced test of Sect. 4.1.1 with the standing Alfvén wave test thats
was also employed by Komissarov (2004). The initial electro-
magnetic field is given by (Paschalidis & Shapiro 2013):

B=(1.0,15,3.5),
B =(1.0,3.0,3.0),

D =(-1.0,-0.5,0.5),
D =(-15,2.0,-1.5),

if x <O0;
if x> 0. (73)

We evolve this setup in time and present the results for dif-
ferent resolutions in Figs. 4 and 5. Around the standing Alfvén
wave at x = 0, high-order reconstructions tend to develop small-
scale oscillations, especially visible in the plots of D, restricted
to the region delimited by the fast waves (at x = =1 for ¢ = 1).
Oscillations around this discontinuity can also be observed (for
higher resolutions) in part of the literature (specifically, Fig. 4
in Yu 2011). The order of convergence is slightly reduced when
compared to the results shown in the previous section, proba-
bly due to the specific challenges of resolving stationary Alfvén
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Fig. 2. Degenerate current sheet test (Komissarov 2004; Yu 2011) as as
described by the initial data (Eq. (72)) with By = 2.0. Two fast waves
emerge from the original discontinuity and propagate outward with the
speed of light. The cross field conductivity (induced by conserving con-
ditions (37), and (38)) terminates the fast waves in the breakdown-zone.
Top: MP7 reconstruction. Bottom: MC reconstruction.
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Fig. 3. Same scenario as Fig. 2. The panels show the magnetic domi-
nance state (cf. Fig. C2, Komissarov 2004). D> > B? develops at the
location of the central current sheet, such that the electric field is altered
by the algebraic adjustment maintaining condition (38). Our numerical
implementation of the adjustment (63) drives D> — B> — 0 instanta-
neously, restoring magnetic dominance.

waves, not only in GRFFE but also in relativistic MHD (see, e.g.,
Anton et al. 2010).

The empirical order of convergence grows employing MP7
in combination with a sixth-order accurate discretization of the
parallel current (66). This growth manifests, for example, in an
increase from O =~ 2.1 to O =~ 2.8 for D*, but is negligible in
other variables. In any case, the overall numerical solution does
not significantly change modifying the order of accuracy of the
calculation of jj in the 1D problems involving discontinuities.

Komissarov (2004) achieves high accuracy maintaining a
single standing Alfvén wave stationary during evolution for reso-
lutions comparable to the highest one shown in Figs. 4 and 5. The
numerical techniques in Komissarov (2004) are slightly differ-
ent from ours, employing, for example, a linear Riemann solver,
which makes use of the full spectral decomposition of the FFE
equations. As such, it distinguishes all physical, and nonphysi-
cal wave speeds and may provide additional accuracy at critical
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Fig. 4. Three-wave problem (Paschalidis & Shapiro 2013) as described
by the setup in Eq. (73) and employing MP7 reconstruction. Numerical
setup and labels are the same as in Fig. 1. The initial discontinuity at
x = O splits into two fast discontinuities and one stationary Alfvén wave.
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Fig. 5. Same as Fig. 4 but employing MC reconstruction.

locations (in the context of GRFFE, e.g., at current sheets). Addi-
tionally, Komissarov (2004) employs a different form of the cur-
rent in Faraday’s Eq. (10) based on a specific (numerical) resis-
tivity model to drive electromagnetic fields toward a force-free
state throughout the evolution. Although one could suspect that
this different treatment of the currents may alter the numerical
solution significantly in this test (which is dominated by the
numerical diffusivity of the standing wave), we find that our
results are quite similar to the ones of Komissarov (2004); a more
detailed analysis is presented in Paper II.
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Fig. 6. Stationary Alfvén wave problem (Komissarov 2004), same
numerical setup as in Fig. 1. The analytic solution (Eq. 74) is indicated
by a gray line.

Next, we consider the analytical solution of a standing
Alfvén wave as initial data in the following:

B=(17 17BZ)9 D:(—BZ,O’ 1)5

1 x<0
B = 1+0.15[1 +sin[57(x-0.1)]] 0<x<0.2 (74)
1.3 x>02

We present the results of the Alfvén stationarity test in Fig. 6.
With resolutions comparable to the one employed in Komissarov
(2004), namely Ax ~ 0.015, the numerical solution converges to
the analytic one with an order of convergence of ~ 2 for MP7
reconstruction. This order of convergence is dominated by the
numerical errors around the transition layer 0 < x < 0.2. As
mentioned in the previous tests, standing Alfvén waves seem to
introduce severe degradation of the order of convergence in MP
methods (we also verified these results with MP5). This is very
likely related to the preservation of the D - B = 0 condition,
in the extended region 0 < x < 0.2 where B* is not uniform.
In that region, the cutback of the electric displacement gener-
ates numerical errors that accumulate mostly close to its lower
boundary (see the behavior of D* in —0.5 < x < 0 in Fig. 5).

4.2. FFE wave interaction (2D/3D)

We perform a test (explored in extensive detail and high resolu-
tion by Li et al. 2019) of the interaction between colliding Alfvén
modes in suitably chosen 2D and 3D computational boxes. In
this section, we intend to reproduce the most basic results of
energy cascades from Alfvén wave interactions to show our
GRFFE scheme’s ability to explore such phenomena in further
detail in the future.

On the respective numerical meshes, one initializes counter-
propagating Gaussian 2D or 3D wave packets traveling along
a uniform guide field B® = By. Periodic boundary conditions
facilitate the recurring superpositions and interaction of the wave
packets, eventually triggering an energy cascade of rapid dissi-
pation. The 3D Gaussian wave packets are initialized as

B = Boy + BoV X (¢9), (75)
where  is the unit vector in the y-direction and the scalar field

2
¢<r>=leexp(—%).

