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This article offers a survey of computational research on referring expressions generation (REG).
It introduces the REG problem and describes early work in this area, discussing what basic
assumptions lie behind it, and showing how its remit has widened in recent years. We discuss
computational frameworks underlying REG, and demonstrate a recent trend that seeks to link
up REG algorithms with well-established Knowledge Representation traditions. Considerable
attention is given to recent efforts at evaluating REG algorithms and the lessons that they allow
us to learn. The article concludes with a discussion of the way forward in REG, focussing on
references in larger and more realistic settings.

1. Introduction

Suppose you want to point out one of the people in this scene to an addressee:

d1 d2 d3

Figure 1
A simple visual scene.

Most speakers have no difficulty in accomplishing this task, by producing a referring
expression such as “the man in a suit”, for example. Now imagine a computer being
confronted with the same task, aiming to point out individual d1. Assuming it has
access to a database containing all the relevant properties of the people in the scene, it
needs to find some combination of properties which applies to d1, and not to the other
two. There is a choice though: there are many ways in which d1 can be set apart from
the rest (“the man on the left”, “the man with the glasses”, “the man with the tie”), and
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the computer has to decide which of these is optimal in the given context. Moreover,
optimality can mean different things. It might be thought, for instance, that references
are optimal when they are minimal in length, containing just enough information to
single out the target. But, as we shall see, finding minimal references is computationally
expensive, and it is not necessarily what speakers do, nor what is most useful to hearers.

So, what is Referring Expression Generation? Referring expressions play a central
role in communication, and have been studied extensively in many branches of
(computational) linguistics, including Natural Language Generation (NLG). NLG is
concerned with the process of automatically converting non-linguistic information (e.g.,
from a database) into natural language text, which is useful for practical applications
ranging from generating weather forecasts to summarizing medical information (Reiter
and Dale 2000). Of all the subtasks of NLG, Referring Expression Generation (REG) is
among the ones that have received most scholarly attention. A survey of implemented,
practical NLG systems shows that virtually all of them, regardless of their purpose,
contain a REG module of some sort (Mellish et al. 2006). This is hardly surprising in
view of the central role that reference plays in communication. A system providing
advice about air travel (White, Clark, and Moore 2010), needs to refer to flights (“the
cheapest flight”, “the KLM direct flight”); a Pollen forecast system (Turner et al.
2008) needs to generate spatial descriptions for areas with low or high pollen levels
(“the central belt and further North”), and a robot dialogue system that assembles
construction toys together with a human user (Giuliani et al. 2010), needs to refer to the
components (“insert the green bolt through the end of this red cube”).

REG “is concerned with how we produce a description of an entity that enables the
hearer to identify that entity in a given context” (Reiter and Dale 2000: 55). Since this
can often be done in many different ways, a REG algorithm needs to make a number
of choices. According to Reiter and Dale (2000), the first choice concerns what form of
referring expression is to be used; should the target be referred to, for instance, using
its proper name, a pronoun (“he”) or a description (“the man with the tie”). Proper
names have limited applicability because many domain objects do not have a name
that is in common usage. For pronoun generation, a simple but conservative rule is
discussed by Reiter and Dale (2000), similar to one proposed by Dale (1989): use a
pronoun if the target was mentioned in the previous sentence, and if this sentence
contained no reference to any other entity of the same gender (p. 150-151). Reiter and
Dale (2000) concentrate mostly on the generation of descriptions. If the NLG system
decides to generate a description, two choices need to be made: which set of properties
distinguishes the target (content selection), and how can the selected properties be
turned into natural language (linguistic realisation). Content selection is a complex
balancing act: we need to say enough to enable identification of the intended referent,
but not too much. A selection of information needs to be made, and this needs to
be done quickly. Reiter and Dale discuss various strategies that try to manage this
balancing act, based on Dale and Reiter (1995), an early survey article that summarises
and compares various influential algorithms for the generation of descriptions.

Why a survey on REG, and how to read it? REG, like NLG in general, has changed
considerably from the overviews presented in Dale and Reiter (1995) and Reiter and
Dale (2000), owing largely to an increased use of empirical data, and a widening of
the class of referring expressions studied. Moreover, a gradual shift has taken place
towards extended application domains, different input and output formats, and more
flexible interactions with the user, and this shift is starting to necessitate the use of new
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REG techniques. Examples include recent systems in areas such as weather forecasting
(Turner, Sripada, and Reiter 2009) and medical care (Portet et al. 2009) where complex
references to spatial regions and time periods abound. The results of recent REG
research are scattered over proceedings, books and journals. The current survey offers a
compact overview of the progress in this area and an assessment of the state of the art.

The concept of reference is difficult to pin down (Searle 1969; Abbott 2010). Searle
suggests that the proper approach is “to examine those cases which constitute the center
of variation of the concept of referring and then examine the borderline cases in light of
similarities and differences from the paradigms” (Searle 1969: 26-27). This is precisely
what we shall do in this survey. The “paradigms” of reference in Reiter and Dale (2000)
are definite descriptions whose primary purpose it is to identify their referent, and to do
this without reliance on the linguistic context of the expression. Most recent REG research
subscribes to this view as well. We shall often have occasion to discuss other types of
expressions, but our main focus will be on these paradigmatic cases. To do full justice
to indefinite or attributive descriptions, proper names, and personal pronouns would,
in our view, require a separate survey.

In Section 2 we offer a brief overview of REG research up to 2000, discussing
some classic algorithms. Next, we zoom in on the new directions in which recent
work has taken REG research: extension of the coverage of algorithms, to include, for
example, vague, relational and plural descriptions (Section 3), exploration of different
computational frameworks, such as Graph Theory and Description Logic (Section 4)
and collection of data and evaluation of REG algorithms (Section 5). Section 6 highlights
open questions and avenues for future work. Section 7 summarises our findings.

2. A very short history of pre-2000 REG research

The current survey focusses primarily on the progress in REG research in the 21st
century, but it is important to have a basic insight into pre-2000 REG research and how
it laid the foundation for much of the current work.

2.1 First beginnings

REG can be traced back to the earliest days of Natural Language Processing; Winograd
(1972) (Section 8.3.3, Naming Objects and Events), for example, sketches a primitive
“incremental” REG algorithm, used in his SHRDLU program. In the 1980s, researchers
such as Appelt and Kronfeld set themselves the ambitious task of modelling the human
capacity for producing and understanding referring expressions in programs such as
KAMP and BERTRAND (Appelt 1985; Appelt and Kronfeld 1987; Kronfeld 1990). They
argued that referring expressions should be studied as part of a larger speech act. KAMP
(Appelt 1985), for example, was conceived as a general utterance planning system,
building on Cohen and Levesque’s (1985) formal speech act theory. It used logical
axioms and a theorem prover to simulate an agent planning instructions such as “use
the wheelpuller to remove the flywheel", which contains two referring expressions, as
part of a larger utterance.

Like many of their contemporaries, Appelt and Kronfeld’s hoped to gain insight
into the complexities of human communication. Doug Appelt (p.c.): “(...) the research
themes that originally motivated our work on generation were the outgrowth of the
methodology in both linguistics and computational linguistics at the time that research
progress was best made by investigating hard, anomalous cases that pose difficulties
for conventional accounts.” Their broad focus allowed these researchers to recognise
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that although referring expressions may have identification of the referent as their main
goal, a referring expression can also add information about a target. By pointing to a
tool on a table, while saying “the wheelpuller”, the descriptive content of the referring
expression may serve to inform the hearer about the function of the tool (Appelt and
Kronfeld 1987). They also observed that referring expressions need to be sensitive to
the communicative context in which they are used and that they should be consistent
with the Gricean maxims (see below), which militate against overly elaborate referring
expressions (Appelt 1985)

It is remarkably difficult, after 20 years, to find out how these programs actually
worked, since code was lost and much of what was written about them is pitched at
a high level of abstraction. Appelt and Kronfeld were primarily interested in difficult
questions about human communication, but they were sometimes tantalisingly brief
about humbler matters. Here, for instance, is how Appelt (1985) (p. 21) explains how
KAMP would attempt to identify a referent:

“KAMP chooses a set of basic descriptors when planning a describe action to minimise
both the number of descriptors chosen, and the amount of effort required to plan the
description. Choosing a provably minimal description requires an inordinate amount of
effort and contributes nothing to the success of the action. KAMP chooses a set of
descriptors by first choosing a basic category descriptor (see [Rosch 1978]) for the
intended concept, and then adding descriptors from those facts about the object that are
mutually known by the speaker and the hearer, subject to the constraint that they are all
linguistically realizable in the current noun phrase, until the concept has been uniquely
identified. (. . . ) Some psychological evidence suggests the validity of the minimal
description strategy; however, one does not have to examine very many dialogues to
find counter-examples to the hypothesis that people always produce minimal
descriptions.”

This quote contains the seeds of much later work in REG, given its skepticism about
the naturalness of minimal descriptions, its use of Rosch (1978)-style basic categories,
and its acknowledgment of the role of computational complexity. Broadly speaking, it
suggests an incremental generation strategy, compatible with the ones described below,
although it is uncertain what exactly was implemented. In recent years, the Appelt-
Kronfeld line of research has largely given way to a new research tradition which
focussed away from the full complexity of human communication, with notable ex-
ceptions such as Heeman and Hirst (1995), Stone and Webber (1998), O’Donnell, Cheng
and Hitzeman (1998), and Koller and Stone (2007).

2.2 Generating distinguishing descriptions

In the early nineties a new approach to REG started gaining currency, when Dale
and Reiter re-focussed on the problem of determining what properties a referring
expression should use if identification of the referent is the central goal (Dale 1992,
1989; Reiter 1990; Reiter and Dale 1992). This line of work culminated in the seminal
Dale and Reiter (1995). Like Appelt (1985), Dale and Reiter are concerned with the link
between the Gricean maxims and the generation of referring expressions. They discuss
the following pair of examples:

(1) Sit by the table.
(2) Sit by the brown wooden table.
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Table 1
Tabular representation of some information in our example scene.

Object type clothing position
d1 man wearing suit left
d2 woman wearing t-shirt middle
d3 man wearing t-shirt right

In a situation where there is only one table, which happens to be brown and
wooden, both the descriptions in (1) and (2) would successfully refer to their target.
However, if you hear (2) you might make the additional inference that it is significant to
know that the table is brown and wooden; why else would the speaker mention these
properties? If the speaker merely wanted to refer to the table, your inference would be
an (incorrect) “conversational implicature”, caused by the speaker’s violation of Grice’s
(1975: 45) Maxim of Quantity (“Do not make your contribution more informative
than is required.”). Dale and Reiter (1995) ask how we can efficiently compute which
properties to include in a description, such that it successfully identifies the target while
not triggering false conversational implicatures. For this, they zoom in on a relatively
straightforward problem definition, and compare a number of concise, well-defined
algorithms solving the problem.

Problem definition. Dale and Reiter (1995) formulate the REG problem as follows.
Assume we have a finite domain D of objects with attributes A. In our example scene
(Figure 1), D = {d1, d2, d3} and A = {type, clothing,position, . . .}. The type attribute has
a special status in Dale and Reiter (1995) since it represents the semantic content of the
head noun. Alternatively, we could have defined an attribute gender, stating that it
should be realised as the head noun of a description. Typically, domains are represented
in a knowledge base such as Table 1, where different values are clustered together
because they are associated with the same attribute. Left, right and middle, for example,
belong to the attribute position, and are said to be three values that this attribute can
take. The objects of which a given attribute–value combination (or “property”) is true
are said to form its denotation. Sometimes we will drop the attribute, writing man,
rather than 〈type,man〉, for instance.

The REG task is now defined by Dale and Reiter (1995) through what may be
called identification of the target: given a target (or referent) object r ∈ D, find a set of
attribute–value pairs L whose conjunction is true of the target but not of any of the
distractors (i.e., D − {r}, the domain objects different from the target). L is called a
distinguishing description of the target. In our simple example, suppose that {d1} is the
target (and hence {d2, d3} the set of distractors), then L could, for example, be either
{〈type,man〉, 〈clothing,wearing suit〉} or {〈type,man〉, 〈position, left〉}, which could be
realised as “the man wearing a suit” or “the man to the left”. If identification were all
that counted, a simple, fast, and fault-proof REG strategy would be to conjoin all the
properties of the referent: this conjunction will identify the referent if it can be identified
at all. In practice, Dale and Reiter, and others in their wake, include an additional,
constraint which is often left implicit: that the referring expressions generated should be
as similar to human-produced ones as possible. In the Evaluation and Conclusion sections,
we return to this “human-likeness” constraint (and to variations on the same theme).
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Full Brevity and Greedy Heuristic. Dale and Reiter (1995) discuss various algorithms
which solve the REG task. One of these is the Full Brevity algorithm (Dale 1989) which
deals with the problem of avoiding false conversational implicatures in a radical way,
by always generating the shortest possible distinguishing description. Originally, the
Full Brevity algorithm was meant to generate both initial and subsequent referring
expressions, by relying on a previous step that determines the distractor set based on
which objects are currently salient. Given this set, it first checks whether there is a single
property of the target that rules out all distractors. If this fails, it considers all possible
combinations of two properties, and so on:

1. Look for a description L that distinguishes target r using one property.
If success then return L. Else go to 2.

2. Look for a description L that distinguishes target r using two properties.
If success then return L. Else go to 3.

3. Etcetera

Unfortunately, there are two problems with this approach. First, the problem of finding
a shortest distinguishing description has a high complexity (it is NP hard, see e.g.,
Garey and Johnson (1979)) and hence is computationally very expensive, making it
prohibitively slow for large domains and descriptions. Second, Dale and Reiter note that
human speakers routinely produce descriptions that are not minimal. This is confirmed
by a substantial body of psycholinguistic research (Olson 1970; Sonnenschein 1984;
Pechmann 1989; Engelhardt, Bailey, and Ferreira 2006).

An approximation of Full Brevity is the Greedy Heuristic algorithm (Dale 1989,
1992), which iteratively selects the property which rules out most of the distractors
not previously ruled out, incrementally augmenting the description based on what
property has most discriminatory power at each stage (as a result, it does not always
generate descriptions of minimal size). The Greedy Heuristic algorithm is a more
efficient algorithm than the Full Brevity one, but it was soon eclipsed by another
algorithm (Reiter and Dale 1992; Dale and Reiter 1995), which turned out to be the
most influential algorithm of the pre-2000 era. It is this later algorithm that came to be
known as “the” Incremental Algorithm (IA).

The Incremental Algorithm. The basic idea underlying the IA is that speakers “prefer”
certain properties over others when referring to objects, an intuition supported by the
experimental work of, for instance, Pechmann (1989). Suppose you want to refer to
a person 10 metres away from you. You might mention the person’s gender. If this
is insufficient to single out the referent, you might be more likely to make use of the
colour of the person’s coat than to the colour of her eyes. Less preferred attributes,
such as eye colour, are only considered if other attributes do not suffice. It is this
intuition of a preference order between attributes that the IA exploits. By making this
order a parameter of the algorithm, a distinction can be made between domain/genre
dependent knowledge (the preferences), and a domain-independent search strategy.

As in the Greedy Heuristic algorithm, descriptions are constructed incrementally;
but unlike the Greedy Heuristic, the IA checks attributes in a fixed order. By grouping
properties into attributes, Dale and Reiter predict that all values of a given attribute
have the same preference order. Ordering attributes rather than values, may be disad-
vantageous, however. A simple shape (e.g., a circle), or a size that is unusual for its
target (e.g., a tiny whale) might be preferred over a subtle colour (purplish grey). Also,
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1. IncrementalAlgorithm ({r}, D,Pref){
2. L← ∅
3. C ← D − {r}
4. for each Ai in list Pref do
5. V = Value(r,Ai)
6. if C ∩ RulesOut(〈Ai, V 〉) 6= ∅
7. then L← L ∪ {〈Ai, V 〉}
8. C ← C − RulesOut(〈Ai, V 〉)
9. endif
10. if C = ∅
11. then return L
12. endif
13. return failure }

Figure 2
Sketch of the core Incremental Algorithm

some values of a given attribute might be difficult to express, and “dispreferred” for
this reason (kind of like a ufo shape with a christmas tree sticking out the side)

Figure 2 contains a sketch of the IA in pseudo code. It takes as input a target object
r, a domain D, consisting of a collection of domain objects, and a domain-specific
list of preferred attributes Pref (1). Suppose we apply the IA to d1 of our example
scene, assuming that Pref = type > clothing > position. The description L is initialised
as the empty set (2), and the context set C of distractors (from which d1 needs to be
distinguished) is initialised as D − {d1} (3). The algorithm then iterates through the list
of preferred attributes (4), for each one looking up the target’s value (5), and checking
whether this attribute–value pair rules out any of the distractors not ruled out so far (6).
The function RulesOut (〈Ai, V 〉) returns the set of objects which have a different value
for attribute Ai than the target object has. If one or more distractors are ruled out, the
attribute–value pair 〈Ai, V 〉 is added to the description under construction (7) and a new
set of distractors is computed (8). The first attribute to be considered is type, for which
d1 has the value man. This would rule out d2, the only woman in our domain, and hence
the attribute–value pair 〈type,man〉 is added toL. The new set of distractors isC = {d3},
and the next attribute (clothing) is tried. Our target is wearing suit, and the remaining
distractor is not, so the attribute–value pair 〈clothing,wearing suit〉 is included as well.
At this point all distractors are ruled out (10), a set of properties has been found which
uniquely characterise the target {〈type,man〉, 〈clothing,wearing suit〉} (“the man wear-
ing a suit”), and we are done (11). If we had reached the end of the list without ruling
out all distractors, the algorithm would have failed (13): no distinguishing description
for our target was found.

