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Abstract. We define a most specific generalization of a fuzzy set of
topics assigned to leaves of the rooted tree of a domain taxonomy. This
generalization lifts the set to its “head subject” node in the higher ranks
of the taxonomy tree. The head subject is supposed to “tightly” cover
the query set, possibly bringing in some errors referred to as “gaps” and
“offshoots”. Our method, ParGenFS, globally minimizes a penalty func-
tion combining the numbers of head subjects and gaps and offshoots,
differently weighted. Two applications are considered: (1) analysis of
tendencies of research in Data Science; (2) audience extending for pro-
grammatic targeted advertising online. The former involves a taxonomy
of Data Science derived from the celebrated ACM Computing Classifi-
cation System 2012. Based on a collection of research papers published
by Springer 1998-2017, and applying in-house methods for text analysis
and fuzzy clustering, we derive fuzzy clusters of leaf topics in learning,
retrieval and clustering. The head subjects of these clusters inform us
of some general tendencies of the research. The latter involves publicly
available IAB Tech Lab Content Taxonomy. Each of about 25 mln users
is assigned with a fuzzy profile within this taxonomy, which is generalized
offline using ParGenFS. Our experiments show that these head subjects
effectively extend the size of targeted audiences at least twice without
loosing quality.

Keywords: Generalization · Fuzzy thematic cluster · Annotated suffix
tree · Research tendencies · Targeted advertising.

1 Introduction

The notion of generalization is not absent from the current developments in
knowledge engineering and artificial intelligence. Just the opposite. For example,
building a supervised classifier fits exactly into the concept of generalization:
a classifier generalizes given instances of “yes”-objects into a decision rule to
separate the “yes”-class from the rest. This, however, relates to a very special case
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at which all the objects are elements of the same variable space. We are going to
tackle the case at which we are presented with a crisp or fuzzy subset of different
concepts, and one wishes to generalize this subset into a coarser concept tightly
embracing the subset. This is, partly, the meaning of the term “generalization”
which, according to the Merriam-Webster dictionary, refers to deriving a general
conception from particulars. We assume that a most straightforward medium for
such a derivation, a taxonomy of the field, is given to us.

Currently, taxonomic constructions mostly concentrate on developing tax-
onomies, especially those involving referred to in linguistics as hyponymic /
hypernymic relations (see, for example, [9, 7]) Also, some activities go in the
direction of “operational” generalization: generalized case descriptions involv-
ing taxonomic relations between generalized states and their parts are used to
achieve a tangible goal such as improving characteristics of text retrieval [8].

This paper does not attempt to develop or change any taxonomy, but rather
uses an existing taxonomy. The situation of our concern is a case at which we
are to generalize a fuzzy set of taxonomy leaves representing the essence of an
empirically observed phenomenon. The rest of the paper is organized accordingly.
Section 2 presents a mathematical formalization of the generalization problem
as of parsimoniously lifting of a given fuzzy leaf set to nodes in higher ranks of
the taxonomy and provides a recursive algorithm leading to a globally optimal
solution to the problem. Section 3 describes an application of this approach to
deriving tendencies in development of the data science, that are discerned from
a set of about 18,000 research papers published by the Springer Publishers in 17
journals related to Data Science for the past 20 years. Its subsections describe
our approach to finding and generalizing fuzzy clusters of research topics. In
the end, we point to tendencies in the development of the corresponding parts of
Data Science, as drawn from the lifting results. Section 4 describes an application
of the parsimonious generalization method to efficiently extend the audience of
targeted advertising over the Internet. More detailed description can be found
in [3].

2 Generalization: parsimoniously lifting a fuzzy thematic
set in taxonomy

We consider the following problem. Given a rooted taxonomy tree and fuzzy set
S of taxonomy leaves, find a node h(S) of higher rank in the taxonomy, that
tightly covers the set S.

The problem is not as simple as it may seem to be. Consider, for the sake
of simplicity, a hard set S shown with five black leaf boxes on a fragment of a
tree in Figure 1 illustrating the situation at which the set of black boxes is lifted
to the root. If we accept that set S may be generalized by the root, this would
lead to a number, four, of white boxes to be covered by the root and, thus, in
this way, falling in the same concept as S even as they do not belong in S. Such
a situation will be referred to as a gap. Lifting with gaps should be penalized.
Altogether, the number of conceptual elements introduced to generalize S here
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is 1 head subject, that is, the root to which we have assigned S, and the 4 gaps
occurred just because of the topology of the tree, which imposes this penalty.
Another lifting decision is illustrated in Figure 2: here the set is lifted just to the
root of the left branch of the tree. The number of gaps here has decreased, to
just 1. However, another oddity emerged: a black box on the right, belonging to
S but not covered by the node at which the set S is mapped. This type of error
will be referred to as an offshoot. At this lifting, three new items emerge: one
head subject, one offshoot, and one gap. This is less than the number of items
emerged at lifting the set to the root (one head subject and four gaps, that is,
five), which makes it more preferable. Of course, this conclusion holds only if the
relative weight of an offshoot is less than the total relative weight of three gaps.