=12

(76)

In this section, & denotes the perturbation strength, / the width of
the wave packet, with centers are located at r; and r,. We follow
Li et al. (2019) in choosing £ = 0.5, 1= 0.1, r; = (0.5,0.25,0.5)
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Fig. 7. Free-energy U (normalized to its initial value Uj) during the
collision of Alfvén wave packets on numerical meshes (2D/3D) of var-
ious resolutions (indicated by different line styles). Top: evolution of
U,/ U for the set of 2D models. Slopes for the asymptotic linear relation
between Uy/U and In ¢ are indicated by dashed/dotted lines, comparing
to Fig. 7 of Li et al. (2019). Bottom: free-energy evolution normalized
to Uy comparing to Figs. 2 and 5 from Li et al. (2019). The asymptotic
slope for 3D models found by Li et al. (2019) is indicated by a gray
dashed line for reference.

and r; = (0.5,0.75,0.5) for the 3D wave packets. With this
setup, the field perturbation is purely azimuthal with respect to
the y-axis. On a reduced 2D mesh, we initialize Gaussian wave
packets with magnetic fields

B = Byy + B.Z, (77)
where Z is the unit vector in the z-direction and

I —ri’
B, = Byé¢ Z exp|— 2 . (78)

i=1,2

We employ ¢ =0.4,1=0.1,r; = (0.5,0.25) and r, = (0.5,0.75)
for the 2D setup. The motion of the wave packets is induced with
a drift speed D x B/ B2, that results form an initial electric field
D=1y xB, 79)
with opposite signs for each Gaussian wave packet.

After the initialization of the electromagnetic fields, the
bounding box of length L = 1 and periodic boundaries are left to
evolve for 2007 (fcp. = 0.2). 7 = 0.5 is the interval between two
subsequent collisions of the wave packets, and /7 the number of
collisions. For these tests, we employ MP7 reconstruction (with

. k! 512% (2D)
0.100f N :

0.001} 1
o)
&
10°° —t=0.0r ]
— t=2087
t = 40.07
.| —t=80.0r |
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0.001} 1
&

k.

Fig. 8. Spectrum evolution for the 2D simulation of Alfvén interactions
initialized according to Eq. (78). We show the spectral energy distribu-
tion for wavenumbers k, (perpendicular to the guide field) in analogy
to Fig. 6, Li et al. (2019). Top: spectral energy distribution at different
times for the resolution 5122. Bottom: spectral energy distribution for
selected times and wavenumbers (color code as in fop panel) and dif-
ferent resolutions, indicated by dashed (128%), dotted (256) and solid
(5122) lines. No visible convergence is reached.

a fourth-order discretization of jj). Following Li et al. (2019),
we employ the free-energy U as the measure of total electromag-
netic energy of the system e, under removal of the background
magnetic field By:

1
U= Ciot — 5 deB(Z).

Figure 7 shows the free-energy for the collision of the wave
packets defined in Eqgs. (76) and (78). The wave packets are
spherical and — due to their curvature — prone to redistribute
energy across wave modes and rapid dissipation in cascade-
like processes (e.g., Howes & Nielson 2013; Nielson et al.
2013). Such processes are likely to be found along curved
guide-fields, for example in magnetar magnetospheres. Colli-
sions excite waves of higher frequency than initially setup and
eventually trigger the rapid decay of the wave free-energy. In
order to make a more quantitative comparison of the results, we
also compute the spectral distribution of free-energy according
to components of the propagation wave vector which are parallel
(k) and perpendicular (k, ) to the guide field, following the same
prescription as in Li et al. (2019) (see Figs. 9 and 8). We com-
pare our 2D and 3D results with the reference work of Li et al.
(2019) below.

(80)
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Fig. 9. Spectrum evolution for the 3D simulation of Alfvén interactions
initialized according to Eq. (75). We show the spectral energy distribu-
tion for wavenumbers k, (perpendicular to the guide field) in analogy
to Fig. 2, Li et al. (2019). Top: spectral energy distribution at different
times for the resolution 3843. Bottom: spectral energy distribution for
selected times and wavenumbers (color code as in fop panel) and dif-
ferent resolutions, indicated by dashed (128%), dotted (256°) and solid
(384%) lines. For wavenumbers k, < 40, convergence is reached for the
shown high-resolution cases.

4.2.1. 2D models

Our GRFFE code is able to reproduce the dissipation patterns
of free electromagnetic energy presented in Fig. 5 of Li et al.
(2019) for the 2D setup of Eq. (78). We note that our tests cor-
respond to the lowest three mesh resolutions employed by Li
et al. (2019). In the top panel of Fig. 7, we display the evolu-
tion of the inverted free-energy (Uy/U) along with the slopes for
their decay in 2D. Contrasting the findings by Li et al. (2019),
the decay of U initially proceeds at the same rate (s ~ 0.35)
for all of the analyzed 2D models, independent of the chosen
resolution. Only at later times, the slopes deviate and (roughly)
approach the numerical values given in Fig. 7 of Li et al. (2019).
The redistribution of spectral energy happens at all times from
the smaller to the larger values of k, (Fig. 8), and an approxi-
mate k7> spectral dependence is observed for intermediate val-
ues 10 < k; < 70. The maximum value of k,, k) max, is resolu-
tion dependent (the finer the resolution, the larger k; max). Hence,
there is no evidence of spectral convergence in 2D (in agreement
with Li et al. 2019, see Fig. 8 lower panel). For the respective
resolution, the decay of U begins later than in Li et al. (2019),
suggesting that the numerical diffusivity in our method (com-
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bining MP7 reconstruction, a fourth-order accurate Runge-Kutta
time-integrator and no additional driving terms in j;) is smaller
(compared to a fifth-order spatial WENO reconstruction, a third
order accurate Runge-Kutta time-integrator, and an extra dissi-
pation term in jj). As a result, our models with a grid of 5122
zones display an evolution of U trending roughly in between the
curves corresponding to ~1024% and 20482 in Li et al. (2019). A
more thorough characterization of the (numerical) dissipation of
our algorithm is considered in Paper II.