The sketch in Figure 2 simplifies the original algorithm in a number of respects.
First, Dale and Reiter always include the type attribute, even if it does not rule out any
distractors, because speakers use type information in virtually all their descriptions.
Second, the original algorithm checks, via a function called UserKnows, whether a given
property is in the common ground, to prevent the selection of properties which the
addressee might not understand. Unlike Appelt and Kronfeld, who discuss detailed
examples that hinge on differences in common ground, Dale and Reiter (1995) treat
UserKnows as a function that returns “true” for each true proposition, assuming that
all relevant information is shared. Third, the IA can take some ontological information
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into account via subsumption hierarchies. For instance, in a dog-and-cat domain, a pet
may be of the chihuahua type, but chihuahua is subsumed by dog, and dog in turn is
subsumed by animal. A special value in such a subsumption hierarchy is reserved for
the so-called basic level values (Rosch 1978); dog in this example. If an attribute comes
with a subsumption hierarchy, the IA first computes the best value for that attribute,
which is defined as the value closest to the basic level value, such that there is no more
specific value that rules out more distractors. In other words, the IA favours dog over
chihuahua, unless the latter rules out more distractors.

The IA is conceptually straightforward and easy to implement. In addition, it is
computationally efficient, with polynomial complexity: its worst-case run time is a con-
stant function of the total number of attribute–value combinations available. This com-
putational efficiency is due to the fact that the algorithm does not perform backtracking:
once a property has been selected, it is included in the final referring expression, even
if later additions render it superfluous. As a result, the final description may contain
redundant properties. Far from seeing this as a weakness, Dale & Reiter (1995: 19) point
out that this makes the IA less “psycholinguistically implausible" than its competitors.
It is interesting to observe that while Dale and Reiter (1995) discuss the theoretical
complexity of the various algorithms in detail, later research has tended to attach more
importance to empirical evaluation of the generated expressions (Section 5).

2.3 Discussion

Appelt and Kronfeld’s work, founded on the assumption that REG should be seen
as part of a comprehensive model of communication, started to lose some of its
appeal in the early nineties, because it was at odds with the emerging research ethos
in computational linguistics that stressed simple, well-defined problems allowing
for measurable results. The way current REG systems are shaped is largely due to
developments summarised in Dale and Reiter (1995), which focusses on a specific
aspect of REG, namely determining which properties serve to identify some target
referent. Dale and Reiter’s work aimed for generating human-like descriptions, but
was not coupled with systematic investigation of data.

REG as search. The algorithms discussed by Dale and Reiter (1995) can be seen as
different instantiations of a general search algorithm (Bohnet and Dale 2005; Gatt
2007). They all basically search through the same space of states, each consisting
of three components: a description that is true of the target, a set of distractors,
and a set of properties of the target that have not yet been considered. The initial
state can be formalised as the triple 〈∅, C, P 〉 (no description for the target has been
constructed, no distractors have been ruled out, and all properties P of the target
are still available), and the goal state as 〈L, ∅, P ′〉, for certain L and P ′: a description
L has been found, which is distinguishing – the set of distractors is empty. All
other states in the search space are intermediate ones, through which an algorithm
might move depending on its search strategy. For instance, when searching for a
distinguishing description for d1 in our example domain, an intermediate state could
be s = 〈{〈type,man〉}, {d3}, {〈clothing,wearing suit〉, 〈position, left〉}〉.

The algorithms discussed earlier differ in terms of their so-called expand method,
determining how new states are created, and their queue method, which determines
the order in which these states are visited (i.e., how states are inserted into the queue).
Full Brevity, for example, uses an expand-method that creates a new state for each
attribute of the target not checked before (as long as it rules out at least one distractor).
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Starting from the initial state and applied to our example domain, this expand-method
would result in 3 new states, creating descriptions including type, clothing and position
information respectively. These states would be checked using a queue method which
is breadth-first. The IA, by contrast, uses a different expand-method, each time creating
a single new state in accordance with the pre-determined preference order. Thus, in
the initial state, and assuming (as before) that type is the most preferred attribute, the
expand method would create a single new state: s above. Since there is always only one
new state, the queue method is trivial.

Limitations of pre-2000 REG. In the IA and related algorithms, the focus is on efficiently
computing which properties to use in a distinguishing description. However, there are a
number of implicit simplifications in the way the task is framed. (1) The target is always
just one object, not a larger set (hence, plural noun phrases are not generated). (2) The
algorithms all assume a very simple kind of knowledge representation, consisting of
a set of atomic propositions. Negated propositions are only represented indirectly, via
the Closed World Assumption, so an atomic proposition that is not explicitly listed in the
database is false. (3) Properties are always “crisp”, never vague. Vague properties such
as small and large are treated as Boolean properties, which do not allow borderline
cases and which keep the same denotation, regardless of the context in which they are
used. (4) All objects in the domain are assumed to be equally salient, which implies that
all distractors have to be removed, even those having a very low salience. (5) The full
REG task includes first determining which properties to include in a description, and
then providing a surface realisation in natural language of the selected properties. The
second stage is not discussed, nor is the relation with the first. As we shall, a substantial
part of recent REG research is dedicated to lifting one or more of these simplifying
assumptions. Other limitations are still firmly in place (as we shall discuss in Section 6).

3. Extending the coverage

3.1 Reference to sets

Until recently, REG algorithms aimed to produce references to a single object. But
references to sets are ubiquitous in most text genres. In simple cases, it takes only a
slight modification to allow classic REG algorithms to refer to sets. The IA, for example,
can be seen as referring to the singleton set {r} that contains the target r and nothing
else. If in line 1 (Figure 2), {r} is replaced by an arbitrary set S, and line 3 is modified as
saying C ← D − S instead of C ← D − {r}, then the algorithm produces a description
that applies to all elements of S. Thus, it is easy enough to let these algorithms produce
expressions like “the men” or “the t-shirt wearers”, to identify {d1, d3} and {d2, d3}
respectively. Unfortunately, things are not always so simple. What if we need to refer to
the set {d1, d2}? Based on the properties in Table 1 alone this is not possible, because d1
and d2 have no properties in common. The natural solution is to treat the target set as
the union of two smaller sets, {d1} ∪ {d2}, and refer to both sets separately (e.g., “the
man who wears a suit, and the woman”). Once unions are used, it becomes natural to
allow set complementation as well, as in “the people who are not on the right”. Note
that set complementation may also be useful for single referents. Consider a situation
where all cats except one are owned by Mary, while the owner of the remaining one is
unknown or non-existent. Complementation allows one to refer to “the cat not owned
by Mary”. Henceforth we shall refer to the resulting descriptions as Boolean.
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1. [Length 1.] Run IA using all properties of the form P+/−
If success then return L else goto (2) to add new properties to L.

2. [Length 2.] Run IA using all properties of the form P+/− ∪ P+/−
If success then return L else goto (3) to add new properties to L.

3. [Length 3.] Run IA using all properties of the form P+/− ∪ P+/− ∪ P+/−
If success then return L else goto (4) to add new properties to L.

4. Etcetera, up to unions of length n.

Figure 3
Outline of the first stage of van Deemter’s (2002) Boolean REG algorithm.

As part of a more general logical analysis of the IA, van Deemter (2002) made a
first stab at producing Boolean descriptions, using a two-stage algorithm whose first
stage is a generalisation of the IA, and whose second stage involves the optimisation of
the possibly lengthy expressions produced by the first phase. The resulting algorithm is
logically complete in the following sense: if a given set can be described at all using the
properties available then this algorithm will find such a description.

The first stage of the algorithm starts by conjoining properties (man, left) in the
familiar manner of the IA; if this does not suffice for singling out the target set then the
same incremental process continues with unions of two properties (e.g., man ∪ woman,
middle ∪ left), then with unions of three properties (e.g., man ∪ wearing suit ∪ woman),
and so on. The algorithm terminates when the referent (individual or set) is identified
(success) or when all combinations of properties have been considered (failure). Figure
3 depicts this in schematic form, where n represents the total number of properties in the
domain, and P+/− denotes the set of all literals (atomic properties such as man, and their
complements¬man). Step (1) generalises the original IA allowing for negated properties
and target sets. As before, L is the description under construction. It will consist of
intersections of unions of literals such as (woman ∪man) ∩ (woman ∪ ¬wearing suit)
(in other words, L is in Conjunctive Normal Form, CNF).

Note that this first stage is not only incremental at each of its n steps, but also
as a whole: once a property has been added to the description, later steps will not
remove it. This can lead to redundancies, even more than in the original IA. The
second stage removes the most blatant of these, but only where the redundancy exists
as a matter of logic, rather than world knowledge. Suppose, for example, that step
2 selects the properties P ∪ S and P ∪R, ruling out all distractors. L now takes the
form (P ∪ S) ∩ (P ∪R) (e.g., “the things that are both (women or men) and (women
or wearing suits)”). The second phase uses logic optimisation techniques (originally
designed for the minimisation of digital circuits (McCluskey 1965)) to simplify this to
P ∪ (S ∩R) (“the women, and the men wearing suits”).

Variations and extensions. Gardent (2002) drew attention to situations where this
proposal produces unacceptably lengthy descriptions; suppose, for example, the
algorithm accumulates numerous properties during steps 1 and 2, before finding one
complex property (a union of three properties) during step 3 which, on its own would
have sufficed to identify the referent. This will make the description generated much
lengthier than necessary, because the properties from steps 1 and 2 are now superfluous.
Gardent’s take on this problem amounts to a reinstatement of Full Brevity embedded
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in a reformulation of REG as a constraint satisfaction problem (see Section 4.2). The
existence of fast implementations for constraint satisfaction alleviates the problems
with computational tractability to a considerable extent. But by re-instating Full Brevity,
algorithms like Gardent’s could run into the empirical problems noted by Dale and
Reiter, given that human speakers frequently produce non-minimal descriptions (see
Gatt (2007) for evidence pertaining to plurals).

Horacek (2004) makes a case for descriptions in Disjunctive Normal Form
(DNF; unions of intersections of literals). Horacek’s algorithm first generates
descriptions in CNF, then convert these into DNF, skipping superfluous
disjuncts. Consider our example domain (Table 1). To refer to {d1, d2}, a
CNF-oriented algorithm might generate (man ∪ woman) ∩ (left ∪middle) (“the
people who are on the left or middle”). Horacek converts this, first, into DNF:
(man ∩ left) ∪ (woman ∩middle) ∪ (man ∩middle) ∪ (woman ∩ left), after which the
last two disjuncts are dropped, because there are no men in the middle, and no women
on the left. The outcome could be worded as “the man on the left and the woman in the
middle”. Later work has tended to agree with Horacek in opting for DNF instead of
CNF (Gatt 2007; Khan, van Deemter, and Ritchie 2008).

Perspective and coherence. Recent studies have started to bring data-oriented methods
to the generation of references to sets (Gatt 2007; Gatt and van Deemter 2007; Khan,
van Deemter, and Ritchie 2008). One finding is that referring expressions benefit from
a “coherent” perspective. For example, “the Italian and the Greek” is normally a better
way to refer to two people than “the Italian and the cook”, since the former is generated
from one coherent perspective (i.e., nationalities). Two questions need to be addressed,
however. First, how should coherence be defined? Gatt (2007) opted for a definition that
assesses the coherence of a combination of properties using corpus-based frequencies as
defined by Kilgarriff (2003) (which is based on Lin (1998)). This choice was supported
by a range of experiments (although the success of the approach is less well attested
for referring expressions that contain adjectives). Secondly, what if full coherence can
only be achieved at the expense of brevity? Suppose a domain contains one Italian and
two Greeks. One of the Greeks is a cook, while the other Greek and the Italian are both
IT consultants. If this is all that is known, the generator faces a choice between either
generating a description that is fully coherent but unnecessarily lengthy (“the Italian IT
consultant and the Greek cook”), or brief but incoherent (“The Italian and the cook”).
Simply saying "The Italian and the Greek" would not be distinguishing. In such cases,
coherence becomes a tricky, and computationally complex, optimisation problem (Gatt
2007; Gatt and van Deemter 2007).

Collective plurals. Reference to sets is a rich topic, where many issues on the borderline
between theoretical, computational, and experimental linguistics are waiting to be
explored. Most computational proposals, so far, use properties that apply to individual
objects. To refer to a set, in this view, is to say things that are true of each member of
the set. Such references may be contrasted with collective ones (e.g., “the lines that run
parallel to each other”, “the group of 4 people”) whose semantics is known to throw up
many problems (see e.g., Scha and Stallard (1988) or Lønning (1997)). For initial ideas
about the generation of collective plurals, we refer to Stone (2000).
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3.2 Relational descriptions

Another important limitation of most early REG algorithms is that they are restricted to
one-place predicates (e.g., “being a man”), instead of relations involving two or more
arguments. Even a property like “wearing a suit” is modelled as if it were simply a one-
place predicate without internal structure (instead of a relation between a person and
a piece of clothing). This means that the algorithms in question are unable to identify
one object via another, as when we say “the man who wears a suit that was bought by
a woman who lives above the supermarket”, and so on.

One early paper does discuss relational descriptions, making a number of important
observations about them (Dale and Haddock 1991). First, it is possible to identify an
object through its relations to other objects without identifying each of these objects
separately. Consider a situation involving two cups and two tables, where one cup is on
one of the tables. In this situation, neither “the cup” nor “the table” is distinguishing,
but “the cup on the table” succeeds in identifying one of the two cups. Secondly,
descriptions of this kind can have any level of ‘depth’: in a complex situation, one might
say “the white cup on the red table in the kitchen”, and so on. To be avoided, however,
are the kinds of repetitions that can arise from descriptive loops, since these do not add
information. It would, for example, be useless to describe a cup as “the cup to the left
of the saucer to the right of the cup to the left of the saucer . . . ”. We shall return to this
issue in Section 4, where we shall ask how suitable each of a number of representational
frameworks is for the proper treatment of relational descriptions.

Various researchers have attempted to extend the IA by allowing relational descrip-
tions (Horacek 1996; Krahmer and Theune 2002; Kelleher and Kruijff 2006), often based
on the assumption that relational properties (like “x is on y”) are less preferred than
non-relational ones (like “x is white”). If a relation is required to distinguish the target
x, the basic algorithm is applied iteratively to y. It seems, however, that these attempts
were only partly successful. One of the basic problems is that relational descriptions –
just like references to sets, but for different reasons – do not seem to fit in well with an
incremental generation strategy. In addition, it is far from clear that relational properties
are always less preferred than non-relational ones (Viethen and Dale 2008). Viethen
and Dale suggest that even in simple scenes, where objects can easily be distinguished
without relations, participants still use relations frequently (in about one third of the
trials). We return to this in Section 5.

On balance, it appears that the place of relations in reference is only partly under-
stood, with much of the iceberg still under water. If 2-place relations can play a role in
REG, then surely so can n-place relations for larger n, as when we say “the city that
lies in between the mountains and the sea” (n = 3). No existing proposal has addressed
n-place relations in general, however. Moreover, human speakers can identify a man
as the man who “kissed all women”, “only women”, or “two women”. The proposals
discussed so far do not cover such quantified relations (but see Ren, van Deemter, and
Pan (2010)).

3.3 Context-dependency, vagueness and gradability

So far we assumed that properties have a crisply defined meaning, which is fixed,
regardless of the context in which they are used. But many properties fail to fit this
mould. Consider the properties young and old, for example. In Figure 1, it is the leftmost
male who looks the older of the two. But if we add an old-age pensioner to the scene
then suddenly he is the most obvious target of expressions like “the older man” or
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“the old man”. Whether someone counts as old or not, in other words, depends on
what other people he is compared with: being old is a context-dependent property. The
concept of being “on the left” is context-dependent too: suppose we add five people to
the right of the young man in Figure 1; now all three characters originally depicted are
suddenly on the left, including the man in the t-shirt who started out on the right.

Concepts like “old” and “left” involve comparisons between objects. Therefore, if
the knowledge base changes, the objects’ descriptions may change as well. But even
if the knowledge base is kept constant, the referent may have to be compared against
different objects, depending on the words in the expression. The word “short” in “John
is a short basketball player”, for example, compares John’s height with that of the other
basketball players, whereas “John is a short man” compares its referent with all the
other men, resulting in different standards for what it means to be short.

“Old” and “short’ are not only context dependent but also gradable, meaning that
you can be more or less of it (older, younger, shorter, taller) (Quirk et al. 1980). Gradable
words are extremely frequent, and in many NLG systems they are of great importance,
particularly in those that have numerical input, for example in weather forecasting
(Goldberg, Driedger, and Kittredge 1994) or medical decision support (Portet et al.
2009). In addition to being context dependent, they are also vague, in the sense that
they allow borderline cases. Some people may be clearly young, others clearly not,
but there are borderline cases in between for whom it is not quite clear whether they
were included. Context can help to diminish the problem, but it won’t go away: in the
expression “short basketball player”, the noun gives additional information about the
intended age range, but borderline cases still exist.

Generating vague references. REG, as we know it, lets generation start from a Knowledge
Base (KB) whose facts do not change as a function of context. This means that context-
dependent properties like a person’s height need to be stored in the KB in a manner that
does not depend on other facts. It is possible to deal with size adjectives in a principled
way, by letting one’s KB contain a height attribute with numerical values. Our running
example can be augmented by giving each of the three people a precise height, for
example: height(d1) = 170cm, height(d2) = 180cm and height(d3) = 180cm (here the
height of the woman d2 has been increased for illustrative purposes). Now imagine
we want to refer to d3. This target can be distinguished by the set of two properties
{man,height = 180cm}. Descriptions of this kind can be produced by means of any of
the classic REG algorithms.