Fig. 1. Generalization of the black box query set by mapping it to the root, with the
price of four gaps emerged at the lift.

Fig. 2. Generalization of the black box query set by mapping it to the root of the left
branch, with the price of one gap and one offshoot emerged at this lift.

We are interested to see whether a fuzzy set S can be generalized by a node h
from higher ranks of the taxonomy, so that S can be thought of as falling within
the framework covered by the node h. The goal of finding an interpretable pigeon-
hole for S within the taxonomy can be formalized as that of finding one or more
“head subjects” h to cover S with the minimum number of all the elements
introduced at the generalization: head subjects, gaps, and offshoots. This goal
realizes the principle of Maximum Parsimony.

Consider a rooted tree T representing a hierarchical taxonomy so that its
nodes are annotated with key phrases signifying various concepts. We denote
the set of all its leaves by I. The relationship between nodes in the hierarchy is
conventionally expressed using genealogical terms: each node t ∈ T is said to be
the parent of the nodes immediately descending from t in T , its children. We use
χ(t) to denote the set of children of t. Each interior node t ∈ T −I is assumed to
correspond to a concept that generalizes the topics corresponding to the leaves
I(t) descending from t, viz. the leaves of the subtree T (t) rooted at t, which is
conventionally referred to as the leaf cluster of t.

A fuzzy set on I is a mapping u of I to the non-negative real numbers that
assigns a membership value u(i) ≥ 0 to each i ∈ I. We refer to the set Su ⊂ I,
where Su = {i ∈ I : u(i) > 0}, as the base of u.
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Given a fuzzy set u defined on the leaves I of the tree T , one can consider u
to be a (possibly noisy) projection of a higher rank concept, u’s “head subject”,
onto the corresponding leaf cluster. Under this assumption, there should exist
a head subject node h among the interior nodes of the tree T such that its leaf
cluster I(h) more or less coincides (up to small errors) with Su. This head subject
is the generalization of u to be found. The two types of possible errors associated
with the head subject, if it does not cover the base precisely, are false positives
and false negatives, referred to in this paper, as gaps and offshoots, respectively
(see Figures 1 and 2). Given a head subject node h, a gap is a node t covered
by h but not belonging to u, so that u(t) = 0. In contrast, an offshoot is a node
t belonging to u so that u(t) > 0 but not covered by h. Altogether, the total
number of head subjects, gaps, and offshoots has to be as small as possible. For
each of these elements a penalty is defined: 1 is the penalty for a head subject,
γ, the penalty for a gap, and λ is the penalty for an offshoot.

Consider a candidate node h in T and its meaning relative to fuzzy set u.
An h-gap is a node g of T (h), other than h, at which a loss of the meaning has
occurred, that is, g is a maximal u-irrelevant node in the sense that its parent
is not u-irrelevant. Conversely, establishing a node h as a head subject can be
considered as a gain of the meaning of u at the node. The set of all h-gaps will
be denoted by G(h). A node t ∈ T is referred to as u-irrelevant if its leaf-cluster
I(t) is disjoint from the base Su. Obviously, if a node is u-irrelevant, all of its
descendants are also u-irrelevant.

An h-offshoot is a leaf i ∈ Su which is not covered by h, i.e., i /∈ I(h). The
set of all h-offshoots is Su− I(h). Given a fuzzy topic set u over I, a set of nodes
H will be referred to as a u-cover if: (a) H covers Su, that is, Su ⊆

⋃
h∈H I(h),

and (b) the nodes in H are unrelated, i.e. I(h)∩ I(h′) = ∅ for all h, h′ ∈ H such
that h 6= h′. The interior nodes of H will be referred to as head subjects and the
leaf nodes as offshoots, so the set of offshoots in H is H ∩ I. The set of gaps in
H is the union of G(h) over all head subjects h ∈ H − I.

The penalty function p(H) for a u-cover H is:

p(H) =
∑

h∈H−I

u(h) +
∑

h∈H−I

∑

g∈G(h)

λv(g) +
∑

h∈H∩I

γu(h), (1)

and we are to find a u-cover H that globally minimizes the penalty p(H). Such
a u-cover is the parsimonious generalization of the set u.