4.2.2. 3D models

For tests in 3D, we are limited to the two lower resolutions of the
corresponding model in Li et al. (2019) to stay within the com-
putational costs that are reasonable for a test setup. In spite of the
reduced resolution we employ compared to the literature, we find
a remarkable agreement with the reference results. For instance,
we observe a faster onset of the energy cascade than in 2D, and
the same asymptotic value of the free-energy (U/Uy = 0.4 for
the best resolved 3D model; Fig. 7 lower panel; cf. with Fig. 2
of Li et al. 2019). We also find comparable (although slightly
shallower) asymptotic slopes for the free-energy decay; the slope
found by Li et al. (2019) is indicated in Fig. 7 with a dashed gray
line. Another important key feature obtained by Li et al. (2019)
is the existence of a characteristic time, #,p; after which dissi-
pation commences in 3D models. After this time there is a rela-
tively sharp drop of the free-energy, which tends to level off for
sufficiently long times. However, the feature that unanimously
sets fonset (according to the definition of Li et al. 2019) is found in
the evolution of the spectral energy distribution. Before #opset, the
colliding Gaussian packets shuffle energy toward smaller scales
(larger values of the wave number k) until a maximum k = kpqx
is reached. However, after t = t,,4; there exists a redistribution of
energy from the smaller to the larger scales, which manifest itself
as an increasing spectral power at small values of k. For Li et al.
(2019), tonset = 247. The conclusions of Li et al. (2019) are based
upon 3D models with finer resolution than the ones employed
in this section (e.g., models with 512° and 768 zones). With
a smaller resolution, we also find a time after which there is a
steep drop of the free-energy, which begins at r > 307 (Fig. 9
top panel). Nevertheless, we do not clearly see an increase in the
spectral power at small values of &k, , but we observe a decrease
of power for k; > 30 for a time 307 < fonser S 407. At about this
time, the fast drop off in U takes place. Since we have evolved
our models longer in time, we note that at + = 1607 there is a
decrease of spectral energy at intermediate values 10 < k; < 25
(Fig. 9 top panel). The spectral evolution of the modes parallel to
the guide field proceeds qualitatively as in Li et al. (2019), with
the only difference that we observe some (small) excess of power
in the range 10 < kj < 50. Asin 2D, most of the (small) quantita-
tive differences observed in the comparison with Li et al. (2019)
results can be attributed to the different order of accuracy of our
codes and the different terms entering in the current parallel to
the magnetic field.

5. Astrophysically motivated tests
5.1. Magnetar magnetospheres
5.1.1. Grid aligned magnetar magnetospheres

The magnetospheres of magnetars are a well suited laboratory
for numerical methods dealing with force-free plasma, and we
have explored their dynamics in Mahlmann et al. (2019). Prior
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Fig. 10. Stability and relaxation test of magnetar magnetospheres
endowed with an analytic dipole field structure for different resolu-
tions. Upper panels: total magnetospheric energy normalized to the
energy of the corresponding dipole. Lower panels: time derivative of
the energy normalized to the dipole. The resolutions of 16 and 32 points
per stellar radius in a 3D Cartesian CARPET grid (left) correspond to
the setup in Mahlmann et al. (2019). Axially symmetric simulations
in spherical coordinates (right) are set up with the indicated resolution
at the stellar surface. Black (solid and dashed) lines in the upper-right
panel correspond to a simulation on a smaller domain, extending up to
r = 935.26 M, — 6Ar, in which the pulses of the initial relaxation have
sufficient time to leave the domain.

to those numerical simulations of a potentially very dynamic
scenario, we performed numerical tests to assess the ability of
our GRFFE code to maintain the structural stability of a mag-
netosphere around a spherical, nonrotating neutron star with a
dipolar magnetic field. We use a spherical mask to cut out the
neutron star interior in order to avoid dealing with the equation
of state of nuclear matter, the different phases of matter that may
occur inside of the neutron star, and the solid structure of the
stellar crust. This is achieved by setting an internal boundary in a
3D Cartesian grid (i.e., stair-stepping along the spherical bound-
ary mask) inside of which the evolution is frozen (see below).
We note that 3D Cartesian coordinates are neither adapted to
the spherical shape of the neutron star nor the axial symme-
try of the magnetospheric dipole. Therefore, we expect signif-
icantly improved results when employing GRFFE in a spherical
coordinate system. We compare the results of simulations in 3D
Cartesian coordinates to axisymmetric (2D) tests in spherical
coordinates, with the magnetic axis aligned to the symmetry axis
of the initial data.

It is straightforward to specify the employed initial data in
spherical coordinates (7, 8, ¢) and, subsequently, map it to the
computational grid. The analytically derived equilibrium dipolar
magnetic field in (the coordinate basis of) spherical coordinates
reads:

B < (20059 51_119’0)’

D =(0,0,0). (81)

T
The Cartesian simulations are conducted in a 3D box with
dimensions [4741.12 My x 4741.12 My, X 4741.12 M] with a
grid spacing of A, . = 74.08 M, on the coarsest grid level. For
the chosen magnetar model of radius R, = 9.26 M, this corre-
sponds to a [S12R, X 512R. X 512R,] box with a grid spacing of
Ay ,: = 8R,. For the low-resolution and high-resolution tests, we
employed seven and eight additional levels of mesh refinement,
respectively, each of which increase the resolution by a factor
of two and encompass the central object. This means that the
finest resolution of our models (close to the magnetar surface)
are Amm = 0.0625x R, = 0.5787 M and Am“‘ =0.03125%R, =
0. 2894 M@ for the low and high- resolutlon models This corre-
sponds to 16 and 32 points per R,, respectively. The spherical
simulations are conducted in axial symmetry enclosing the vol-
ume [9.26 M, 2555.76 My — 6Ar] X [0, x]. In order to issue a
resolution that is comparable to the Cartesian setup, we employ
Ar € [R./16,R./32] and A6 € [n/50,7/100]. The setup is
evolved for a period of ¢ = 1185.28 My ~ 5.84 ms. We provide
extensive details on the internal boundary conditions (frozen
electromagnetic fields but balanced radial current) in Mahlmann
et al. (2019). For this section we employ fcpr = 0.2, the MP7
reconstruction and a fourth-order accurate discretization of j.
We note that in this test we assume a flat spacetime. More gen-
eral tests including a general relativistic, dynamically evolving
background have been considered, for example, in Ruiz et al.
(2014). However, performing such tests here is beyond the scope
of this paper.

The stability test initializes the dipole structure throughout
the entire computational domain and tracks the stability during
a dynamical evolution. The relaxation test is even more chal-
lenging than the stability test since it requires the time evolution
toward the physical topology set by the boundary conditions.
Precisely, in a relaxation test we fix the dipolar structure inside
of the star, but fill the magnetosphere with a purely radial field
at the start of the simulation. In order to track the changes in
the magnetosphere, we define its total energy as the volume
integral

1

(D? + B?) y=gd’x. (82)
T 8

Once initialized, the energy of the dipole magnetosphere (cf.
Mahlmann et al. 2019) is well conserved (stability) or else grad-
ually approaches the dipole energy (relaxation) once all initially
introduced perturbations leave the domain. Figure 10 shows sta-
bility and relaxation tests of the dipole magnetosphere for differ-
ent resolutions in both, Cartesian (3D) and spherical (2D, axial
symmetry) coordinates.