Given that type and height identify the referent uniquely, this set of properties
can be realised simply as “the man who is 180cm tall”. But other possibilities exist.
Given that 180cm is the greatest height of all men in this KB, the set of properties can
be converted into {man,height = maximum}, where the exact height has been pruned
away. The new description can be realised as “the tallest man” or simply as “the tall
man” (provided the referent’s height exceeds a certain minimum value). The algorithm
becomes more complicated when sets are referred to (because the elements of the target
set may not all have the same heights), or when two or more gradable properties are
combined (as in “the strong, tall man in the expensive car”) (van Deemter 2006).

Variations and extensions. Horacek (2005) integrates vagueness with other types of
uncertainty. Horacek could be said to depict a REG algorithm as a gambler who
wants to maximise the chance of the referent being identified on the basis of the
generated expression. Other things being equal, for example, it may be safer to identify
a dog as being “owned by John”, than as being “tall”, because the latter involves
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borderline cases. A similar approach can be applied to perceptual uncertainty (as when
it is uncertain whether the hearer will be able to observe a certain property), or to the
uncertainty associated with little-known words (e.g., will the hearer know what a basset
hound is?) Quantifying all types of uncertainties could prove problematic in practice,
yet by portraying a generator as, essentially, a gambler, Horacek has highlighted an
important aspect of reference generation which had so far been ignored. Crucially, his
approach makes the success of a description a matter of degrees.

The idea that referential success is a matter of degrees appears to be confirmed by
recent applications of REG to geo-spatial data. Here there tend to arise situations in
which it is simply not feasible to produce a referring expression that identifies its target
with absolute precision (though good approximations may exist). Once again, the
degree of success of a referring expression becomes gradable. Suppose you were asked
to describe that area of Scotland where the temperature is expected to fall below zero
on a given night, based on some computer forecast of the weather. Even if we assume
that this is a well-defined area with crisp boundaries, it is not feasible to identify the
area precisely, because listing all the thousands of data points that make up the area
separately is hardly an option. Various approximations are possible, including:

(3) Roads above 500 metres will be icy.
(4) Roads in the Highlands will be icy.

Descriptions of this kind are generated by a system for road gritting, where the
decision which roads to treat with salt depends on the description generated by the
system (Turner, Sripada, and Reiter 2009): roads where temperatures are predicted to
be icy should be treated with salt; others should not. The two descriptions above are
arguably only partially successful in singling out the target area. Generally speaking,
one can distinguish between false positives and false negatives: the former are roads
that are covered by the description but should not be (because the temperature there
is not predicted to fall below zero), the latter are icy roads that will be left un-gritted.
Turner and colleagues decided that it would be unacceptable to have even one false
negative. In other situations, safety (from accidents) and environmental damage
(through salt) might be traded off in different ways, for example by associating a finite
cost with each false positive and a possibly different cost with each false negative, and
choosing the description that is associated with the lowest total cost (van Deemter 2010:
253–254). Again, a crucial and difficult part is to come up with the right cost figures.

3.4 Degrees of salience and the generation of pronouns

When we speak about the world around us, we do not pay equal attention to all the
objects in it. In a novel, for example, a sentence like “Smiley saw the man approaching”
does not mean that Smiley saw the only man: it simply means that Smiley saw the man
who is most salient at this stage of the novel. Passonneau (1996) and Jordan (2000) have
shown how algorithms such as the IA may produce reasonable referring expressions
“in context”, by limiting the set of salient objects in some sensible way, for example,
to those objects mentioned in the previous utterance. Salience, in these works, was
treated as a two-valued, “black-or-white” concept. But perhaps it is more natural to
think of salience – just like height or age – as coming in degrees. Existing theories of
linguistic salience do not merely separate what is salient from what is not. They assign
referents to different salience bands, based on factors such as recency of mention and
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syntactic structure (Gundel, Hedberg, and Zacharski 1993; Hajic̆ová 1993; Grosz, Joshi,
and Weinstein 1995).

Salience and context-sensitive REG. Early REG algorithms (Kronfeld 1990; Dale and
Reiter 1995) assumed that salience could be modelled by means of a focus stack (Grosz
and Sidner 1986): a referring expression is taken to refer to the highest element on
the stack that matches its description (see also DeVault (2004)). Krahmer and Theune
(2002) argue that the focus stack approach is not flexible enough for context-sensitive
generation of descriptions. They propose to assign individual salience weights (sws)
to the objects in the domain, and to reinterpret referring expressions like the man as
referring to the currently most salient man. Once such a gradable notion of salience
is adopted, we are back in the territory of Section 3.3. One simple way to generate
context-sensitive referring expressions is to keep the algorithm of Figure 2 exactly as
it is, but to limit the set of distractors to only those domain elements whose salience
weight is at least as high as that of the target r. Line 3 (Figure 2) becomes:

3’. C ← {x | sw(x) ≥ sw(r)} − {r}

To see how this works, consider the knowledge base of Table 1 once again, assuming
that sw(d1) = sw(d2) = 10, while sw(d3) = 0 (d1 and d2 are salient, for example, because
they were just talked about, and d3 was not). Suppose we keep the same domain and
preference order as before. Now if d1 is the target, then, according to the new definition
3’, C = {d1, d2} − {d1} = {d2} (i.e., d2 is the only distractor which is at least as salient as
the target, d1). The algorithm will select 〈type,man〉, which rules out the sole distractor
d2, leading to a successful reference (“The man”). If, however, d3 would be the target
then C = {d1, d2, d3} − {d3} = {d1, d2}, and the algorithm would operate as normal,
producing a description realisable as “the man in the t-shirt”. Krahmer and Theune
chose to graft a variant of this idea onto the IA, but application to other algorithms is
straightforward.

Krahmer and Theune (2002) compare two theories of computing linguistic salience
– one based on the hierarchical focus constraints of Hajic̆ová (1993), the other on the
centering constraints of Grosz et al. (1995). They argue that the centering constraints,
combined with a gradual decrease in salience of non-mentioned objects (as in the
hierarchical focus approach) yields the most natural results. Interestingly, the need to
compute salience scores can affect the architecture of the REG module. In Centering
Theory, for instance, the salience of a referent is co-determined by the syntactic structure
of the sentence in which the reference is realised; it matters whether the reference is
in subject, object or another position. This suggests an architecture in which REG and
syntactic realisation should be interleaved, a point to which we return below.

Variations and extensions. Differences in salience can be caused by nonlinguistic as
well as linguistic factors: some domain objects may be further removed from the hearer
than others, for example. Paraboni et al. (2007) demonstrated experimentally that such
situations require substantial deviations from existing algorithms, to avoid causing
unreasonable amounts of work to the reader. To see the idea, consider the way we refer
to an address on a map: we probably don’t say “Go to house number 3012 in Aberdeen",
even if only one house in Aberdeen has that number; more likely we say something
like “Go to house number 3012 So-and-so Road, in the West End of Aberdeen", adding
logically redundant information specifically to aid the hearer’s search.

Once referring expressions are no longer viewed as de-contextualised descriptions
of their referent, a number of questions come up. When, for example, is it appropriate
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to use a demonstrative (“this man”, “that man”), or a pronoun (“he”, “she”)? As for
demonstratives, it has proven remarkably difficult to decide when these should be used,
and even harder to choose between the different types of demonstratives (e.g., Piwek
(2008)). Concerning pronouns, Krahmer and Theune suggested that “he” abbreviates
“the (most salient) man”, and “she” “the (most salient) woman”. In this way, algorithms
for generating distinguishing descriptions might also become algorithms for pronoun
generation. However, such an approach to pronoun generation is too simple, since
additional factors are known to determine whether a pronoun is suitable or not (McCoy
and Strube 1999; Henschel, Cheng, and Poesio 2000; Callaway and Lester 2002; Kibble
and Power 2004). Based on analyses of naturally occurring texts, McCoy and Strube
(1999), for example, emphasised the role of topics and discourse structure for pronoun
generation, and pointed out that the changes in time scale are a reliable cue for this.
In particular, they found that in certain places a definite description was used where a
pronoun would have been unambiguous. This happened in particular when the time
frame of the sentence differed from that of the sentence in which the previous mention
occurred, as can be seen, for example, from a change in tense or a cue-phrase such as
“several months ago”. Kibble and Power (2004) use Centering Theory as their starting
point in a constraint-based text generation framework, taking into account constraints
such as salience, cohesion and continuity for the choice of referring expressions.

A lot of work on contextual reference takes text as its starting point (e.g., Poesio
& Vieira (1998) and Belz et al. (2010)), unlike the majority of REG research, which
uses standard knowledge representations of the kind exemplified in Table 1 (or some
more sophisticated frameworks, see Section 4). An interesting variant is presented by
Siddharthan and Copestake (2004), who set themselves the task of generating a referring
expression at a specific point in a discourse, without assuming that a knowledge base
(in the normal sense of the word) is available: all their algorithm has to go by is text. For
example, a text might start saying “The new president applauded the old president”.
From this alone, the algorithm has to figure out whether, in the next sentence, it can talk
about “the old president” (or some other suitable noun phrase) without risk of misin-
terpretation by the reader. The authors argue that standard REG methods can achieve
reasonable results in such a setting, particularly (as we shall see next) with respect to
the handling of lexical ambiguities that arise when a word can denote more than one
property. Lexical issues such as these transcend the selection of semantic properties.
Clearly, it is time for us to consider matters that lie beyond Content Determination.

3.5 Beyond Content Determination

In many early REG proposals, Lexical Choice and Surface Realisation follow Content
Determination, in the style of a pipeline, with most of the actual research focussing
predominantly on Content Determination. One might have thought that good results
are easy to achieve by sending the output of the Content Determination module to
a generic realiser (that is: a program converting meaning representations into natural
language). With hindsight, any such expectations must probably count as naive.

Some REG studies have taken a different approach, interleaving Content Determi-
nation and Surface Realisation (Horacek 1997; Stone and Webber 1998; Krahmer and
Theune 2002; Siddharthan and Copestake 2004), running counter to the pipeline archi-
tecture (Mellish et al. 2006). In this type of approach, syntactic structures are built up in
tandem with semantic descriptions: when 〈type,man〉 has been added to the semantic
description, a partial syntactic tree is constructed for a noun phrase, whose head noun is
man. As more properties are added to the semantic description, appropriate modifiers
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are slotted into the syntax tree; finally, the noun phrase is completed by choosing an
appropriate determiner.

Even in these interleaved architectures, it is often assumed that there is a one-
to-one correspondence between properties and words; but often a property can be
expressed by different words, one of which may be more suitable than the other. Perhaps
the most tangible reason why a word w may be less ideal than another word w′ for
expressing a property p arises whenw is ambiguous between p and some other property
p′ (Siddharthan and Copestake 2004). One president may be “old” in the sense of former,
while another is “old” in the sense of aged, in which case “the old president” can
become ambiguous between the two people. To deal with the choice between “old”
and “former”, Siddharthan and Copestake propose to look at discriminatory power,
the idea being that in this case “former” rules out more distractors than “old” (both
presidents are old). One wonders, however, to what extent readers interpret ambiguous
words “charitably”: suppose two presidents are aged, while only one is the former
president. In this situation, “the old president” seems clear enough, because only one of
its two interpretations justifies the definite article (namely the one where “old” is to be
understood as “former”). Clearly, people’s processing of ambiguous expressions is an
area where there is still a lot to explore.

If we turn away from Siddharthan and Copestake’s setup, and return to the situa-
tion where generation starts from a non-textual knowledge base, similar problems with
ambiguities may arise. In fact, the problem is not confined to Lexical Choice: ambiguities
can arise during Surface Realisation as well. To see this, suppose Content Determination
has selected the properties man and with telescope to refer to a person, and the result
after Surface Realisation and Lexical Choice is “John saw the man with the telescope” then,
once again, the clarity of the semantic description can be compromised by putting the
description in a larger context, causing an attachment ambiguity, which may sometimes
leave it unclear what man is the intended referent of the description. The generator
can save the day by choosing a different realisation, generating “John saw the man who
holds the telescope” instead. Similar ambiguities occur in conjoined references to plurals,
as in “the old men and women”, where “old” may or may not pertain to the women.
These issues have been studied in some detail in connection with a small class of related
coordination ambiguities (Chantree et al. 2005; Khan, van Deemter, and Ritchie 2008).

When the generated referring expressions are realised in a medium richer than plain
text, for instance in the context of a virtual character (Gratch et al. 2002), another set of
issues comes into play. It needs to be decided, then, which words should be emphasised
in speech, possibly in combination with visual cues such as eyebrow movements and
other gestures. Doing full justice to the expanding literature on multimodal reference
is beyond the scope of this survey, but a few pointers may be useful. Various early
studies looked at multimodal reference (Lester et al. 1999). One account, where pointing
gestures directly enter the Content Determination module of REG, is presented by van
der Sluis and Krahmer (2007), who focus on the trade-off between gestures and words.
Kopp et al. (2008) are more ambitious, modelling different kinds of pointing gestures
and integrating their approach with the generation strategy of Stone et al. (2003).

3.6 Discussion

Early REG research made a number of simplifying assumptions, and as a result the early
REG algorithms could only generate a limited variety of referring expressions. When
researchers started lifting some of these assumptions, this resulted in REG algorithms
with an expanded repertoire, being able to generate, for instance, plural and relational
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descriptions. However, this move created a number of new challenges. For instance, the
number of ways in which one can refer to a set of target objects increases, so choosing a
good one is more difficult as well. Should we prefer “the men not wearing an overcoat”,
“the young man and the old man” or “the men left of the woman”. In addition, from
a search perspective, the various proposals result in a larger search space, making
computational issues more pressing. For some of the extensions (e.g., where boolean
combinations of properties are concerned), the complexity of the resulting algorithm is
substantially higher than that of the base IA. Moreover, researchers have often zoomed
in on one extension of the IA, developing a new version which lifts one particular
limitation. Combining all the different extensions into one algorithm which is capable
of, say, generating references to salient sets of objects, using negations and relations and
possibly vague properties, is a non-trivial enterprise. To give just one example, consider
what happens when we combine salience with (other) gradable properties (cf., Sections
3.4 and 3.3). Should “the old man” be interpreted as ‘the oldest of the men that are
sufficiently salient’ or ‘the most salient of the men that are sufficiently old’? Expressions
that combine gradable properties can easily become unclear, and determining when
such combinations are nevertheless acceptable is an interesting challenge.

Some simplifying assumptions have only just begun to be lifted, through extensions
that are only in their infancy, particularly in terms of their empirical validation. Other
simplifying assumptions are still in place. For instance, there is a dearth of work that ad-
dresses functions of referring expressions other than mere identification. Similarly, even
recent proposals tend to assume that it is unproblematic to determine what information
is shared between speaker and hearer. We return to these issues in Section 6.

4. REG frameworks

Most early REG algorithms represent knowledge in a very basic way, specifically de-
signed for REG. This may have been justified at the time, but years of research in Knowl-
edge Representation (KR) suggest that such a carefree attitude towards the modelling
of knowledge may not be wise in the long run. For example, when well-established KR
frameworks are used, it may become possible to re-use existing algorithms for these
frameworks, which have often been optimised for speed, and whose computational
properties are well understood. Depending on the choice of framework, many other
advantages can ensue. Since research that couples REG with KR is relatively new, and
technical properties of the frameworks themselves can be easily found elsewhere, we
shall be comparatively brief. For each framework, we focus on three questions: (a)
How is domain information represented? (b) How is the semantic content of a referring
expression represented? (c) How can distinguishing descriptions be found?

4.1 REG using Graph search

One of the first attempts to link REG with a more generic mathematical formalism
was the proposal by Krahmer, van Erk and Verleg (2003), who used labelled directed
graphs for this purpose. In this approach, objects are represented as the nodes (vertices)
in a graph, and the properties of and relations between these objects are represented
as edges connecting the nodes. Figure 4 shows a graph representation of our example
domain. One-place relations (i.e., properties) such as man are modelled as loops (edges
beginning and ending in the same node), while 2-place relations such as left of are
modelled as edges between different nodes.

18



Emiel Krahmer and Kees van Deemter Referring Expression Generation

Figure 4
Representation of our example scene as a labelled directed graph.

Two kinds of graphs play a role: a scene graph representing the knowledge base,
and referring graphs representing the content of referring expressions. The problem
of finding a distinguishing referring expression can now be defined as a comparison
between graphs. More specifically, it is a graph search problem: given a target object (i.e.,
a node in the scene graph), look for a distinguishing referring graph that is a subgraph of
the scene graph and uniquely characterises the target. Intuitively, such a distinguishing
graph can be “placed over” the target node with its associated edges, and not over any
other node in the scene graph. The informal notion of one graph being “placed over”
another corresponds with a subgraph isomorphism (Read and Corneil 1977). Figure 5
shows a number of referring graphs which can be placed over our target object d1. The
leftmost, which could be realised as “the man”, fails to distinguish our target, since it
can be “placed over” the scene graph in two different ways (over nodes 1 and 3).