First, the tree is pruned from all the non-maximal u-irrelevant nodes. Si-
multaneously, the sets of gaps G(t) and the internal summary gap importance
V (t) =

∑
g∈G(t) v(g) in Eq. (1) are computed for each interior node t. After

this, our lifting algorithm ParGenFS applies. For each node t, the algorithm
ParGenFS computes two sets, H(t) and L(t), containing those nodes in T (t) at
which respectively gains and losses of head subjects occur (including offshoots).
The associated penalty p(t) is computed too.

Sets H(t) and L(t) are defined assuming that the head subject has not been
gained (nor therefore lost) at any of t’s ancestors. The algorithm ParGenFS
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recursively computes H(t), L(t) and p(t) from the corresponding values for the
child nodes in χ(t).

Specifically, for each leaf node that is not in Su, we set both L(·) and H(·)
to be empty and the penalty to be zero. For each leaf node that is in Su, L(·) is
set to be empty, whereas H(·), to contain just the leaf node, and the penalty is
defined as its membership value multiplied by the offshoot penalty weight γ. To
compute L(t) and H(t) for any interior node t, we analyze two possible cases:
(a) when the head subject has been gained at t and (b) when the head subject
has not been gained at t.

In case (a), the sets H(·) and L(·) at its children are not needed. In this case,
H(t), L(t) and p(t) are defined by:

H(t) = {t}, L(t) = G(t), p(t) = u(t) + λV (t). (2)

In case (b), the sets H(t) and L(t) are the unions of those of its children, and
p(t) is the sum of their penalties. To obtain a parsimonious lift, whichever case
gives the smaller value of p(t) is chosen.

The output of the algorithm consists of the values at the root, namely, H –
the set of head subjects and offshoots, L – the set of gaps, and p – the associated
penalty.

The algorithm ParGenFS is proven to lead to an optimal lifting indeed [3].

3 Highlighting tendencies in research

Being confronted with the problem of structuring and interpreting a set of re-
search publications in a domain, one can think of either of the following two
pathways to take. The first pathway tries to discern main categories from the
texts, the other, from knowledge of the domain. The first approach is exempli-
fied by clustering and topic modeling; the second approach, by using an expert-
driven taxonomy. The main difference between these approaches lies in the level
of granularity: the former pathway uses concepts of the same level of granularity
as those in texts, whereas the latter approach may bring forth coarser concepts
from the higher ranks of a taxonomy.

This paper follows the second pathway by moving, in sequence, through the
stages covered in separate subsections 3.1 to 3.6.

3.1 Scholarly text collection

We downloaded a collection of 17685 research papers together with their ab-
stracts published in 17 journals related to Data Science for 20 years from 1998-
2017. We take the abstracts to these papers as a representative collection.

3.2 DST Taxonomy

The subdomain of our choice is Data Science, comprising such areas as machine
learning, data mining, data analysis, etc. We take that part of the the six-layer
ACM-CCS 2012 taxonomy of computing subjects [1], which is related to Data
Science, and add a few leaves related to more recent Data Science developments
The taxonomy itself, with all its 317 leaves, can be found in [3].
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3.3 Relevance topic-to text score and co-relevance topic-to-topic

similarity index

We first obtain a a keyphrase-to-document matrix R of relevance scores by
using the Annotated Suffix Tree approach [2]. This matrix R is converted to
a keyphrase-to-keyphrase similarity matrix A for scoring the “co-relevance” of
keyphrases according to the text collection structure. The similarity score aii′

between topics i and i′ is computed as the inner product of vectors of scores
ri = (riv) and ri′ = (ri′v). The inner product is moderated by a natural weight-
ing factor assigned to texts in the collection. The weight of text v is defined as
the ratio of the number of topics nv relevant to it and nmax, the maximum nv

over all v = 1, 2, . . . , V . A topic is considered relevant to v if its relevance score
is greater than 0.2 (a threshold found experimentally, see [2]).

3.4 Fuzzy thematic clusters of taxonomy topics

Clusters of topics should reflect co-occurrence of topics: the greater the number
of texts to which both t and t′ topics are relevant, the greater the interrela-
tion between t and t′, the greater the chance for topics t and t′ to fall in the
same cluster. We have tried several popular clustering algorithms at our data.
Unfortunately, no satisfactory results have been found. Therefore, we present
here results obtained with the Fuzzy ADDItive Spectral (FADDIS) clustering
algorithm developed in [5] specifically for finding thematic clusters.

After computing the 317×317 topic-to-topic co-relevance matrix, converting
in to a topic-to-topic Laplace–transformed similarity matrix [5], and applying
FADDIS clustering, we sequentially obtained 6 clusters, of which three clusters
are obviously homogeneous. They relate to “Learning”, “Retrieval”, and “Clus-
tering”.