The initial spike of the relaxation model can be attributed to a
surge of electromagnetic energy during a rapid rearrangement in
the early phase. The excited energy pulses propagate as plasma
waves through the magnetosphere. A part of these pulses is con-
fined to closed field lines in the vicinity of the central object. The
rest of this energy propagates outward through the domain. As
the dissipation of electromagnetic energy in collisions of force-
free waves strongly depends on the employed resolution (see
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Sect. 4.2, and Paper II) and grid geometry, the confined energy
pulses remain within the domain longer for higher resolution and
spherical coordinates. This is visible best in the relaxation test
presented in Fig. 10. For different resolutions, the asymptotic
energy differs by <1%. Complete relaxation of this energy will
require longer simulation times, such that waves emerging from
the initial relaxation can leave the domain. Also, accurate treat-
ment of the interior boundary will be necessary so that plasma
waves in the region of closed field lines dissipate physically. The
first of these effects, associated with the total simulated time,
can be partly addressed by considering a computational domain
with a reduced outer radial boundary. In the top right panel of
Fig. 10, we show the time evolution in a reduced computational
domain with black lines. The abrupt drop-off the magnetospheric
energy is due to the desertion of the initial perturbation through
the outer radial boundary. Remarkably, the energy level to which
these models evolve is the same as the corresponding stability
tests with the corresponding numerical resolution.

5.1.2. Tilted magnetar magnetospheres

In this section, we explore the full 3D capabilities of our newly
developed code in spherical coordinates (r, 6, ¢) by considering
the stability test from the previous section, but tilting the mag-
netic dipole axis by an angle @ with respect to the spherical
polar axis along 8 = 0. For this, we carry out the transforma-
tion B, = R_,B (F), where ¥ = R, r, B corresponds to the initial
data given in Eq. (81), and

0 0

cos @ sin #—sin a cos O sin ¢ sin @ cos ¢

1
R,=|0 —
0 _ sinacscfcos ¢

" cosa — sina cotfsin ¢

X = \/sin2 0 cos? ¢ + (sin @ cos 8 — cos a sin fsin ¢)2. (83)
We chose @ = 30° for simulations that are exclu-
sively conducted in a spherical domain with dimensions
[9.26 M, 611.16 My — 6Ar] X [0, ] X [0, 2x]. In order to use a
resolution that is comparable to Sect. 5.1.1, we employ Ar €
[R./16, R./24, R./32] and A¢p = A6 € [n/50, n/75, n/100].
The setup was evolved for a period of t+ = 300 My =~ 1.48 ms
with fcp = 0.25 using MP7 spatial reconstruction and the
default fourth-order discretization of jj.

Besides the measurement of the total energy in the magneto-
sphere, in order to quantify the deviation of the numerical solu-
tion B from the analytical (initial) configuration By, we define
the 2 error norm of the magnetic field as

1
lell: = < [ [BG.0.00) ~Bo(ri 6. 0)] - (84)

i, j.k

where indices i, j, and k extend over all the computational cells.
Figure 11 shows the evolution in time of the error norm in
Eq. (84) normalized to the magnetic field strength at the pole
of the neutron star, B,,. Increasing the mesh resolution by a fac-
tor of two (i.e., from Ar = R,/16 to R./32) reduces the error
by roughly the same factor. At the same time, the total magneto-
spheric energy slightly increases throughout the simulation time
(£1%). Such a (continuous) increase in energy does not occur
in the aligned (axially symmetric) setups, as we show in Fig. 10.
However, the global structure of the 3D tilted dipole is conserved
throughout the simulation (Fig. 11), with only slight kinks aris-
ing around the polar axis of the spherical coordinates.
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Solving hyperbolic PDEs in spherical coordinates suffer
from very small timesteps due to the fact that cell volumes are
not constant in space and get smaller as the polar axis or the ori-
gin of the coordinate system are approached. The timestep is pro-
portional to r X sin(A#/2) x A¢ and hence becomes prohibitively
small for full 3D simulations with high angular resolutions, this
is the reason for the shorter simulation time compared to the
axially symmetric models in Sect. 5.1.1). In order to mitigate
this limitation for simulations in spherical coordinates, addi-
tional grid coarsening or filtering approaches will be necessary
when considering computationally feasible long-term 3D evolu-
tion (cf. Obergaulinger & Aloy 2017, 2020; Mewes et al. 2020;
Zlochower et al., in prep.; Aloy & Obergaulinger 2021). The
impact of the tilt across the axis on the magnetospheric energy
(as observed in Fig. 11) may be further diminished by such tech-
niques.

4 In this test we employ the full 3D capacities of our GRFFE
method in spherical coordinates. The tilted magnetar magne-
tospheres maintain their topology stable for ~32 light-crossing
times of the central object. Extrapolating the deviation of the
magnetospheric energy to longer times is uncertain due to the
non-monotonic evolution. However, we foresee that stationary
tilted magnetospheres may be maintained approximately stable
sufficiently for more than a few hundred light-crossing times of
the central object. These longer periods of evolution may suf-
fice to address numerically dynamical phenomenae in the mag-
netosphere (e.g. Carrasco et al. 2019; Mahlmann et al. 2019).
Besides, our results show that increasing the resolution decreases
the global error, hence, if needed, finer grids may be used to
address longer evolutionary times.

5.2. The force-free aligned Rotator

An astrophysically motivated test that deliberately breaches the
limits of FFE is the aligned rotator test. It sets up an initially
dipolar magnetic field on a star rotating with angular velocity
Q,,. Equilibrium solutions of the axisymmetric pulsar magneto-
spheres, as solutions to the so-called pulsar equation, have been
studied, for example, in Contopoulos et al. (1999) and Timokhin
(2006). Time-dependent solutions to the aligned rotator mag-
netosphere have been presented; for instance, by Komissarov
(2006, resistive MHD and resistive FFE), Spitkovsky (2006,
resistive FFE), Paschalidis & Shapiro (2013, dissipative FFE),
Tchekhovskoy et al. (2013, MHD), Etienne et al. (2017, dissipa-
tive FFE). All of these schemes make sure that the equatorial
current sheet can be resolved in FFE by either adding addi-
tional dissipation or a resistivity model to FFE, or by combining
FFE and MHD in order to capture such genuinely non-force-free
regions.