Krahmer et al. (2003) use cost functions to guide the search process and to give
preference to some solutions over others. They assume that these cost functions are
monotonic, so extending a graph can never make it cheaper. Graphs are compatible with
many different search algorithms, but Krahmer et al. (2003) employ a simple branch
& bound algorithm for finding the cheapest distinguishing graph for a given target
object. The algorithm starts from the graph containing only the node representing the
target object and recursively tries to extend this graph by adding adjacent edges: edges
starting from the target, or in any of the other vertices added later on to the referring
graph under construction. For each referring graph, the algorithm checks which objects
in the scene graph it may refer to, other than the target; these are the distractors. As soon
as this set is empty, a distinguishing referring graph has been found. At this point, only
alternatives that are cheaper than this best solution found so far need to be inspected.
In the end, the algorithm returns the cheapest distinguishing graph which refers to the
target, if one exists, otherwise it returns the empty graph.

One way to define the cost function would be to assign each edge a cost of one
point. Then the algorithm will output the smallest graph that distinguishes a target
(if one exists), just as the Full Brevity algorithm would. Alternatively, one could assign
costs in accordance with the list of preferred attributes in the IA, making more preferred
properties cheaper than less preferred ones. A third possibility is to compute the costs
of an edge e in terms of the probability P (e) that e occurs in a distinguishing descrip-
tion (which can be estimated by counting occurrences in a corpus), making frequent
properties cheap and rare ones expensive:
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Figure 5
Some referring graphs for target d1.

cost(e) = −log2(P (e))

Experiments with stochastic cost functions have shown that these enable the graph-
based algorithm to capture a lot of the flexibility of human references (Krahmer et al.
2008; Viethen et al. 2008).

In the graph-based perspective, relations are treated in the same way as individual
properties, and there is no risk of running into infinite loops (“the cup to the left of
the saucer to the right of the cup . . . ”). Unlike Dale and Haddock (1991) and Kelleher
and Kruijff (2006), no special measures are required, since a relational edge is either
included in a referring graph or not: including it twice is not possible. Van Deemter and
Krahmer (2007) show that many of the proposals discussed in Section 3 can be recast in
terms of graphs. They argue, however, that the graph-based approach is ill-suited for
representing disjunctive information. Here, the fact that directed graphs are not a fully
fledged KR formalism makes itself felt. Whenever a REG algorithm needs to reason with
complex information, heavier machinery is required.

4.2 REG using Constraint satisfaction

Constraint satisfaction is a computational paradigm that allows efficient solving of NP
hard combinatoric problems such as scheduling (van Hentenryck 1989). It is among the
earliest frameworks proposed for REG (Dale and Haddock 1991), but in later years,
this approach has seldom been emphasised (with notable exceptions, such as Stone and
Webber (1998)), until Gardent (2002) showed how constraint programming can be used
to generate expressions that refer to sets. She proposed to represent a description L for
a target set S as a pair of set variables:

LS = 〈P+
S , P

−
S 〉,

where one variable (P+
S ) ranges over sets of properties that are true of the elements in

S and the other (P−S ) over properties that are false of the elements in S. The challenge
– taken care of by existing constraint solving programs – is to find suitable values (i.e.,
sets of properties) for these variables. To be “suitable”, values need to fulfil a number of
REG-style constraints:

1. All the properties in P+
S are true of all elements in S.

2. All the properties in P−S are false of all elements in S.
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3. For each distractor d there is a property in P+
S which is false of d, or there

is a property in P−S which is true of d.

The third clause says that every distractor is ruled out by either a positive property (i.e.,
a property in P+

S ) or a negative property (i.e., a property in P−S ), or both. An example of
a distinguishing description for the singleton target set {d1} in our example scene would
be 〈{man}, {right}〉, since d1 is the only object in the domain who is both a man and not
on the right. The approach can be adapted to accommodate disjunctive properties to
enable reference to sets (Gardent 2002).

Constraint satisfaction is compatible with a variety of search strategies (Kumar
1992). Gardent opts for a “propagate-and-distribute” strategy, which means that so-
lutions are searched for in increasing size, first looking for single properties, next for
combinations of two properties, etc. This amounts to the Full Brevity search strategy, of
course. Accordingly, Gardent’s algorithm yields a minimal distinguishing description
for a target, provided one exists. Given the empirical questions associated with Full
Brevity, it may well be worthwhile to explore alternative search strategies.

The constraint approach allows an elegant separation between the specification
of the REG problem and its implementation. Moreover, the handling of relations is
straightforwardly applicable to relations with arbitrary numbers of arguments. Gar-
dent’s approach does not run into the aforementioned problems with infinite loops,
because a set of properties (being a set) cannot contain duplicates. Yet, like the labelled
graphs, the approach proposed by Gardent has significant limitations, which stem from
the fact that it does not rest on a fully developed KR system. General axioms cannot
be expressed, let alone enter logical deduction. We are forced to re-visit the question of
what is the best way for REG to represent and reason with knowledge.

4.3 REG using modern Knowledge Representation

To find out what is missing, let us see what happens when domains scale up. Consider
a furniture domain, and suppose every chair is in a room, that every room is in an
apartment, and every apartment in a house. Listing all relevant relations between
individual objects separately (“chair a is in room b”, “room b is in apartment c”, “chair a
is in apartment c”, “apartment c is in house d”) is onerous, error prone, space-consuming
and messy. Modern KR systems solve this problem by employing general axioms (e.g.,
expressing transitivity of the “in” relation; if x is in y, and y is in z, then x is in z). Logical
inference allows the KR system to derive implicit information. For example, from “chair a
is in room b”, “room b is in apartment c”, and “apartment c is in house d”, the transitivity
of “in” allows us to infer that “chair a is in house d”. This combination of basic facts and
general axioms allows a succinct and insightful representation of facts.

Modern KR comes in different flavours. Recently, two different KR frameworks
have been linked with REG, one based on Conceptual Graphs (Croitoru and van
Deemter 2007), the other on Description Logics (Gardent and Striegnitz 2007; Areces,
Koller, and Striegnitz 2008). The first have their origin in Sowa (1984) and were greatly
enhanced by Baget and Mugnier (2002). The latter grew out of work on KL-ONE
(Brachman and Schmolze 1985) and became even more prominent in the wider world
of computing when they came to be linked with the ontology language OWL, which
underpins current work on the semantic web (Baader et al. 2003). Both formalisms
represent attempts to carve out computationally tractable fragments of First-Order
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Predicate Logic for defining and reasoning about concepts, and are closely related
(Kerdiles 2001). For reasons of space, we focus on Description Logic.

The basic idea is that a referring expression can be modelled as a formula of DL,
and that REG can be viewed as the problem of finding a formula that denotes (i.e., refers
to) the target set of individuals. Let us revisit our example domain, casting it as logical
model M , as follows: M = 〈D, ‖.‖〉, where D (the domain) is a finite set {d1, d2, d3} and
‖.‖ is an interpretation function which gives the denotation of the relevant predicates
(thus: ‖man‖ = {d1, d3}, ‖left-of‖ = {〈d1, d2〉, 〈d2, d3〉} etc.). Now the REG task can be
formalised as: given a model M and a target set S ⊆ D, look for a Description Logic
formula ϕ such that ‖ϕ‖ = S. The following three expressions are the Description Logic
counterparts of the referring graphs in Figure 5:

(a) man
(b) man u wears suit
(c) man u ∃ left-of.(woman u wears t-shirt)

The first, (a), would not be distinguishing for d1 (since its denotation includes
d3), but (b) and (c) would. Note that u represents the conjunction of properties, and ∃
represents existential restriction. Negations can be added straightforwardly, as in man
u ¬ wears suit, which denotes d3.

Areces et al. (2008) search for referring expressions in a somewhat non-standard
way. In particular, their algorithm does not start with one particular target referent: it
simply attempts to find the different sets that can be referred to. They start from the
observation that REG can be reduced to computing the similarity set of each domain
object. The similarity set of an individual x is the set of those individuals that have all the
properties that x has. Areces et al. (2008) present an algorithm (based on a proposal by
Hopcroft (1971)) which computes the similarity sets, along with a DL formula associated
with each set. The algorithm starts by partitioning the domain using atomic concepts
such as man and woman, which splits the domain in two subsets ({d1, d3} and {d2}
respectively). At the next stage, finer partitions are made by making use of concepts
of the form ∃R.AtomicConcept (e.g., men left of a woman), and so on, always using
concepts established during one phase to construct more complex concepts during the
next. All objects are considered in parallel, so there is no risk of infinite loops. Control
over the output formulae is achieved by specifying an incremental preference order over
possible expressions, but alternative control strategies could have been chosen.

4.4 Discussion

Even though the role of KR frameworks for REG has received a fair bit of attention in
recent years, one can argue that this constitutes just the first steps of a longer journey.
The question of which KR framework suits REG best, for example, is still open; which
framework has the best coverage, which allows all useful descriptions to be expressed?
Moreover, can referring expressions be found quickly in a given framework, and is it
feasible to convert these representations into adequate linguistic realisations? Given
the wealth of possibilities offered by these frameworks, it is remarkable that much of
their potential is often left unused. In Areces et al.’s proposal, for example, generic
axioms do not play a role, nor does logical inference. Ren, van Deemter and Pan (2010)
sketch how REG can benefit if the full power of KR is brought to bear, using DL as
an example. They show how generic axioms can be exploited, as in the example of the
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furniture domain, where a simple transitivity axiom (if x is in y, and y is in z, then x
is in z) allows a more succinct and insightful representation of knowledge. Similarly,
incomplete information can be used, as when we know that someone is either Dutch or
Belgian, without knowing which of the two. Finally, by making use of more expressive
DL fragments, it becomes possible to identify objects that previous REG algorithms
were unable to identify, as when we say “the man who owns three dogs”, or “the man
who only kisses women”, referring expressions that were typically not considered by
previous REG algorithms.

Extensions of this kind raise new empricial questions, as well. It is an open question,
for instance, when human speakers would be inclined to use such complex descriptions.
These problems existed even in the days of the classic REG algorithms (when it was
already possible to generate lengthy descriptions) but they have become more acute
now that it is possible to generate structurally complex expressions as well. There is
a clear need for empirical work here, which might teach us how the power of these
formalisms ought to be constrained.

5. Evaluating REG

In the time up to and including (Dale and Reiter 1995), evaluation of REG algorithms
received virtually no attention. More recently, evaluation studies have started to be
carried out more and more often. Most of these were predicated on the (often implicit)
assumption – which we shall debate in section 7 – that REG algorithms should try to
generate expressions that are optimally similar to these produced by human speakers
or writers. The dominant method at the moment is, accordingly, to measure the sim-
ilarity between generated expressions and the ones in a suitable corpus of referring
expressions. REG came late to corpus-based evaluation (compared to other parts of
computational linguistics) because suitable data sets are hard to come by. In this section,
we discuss what criteria a data set should meet to make it suitable for REG evaluation,
and we survey which collections are currently available. In addition, we discuss how
one is to determine the performance of a REG algorithm on a given data set. As we shall
see, a lot of work has been done in recent years, but there are still significant questions,
particularly regarding the relation between automatic metrics and human judgements.

5.1 Corpora for REG evaluation

Text corpora are full of referring expressions. For evaluating the realisation of referring
expressions, such corpora are very suitable, and various researchers have used them,
for instance to evaluate algorithms for modifier orderings (Shaw and Hatzivassiloglou
1999; Malouf 2000; Mitchell 2009). Text corpora are also important for the study of
anaphoric links between referring expressions. The texts that make up the GNOME
corpus (Poesio et al. 2004), for instance, contain descriptions of museum objects and
medical patient information leaflets, with each of the two subcorpora containing some
6000 NPs. A lot of information is marked up, including anaphoric links. Yet, text
corpora of this kind are of limited value for evaluating the content selection part of
REG algorithms. For that, one needs a corpus that is fully “semantically transparent”
(van Deemter, van der Sluis, and Gatt 2006): a corpus that contains the actual properties
of all domain objects as well as the properties that were selected for inclusion in a given
reference to the target. Text corpora such as GNOME do not meet this requirement,
and it is often difficult or impossible to add all necessary information, because of the
size and complexity of the relevant domains. For this reason, data sets for content
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selection evaluation are typically collected via experiments with human participants in
simple and controlled settings. Broadly speaking, two kinds of experimental corpora
can be distinguished: corpora specifically collected with reference in mind, and corpora
collected wholly or partly for other purposes, but which have nevertheless been
analysed for the referring expressions in them. We will briefly sketch some corpora of
the latter kind, after which we shall discuss the former in more detail.

General-purpose corpora. One way to elicit “natural” references is to let participants
perform a task for which they need to refer to objects. An example is the corpus of
so-called pear stories of Chafe (1980), in which people were asked to describe a movie
about a man harvesting pears, in a fluent narrative. The resulting narratives featured
such sequences as “And he fills his thing with pears, and comes down and there’s
a basket he puts them in. (...) And then a boy comes by, on a bicycle, the man is
in the tree, and the boy gets off his bicycle (...)”, where a limited set of individuals
come up several times. The referring expressions in a subset of these stories were
analysed in Passonneau (1996), who asked how the form of the re-descriptions (such as
“he”, “them”, and “the man”) in these narratives might best be predicted, comparing
“informational” considerations (which form the core of most algorithms in the tradition
started by Dale and Reiter, as we have seen) with considerations based on Centering
Theory (Grosz, Joshi, and Weinstein 1995). Passonneau, who tested her rules on 319
noun phrases, found support for an integrated model, where centering constraints take
precedence over informational considerations.

The well-known MapTask corpus (Anderson et al. 1991) is another example of a
corpus in which reference plays an important role. It consists of dialogues between
two participants; both have maps with landmarks indicated, but only one (the instruc-
tion giver) has a route on the map and he or she instructs the other (the follower)
about this particular route. Referring expressions are routinely produced in this task
to refer to the landmarks on the maps (“the cliff”). Participants use these not only
for identification purposes but also, for instance, to verify whether they understood
their dialogue partner correctly. In the original MapTask corpus, the landmarks were
labeled with proper names (“cliff”), making them less suitable for studying content
determination. To facilitate the study of reference, the iMap corpus was created (Guhe
and Bard 2008), a modified version of the MapTask corpus where landmarks are not
labelled, and systematically differ along a number of dimensions, including type (e.g.,
owl, penguin, etc.), number (singular, plural) and colour; a target may thus be referred
to as “the two purple owls”. Since participants may refer to targets more than once, it
becomes possible to study initial and subsequent reference (Viethen et al. 2010).

Yet another example is the Coconut corpus (Di Eugenio et al. 2000), a set of task-
oriented dialogues in which participants negotiate which furniture items they want to
buy on a fixed, shared budget. Referring expressions in this corpus (“a yellow rug for
150 dollars”) do not only contain information to identify a particular piece of furniture,
but also include properties which directly refer to the task at hand (e.g., how much
money is still available for a particular furniture item and what the state of agreement
between the negotiators is).

An attractive aspect of these corpora is that they represent fairly realistic
communication, related to a more or less natural task. However, in these corpora,
the identification of objects tends to be mixed with other communicative tasks
(verification, negotiating). This does not mean that the corpora in question are
unsuitable for the study of reference, of course. More specifically, they have been used
for evaluating REG algorithms, to compare the performance of traditional algorithms
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Table 2
Overview of dedicated Referring Expression corpora (alphabetical), with for each corpus an
indication of the domain, and the number of participants and collected descriptions.

Corpus Name Reference Domain Participants Descriptions
Bishop Gorniak & Roy (2004) Coloured cones in 3D scene 9 447
Drawer Viethen & Dale (2006) Drawers in filing cabinet ? 160
GRE3D3 Viethen & Dale (2008) Spheres, Cubes in 3D scene 63 630
iMap Guhe & Bard (2008) Various objects on a map 64 9567
TUNA van Deemter et al. (2011) Furniture, People 60 2280

with special-purpose algorithms that take dialogue context into account (Passonneau
1996; Jordan and Walker 2005; Gupta and Stent 2005). For example, when the speaker
attempts to persuade the hearer to buy an item, Jordan’s Intentional Influences algorithm
selects those properties of the item that make it a better solution than a previously
discussed item. In yet other situations – for example, when a summarisation is offered –
all mutually known properties of the item are selected. Jordan’s algorithm outperforms
traditional algorithms, which is not surprising given that the latter were not designed
to deal with references in interactive settings (Jordan 2000).

Dedicated corpora. In recent years, a number of new corpora have been collected,
specifically focussing on the types of referring expressions that we are focussing on in
this survey. A number of such corpora are summarised in Table 2. In some ways, these
corpora are remarkably similar. Reflecting the prevalent aims of research on REG, for
example, they focus on expressions that aim to identify their referent “in one shot”,
disregarding the linguistic context of the expression, i.e. in the “null context”, as it is
sometimes called (Viethen and Dale 2007). In all these corpora, participants were asked
to refer to targets in a visual scene also containing the distractors. This setup means
that the properties of target objects and their distractors are known, which makes it
comparatively easy to make these corpora semantically transparent by annotating
the references that were produced. In addition, most corpora are “pragmatically
transparent” as well, meaning that the communicative goals of the participants were
known (typically identification).

An early example is the Bishop corpus (Gorniak and Roy 2004). For this data
set, participants were asked to describe objects in various computer generated scenes.
Each of these scenes contained up to 30 objects (“cones”) randomly positioned on a
virtual surface. All objects had the same shape and size, and hence targets could only
be distinguished using their colour (either green or purple) and their location on the
surface (“the green cone at the left bottom”). Each participant was asked to identity
targets in one shot, and for the benefit of an addressee who was physically present but
did not interact with the participant.