3.5 Lifting the clusters

The three clusters mentioned above are lifted in the DST taxonomy using Par-
GenFS algorithm with the gap penalty λ = 0.1 and off-shoot penalty γ = 0.9.

Lifting Cluster L brings three head subjects: Machine Learning, Machine
Learning Theory, and Learning to Rank. Lifting of Cluster R: Retrieval leads to
two head subjects: Information Systems and Computer Vision. For Cluster C,
16 (!) head subjects were obtained.

3.6 Drawing conclusions

The “Learning” head subjects show that main work here still concentrates on
theory and method rather than applications. A good news is that the field of
learning, formerly focused mostly on tasks of learning subsets and partitions, is
expanding towards learning of ranks and rankings.

Lifting results for the information retrieval cluster R, clearly show: Rather
than relating the term “information” to texts only, as it was in the previous
stages of the process of digitalization, visuals are becoming parts of the concept
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of information. There is a catch, however. Unlike the multilevel granularity of
meanings in texts, developed during millennia of the process of communication
via languages, there is no comparable hierarchy of meanings for images. One may
only guess that the elements of the R cluster related to segmentation of images
and videos, as well as those related to data management systems, are those that
are going to be put in the base of a future multilevel system of meanings for
images and videos. This is a direction for future developments clearly seen from
lifting results.

Regarding the “clustering” cluster C with its 16 (!) head subjects, one may
conclude that, perhaps, a time moment has come or is to come real soon, when
the subject of clustering must be raised to a higher level in the taxonomy to
embrace all these “heads”. Currently, clustering is not just an auxiliary instru-
ment but rather a model of empirical classification, a big part of the knowledge
engineering.

4 Efficient audience extending in targeted advertising

We consider a company, such as start-up Natimatica, Ltd. (see
https://natimatica.com) associated with us, that supports a service of native ad-
vertising. This service follows millions of individual users visiting popular sites
providing news, shopping, specific contents, etc. Information of these users is
stored in a special system, Data Management Platform (DMP). Each individual
user in the DMP is assigned with a subset of the IAB taxonomy of goods and
services [4] segments (leaves) relevant to their visits. Each of the segments i is
assigned with a real number ai, a fraction of unity, according to the history of
the users visits to the sites under our observation. The totality of the taxonomy
segments and membership values assigned to them constitute what can be re-
ferred to as the users profile. An advertiser formulates their advert needs as a set
of IAB leaves (segments) relevant to the advert. In practice, such a formulation
is produced manually by an employee, after a detailed discussion of the advert
with the advertiser. A conventional, currently most popular, approach (CAS)
requires to pre-specify a threshold t (usually, t=0.3), so that a condition A(t)
can be applied: Given a set S of taxonomy segments and a users profile, check if
the profile has at least one of the S segments with the value ai assigned to them
so that ai > t. Then the CAS rule requires to expose the advert to all those
users for whom condition A(t) holds. An issue with CAS is that the number of
users satisfying condition A(t) may be less than the number specified in the ad-
vertisement order. In this case, a conventional strategy is to have CAS extended
by lessening t to t0 < t, so that more users satisfy condition A(t0) than A(t)
(CASE). In contrast, our strategy, Generalization of User Segments (GUS), is
based on the optimal generalizations of user profiles in the IAB taxonomy made
off-line. GUS tests condition A(t) by applying it not to the segment concerned
but rather to the head subjects.

Table 1 presents comparative results of testing our GUS method at real life
advertising campaigns in Natimatica, Ltd. The comparison criteria are: (a) ad-
vertising impressions (Imprs in the Table 1) obtained, (b) numbers of clicks, and
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(3) click through rates (CTR, (b)/(a)). Our method GUS significantly outper-
forms the conventional strategies.

Table 1. Advertising campaign results at different targeting methods

Campaign IAB segments Metric CAS CASE GUS

Software for
parental
control of
children. Dur.
10 days

Daycare and
Pre-School, Internet
Safety, Parenting
Children Aged 4-11,
Parenting Teens,
Antivirus Software

Imprs
378933 1017598 942104

(+168.5%) (+148.6%)
Clicks 1061 1526 (+43.8%) 2544 (+139.8%)
CTR,% 0.28 0.15 (-46.4%) 0.27 (-3.6%)

Mortgage at
a major
Russian bank.
Dur. 10 days

Home Financing,
Personal Loans

Imprs
159342 275035 289308

(+72.6%) (+81.6%)
Clicks 749 853 (+13.9%) 1302 (+73.9%)
CTR,% 0.47 0.31 (-34.0%) 0.45 (-4.3%)
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