In this section, we present results of the aligned rotator test
in ideal FFE conducted on a spherical, axisymmetric mesh.
We demonstrate that our code correctly reproduces the fea-
tures of the force-free magnetosphere inside of the pulsar light
cylinder ric = ¢/€Q,. We transparently point out the conse-
quences of the emerging equatorial current sheet in ideal FFE, to
which we ultimately dedicate paper II of this series (Mahlmann
et al. 2021). This test sets up the initial data of Eq. (81)
in a domain with dimensions [9.26 My, 6954.26 M — 6Ar] X
[0,7]. We employ Ar € [R./16, R./32, R./64] and A¢p =
A € [n/50, /100, 7/200]. The setup is evolved for a period
of t = 3150 My (10 revolutions of the central object) with
Jorn = 0.25, using MPS5 spatial reconstruction, and the default
fourth-order discretization of j;. We implement the pulsar
boundary condition by following closely the interior bound-
ary conditions described by Parfrey et al. (2012) and setting
Q, =0.02.
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Fig. 11. Stability test of magnetar magnetospheres endowed with a tilted (30 degrees) analytic dipole field structure for different resolutions.
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Fig. 12. Force-free aligned rotator test in spherical ideal FFE for different resolutions. Left panel a: global structure of the magnetosphere for
intermediate resolution (32 pts./r.). The poloidal fieldlines are indicated by black solid and dashed lines, depending on the magnetic field direction.
Blue and red colors represent direction and magnitude of the toroidal magnetic field (normalized to its maximum value). Middle panel b: zoom
on the Y-point and equatorial current sheet (alternating magnetic field highlighted by cyan field lines) for different resolutions. The color scale
represents the current density (normalized to the current density of the low-resolution data). Left panel c: field line angular velocity measured at

different radii.

Figure 12 visualizes the results of this resolution study. Our
code correctly reproduces the expected magnetospheric features
for r < ric. A twist-free, closed region emerges for » < 0.8rc.
There, field lines co-rotate with the central object in good accor-

dance with the imposed pulsar boundary conditions. Slight devi-
ations from perfect co-rotation (of a few percent, decreasing with
higher resolution) occur at the sheath of the twist-free region.
The location of the Y-point r ~ 0.9r; ¢ is stable for the employed
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resolution. As reasoned in Spitkovsky (2006), reconnection is
the key factor setting the location of the Y-point, ry relative to
rLc, as well as the rate at which ry approaches ri ¢ from its ini-
tial location. The effects of a finite (numerical) resistivity induce
an oscillatory behavior of the Y-point as well as (in the case
of Spitkovsky 2006) the ejection of (small) plasmoids. Episod-
ically, non-axisymmetric, small-scale structures emerge out of
the equatorial current sheet. The scale and temporal wavelength
of the variations in the current sheet decrease with increasing
resolution (middle panels Fig. 12b). The unsteadiness of the
current sheet is a direct consequence of the very low numeri-
cal resistivity of our high-order schemes applied to ideal FFE.
They significantly reduce the numerically driven reconnection
(cf. Mahlmann et al. 2021). The morphology of the current sheet
results from localized (numerical) reconnection events that hap-
pen as a result of the enforcement of the magnetic dominance
condition (B> — E2 > 0) at low latitudes, where the magnetic
field strength passes through zero as it crosses the equator. In
the absence of a more elaborated physical description of the
layer where the plasma pressure becomes larger than the mag-
netic pressure (e.g., using MHD), recipes to handle the numeri-
cal resistivity completely determine the spatial smoothness and
time variability of the equatorial current sheet.

The Poynting flux of outflowing energy agrees well with
the expectations collected in the literature, L ~ (1.0 + 0.1) Lo
(for the highest-resolution run), where Ly = yZQ‘,‘) /¢ for a
magnetic moment u. The value of L larger than L is directly
related to the fact that ry < r ¢ during the computed time.
On longer time-scales (computationally prohibitive for a single
code test) the luminosity decreases as the closed zone expands
(Spitkovsky 2006), something that generically happens for all
resolutions considered here (but at significantly different rates;
faster at lower resolution). For the lowest employed resolution
(16 pts./r.), we find that the luminosity gradually decreases by
~10% for r < 5ric. For higher resolutions, the luminosity level
is stable but showing variations due to small structures emerging
in the current sheet (middle panels Fig. 12b). Our rigid confine-
ment to only enforcing the FFE conditions (Sect. 3.3) without
adding additional dissipation mechanisms or resistivity models
is the main difference to the aforementioned array of literature
available for this particular setup.

The results presented in this section are sensitive to both
the boundary conditions and the modeling of the equatorial cur-
rent sheet. As general features of the force-free magnetosphere
(r < rLc) are reproduced as expected (twist-free region, field line
angular velocity and luminosity), our code passes the ideal FFE
aligned rotator test. We stress, however, that a physical model-
ing of the equatorial current sheet beyond the Y-point requires
suitable techniques to develop such genuinely resistive regions
in time. In Mahlmann et al. (2021), we outline the difficulties
and some possible remedies of this task. We are convinced that
a physical modeling of equilibrium solutions containing both
force-free regions and current sheets either requires exceptional
fine-tuning of the employed resistivity models, or a mixing of
different plasma regimes (such as FFE and resistive MHD; see,
e.g., Ruiz et al. 2014). In any case, such modeling is beyond the
scope of a test for ideal FFE.