The Drawer corpus, collected by Viethen and Dale (2006), has a similar objective, but
here targets are real, being one of 16 coloured drawers in a filing cabinet. On different
occasions, participants were given a random number between 1 and 16 and asked to
refer to the corresponding drawer for an onlooker. Naturally, they were asked not to
use the number; instead they could refer to the target drawers using colour, row and
column, or some combination of those. In this corpus, referring expressions (“the pink
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drawer in the first row, third column”) once again solely serve an identification purpose.
Viethen and Dale (2008) collected a new corpus (GRE3D3), specifically looking at when
participants use spatial relations. For this data collection, participants were presented
with 3D scenes (made with Google SketchUp) containing three simple geometric objects
(spheres and cubes of different colours and sizes, and in different configurations), of
which one was the target. Viethen and Dale (2008) found that spatial relations were
frequently used (“the ball in front of the cube”), even though they were never required
for identification. Whether this generalises to other visual scenes (in which spatial
relations are less immediately ‘available’) is an interesting question for future research.

The TUNA corpus (Gatt, van der Sluis, and van Deemter 2007; van Deemter et
al. 2011) was collected via a web-based experiment, in which singular and plural de-
scriptions were gathered by showing participants one or two targets, where the plural
targets could either be similar (same type) or dissimilar (different type). Targets were
always displayed with 6 distractors, and the resulting domain objects were randomly
positioned in a 3 x 5 grid, with targets surrounded by a red border. Example trials are
shown in Figure 6.

Figure 6
Example trials from the TUNA corpus, a singular trial for the furniture domain (“the small blue
fan”, left) and a plural trial for the people domain (“the men with glasses”, right).

The corpus contains two different domains: a furniture and a people domain. The
first domain is based on pictures of furniture and household items, taken from the
Object Databank (produced by Michael Tarr’s lab, see http://www.tarrlab.org/).
These were manipulated so that besides type (chair, desk, fan) also colour, orientation
and size could systematically be varied. The number of possible attributes and values
in the people domain is much larger (and more difficult to pin down); this domain
consists of a set of black and white photographs of people (all famous mathematicians)
used in an earlier study of van der Sluis and Krahmer (2007). Properties of these
photographs include gender, head orientation, age, beard, hair, glasses, suit, shirt and
tie. It is interesting to realize that the TUNA corpus was designed to have one shortest
description for each target, while in other data sets, such as Viethen and Dale’s (2006)
drawer corpus, a single shortest description does not always exist. The TUNA corpus
has formed the basis of three shared REG challenges, to which we turn below.

5.2 Evaluation metrics

How to compare human references with those produced by a REG algorithm? When
looking for measures that compute the content overlap, one source of inspiration may
come from biology and information retrieval (van Rijsbergen 1979). One measure used
in these fields is the Dice (1945) coefficient, which was originally proposed to quantify
ecologic association between species, and was first applied to REG by Gatt et al. (2007).
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The Dice coefficient (which is not dissimilar to the “match” function used by Jordan
(2000)) is computed by scaling the number of elements that two sets have in common,
by the size of the two sets combined:

Dice(A,B) =
2× |A ∩B|
|A|+ |B|

(1)

The Dice measure ranges from 0 (no agreement, i.e., no elements shared between A and
B) to 1 (complete agreement; A and B share all elements). For REG, A and B can be
understood as attributes (e.g., type) or as attribute–value pairs (properties; 〈type,man〉).
The former option tends to be used in earlier work, but has the somewhat counterin-
tuitive consequence that two descriptions which express different values of the same
attribute (“the man” and “the woman”, say, or “the dog” and “the chihuahua”, in the
earlier discussed cats-and-dogs example) have a Dice score of 1. Hence, in the discussion
below we shall measure overlap in terms of properties.

An alternative to Dice that is sometimes used is the MASI (Measuring Agreement
on Set-valued Items) metric of Passonneau (2006):

MASI(A,B) = δ × |A ∩B|
|A ∪B|

(2)

This is basically an extension of the well-known Jaccard (1901) metric with a weighting
function δ which biases the score in favour of similarity where one set is a sub- or a
superset of the other:

δ =


1, if A = B
2
3 , if A ⊂ B or B ⊂ A
0, if A ∩B = ∅
1
3 , otherwise

(3)

Dice and MASI are straightforward measure for overlap, but they do have their
disadvantages. For example, they assume that all properties are independent and that
all are equally different from each other. Suppose a human participant referred to d1
in our example domain as “the man in the suit next to a woman”, and consider the
following two references produced by a REG algorithm: “the man in the suit” and “the
man next to a woman”. Both omit one property from the human reference and thus have
the same Dice and MASI scores. But only the former reference is distinguishing; the
latter is not. This problem could be solved, for example, by adopting a binary weighted
version of the metrics which multiply the resulting score with 1 for a distinguishing
description and with 0 for a non-distinguishing one.

A more general issue with these overlap metrics can be illustrated with an example
from Richard Power (p.c.). Consider the two (roughly equivalent) expressions “the
palomino” and “the horse with the gold coat and white mane and tail”. Straightforward
counting of attribute–value pairs would result in an overlap score of zero, which would
be misleading, since the two descriptions express essentially the same content, with the
latter description combining, in one property, all properties expressed in the former.
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This problem clearly calls for a more principled approach to representing and counting
properties.

During evaluations, Dice or MASI scores are typically averaged over references for
different trials and produced by different human participants, making them fairly rough
measures. It could be that an algorithm’s predictions match the descriptions of some
participants very well, but those of other participants not at all. To partially compensate
for this, sometimes also the proportion of times an algorithm achieves a perfect match
with a human reference is reported. This measure is known, somewhat confusingly, as
Recall (Viethen and Dale 2006), the Perfect Recall Percentage (PRP) (Gatt, van der Sluis,
and van Deemter 2007) and Accuracy (Gatt, Belz, and Kow 2008).

The measures discussed so far do not take the actual linguistic realisation of the
referring expressions into account. For these, string distance metrics are obvious can-
didates, since these have proven their worth in various other areas of computational
linguistics. One well-known string distance metric, which has also been proposed for
REG evaluation, is the Levenshtein (1966) distance: the minimal number of insertions,
deletions and substitutions needed to convert one string into another, possibly nor-
malised with respect to length (Bangalore, Rambow, and Whittaker 2000). The BLEU
(Papineni et al. 2002) and NIST (Doddington 2002) metrics have their origin in machine
translation evaluation . BLEU measures n-gram overlap between strings; for machine
translation n is often set to 4, but given that referring expressions tend to be short, n = 3
seems a better option for REG evaluation (Gatt, Belz, and Kow 2009). NIST is a BLEU
variant giving more importance to less frequent (and hence more informative) n-grams.
Finally, Belz and Gatt (2008) also use the rouge-2 and rouge-su4 measures (Lin and Hovy
2003), originally proposed for evaluating automatically generated summaries.

An obvious benefit of these string metrics is that they are easy to compute auto-
matically, while property-based evaluation measures such as Dice require an extensive
manual annotation of selected properties. However, the added value of string-based
metrics for REG is relatively unclear. It is not obvious, for instance, that a smaller
Levenshtein distance is always to be preferred over a longer one; the expressions “the
man wearing a t-shirt” and “the woman wearing a t-shirt” are at a mere 2 Levenshtein
distance from each other, but only the former would be a good description for target
d3. On the other hand, “the male person on the right” is at a Levenshtein distance of 15
from “the man wearing a t-shirt”, and both are perfect descriptions of d3.

Alternatively, referring expressions could also be evaluated by human judges, al-
though this obviously is more time consuming than an automatic evaluation. Gatt et al.
(2009) collected judgements of Adequacy (“How clear is this description? Try to imagine
someone who could see the same grid with the same pictures, but didn’t know which of
the pictures was the target. How easily would they be able to find it, based on the phrase
given?”) and Fluency (”How fluent is this description? (. . . ) Is it good, clear English?”).
One may also be interested in the extent to which references are useful for addressees.
This can be evaluated in a number of different ways. Belz and Gatt (2008), for example,
first show participants a generated description for a trial. After participants have read
this description, a scene appears and participants are asked to click on the intended
target. This yields three extrinsic evaluation metrics: the reading time, the identification
time and the error rate, defined as the number of incorrectly identified targets.

5.3 Discussion

Three lessons can be learnt from the recent work on evaluation. First, the emergence of
transparent corpora after 1995 has greatly facilitated the empirical evaluation of REG al-
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gorithms, particularly for content selection. Focussing on reference in simple situations,
a number of studies based on transparent corpora found that the IA outperformed the
Full Brevity and Greedy Heuristic algorithms (Viethen and Dale 2006; van Deemter et
al. 2011). There is an important catch, however: as demonstrated in van Deemter et al.
(2011), the performance of the IA crucially depends on the chosen preference order: the
best preference order outperforms the other two algorithms, but many other preference
orders perform far worse. This is a problem, since no procedure for finding a good
preference order is known. (For n attributes, there are n! preference orders to consider,
so trial and error is not an option except in extremely simple cases.) Perhaps most
controversially, the authors argue that the evidence is starting to stack up in favour of
the thesis that the Greedy algorithm – or variants of the Greedy algorithm that choose
properties on the basis of more than just their discriminatory power – might be superior
to algorithms that use the same preference order all the time.

Second, evaluations suggest that human-produced referring expressions differ from
automatically generated references in a number of ways. Human references often in-
clude redundant information, making the references overspecified in ways that were not
accounted for by standard REG algorithms. An additional problem is that there appears
to be considerable individual variation, both within and between speakers, which is
something that existing REG algorithms do not model (Dale and Viethen 2010).

Third, it is still somewhat unclear what the best REG evaluation metrics are. The
three REG Challenges based on the TUNA set-up offer a wealth of information in
this respect (Gatt and Belz 2010). In each of these challenges, a number of research
teams submitted one or more REG generation systems, allowing detailed statistical
analyses over the various metrics. It was found that Dice, MASI and PRP are very
highly correlated (all r > .95). Interestingly, these metrics correlate negatively with the
proportion of references that are minimally specified (Gatt, Belz, and Kow 2008); in
other words, systems that produce more overspecified references tend to do better in
terms of Dice and other overlap metrics. Concerning the surface realisation metrics, it
was found that – when comparing different realisations of a given set of attributes – the
NIST and BLEU string metrics correlate strongly with each other (r = .9), as one might
expect, but neither correlates well with Levenshtein distance (Gatt, Belz, and Kow 2008).

As for the extrinsic measures, Gatt et al. (2008) only report a significant correlation
between reading time and identification time, which suggests that slow readers are also
slow identifiers, or that referring expressions that are hard to read also make it harder
to identify the intended referent. Gatt et al. (2009) let participants listen to expressions
that were produced either automatically or by human speakers, and found a strong cor-
relation between identification accuracy and adequacy, suggesting that more adequate
references also have more correct identifications. Also, they found a negative correlation
between fluency and identification time, implying that more fluent descriptions reduce
the identification time.

It is notable that essentially no correlations were found between these extrinsic
task performance measures and the automatic metrics for human-likeness (Belz and
Gatt 2008; Gatt and Belz 2010). Different explanations are possible for this lack of a
correlation. Gatt and Belz (2010), in discussing this issue, note that the nature of the
TUNA data could be partly responsible. The TUNA data collection was done in a web-
based and relatively unrestricted manner, and idiosyncratic references do occur in it
(“a red chair, if you sit on it, your feet would show the south east”). It is therefore
possible that a better corpus would show up a correlation between the two kinds of
metrics. Alternatively, it could be that people are not always very good at designing
their utterances in a way that is optimal for hearers (Horton and Keysar 1996) (see also
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Section 6), so producing descriptions that resemble human-produced ones is not the
same as producing descriptions that are of optimal use for hearers. This suggests that
the two sets of metrics measure different things, and that they correspond with two
different aims that the designer of an REG algorithm might have: one set of metrics
could be used if the aim is to mimic speakers, another if the aim is to produce optimal
benefits for hearers.

So far, experimental evaluation has mostly been limited to the simplest of situations,
focussing on algorithms that produce singular descriptions, expressing conjunctions of
basic properties in small and artificial domains. Most of the extensions discussed in
Section 3 have not been evaluated systematically. Moreover, tasks such as the one on
which the TUNA corpus is based can be argued not to be “ecologically valid”: human
participants produce type-written expressions for an imaginary audience on the basis of
abstract visual scenes. The effects of these limitations on the descriptions produced are
partly unknown, although some re-assuring results have recently been obtained. It has
been shown, for example, that, speakers who address an imaginary audience refer in
similar ways to those who address an audience that is physically present (van der Wege
2009). Similarly, Koolen et al. (2009) show that speaking rather than typing has no effect
on the kind and number of attributes in the referring expressions that are produced,
although speakers tend to use more words than typists to convey the same amount of
information. It would be valuable to evaluate REG algorithms in the context of a specific
application, so the added value of different REG algorithms for a real-life application
can be gauged (Gatt, Belz, and Kow 2009).

Two recent evaluation challenges seem promising for these reasons. GREC (Belz et
al. 2010) focusses on the task of deciding which form a referring expression should take
in a textual context, which is important for generating coherent texts such as summaries
(see also Section 6). GIVE (Koller et al. 2010) focusses on generating directions in a
virtual 3D environment, where reference is only one task among a number of others.
This new challenge has so far not included a separate test of REG algorithms employed
in the systems submitted, but it seems likely that GIVE will cause REG research to
focus on harder tasks, including reference in discourse context, reference to sets, and
references that are spread out over several utterances (e.g., Denis (2010)).

6. Open issues

In the previous sections we have discussed three main dimensions in which REG
research has moved beyond the state-of-the-art of 2000. Along the way, various loose
ends have been identified. For example, not all simplifying assumptions of early REG
work have been adequately addressed, and the enterprise of combining extensions
is still in its infancy (Section 3). It is still unclear whether referring expressions in
advanced knowledge representation frameworks can be found quickly (Section 4), and
empirical data has only been collected for the simplest referring expressions (Section
5). In this section, we suggest six further questions for future research.

1. How to match a REG algorithm to a particular domain and application? Evaluation
of classic REG algorithms has shown that with some preference orders, the IA
outperformed the Full Brevity and Greedy Heuristic algorithms, but with others it
performed much worse than these (van Deemter et al. 2011). The point is that the IA,
as it stands, is under-determined, because it does not contain a procedure for finding
a preference order. Sometimes psycholinguistic experiments come to our aid, for
instance Pechmann’s (1989) study showing that speakers have a preference for absolute
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properties (colour) over relative ones (size). Unfortunately, for most other attributes, no
such experiments have been done.

It seems reasonable to assume that frequency tells us something about preference:
a property that is used frequently is also more likely to be high on the list of preferred
properties (Gatt and Belz 2010; van Deemter et al. 2011). But suitable corpora to deter-
mine preferences are rare, as we have seen, and their construction is time consuming.
This raises the question how much data would be needed to make reasonable guesses
about preferred properties; this could be studied, for instance, by drawing learning
curves where increasingly large proportions of a transparent corpus are used to estimate
a preference order and the corresponding performance is measured.

The IA is more drastically under-determined than most other algorithms: the Full
Brevity and the Greedy Heuristic algorithm are specified completely up to situations
where there is a tie: a tie between two equally lengthy descriptions in the first case, and
a tie between two properties that have the same discriminatory power in the second.
To resolve such ties frequency data would clearly be helpful. Similar questions apply
to other generation algorithms. For instance, the graph-based algorithm as described
by Krahmer et al. (2008) assigns one of three different costs to properties (they can be
free, cheap, or somewhat expensive), and frequency data is used to determine which
costs should be assigned to which properties (properties that are almost always used
in a particular domain can be for free, etc.). A recent experiment (Theune et al. 2011)
suggests that training the graph-based algorithm on a corpus with a few dozen items
may already lead to a good performance. In general, knowing how much data is
required for a new domain to reach a good level of performance is an important open
problem for many REG algorithms.

2. How to move beyond the “paradigms” of reference? A substantial amount of
REG research focusses on what we referred to in the Introduction as the “paradigms”
of reference: “first-mention” distinguishing descriptions consisting of a noun phrase
starting with “the”, which serve to identify some target, and which do so without
any further context. But how frequent are these “paradigmatic” kinds of referring
expressions? Poesio and Vieira (1998), in one of the few systematic attempts to quantify
the frequency of different uses of definite descriptions in segments of the Wall Street
Journal corpus, reported that “first mention definite descriptions” are indeed the most
frequent in these texts. These descriptions often do not refer to visual objects in terms of
perceptual properties but to more abstract entities. One might think that it matters little
whether a description refers to a perceivable object or not; a description like “the third
quarter” rules out three quarters much like “the younger-looking man” in our example
scene rules out the older-looking distractor. It appears, however, that the representation
of the relevant facts in such cases tends to be a more complicated affair, and it is here
particularly that more advanced knowledge representation formalisms of the kind
discussed in Section 4 come into their own (a point to which we return below).

Even though first-mention definite descriptions are the most frequent in Poesio
and Vieira’s sample, other uses abound, including anaphoric descriptions and bridging
descriptions, whose generation is studied by Gardent and Striegnitz (2007). Pronouns
come to mind as well. The content determination problem for these other kinds of refer-
ring expressions may not be overly complex, but deciding where in a text or dialogue
each kind of referring expression should be used is hard. Still, this is an important
issue for, for example, automatic summarisation. One of the problems of extractive
summaries is that co-reference chains may be broken, resulting in less coherent texts.
Regeneration of referring expressions is a potentially attractive way of regaining some
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of the coherence of the source document (Nenkova and McKeown 2003). Finally, there
are proper names. REG research often works from the assumption that referents can
not be identified through proper names. (If proper names were allowed, why bother
inventing a description?) But in real text, proper names are highly frequent. This does
not only raise the question when it’s best to use a proper name, or which version of a
proper name should be used (is it “Prince Andrei Nikolayevich Bolkonsky”, “Andrei
Bolkonsky”, or just “Andrei”?), but also how proper names can occur as part of a
larger description, as when we refer to a person using the description “the author of
Primary Colours”, for example, where the proper name “Primary Colours” refers to a
well known book (whose author was long unknown). Surely, it is time for REG to turn
proper names into first-class citizens.

Generation of referring expressions in a text is studied in the GREC (Generating
Referring Expressions in Context) challenges (Belz et al. 2008). A corpus of wikipedia
texts (for cities, countries, rivers, persons and mountains) was constructed, and in
each text all elements of the coreference chain for the main subject were removed.
For each of the resulting reference gaps, a list of alternative referring expressions,
referring to the subject, was given (including the “correct” reference, i.e., the one
that was removed from the text). One well-performing entry (Hendrickx et al. 2008)
predicted the correct type of referring expression in 76% of the cases, using a memory-
based learner. These results suggest that it is feasible to learn which type of referring
expression is best in which instance. If so, REG in context could be conceived of as a
two-stage procedure where first the form of a reference is predicted, after which the
content and realisation are determined. REG algorithms as described in the present
survey would naturally fit into this second phase. It would be interesting to see if such a
method could be developed for a data collection such as that of Poesio and Vieira (1998).

3. How to handle functions of referring expressions other than identification?
Target identification is an important function of referring expressions, but it is not the
only one. Consider the following example, which Dale and Reiter (1995) discuss to
illustrate the limits of their approach:

(5) Sit by the newly painted table.

Here, “the newly painted table” allows the addressee to infer that it would be
better not to touch the table. To account for examples such as this one, a REG algorithm
should be able to take into account different speaker goals (to identify, to warn, etc.) and
allow these goals to drive the generation process. These issues were already studied
in the plan-based approach to REG of Appelt and Kronfeld (Section 2.1), and more
recent work addresses similar problems using new methods. Heeman and Hirst (1995),
for example, present a plan-based, computational approach to REG where referring
is modelled as goal-directed behaviour. This approach accounts for the combination
of different speaker goals, which may be realised in a single referring expression
through “information overloading” (Pollack 1991). Context is crucial here: a variant
such as “What do you think of the newly painted table?” does not trigger the intended
“don’t touch” inference. In another extension of the plan-based approach to reference,
Stone and Webber (1998) use overloading to generate references that only become
distinguishing when the rest of the sentence is taken into account. For example, we can
say “Take the rabbit from the hat” if there are two rabbits, as long as only one of them
is in a hat.
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Plan-based approaches to natural language processing are not as popular as they
were in the eighties and early nineties, in part because they are difficult to develop and
maintain. However, Jordan and Walker (2005) show that a natural language generator
can be trained automatically on features inspired by a plan-based model for REG
(Jordan 2002). Jordan’s “Intentional Influences” model incorporates multiple commu-
nicative and task-related problem solving goals, besides the traditional identification
goal. Jordan supports her model with data from the Coconut corpus (discussed above)
and shows that traditional algorithms such as the IA fail to capture which properties
speakers typically select for their references, not only because these algorithms focus on
identification, but also because they ignore the interactive setting (see below).

In short, it seems possible to incorporate different goals into a REG algorithm,
even without invoking complex planning machinery. However, this calls for a close
coupling of REG with the generation of the carrier utterance, containing the generated
expression. What impact this has on the architecture of an NLG system, what the
relevant goals are, how combinations of different goals influence content selection
and linguistic realisation, and how such expressions are best evaluated is still mostly
unexplored. Answers might come from studying REG in the context of more complex
applications, where the generator may need to refer to objects for different reasons.

4. How to generate suitable referring expressions in interactive settings? Ultimately,
referring expressions are generated for some addressee, yet most of the algorithms we
have discussed are essentially “addressee-blind” (Clark and Bangerter 2004). To be
fair, some researchers have paid lip service to the importance of taking the addressee
into account (cf. Dale and Reiter’s UserKnows function), but it is still largely an open
question to what extent the classical approaches to REG can be used in interactions.
In fact, there are good reasons to assume that most current REG algorithms cannot
directly be applied in an interactive setting. Psycholinguistic studies on reference
production, for example, show that human speakers do take the addressee into account
when referring (an instance of “audience design” (Clark and Murphy 1983)). Some
psycholinguists have argued that referring is an interactive and collaborative process,
with speaker and addressee forming a “conceptual pact” on how to refer to some object
(Brennan and Clark 1996; Metzing and Brennan 2003; Heeman and Hirst 1995). This
also implies that referring is not necessarily a “one shot” affair; rather a speaker may
quickly produce a first approximation of a reference to some target, which may be
refined following feedback from the addressee.

Others have argued that conversation partners automatically “align” with each
other during interaction (Pickering and Garrod 2004). For instance, Branigan et al. (2010)
report on a study showing that if a computer uses the word “seat” instead of the more
common “bench” in a referring expression, the user is subsequently more likely to use
“seat” instead of “bench” as well. This kind of lexical alignment takes place at the level
of linguistic realisation, and there is at least one NLG realiser that can mimic this process
(Buschmeier, Bergmann, and Kopp 2009). Goudbeek and Krahmer (2010) found that
speakers in an interactive setting also align at the level of content selection; they present
experimental data showing that human speakers may opt for a “dispreferred” attribute
(even when a preferred attribute would be distinguishing) when these were salient in
a preceding interaction. The reader may want to consult Arnold (2008) for an overview
of studies on reference choice in context, Clark and Bangerter (2004) for a discussion of
studies on collaborative references, or Krahmer (2010) for a confrontation of some recent
psycholinguistic findings with REG algorithms.
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Psycholinguistic findings suggest that traditional REG algorithms which rely on
some predefined ranking of attributes cannot straightforwardly be applied in an in-
teractive setting. This is confirmed by the findings of Jordan and Walker (2005) and
Gupta and Stent (2005), who studied references in dialogue corpora discussed in Sec-
tion 5. They found that in these data-sets, traditional algorithms are outperformed by
simple strategies which pay attention to the referring expressions produced earlier in
the dialogue. More recently, other researchers have started exploring the generation
of referring expressions in interactive settings as well. Stoia et al. (2006), for example,
presented a system that generates references in situated dialogues, taking into account
both dialogue history and spatial visual context, defined in terms of which distractors
are in the current field of vision of the speakers and how distant they are from the
target. Janarthanam and Lemon (2009) present a method which automatically adapts to
the expertise level of the intended addressee (using “the router” when communicating
with an expert user, and “the black block with the lights” while interacting with a
novice). This line of research fits in well with another, more general, strand of research
concentrating on choice optimisation during planning based on user data (Walker et al.
2007; White, Clark, and Moore 2010).

Interactive settings seem to call for sophisticated addressee modelling. However,
detailed reasoning about the addressee can be computationally expensive, and
some psychologists have argued, based on clever experiments in which speakers
and addressees have slightly different information available, that speakers only
have limited capabilities for considering the addressee’s perspective (Horton and
Keysar 1996; Keysar, Lin, and Barr 2003; Lane, Groisman, and Ferreira 2006). Some
of the studies mentioned above, however, emphasise a level of cooperation that
may not require conscious planning: the balance of work on alignment, for example,
suggests that it is predominantly an automatic process which does not take up
much computational resource. Recently, Gatt et al. (2011) proposed a new model for
interactive REG, consisting of a preference-based search process based on the IA, which
selects properties concurrently and in competition with a priming-based process, both
contributing properties to a limited capacity working memory buffer. This model offers
a new way to think about interactive REG, and the role therein for REG algorithms of
the kind discussed in this survey.

5. What is the impact of visual information? Throughout this paper we have
often discussed references to objects in some shared visual scene, because it offers a
useful way to illustrate the workings of an algorithm. Yet only a small handful of REG
researchers appear to have taken visual information seriously.

Most real-life scenes contain a multitude of potential referents. Just look around
you: every object in your field of vision could be referred to. It is highly unlikely
that speakers would take all these objects into account when producing a referring
expression. Indeed, there is growing evidence that the visual system and the speech
production system are closely intertwined (Meyer et al. (1998), Hanna and Brennan
(2007) and Spivey et al. (2001)). Human speakers employ specific strategies when
looking at real-world scenes (e.g., Itti and Koch (2000), Wooding et al. (2002)). Wooding
and colleagues, for instance, found that certain properties of an image, such as changes
in intensity and local contrasts, determine viewing patterns to a large extent. Top-down
strategies also play a role: for instance, areas that are currently under discussion are
looked at more frequently and for longer periods of time. Yet, little is known about how
scene perception influences the human production of referring expressions, and how
REG algorithms could mimic this.
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When discussing visual scenes, most REG researchers assume that some of the
relevant visual information is stored in a database (compare our visual example scene
in Figure 1 and its database representation in Table 1). Still, the conversion from one
to the other is far from trivial. Clearly, the visual scene is much more informative than
the database; how do we decide which visual information we store in the database and
which we ignore? And, how do we map visual information to symbolic labels? These are
difficult questions, which have received very little attention so far. A partial answer to
the first question can be found in the work of John Kelleher and colleagues, who argue
that visual and linguistic salience co-determine which aspects of a scene are relevant for
the understanding and generation of referring expressions (Kelleher, Costello, and van
Genabith 2005; Kelleher and Kruijff 2006). A partial answer to the second question is
offered by Deb Roy and colleagues (e.g., Roy and Penland (2002) and Roy (2005)) who
present a computational model for automatically grounding attributes based on sensor
data, and by Gorniak and Roy (2004) who apply such a model to referring expressions.

One impediment to progress in this area is the lack of relevant human data. Most,
if not all, of the dedicated data-sets discussed in Section 5 were collected using artificial
visual scenes, either consisting of grids of unrelated objects not forming a coherent
scene, or of coherent scenes of unrealistic simplicity. Generally speaking, the situation
in psycholinguistics is not much better. Recently, some studies started exploring the
effects of more realistic visual scenes on language production. An example is Coco
and Keller (2009), who photoshopped a number of (more or less) realistic visual
scenes, manipulating the visual clutter and number of actors in each scene. They
found that more clutter and more actors resulted in longer delays before language
production started, and that these factors influenced the syntactic constructions that
were used as well. A similar paradigm could be used to collect a new corpus of
human-produced references, with targets being an integral part of a visual scene (rather
than being randomly positioned in a grid). When participants are subsequently asked
to refer to objects in these scenes, eye tracking can be used to monitor where they are
looking before and during the production of particular references. Such data would be
instrumental for developing REG algorithms which take visual information seriously.

6. What Knowledge Representation framework suits REG best? Recent years
have seen a strengthening of the link between REG and knowledge representation
frameworks (see Section 4). There is a new emphasis on questions involving (1) the
expressive power of the formalism in which domain knowledge is expressed (e.g., does
the formalism allow convenient representation of n-place predicates or quantification?),
(2) the expressive power of the formalism in which ontological information is expressed
(e.g., can it express more than just subsumption between concepts?), (3) the amount of
support available for logical inference, and (4) the mechanisms available within each
framework for controlling the output of the generator.

To illustrate the importance of expressive power and logical inference, consider
the type of examples discussed in Poesio and Vieira (1998). What would it take to
generate an expression like “the report on the third quarter of 2009”? It would be
cumbersome to represent the relation between all entities separately, saying that 1950
has a first quarter, which has a report, and the same for all other years. It would be more
elegant and economical to spell out general rules, such as “Every year has a unique
first quarter”, “Quarter 4 of a given year precedes Quarter 1 of any later year”, “The
relation “precede” is transitive”, and so on. As NLG is starting to be applied in large-
scale applications, the ability to capture generalisations of this kind is bound to become
increasingly important.
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It is remarkable that most REG research has, until now, distanced itself so dras-
tically from other areas of Artificial Intelligence, by limiting itself to atomic facts in
the knowledge base. If REG came to be linked with modern knowledge representation
formats – as opposed to the simple attribute–value structures exemplified in Table 1 –
then atomic formulas are no longer the substance of the knowledge base but merely its
seeds. In many cases, resources developed for the semantic web – ontology languages
such as OWL, reasoning tools, and even the ontologies themselves – could be re-used
in REG. REG could even link up with “real AI”, by tapping into models of common-
sense knowledge, such as Lenat (1995) or Lieberman et al. (2004). The new possibilities
raise interesting scientific and strategic questions. For example, how do people generate
referring expressions of the kind highlighted by the work of Poesio and colleagues?
Is this process best modelled using a knowledge-rich approach using general axioms
and deduction, or do other approaches offer a more accurate model? Is it possible that,
when REG starts to focus a bit less on identification of the referent, the result might
be a different, and possibly less logic-oriented problem? What role could knowledge
representation play in these cases? Here, as elsewhere in REG, we see ample space for
future research.

7. General conclusion and discussion

After preparatory work in the nineteen eighties by Appelt and Kronfeld, and the contri-
butions summarised in Dale and Reiter (1995), the first decade of the new millennium
has seen a new surge of interest in referring expression generation. Progress has been
made in three related areas which have been discussed extensively in this survey. First,
researchers have lifted a number of simplifications present in the work of Dale and
Reiter (1995) and others, thereby considerably extending coverage of REG algorithms
to include, for instance, relational, plural and vague references (Section 3). Second,
proposals have been put forward to recast REG in terms of existing and well-understood
computational frameworks, such as labelled directed graphs and Description Logic,
with various attractive consequences (Section 4). Last but not least, there has been a
shift towards data collection and empirical evaluation; this has made it possible to
empirically evaluate REG algorithms, which is starting to give us an improved under-
standing of the strengths and weaknesses of existing work (Section 5). As a result of
these developments, REG is now one of the best developed subfields of NLG.

How should the current state of the art in REG be assessed? The good news is that
current REG algorithms can produce natural descriptions, which may even be more
helpful than descriptions produced by people (Gatt, Belz, and Kow 2009). However,
this is only true when certain simplifying assumptions are made, as in the early REG
research typified by Dale and Reiter (1995). When REG leaves this limited “comfort
zone”, the picture changes drastically. While in recent years the research community
has gained a much better understanding of the challenges that face REG in that wider
arena, many of these challenges are still waiting to be met (Section 6).

New complexities. Recent REG research has revealed various new complexities. Some
of these pertain to the nature of the target. Sets are difficult to refer to, for example,
and algorithms designed to deal with them achieve a lower human-likeness when
referring to sets than to individual objects (van Deemter et al. 2011). Recent efforts to let
REG algorithms refer to spatial regions suggest that in large, realistic domains, precise
identification of a target is a goal that can be approximated, but seldom achieved
(Turner et al. 2008; Turner, Sripada, and Reiter 2009). Little work has been done so far
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on reference to events, or to points and intervals in time (e.g., “When Harry met Sally”,
“the moment after the impact”), and references to abstract and other uncountable entities
(e.g., water, democracy) are beyond the horizon. Where domain knowledge derives
from sensor data – with unavoidably uncertain and noisy inputs – this is bound to
cause problems not previously addressed by REG. It is in such domains that salience
(especially in the non-linguistic sense) becomes a critical issue. When reference takes
place in real life – as opposed to a typical psycholinguistics experiment – it is often
unclear what their salience depends on. It might be that salience is partly in the eye of
the beholder, and that this is one of the causes of the considerable individual variation
that exists between different human speakers (Dale and Viethen 2010).

Human-likeness and evaluation. In early REG research, including (Dale and Reiter
1995), it was often remarkably unclear what exactly the proposed algorithms aimed
to achieve. It was only when evaluation studies were starting to be conducted that
researchers had to “show their cards" and say what they regarded as their criterion for
success. In most cases, they used a form of human-likeness as their success criterion, by
comparing the expressions generated by an algorithm with those in a corpus.

The human-likeness criterion dictates that REG algorithms are to mimic humans
“warts and all”: if speakers produce unclear descriptions, then so should algorithms.
But of course, human-likeness is not the only yardstick that can be used. In NLG systems
whose main aim is to be practically useful, for example, it may be more important for
referring expressions to be clear than to be human-like in all respects. The difference is
important because psycholinguists have shown that human speakers have only limited
capabilities for taking the addressee into account, frequently producing expressions that
cannot be interpreted correctly by an addressee, for example when they are under time
pressure (Horton and Keysar 1996). If usefulness, rather than human-likeness is the
yardstick for success then a different type of evaluation test needs to be used. Possible
tests include, for example, speed and accuracy of task completion (i.e., how often and
how fast do readers find the referent?). A variety of hearer-oriented tests is starting to
be used in recent REG research (Paraboni, van Deemter, and Masthoff 2007; Khan, van
Deemter, and Ritchie 2008), but evaluation of REG algorithms (and of NLG in general)
remains difficult, see e.g., Oberlander (1998), Belz (2009) and Gatt and Belz (2010).

Hearer-oriented experiments may also be useful for evaluating referring
expressions that are logically complex (cf., Section 4.4). It is one thing for a REG
algorithm to use logical quantification to generate a fairly simple description, such
as “the woman who feeds four cats”, but quite another to generate a highly complex
description (“the woman who owns four cats that are chased by between three and
six dogs each of which is fed only by men”), which can be generated using the
same methods. There are difficult methodological questions to be answered here,
about whether the aim of the generator is to model human competence or human
performance. And if it is performance that is to be modelled, then this raises the
question what types of complexities are exploited by human speakers, and what types
of complexities are understandable to human hearers. Such questions can only be
answered by new empirical studies.