5.3. Black hole magnetospheres

5.3.1. Black hole monopole tests

Blandford & Znajek (1977) presented analytic equilibrium solu-
tions of BH magnetospheres by applying perturbation techniques
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to the Grad-Shafranov equation (GSE) that match the Znajek
condition (Znajek 1977) at the BH horizon and the flat space
solution of Michel (1973) at infinity. One of these results is
a monopole-like magnetic field, which is often adapted to the
so-called split monopole by mirroring the field quantities across
the equatorial plane. The latter is a necessary step to avoid
divergences of the magnetic field. In this section, however, we
follow Komissarov (2004) in considering the monopole field
structure to avoid the challenge of resolving a current sheet at the
equator. The monopole electromagnetic fields for slowly spin-
ning BHs (a¢* <« 1) as derived in Blandford & Znajek (1977)
can be written in the spatial components of vectors in Boyer-
Lindquist coordinates (r, 8, ¢) as follows:

sin @ a*sin” 0
B = B, (_ 0,- )
2y 8agsp
Qp + 5
D:BO(O,— Pt S sinH,O). (85)
2agee

Here, QF is the field line angular velocity as defined for axi-
ally symmetric equilibrium solutions, and we employ By = 1.
The Cartesian simulations are conducted in a 3D domain with
extensions [256 Mg X 256 Mg X 256 M] with a grid spacing of
A,,. = 8 Mg on the coarsest grid level. We use eight additional
levels of mesh refinement, each increasing the resolution by a
factor of two and encompassing the central object, respectively.
This means that the finest resolution of our Cartesian models is
A;“;“Z = 0.03125 M,,. The spherical simulations are conducted on
a 2D slab (axial symmetry) with extensions [0, 256 M] x [0, 7r].
In order to use a resolution that is comparable to the Cartesian
setup, we employ Ar = 0.032 and A6 = m/64. The setup is
evolved for a period of t = 128 M. For this section we employ
ferL = 0.25, the MP7 reconstruction and a fourth-order accurate
discretization of jj.

Figure 13 summarizes the time evolution of the monopole
field for a dynamically evolving spacetime metric for both Carte-
sian (3D) and spherical (2D, axisymmetric) meshes. As the
magnetospheres considered in this section (and the following
one) are idealized cases, namely a magnetic monopole and with
unbound energy, we do not couple the field energy to the source
terms of the BSSN equations. During a transient phase in which
the metric terms relax to the chosen mesh and gauge, the elec-
tromagnetic fields can differ significantly from their initial state.
This test demonstrates that, while the spacetime evolves, the
electromagnetic fields relax toward the equilibrium given by
Eq. (85) concurrently. Though the energy evolution shown in
Fig. 13 approaches the energy of the initial model rather well, the
resulting equilibrium has to be taken with care. The evolution of
dynamical spacetimes and corresponding GRFFE fields can be
subject to the influence of small changes of the BH mass and
spin (due to finite numerical resolution), as well as an involved
array of geometric source terms (see Sect. 2.2).

The geometric (i.e., spacetime) quantities determined by the
initial data for spinning BHs presented in Liu et al. (2009) relax
to their equilibrium state depending on the chosen numerical res-
olution of the mesh and specification of gauge quantities (i.e.,
the lapse and shift) during an initialization phase. The choice of
these quantities is preferably done in a way that causes the least
possible noise across all metric quantities during their evolution.
As an example, instead of providing the spacetime data with the
analytic lapse function defined in Boyer-Lindquist coordinates
(Liu et al. 2019), we specify the lapse initially as:

M\
1+ (1 + Zr) } .

@0) =2 x (86)
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Fig. 13. Time evolution of the Schwarzschild monopole (Qr = Qgy/2) of a slowly spinning Kerr BH (a* = 0.1, M = 1) in Cartesian (3D CARPET
grid with nine refinement levels, with the highest resolution of 0.03125 M, completely enclosing the central object) and spherical (2D, axsymmet-
ric) coordinates. The spacetime metric is dynamically evolving. Left: evolution of the total magnetospheric (electromagnetic) energy normalized
to the initial value, e,. Right: field line angular velocity along the equatorial plane. The final value is shown in a strong color. Intermediate states
throughout the simulation are depicted by lighter colored lines (the strength of the color increasing with simulation time).

With this initialization, the spacetime relaxes swiftly to its equi-
librium state during the first Aty = 25 M. The tests presented
in this section give some important hints on the strategies cho-
sen to set up BH magnetospheres for our future research. The
goal of this test was to show that the magnetospheric data are
conserved throughout the (dynamic) relaxation of the spacetime
induced, for example, by the BSSN algorithms of the EINSTEIN
TOOLKIT. As both the magnetospheric energy as well as the field
line angular velocity at the equator, are recovered after Af;;, our
GRFFE code passes this test of spacetime-field coupling.

5.3.2. The Wald magnetosphere

The immersion of a BH into a magnetic field that is uniform
at infinity was originally suggested by Wald (1974) and then
explored throughout the literature, both as a test and as a lab-
oratory for force-free plasma (Komissarov 2004; Komissarov &
McKinney 2007; Carrasco & Reula 2017; Parfrey et al. 2019).
In this section, we reproduce the initial data of the Wald magne-
tosphere of a Schwarzschild BH in Boyer-Lindquist coordinates
(rescaled according to the prescription of Liu et al. 2009) and
evolve it for different BH spins. We therefore, extend the testing
of the GR capacities of our code to rapidly spinning BH (up to
a* = 0.9). The Wald magnetosphere of a Schwarzschild BH in
the spatial components of Boyer-Lindquist coordinates (r, 6, ¢)
can be initialized as follows:

r 2sinf
B =By cos 6, ,0], D=(0,0,0). (87
0( 247 NEaere) ®7)
We employ By = 1 as normalization of the magnetic field

strength. The Cartesian simulations are conducted in a 3D
domain with extensions [512 My X 512 Mg X 512 My] with a
grid spacing of A,,, = 16 My on the coarsest grid level. We
employ nine additional levels of mesh refinement, such that the

finest resolution of our Cartesian models is A?}I‘Z = 0.03125 M,
The spherical simulations are conducted in axial symmetry with
extensions [0, 256 M;] %[0, 7r]. In order to use a resolution which
is comparable to the Cartesian setup, we employ Ar = 0.032 and
A8 = 1/64. The setup is evolved for a period of t = 128 M, in
Cartesian coordinates and ¢t = 256 M, in spherical coordinates.
For this section we employ fcp, = 0.25, the MP7 reconstruction
and a fourth-order accurate discretization of j.

Figure 14 shows the results from the time evolution of these
fields in spacetimes of rotating BHs for a selected case (a* = 0.5)
in Cartesian and spherical coordinates. The magnetic field lines
connecting to the BH, which are initially not rotating, are gradu-
ally twisted in case of a spinning central object. Also, current
sheets form along the equatorial plane within the BH ergo-
sphere for high dimensionless spins (a* = 0.9, Fig. 15), pre-
venting the development of static magnetospheric conditions
(cf. Komissarov 2004). The overall topology of the magnetic
field throughout the BH ergosphere broadly coincides with
respective equilibrium solutions of Kerr magnetospheres (as
derived, e.g., in Nathanail & Contopoulos 2014; Mahlmann et al.
2018).