Widening the scope of REG algorithms. Much REG research has concentrated on the
main “paradigms” of reference (Searle 1969). Early work on REG treated reference as
emphatically part of communication, as we have seen (Section 2.1, First Beginnings).
But after the refocussing that went on in the 1990’s, many REG algorithms operate as
if describing objects were a goal unto itself, instead of a part of communication. Still,
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when referring expressions occur in their natural habitat – in text or dialogue – then the
reference game becomes subtly different, with factors such as salience and adaptation
playing important (and partly unknown) roles. In these natural contexts, it is also
not always necessary to identify a referent “in one shot”: in dialogue, identification
of the referent is the joint responsibility of both dialogue partners (e.g., Heeman and
Hirst (1995)), and even in monologue, an entire sequence of utterances may guide a
hearer towards the referent. In casual conversation, it is even unclear whether exact
identification of the referent is a requirement at all, in which case all existing algorithms
are wrong-footed. Reference in real life is also characterised by domains that are much
larger and complicated than the ones usually studied (at least until they have been
narrowed down by means of some salience metric): the set of people, for example that
we are able to refer to in daily life is almost unlimited, and the properties that we
can use to refer to them seem almost unbounded, including not only their physical
appearance and location, but their ideas, actions, and so on. Evaluation challenges
such as TUNA REG, GREC and GIVE have helped to bring the research community
together, focussing on small domains and, predominantly, on simple types of referring
expressions. We believe that it is time for evaluation studies to extend their remit and
look at the types of complex references that more recent REG research has drawn
attention to. Such studies would do well, in our view, to pay considerable attention to
the question which referring expressions have the greatest benefit for readers or hearers.

One day, perhaps, all these issues will have been resolved. If there is anything
that a survey of the state of the art in REG makes clear it is that, for all the undeniable
progress in this growing area of NLG, this holy grail is not within reach yet.

Acknowledgements The order of authors was determined by chance; both contributed
equally. Emiel Krahmer thanks The Netherlands Organisation for Scientific Research
(NWO) for VICI grant “Bridging the Gap between Computational Linguistics and
Psycholinguistics: The Case of Referring Expressions” (277-70-007). Kees van Deemter
thanks the EPSRC’s Platform Grant “Affecting People with Natural Language”. We
both thank the anonymous reviewers for their constructive comments, and Doug
Appelt, Johan van Benthem, Robert Dale, Martijn Goudbeek, Helmut Horacek, Ruud
Koolen, Roman Kutlak, Chris Mellish, Margaret Mitchell, Ehud Reiter, Advaith
Siddharthan, Matthew Stone, Mariët Theune and especially Albert Gatt, for discussions
and/or comments on earlier versions of this text. Thanks to Jette Viethen for her
extensive REG bibliography.

References
Abbott, Barbara. 2010. Reference. Oxford University Press.
Anderson, Anne A., Miles Bader, Ellen Gurman Bard, Elizabeth Boyle, Gwyneth Doherty, Simon

Garrod, Stephen Isard, Jacqueline Kowtko, Jan McAllister, Jim Miller, Catherine Sotillo, Henry
Thompson, and Regina Weinert. 1991. The HCRC map task corpus. Language and Speech,
34:351–366.

Appelt, Douglas. 1985. Planning English referring expressions. Artificial Intelligence, 26:1–33.
Appelt, Douglas and Amichai Kronfeld. 1987. A computational model of referring. In Proceedings

of the 10th International Joint Conference on Artificial Intelligence (IJCAI), pages 640–647.
Areces, Carlos, Alexander Koller, and Kristina Striegnitz. 2008. Referring expressions as

formulas of Description Logic. In Proceedings of the 5th International Natural Language Generation
Conference (INLG), pages 42–49, Salt Fork, Ohio.

Arnold, Jennifer E. 2008. Reference production: Production-internal and addressee-oriented
processes. Language and Cognitive Processes, 23:495 – 527.

Baader, Franz, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter

38



Emiel Krahmer and Kees van Deemter Referring Expression Generation

Patel-Schneider. 2003. The Description Logic Handbook: Theory, Implementation and Applications.
Cambridge University Press, Cambridge, UK.

Baget, Jean-François and Marie-Laure Mugnier. 2002. Extensions of simple conceptual graphs:
the complexity of rules and constraints. Journal of Artificial Intelligence Research, 16:425 – 465.

Bangalore, Srinivas, Owen Rambow, and Steven Whittaker. 2000. Evaluation metrics for
generation. In Proceedings of the 1st International Conference on Natural Language Generation
(INLG), pages 1–8, Mitzpe Ramon.

Belz, Anja. 2009. That’s nice . . . what can you do with it? (last words). Computational Linguistics,
35:111–118.

Belz, Anja and Albert Gatt. 2008. Intrinsic vs. extrinsic evaluation measures for referring
expression generation. In Proceedings of the 46th Annual Meeting of the Association for
Computational Linguistics (ACL), Columbus, OH.

Belz, Anja, Eric Kow, Jette Viethen, and Albert Gatt. 2008. The GREC challenge 2008: Overview
and evaluation results. In Proceedings of the 5th International Natural Language Generation
Conference (INLG), pages 183–191.

Belz, Anja, Eric Kow, Jette Viethen, and Albert Gatt. 2010. Generating referring expressions in
context: The GREC task evaluation challenges. In Emiel Krahmer and Mariët Theune, editors,
Empirical Methods in Natural Language Generation. Springer Verlag, Berlin, pages 294–327.

Bohnet, Bernd and Robert Dale. 2005. Viewing referring expression generation as search. In
Proceedings of the 19th International Joint Conference on Artificial Intelligence (IJCAI), pages
1004–1009, Edinburgh.

Brachman, Ronald J. and James G. Schmolze. 1985. An overview of the KL–ONE knowledge
representation system. Cognitive Science, 9(2):171–216.

Branigan, Holly P., Martin J. Pickering, Jamie Pearson, and Janet F. McLean. 2010. Linguistic
alignment between people and computers. Journal of Pragmatics, 42:2355–2368.

Brennan, Susan and Herbert H. Clark. 1996. Conceptual pacts and lexical choice in conversation.
Journal of Experimental Psychology, 22(6):1482–1493.

Buschmeier, Hendrik, Kirsten Bergmann, and Stefan Kopp. 2009. An alignment–capable
microplanner for natural language generation. In Proceedings of the 12th European Workshop on
Natural Language Generation (ENLG), pages 82–89.

Callaway, Charles and James Lester. 2002. Pronominalization in generated discourse and
dialogue. In Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics
(ACL), pages 88–95, Philadelphia.

Chafe, Wallace W. 1980. The Pear Stories: Cognitive, Cultural, and Linguistic Aspects of Narrative
Production. Ablex, Norwood, NJ.

Chantree, Francis, Adam Kilgarriff, Anne de Roeck, and Alistair Willis. 2005. Disambiguating
coordinations using word distribution information. In Proceedings of the International Conference
on Recent Advances in Natural Language Processing (RANLP), Borovets, Bulgaria.

Clark, Herbert H. and Adrian Bangerter. 2004. Changing ideas about reference. In Ira A. Noveck
and Dan Sperber, editors, Experimental Pragmatics. Palgrave Macmillan, Basingstoke, pages
25–49.

Clark, Herbert H. and Gregory Murphy. 1983. Audience design in meaning and reference. In
Jean Francois Le Ny and Walter Kintsch, editors, Language and Comprehension. North Holland,
pages 287–299.

Coco, Moreno I. and Frank Keller. 2009. The impact of visual information on reference
assignment in sentence production. In Proceedings of the 31st Annual Conference of the Cognitive
Science Society (CogSci), pages 274–279, Amsterdam.

Cohen, Philip R. and Hector J. Levesque. 1985. Speech acts and rationality. In Proceedings of the
23rd Annual Meeting of the Association of Computational Linguists (ACL), pages 49–60, Chicago,
Illinois.

Croitoru, Madalina and Kees van Deemter. 2007. A conceptual graph approach to the generation
of referring expressions. In Proceedings of the 20th International Joint Conference on Artificial
Intelligence (IJCAI), pages 2456–2461, Hyderabad, India.

Dale, Robert. 1989. Cooking up referring expressions. In Proceedings of the 27th Annual Meeting of
the Association for Computational Linguistics (ACL), pages 68–75.

Dale, Robert. 1992. Generating Referring Expressions: Constructing Descriptions in a Domain of
Objects and Processes. The MIT Press, Cambridge, Massachusetts.

Dale, Robert and Nicolas Haddock. 1991. Generating referring expressions involving relations.
In Proceedings of the 5th Conference of the European Chapter of the Association of Computational

39



Computational Linguistics Volume x, Number xx

Linguists (EACL), pages 161–166, Berlin.
Dale, Robert and Ehud Reiter. 1995. Computational interpretations of the Gricean maxims in the

generation of referring expressions. Cognitive Science, 18:233–263.
Dale, Robert and Jette Viethen. 2010. Attribute–centric referring expression generation. In Emiel

Krahmer and Mariët Theune, editors, Empirical Methods in Natural Language Generation.
Springer Verlag, Berlin, pages 163–179.

Denis, Alexandre. 2010. Generating referring expressions with reference domain theory. In
Proceedings of the 6th International Natural Language Generation Conference (INLG), Trim, Ireland.

DeVault, David, Charles Rich, and Candace L. Sidner. 2004. Natural language generation and
discourse context: Computing distractor sets from the focus stack. In Proceedings of the 17th
International Meeting of the Florida Artificial Intelligence Research Society (FLAIRS), Miami Beach.

Di Eugenio, Barbara, Pamela W. Jordan, Richmond H. Thomason, and Johanna D. Moore. 2000.
The agreement process: an empirical investigation of human-human computer-mediated
collaborative dialogs. International Journal of Human-Computer Studies, 53:1017–1076.

Dice, Lee R. 1945. Measures of the amount of ecologic association between species. Ecology,
26:297–302.

Doddington, George. 2002. Automatic evaluation of machine translation quality using n-gram
co-occurrence statistics. In Proceedings of the 2nd International Conference on Human Language
Technology Research (HLT), pages 138–145.

Engelhardt, Paul E., Karl G.D Bailey, and Fernanda Ferreira. 2006. Do speakers and listeners
observe the Gricean Maxim of Quantity? Journal of Memory and Language, 54:554–573.

Gardent, Claire. 2002. Generating minimal definite descriptions. In Proceedings of the 40th Annual
Meeting of the Association for Computational Linguistics (ACL), pages 96–103, Philadelphia.

Gardent, Claire and Kristina Striegnitz. 2007. Generating bridging definite descriptions. In Harry
Bunt and Reinhard Muskens, editors, Computing Meaning, Volume 3. Studies in Linguistics and
Philosophy, Springer Publishers, pages 369–396.

Garey, Michael R. and David S. Johnson. 1979. Computers and Intractability: A Guide to the Theory
of NP–Completeness. W.H. Freeman, New York.

Gatt, Albert. 2007. Generating Coherent References to Multiple Entities. Unpublished PhD thesis,
University of Aberdeen.

Gatt, Albert and Anja Belz. 2010. Introducing shared task evaluation to NLG: The TUNA shared
task evaluation challenges. In Emiel Krahmer and Mariët Theune, editors, Empirical Methods in
Natural Language Generation. Springer Verlag, Berlin, pages 264–293.

Gatt, Albert, Anja Belz, and Eric Kow. 2008. The TUNA challenge 2008: Overview and evaluation
results. In Proceedings of the 5th International Conference on Natural Language Generation (INLG),
Salt Fork, Ohio.

Gatt, Albert, Anja Belz, and Eric Kow. 2009. The TUNA–REG challenge 2009: Overview and
evaluation results. In Proceedings of the 12th European Workshop on Natural Language Generation
(ENLG), pages 174–182, Athens, Greece.

Gatt, Albert, Emiel Krahmer, and Martijn Goudbeek. 2011. Attribute preference and priming in
reference production: Experimental evidence and computational modeling. In Proceedings of
the 33rd Annual Meeting of the Cognitive Science Society (CogSci), Boston, Massachusetts.

Gatt, Albert and Kees van Deemter. 2007. Lexical choice and conceptual perspective in the
generation of plural referring expressions. Journal of Logic, Language and Information,
16:423–443.

Gatt, Albert, Ielka van der Sluis, and Kees van Deemter. 2007. Evaluating algorithms for the
generation of referring expressions using a balanced corpus. In Proceedings of the 11th European
Workshop on Natural Language Generation (ENLG), pages 49–56, Schloss Dagstuhl, Germany.

Giuliani, Manuel, Mary Ellen Foster, Amy Isard, Colin Matheson, Jon Oberlander, and Alois
Knoll. 2010. Situated reference in a hybrid human-robot interaction system. In Proceedings of
the 6th International Natural Language Generation Conference (INLG), pages 67–76.

Goldberg, Eli, Norbert Driedger, and Richard Kittredge. 1994. Using natural language processing
to produce weather forecasts. IEEE Expert, 9 (2):45–53.

Gorniak, Peter and Deb Roy. 2004. Grounded semantic composition for visual scenes. Journal of
Artificial Intelligence Research, 21:429–470.

Goudbeek, Martijn and Emiel Krahmer. 2010. Preferences versus adaptation during referring
expression generation. In Proceedings of the 48th Annual Meeting of the Association for
Computational Linguistics (ACL), pages 55–59, Uppsala, Sweden.

Gratch, Jonathan, Jeff Rickel, Elisabth André, Norman Badler, Justine Cassell, and Eric Petajan.

40



Emiel Krahmer and Kees van Deemter Referring Expression Generation

2002. Creating interactive virtual humans: Some assembly required. IEEE Intelligent Systems,
17:54–63.

Grice, Paul. 1975. Logic and conversation. In Peter Cole and Jeffrey L. Morgan, editors, Syntax
and Semantics, Vol. 3: Speech Acts. Academic Press, New York, pages 43–58.

Grosz, Barbara J., Aravind K. Joshi, and Scott Weinstein. 1995. Centering: A framework for
modeling the local coherence of discourse. Computational Linguistics, 21:203–225.

Grosz, Barbara J. and Candace L. Sidner. 1986. Attention, intentions, and the structure of
discourse. Computational Linguistics, 12:175–204.

Guhe, Markus and Ellen Gurman Bard. 2008. Adapting referring expressions to the task
environment. In Proceedings of the 30th Annual Conference of the Cognitive Science Society
(CogSci), pages 2404–2409, Austin, TX.

Gundel, Jeanette, Nancy Hedberg, and Ron Zacharski. 1993. Cognitive status and form of
referring expressions in discourse. Language, 69:247–307.

Gupta, Surabhi and Amanda Stent. 2005. Automatic evaluation of referring expression
generation using corpora. In Proceedings of the 1st Workshop on Using Copora in Natural Language
Generation (UCNLG), pages 1–6, Brighton, UK.

Hajic̆ová, Eva. 1993. Issues of Sentence Structure and Discourse Patterns – Theoretical and
Computational Linguistics, Vol. 2. Charles University, Prague.

Hanna, Joy E. and Susan E. Brennan. 2007. Speaker’s eye gaze disambiguates referring
expressions early during face–to–face conversation. Journal of Memory and Language,
57:596–615.

Heeman, Peter A. and Graeme Hirst. 1995. Collaborating on referring expressions. Computational
Linguistics, 21(3):351–382.

Hendrickx, Iris, Walter Daelemans, Kim Luyckx, Roser Morante, and Vincent Van Asch. 2008.
CNTS: Memory–based learning of generating repeated references. In Proceedings of the 5th
International Natural Language Generation Conference (INLG), pages 194–195.

Henschel, Renate, Hua Cheng, and Massimo Poesio. 2000. Pronominalisation revisited. In
Proceedings of the 18th International Conference on Computational Linguistics (COLING), pages
306–312, Saarbrücken, Germany.

Hopcroft, John. 1971. An n log(n) algorithm for minimizing states in a finite automaton. In Zvi
Kohave, editor, Theory of Machines and computations. Academic Press.

Horacek, Helmut. 1996. A new algorithm for generating referring expressions. In Proceedings of
the 12th European Conference on Artificial Intelligence (ECAI), pages 577–581, Budapest, Hungary.

Horacek, Helmut. 1997. An algorithm for generating referential descriptions with flexible
interfaces. In Proceedings of the 35th Annual Meeting of the Association for Computational
Linguistics (ACL), pages 206–213, Madrid.

Horacek, Helmut. 2004. On referring to sets of objects naturally. In Proceedings of the 3rd
International Conference on Natural Language Generation (INLG), pages 70–79, Brockenhurst, UK.

Horacek, Helmut. 2005. Generating referential descriptions under conditions of uncertainty. In
Proceedings of the 10th European Workshop on Natural Language Generation (ENLG), pages 58–67,
Aberdeen, UK.

Horton, William S. and Boaz Keysar. 1996. When do speakers take into account common
ground? Cognition, 59:91–117.

Itti, Laurent and Christof Koch. 2000. A saliency–based search mechanism for overt and covert
shifts in visual attention. Vision Research, 40:1489–1506.

Jaccard, Paul. 1901. Étude comparative de la distribution florale dans une portion des alpes et
des jura. Bulletin de la Société Vaudoise des Sciences Naturelles, 37:547–579.

Janarthanam, Srinivasan and Oliver Lemon. 2009. Learning lexical alignment policies for
generating referring expressions for spoken dialogue systems. In Proceedings of the 12th
European Workshop on Natural Language Generation (ENLG), pages 74–81, Athens, Greece.

Jordan, Pamela W. 2000. Intentional Influences on Object Redescriptions in Dialogue: Evidence from an
Empirical Study. Ph.D. thesis, University of Pittsburgh.

Jordan, Pamela W. 2002. Contextual influences on attribute selection for repeated descriptions. In
Kees van Deemter and Rodger Kibble, editors, Information Sharing: Reference and Presupposition
in Language Generation and Interpretation. CSLI Publications, Stanford, CA.

Jordan, Pamela W. and Marilyn Walker. 2005. Learning content selection rules for generating
object descriptions in dialogue. Journal of Artificial Intelligence Research, 24:157–194.

Kelleher, John, Fintan Costello, and Josef van Genabith. 2005. Dynamically structuring, updating
and interrelating representations of visual and linguistics discourse context. Artificial

41



Computational Linguistics Volume x, Number xx

Intelligence, 167:62–102.
Kelleher, John and Geert-Jan Kruijff. 2006. Incremental generation of spatial referring

expressions in situated dialog. In Proceedings of the 21st International Conference on
Computational Linguistics (COLING) and 44th Annual Meeting of the Association for Computational
Linguistics (ACL), pages 1041–1048, Sydney, Australia.

Kerdiles, Gwen. 2001. Saying It with Pictures: a Logical Landscape of Conceptual Graphs.
Unpublished PhD thesis, ILLC, Amsterdam.

Keysar, Boaz, Shuhong Lin, and Dale J. Barr. 2003. Limits on theory of mind use in adults.
Cognition, 89:25–41.

Khan, Imtiaz Hussain, Kees van Deemter, and Graeme Ritchie. 2008. Generation of referring
expressions: Managing structural ambiguities. In Proceedings of the 22th International Conference
on Computational Linguistics (COLING), Manchester, UK.

Kibble, Rodger and Richard Power. 2004. Optimizing referential coherence in text generation.
Computational Linguistics, 30:401–416.

Kilgarriff, Adam. 2003. Thesauruses for natural language processing. In Proceedings of the
International Conference on Natural Language Processing and Knowledge Engineering (NLPK),
pages 5–13.

Koller, Alexander and Matthew Stone. 2007. Sentence generation as a planning problem. In
Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics Conference
Proceedings (ACL), pages 337–343, Prague.

Koller, Alexander, Kristina Striegnitz, Donna Byron, Justine Cassell, Robert Dale, Johanna
Moore, and Jon Oberlander. 2010. The first challenge on generating instructions in virtual
environments. In Emiel Krahmer and Mariët Theune, editors, Empirical Methods in Natural
Language Generation. Springer Verlag, Berlin, pages 328–352.

Koolen, Ruud, Albert Gatt, Martijn Goudbeek, and Emiel Krahmer. 2009. Need I say more? On
factors causing referential overspecification. In Proceedings of the CogSci workshop on the
Production of Referring Expressions (PRE-CogSci 2009), Amsterdam, The Netherlands.

Kopp, Stefan, Kirsten Bergmann, and Ipke Wachsmuth. 2008. Multimodal communication from
multimodal thinking. towards an integrated model of speech and gesture production.
Semantic Computing, 2:115–136.

Krahmer, Emiel. 2010. What computational linguists can learn from psychologists (and vice
versa). Computational Linguistics, 36:285–294.

Krahmer, Emiel and Mariët Theune. 2002. Efficient context–sensitive generation of descriptions
in context. In Kees van Deemter and Rodger Kibble, editors, Information Sharing: Givenness and
Newness in Language Processing, pages 223 – 264, CSLI Publications, CSLI, Stanford.

Krahmer, Emiel, Mariët Theune, Jette Viethen, and Iris Hendrickx. 2008. Graph: The costs of
redundancy in referring expressions. In Proceedings of the International Conference on Natural
Language Generation (INLG), pages 227–229, Salt Fork, Ohio.

Krahmer, Emiel, Sebastiaan van Erk, and André Verleg. 2003. Graph–based generation of
referring expressions. Computational Linguistics, 29(1):53–72.

Kronfeld, Amichai. 1990. Reference and Computation: An Essay in Applied Philosophy of Language.
Cambridge University Press, Cambridge.

Kumar, Vipin. 1992. Algorithms for constraint satisfaction problems: a survey. Artificial
Intelligence Magazine, 1:32–44.

Lane, Liane Wardlow, Michelle Groisman, and Victor S. Ferreira. 2006. Don’t talk about pink
elephants! speakers’ control over leaking private information during language production.
Psychological Science, 17 (4):273–277.

Lenat, Douglas. 1995. CYC: A large-scale investment in knowledge infrastructure.
Communication of the ACM, 38:33–38.

Lester, James, Jennifer Voerman, Stuart Towns, and Charles Callaway. 1999. Deictic believability:
Coordinating gesture, locomotion, and speech in lifelike pedagogical agents. Applied Artificial
Intelligence, 13:383–414.

Levenshtein, Vladimir I. 1966. Binary codes capable of correcting deletions, insertions, and
reversals. Soviet Physics Doklady, 10:707–710.

Lieberman, Henry, Hugo Liu, Push Singh, and Barbara Barry. 2004. Beating common sense into
interactive applications. AI Magazine, pages 63–76.

Lin, Chin-Yew and Eduard Hovy. 2003. Automatic evaluation of summaries using N–gram
co–occurrence statistics. In Proceedings of the Human Language Technology Conference of the North
American Chapter of the Association for Computational Linguistics (HLT–NAACL), pages 71–78,

42



Emiel Krahmer and Kees van Deemter Referring Expression Generation

Edmonton, Canada.
Lin, Dekang. 1998. An information–theoretic definition of similarity. In Proceedings of the 15th

International Conference on Machine Learning (ICML), pages 296–304, Madison, Wisconsin.
Lønning, Jan Tore. 1997. Plurals and collectivity. In Johan van Benthem and Alice ter Meulen,

editors, Handbook of Logic and Language. Elsevier, Amsterdam, pages 1009–1054.
Malouf, Robert. 2000. The order of prenominal adjectives in natural language generation. In

Proceedings of the 38th Annual Meeting of the Association for Computational Linguistics (ACL),
pages 85–92.

McCluskey, Edward J. 1965. Introduction to the Theory of Switching Circuits. McGraw–Hill, New
York.

McCoy, Kathleen and Michael Strube. 1999. Generating anaphoric expressions: Pronoun or
definite description? In Proceedings of ACL Workshop on Discourse and Reference Structure, pages
63–71, University of Maryland, College Park.

Mellish, Chris, Donia Scott, Lynn Cahill, Daniel Paiva, Roger Evans, and Mike Reape. 2006. A
reference architecture for natural language generation systems. Natural Language Engineering,
12:1–34.

Metzing, Charles A. and Susan E. Brennan. 2003. When conceptual pacts are broken: Partner
effects on the comprehension of referring expressions. Journal of Memory and Language,
49:201–213.

Meyer, Antje S., Astrid M. Sleiderink, and Willem J.M. Levelt. 1998. Viewing and naming objects:
eye movements during noun phrase production. Cognition, 66:B25–B33.

Mitchell, Margaret. 2009. Class–based ordering of prenominal modifiers. In Proceedings of the 12th
European Workshop on Natural Language Generation (ENLG), pages 50–57, Athens, Greece.

Nenkova, Ani and Kathleen R. McKeown. 2003. References to named entities: A corpus study. In
Proceedings of the Human Language Technology (HLT) Conference, Companion Volume, pages 70–73.

Oberlander, Jon. 1998. Do the right thing . . . but expect the unexpected. Computational Linguistics,
24:501–507.

O’Donnell, Michael, Hua Cheng, and Janet Hitzeman. 1998. Integrating referring and informing
in NP planning. In Proceedings of the ACL Workshop on The Computational Treatment of Nominals,
pages 46–55, Montreal, Canada.

Olson, David R. 1970. Language and thought: Aspects of a cognitive theory of semantics.
Psychological Review, 77:257–273.

Papineni, Kishore, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. BLEU: a method for
automatic evaluation of machine translation. In Proceedings of the 40th Annual meeting of the
Association for Computational Linguistics (ACL), pages 311–318, Philadelphia, PA.

Paraboni, Ivandré, Kees van Deemter, and Judith Masthoff. 2007. Generating referring
expressions: Making referents easy to identity. Computational Linguistics, 33:229–254.

Passonneau, Rebecca. 1996. Using centering to relax Gricean informational constraints on
discourse anaphoric noun phrases. Language and Speech, 39:229–264.

Passonneau, Rebecca. 2006. Measuring agreement on set–valued items (MASI) for semantic and
pragmatic annotation. In Proceedings of the 5th Internation al Conference on Language Resources
and Evaluation (LREC), Genoa, Italy.

Pechmann, Thomas. 1989. Incremental speech production and referential overspecification.
Linguistics, 27:98–110.

Pickering, Martin and Simon Garrod. 2004. Towards a mechanistic psychology of dialogue.
Behavioural and Brain Sciences, 27:169–226.

Piwek, Paul. 2008. Proximal and distal in language and cognition: Evidence from deictic
demonstratives in Dutch. Journal of Pragmatics, 40:694–718.

Poesio, Massimo, Rosemary Stevenson, Barbara di Eugenio, and Janet Hitzeman. 2004.
Centering: A parametric theory and its instantiations. Computational Linguistics, 30:309–363.

Poesio, Massimo and Renata Vieira. 1998. A corpus–based investigation of definite description
use. Computational Linguistics, 24:183–216.

Pollack, Martha. 1991. Overloading intentions for efficient practical reasoning. Noûs, 25:513–536.
Portet, Francois, Ehud Reiter, Albert Gatt, Jim Hunter, Somayajulu Sripada, Yvonne Freer, and

Cindy Sykes. 2009. Automatic generation of textual summaries from neonatal intensive care
data. Artificial Intelligence, 173:789 – 816.

Quirk, Randolph, Sidney Greenbaum, Geoffrey Leech, and Jan Svartvik. 1980. A grammar of
contemporary English (ninth impression). Longman, Burnt Mill, Harlow, Essex.

Read, Ronald C. and Derek G. Corneil. 1977. The graph isomorphism disease. Journal of Graph

43



Computational Linguistics Volume x, Number xx

Theory, 1(1):339–363.
Reiter, Ehud. 1990. The computational complexity of avoiding conversational implicatures. In

Proceedings of the 28th Annual Meeting of the Association for Computational Linguistics (ACL),
pages 97–104.

Reiter, Ehud and Robert Dale. 1992. A fast algorithm for the generation of referring expressions.
In Proceedings of the 14th International Conference on Computational Linguistics (COLING), pages
232–238, Nantes, France.

Reiter, Ehud and Robert Dale. 2000. Building Natural Language Generation Systems. Cambridge
University Press.

Ren, Yuan, Kees van Deemter, and Jeff Pan. 2010. Charting the potential of Description Logic for
the generation of referring expressions. In Proceedings of the 6th International Natural Language
Generation Conference (INLG), pages 115–124.

Rosch, Eleanor. 1978. Principles of categorization. In Eleanor Rosch and Barbara L. Lloyd,
editors, Cognition and Categorization. Erlbaum, Hillsdale, NJ, pages 27–48.

Roy, Deb. 2005. Grounding words in perception and action: Computational insights. Trends in
Cognitive Sciences, 9(8):389–96.

Roy, Deb and Alex Pentland. 2002. Learning words from sights and sounds: a computational
model. Cognitive Science, 26:113–146.

Scha, Remko and David Stallard. 1988. Multi-level plurals and distributivity. In Proceedings of the
26th Annual Meeting of the Association for Computational Linguistics (ACL), pages 17–24, Buffalo,
NY.

Searle, John. 1969. Speech Acts: An Essay in the Philosophy of Language. Cambridge University
Press, Cambridge, UK.

Shaw, James and Vasileios Hatzivassiloglou. 1999. Ordering among premodifiers. In Proceedings
of the 37th Annual Meeting of the Association for Computational Linguistics (ACL), pages 135–143.

Siddharthan, Advaith and Ann Copestake. 2004. Generating referring expressions in open
domains. In Proceedings of the 42nd Annual Meeting of the Association for Computational
Linguistics (ACL), pages 407–414, Barcelona, Spain.

Sonnenschein, Susan. 1984. The effect of redundant communication on listeners: Why different
types may have different effects. Journal of Psycholinguistic Research, 13:147–166.

Sowa, John. 1984. Conceptual structures: Information Processing in Mind and Machine.
Addison–Wesley.

Spivey, Michael, Melinda Tyler, Kathleen Eberhard, and Michael Tanenhaus. 2001. Linguistically
mediated visual search. Psychological Science, 12:282–286.

Stoia, Laura, Donna K. Byron, Darla Magdalene Shockley, and Eric Fosler-Lussier. 2006. Noun
phrase generation for situated dialogs. In Proceedings of the 4th International Natural Language
Generation Conference (INLG), pages 81–88.

Stone, Matthew. 2000. On identifying sets. In Proceedings of the 1st International Conference on
Natural Language Generation (INLG), pages 116–123, Mitzpe Ramon.

Stone, Matthew, Christine Doran, Bonnie Webber, Tonia Bleam, and Martha Palmer. 2003.
Microplanning with communicative intentions: The SPUD system. Computational Intelligence,
19:311–381.

Stone, Matthew and Bonnie Webber. 1998. Textual economy through close coupling of syntax
and semantics. In Proceedings of the 9th International Workshop on Natural Language Generation
(INLG), pages 178–187, Niagara–on–the–Lake, Ontario.

Theune, Mariët, Ruud Koolen, Emiel Krahmer, and Sander Wubben. 2011. Does size matter:
How much data is required to train a reg algorithm? In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Human Language Technologies (ACL-HLT),
Portland, Oregon.

Turner, Ross, Somayajulu Sripada, and Ehud Reiter. 2009. Generating approximate geographic
descriptions. In Proceedings of the 12th European Workshop on Natural Language Generation
(ENLG), pages 42–49, Athens, Greece.

Turner, Ross, Somayajulu Sripada, Ehud Reiter, and Ian P. Davy. 2008. Using spatial reference
frames to generate grounded textual summaries of georeferenced data. In Proceedings of the 5th
International Natural Language Generation Conference (INLG), pages 16–24.

van Deemter, Kees. 2002. Generating referring expressions: Boolean extensions of the
Incremental Algorithm. Computational Linguistics, 28(1):37–52.

van Deemter, Kees. 2006. Generating referring expressions that involve gradable properties.
Computational Linguistics, 32(2):195–222.

44



Emiel Krahmer and Kees van Deemter Referring Expression Generation

van Deemter, Kees. 2010. Not Exactly: In Praise of Vagueness. Oxford University Press, Oxford, UK.
van Deemter, Kees, Albert Gatt, Ielka van der Sluis, and Richard Power. 2011. Generation of

referring expressions: Assessing the Incremental Algorithm. Cognitive Science, to appear.
van Deemter, Kees and Emiel Krahmer. 2007. Graphs and Booleans: On the generation of

referring expressions. In Harry Bunt and Reinhard Muskens, editors, Computing Meaning,
Volume 3. Studies in Linguistics and Philosophy, Springer Publishers, pages 397–422.

van Deemter, Kees, Ielka van der Sluis, and Albert Gatt. 2006. Building a semantically
transparent corpus for the generation of referring expressions. In Proceedings of the 4th
International Conference on Natural Language Generation (INLG), pages 130–132, Sydney,
Australia.

van der Sluis, Ielka and Emiel Krahmer. 2007. Generating multimodal referring expressions.
Discourse Processes, 44(3):145–174.

van der Wege, Mija. 2009. Lexical entrainment and lexical differentiation in reference phrase
choice. Journal of Memory and Language, 60:448–463.

van Hentenryck, Pascal. 1989. Constraint Satisfaction in Logic Programming. The MIT Press,
Cambridge, MA.

van Rijsbergen, C.J. 1979. Information Retrieval. Butterworths, London, 2nd edition.
Viethen, Jette and Robert Dale. 2006. Algorithms for generating referring expressions: Do they

do what people do? In Proceedings of the 4th International Conference on Natural Language
Generation (INLG), pages 63–70, Sydney, Australia.

Viethen, Jette and Robert Dale. 2007. Evaluation in natural language generation: Lessons from
referring expression generation. Traitement Automatique des Langues, 48:141 – 160.

Viethen, Jette and Robert Dale. 2008. The use of spatial relations in referring expressions. In
Proceedings of the 5th International Natural Language Generation Conference (INLG), pages 59–67.

Viethen, Jette, Robert Dale, Emiel Krahmer, Mariët Theune, and Pascal Touset. 2008. Controlling
redundancy in referring expressions. In Proceedings of the 6th Language Resources and Evaluation
Conference (LREC), Marrakech, Morocco.

Viethen, Jette, Simon Zwarts, Robert Dale, and Markus Guhe. 2010. Dialogue reference in a
visual domain. In Proceedings of the 7th Language Resources and Evaluation Conference (LREC),
Valetta, Malta.

Walker, Marilyn, Amanda Stent, François Mairesse, and Rashmi Prasad. 2007. Individual and
domain adaptation in sentence planning for dialogue. Journal of Artificial Intelligence Research,
30:413–456.

White, Michael, Robert Clark, and Johanna Moore. 2010. Generating tailored, comparative
descriptions with contextually appropriate intonation. Computational Linguistics, 36:159–201.

Winograd, Terry. 1972. Understanding Natural Language. Academic Press, New York.
Wooding, David, Mark Muggelstone, Kevin Purdy, and Alastair Gale. 2002. Eye movements of

large populations. Behavior Research Methods, Instruments and Computers, 34:509–517.

45



46