The simulations in spherical coordinates are significantly
more expensive than in Cartesian coordinates, due to the severe
restrictions on the timestep imposed by the converging spheri-
cal mesh close to the central singularity. Future code develop-
ments will include mesh-coarsening strategies close to r = 0
to overcome this restriction. Alternatively, we may use other
methods to exclude the BH singularity from our computa-
tional domain (e.g., using shifted Kerr-Schild coordinates as in
Paschalidis & Shapiro 2013). Obtaining a stable evolution
of the spacetime with spherical coordinates for a* > 0.9
is very challenging unless we employ rather fine grid spac-
ing in 6, which makes this numerical experiment (currently)
too expensive as a validation test of our code. Even in
axisymmetric simulations, the timestep restriction from the 6
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Fig. 14. Simulations of Wald magnetospheres for a* = 0.5 and M = 1
at t = 128 M. Left: 3D Cartesian CARPET grid (vacuum spacetime
modeled by MACLACHLAN). Right: 2D (axially symmetric) spherical
grid (vacuum spacetime modeled by SPHERICALBSSN). The poloidal
field is indicated by streamlines, the toroidal field by red and blue col-
ors (color scale coincides for all panels) indicating whether the toroidal
field leaves or enters into the displayed plane, respectively. The BH
ergosphere is denoted by a solid white line.
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Fig. 15. Simulations of a Wald magnetosphere for a* = 0.9 in Carte-
sian coordinates for t = 256 M,,. Left: same format and color scale as in
Fig. 14. Right: 3D magnetic field line impression of the Wald magneto-
sphere. Darker colors indicate a stronger twist of the magnetic field.

coordinate, which imposes a timestep proportional to r X A6,
is too restrictive when the coordinate origin is included in
the computational domain, which is necessary for a space-
time evolution without excision as the one employed here. In
order to alleviate this shortcoming of doing high-resolution
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Fig. 16. One-dimensional values of the field line angular velocity (top)
and the toroidal magnetic field (bottom) for the Wald test (Cartesian
CARPET grid) at t = 256 M and using different BH dimensionless
rapidities (see legends). The interpolation radius (for the extraction in a
Cartesian grid) is indicated in the respective panel, corresponding to
the ergosphere radius at the equator (fop) or the BH horizon radius
(bottom).

simulations in spherical coordinates that include the origin,
algorithms to circumvent the timestep restrictions imposed by
both the 6 and ¢ coordinates are currently being developed
(Zlochower et al., in prep.).

In Fig. 16 we extract the field line angular velocity and
toroidal magnetic field at different locations for Cartesian coor-
dinates for comparison with Fig. 5 in Komissarov (2004) (com-
puted for a BH with a* = 0.9). The chosen extraction location
is slightly different from the literature in order to represent the
complete range of BH spins. We find that our GRFFE code qual-
itatively reproduces the results in the literature, though some
differences remain to be mentioned. Komissarov (2004) uses
spherical coordinates and axial symmetry, as opposed to our 3D
simulations with mesh refinement. More even, the angular reso-
lution of 800 cells in the #-direction is almost ten times the reso-
lution that we used on our finest refinement level (the resolution
limit is simply imposed by the aim of running numerical tests
that do not consume disproportionate computational resources).
Without evolving the spacetime (as in Komissarov 2004) the
numerical grid may extend outward in the radial direction from
the event horizon as a boundary, in practice, excising the cen-
tral singularity and allowing for significantly larger timesteps. A
similar effect may have the usage of shifted Kerr-Schild coordi-
nates (as in Paschalidis & Shapiro 2013). The quantitative dif-
ference in the shape of the angular velocity distribution (V-shape
in Fig. 5 of Komissarov 2004, vs. U-shape in Fig. 16) may,
hence, be significantly improved with increasing resolution or
by resorting to a GRFFE code in spherical coordinates (as we
plan to do once the timestep restrictions are overcome). Also,
we point out that we show the toroidal component of the mag-
netic field B rather than H. The overall form of the toroidal field
for the rapidly rotating case (a* = 0.9) corresponds well (up to
a difference in sign) with Fig. 5 of Komissarov (2004). The BH
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magnetosphere simulations in this section have been repeated
on a fixed Kerr-Schild background metric, effectively confirming
the results presented in this section. For a direct comparison of
numerical data, comparable resolutions and exact convergence
(longer simulations) are required; this is beyond the scope of the
test presented here.

We finally note that the small numerical resistivity of our
code (prompted by the spatial high-order of our MP reconstruc-
tion methods; see Paper II) inhibits, in part, the formation of
a stationary current-sheet in the solution. For that to happen,
one needs to add extra dissipation at current sheets, for example
by modifying Ohm’s law (as in, e.g., McKinney 2006) or arti-
ficially decreasing the conductivity perpendicular to field lines
(Paschalidis & Shapiro 2013). The ideal FFE aligned rotator test
presented in Sect. 5.2 lucidly illustrates this statement.

In conclusion, especially field lines threading the ergosphere
are gradually twisted by the rotating BH. Due to the broad coin-
cidence with Komissarov (2004), and the reproduction of mag-
netospheres which resemble respective equilibrium solutions of
the (Nathanail & Contopoulos 2014; Mahlmann et al. 2018), the
Wald magnetosphere test is passed.

6. Conclusions

We have developed a new GRFFE code that models magnet-
ically dominated plasma in dynamical spacetimes with sup-
port for both Cartesian and spherical coodinates provided by
the CARPET grid of the EINSTEIN TOOLKIT. Our simulation
tool combines techniques from an array of literature (especially
Komissarov 2002; McKinney & Gammie 2004; Palenzuela et al.
2009; Paschalidis & Shapiro 2013; Parfrey et al. 2017) and
improves further on numerical strategies as well as the under-
standing of their limits:

— We explicitly couple the continuity equation of charge to our
conservative scheme (Sect. 2) and, thus, ensure a consistent
modeling of the force-free current (Eq. (49)).

— We employ a hyperbolic/parabolic cleaning of errors
(extending the techniques in Palenzuela et al. 2009; Mignone
& Tzeferacos 2010, to general relativity). Allowing for arbi-
trary advection speeds for the cleaning of divergence errors
significantly improves the conservation of total charge in
spacetimes of spinning BHs (see Appendix A).

— The current parallel to the magnetic field j; is the dominant
driver of resistivity in GRFFE schemes. In case of the force-
free current (Eq. (64)), high-order discretization allows us to
model (smooth) force-free plasma waves with nearly theo-
retical order (Sect. 2.1, Paper II), and diffusing only due to
numerical resistivity.

— Current sheets are genuine regions of significant physical
resistivity. Conventional GRFFE methods (i.e., schemes that
do not include phenomenological models of artificial phys-
ical resistivity) are unable to properly resolve such resistive
layers, especially for highly accurate reconstruction methods
(Paper II). Thus, at discontinuities, the order of convergence
of GRFEFE is significantly reduced; a true limit of applicabil-
ity of GRFFE is reached.

Writing our EINSTEIN TOOLKIT thorn from scratch enabled us to
implement suitable finite volume integrators for both Cartesian
and spherical coordinates. Spherical coordinate systems prove
exceptionally valuable for the highly accurate modeling of mag-
netar magnetospheres (Sect. 5.1). For the simulation of BH mag-
netospheres on dynamically evolving spacetimes, our GRFFE
method will benefit from future updates to the support of spher-
ical coordinates in the EINSTEIN TOOLKIT (Mewes et al. 2018,

2020). With the presented numerical code we broadly exploit
the modular nature of the EINSTEIN TOOLKIT and implement
a cutting-edge tool for the simulation of GRFFE on dynamical
spacetimes in Cartesian and spherical coordinates.
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Appendix A: Code performance (3D Cartesian):
Cleaning of errors
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Fig. A.1. Time evolution of numerical errors (divB = 0, top panel) and

the corresponding maximum cleaning potential ¥ (bottom panel). We
present combinations of different xy and ¢, for a fixed «¢ = 1.0.

We describe the implementation of the generalized Lagrange
multiplier method employed to preserve the electromagnetic dif-
ferential constraints divB = 0 and divD = p in Sect. 3.5. This
section explores the code performance for the cleaning of diver-
gence errors in the 3D Cartesian version of the BH monopole
test (with the setup from Sect. 5.3) for different choices of the
parameters governing the numerical cleaning of errors. We mea-
sure the numerical errors to the aforementioned conditions by
considering the global measures:
sV.B(t):f[V-B(t)]dV—f[V-B(tzO)]dV. (A.1)
Here, we employ the 3D region outside of the BH horizon as an
integration region, and subtract the initially present errors due to
the discretization of the magnetic field. Figure A.1 shows the
evolution of numerical errors and the corresponding cleaning
potentials for different combinations of the parameters «y, and
cp. The optimization of these parameters may differ for different
applications and can be critical in highly dynamical processes
where strong numerical violations of the divergence constraints
occur (e.g., by strong violations of the force-free conditions, see
also the discussion in Mahlmann et al. 2019). For the tests at
hand, the exact calibration of the parameters of the cleaning
method may have very small effects (the total magnetospheric
energy presented in Fig. 13 is not notably changed by any of the
different combinations shown in Fig. A.1). However, their anal-
ysis provides crucial information about the code’s performance,
and in other applications the proper calibration of the cleaning
routines has a significant impact (Mahlmann et al. 2019).

As is lucidly shown in Fig. A.1, the introduction of the
superluminal advection velocity ¢, into the augmented system
of equations (Eq. (40)) for divergence cleaning reduces the error

ev.p (especially in the early and late phase of the evolution) sig-
nificantly. Furthermore, the maximum magnitude of the cleaning
potential ¥ decreases by two orders of magnitude. Small varia-
tions in ey.p are also observed for stronger damping of errors
by greater values for xy. Though the presented tests for flat
background geometries employ ¢, = 1, we conclude from the
results in Fig. A.1 that ¢, = 2 improves the code performance
(i.e., reducing the arising numerical errors) for general relativis-
tic spacetimes.

This comparison of parameters responsible for the cleaning
of numerical errors emphasizes the strong need for a diligent cal-
ibration for each setup (i.e., boundary conditions, geometry, etc.)
at hand. The standard configurations employed for the hyper-
bolic/parabolic cleaning of numerical errors should and will
be readjusted in the light of future applications of our GRFFE
method.

Appendix B: Conservation at refinement
boundaries
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Fig. B.1. Degenerate Alfvén wave test on a x € [-2,2] grid (fem =
0.25) at t = 2.0 and for different resolutions. The theoretically expected
position of the Alfven wave is indicated by a gray dashed line.
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Fig. B.2. Same test as in Fig. B.1, but with an additional level of mesh
refinement for x < —0.25. Left: comparison of global charge conserva-
tion between a uniform grid (red line), a refined mesh with refluxing
(blue line), and a refined grid without refluxing (black line). We dis-
play the relative deviation of the total charge from its initial value for
different setups. Right: difference between the electromagnetic energy
density for the refined mesh with and without refluxing at ¢ = 2.0.

Alfvén waves carry charge (and current). They are an excellent
testbed for probing the conservative properties of a numerical
method (cf. Mahlmann et al. 2021). In this section, we exam-
ine the quality of our conservative method at mesh refinement
boundaries. We consider a (smoother) variation the degenerate
Alfvén wave test from Komissarov (2002) and Yu (2011). For
this, we boost the initial data given by Eq. (74) into a frame with
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B=0.5:

B=(1,V3.25/V3), D=(-B.-B/V3, V3),

1 x<0
BE={ 1+0.15[1 +sin[57(x-0.1)]] 0<x<0.2 (B.1)
1.3 x>02

Figure B.1 shows components of the electric and magnetic
fields of the solution developed up to t+ = 2 on a uniform
mesh (comparable to the respective tests in Komissarov 2002;
Yu 2011). We then repeat this test with an additional level
of refinement for x < —0.25 and display the main results in
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Fig. B.2. The degenerate Alfvén wave thus crosses one mesh
refinement boundary during its evolution.

The quality of our conservative method for global quantities
— such as the electric charge — is impaired on the level of an
error of several percent if no refluxing is used (black line in the
left panel of Fig. B.2). The same statement (though on a smaller
scale) is also true for the energy, as we show in the right panel
of Fig. B.2. If refluxing is used, on the other hand, energy is
conserved up to machine precision or violation of the force-free
conditions. Such levels of nonconservation in simple 1D tests
justify the use of refluxing techniques (cf. Sect. 3), especially in
highly dynamic 3D simulations.
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