Computational genomics of lactobacilli

Matti Kankainen

To be presented, with the permission of the Faculty of Biological and Environmental Sciences of the University of Helsinki, for public examination in the lecture room 228 at Koetilantie 5, Viikki, on 24 April 2015, at 12 o'clock noon.

Finland 2015

Supervisor Professor Liisa Holm
Department of Biological and Environmental Sciences,
Faculty of Biosciences
University of Helsinki
Helsinki, Finland
Reviewers Professor Mauno Vihinen
Department of Experimental Medical Science
Lund University
Lund, Sweden
Docent David Fewer
Department of Food and Environmental Sciences
University of Helsinki
Helsinki, Finland
Opponent Adjunct Professor Laura Elo
Department of Mathematics and Statistics
University of Turku
Turku, Finland
Custos Professor Liisa Holm
Department of Biological and Environmental Sciences,
Faculty of Biosciences
University of Helsinki
Helsinki, Finland

Published in Dissertationes Scholae Doctoralis Ad Sanitatem Investigandam Universitatis Helsinkiensis

ISBN 978-951-51-0886-9 (pbk.)
ISBN 978-951-51-0887-6 (PDF)
ISSN 2342-3161 (print)
ISSN 2342-317X (online)
Hansaprint
Vantaa 2015
"If you wish to make an apple pie from scratch, you must first invent the universe." - Carl Sagan

Contents

Abstract
List of original publications
Abbreviations
1 Review of the literature 1
1.1 Bacterial whole-genome sequencing 1
1.1.1 DNA sequencing technologies 3
1.1.2 Preprocessing of sequencing data 6
1.1.3 Genome assembly 10
1.1.4 Structural annotation 13
1.1.5 Protein function prediction 16
1.1.6 Summarisation of genome annotation results 20
1.1.7 Comparative genomics 21
1.1.8 Metabolic and regulatory reconstructions 23
1.1.9 Genome annotation pipelines 24
1.2 Lactobacilli 24
1.2.1 Cellular characteristics of lactobacilli 25
1.2.2 Sugar fermentation 27
1.2.3 Taxonomy 27
1.2.4 Industrial applications 30
1.2.5 Lactobacilli in and on animals and humans 30
1.2.6 Probiotic lactobacilli 32
1.3 Lactobacillus genomes 33
1.3.1 Computational genomics of Lactobacillus 36
1.3.2 Comparative genomics of Lactobacillus 37
1.3.3 Comparative core and pan-genomics of Lactobacillus 38
2 Aims of the study 40
3 Materials and methods 41
3.1 Evaluation of bioinformatics methods 41
3.2 Strains and growth conditions 41
3.3 Sequencing and assembly 42
3.4 Accession numbers for the submitted data 42
3.5 Publicly available genome sequences 42
3.6 Structural and functional annotation 42
3.7 Metabolic pathway reconstruction 43
3.8 Comparative analyses 43
3.9 Core and pan-genome analyses 44
4 Results and discussion 46
4.1 Novel tools for predicting the function of bacterial proteins 46
4.2 L. rhamnosus and L. crispatus genome sequencing 48
4.3 Gene calling in L. rhamnosus and L. crispatus sequences 51
4.4 Functional annotation of L. rhamnosus and L. crispatus 53
4.4.1 General functional prediction of L. rhamnosus and L. crispatus genes 53
4.4.2 Host-interaction molecules in L. rhamnosus and L. crispatus strains 55
4.4.3 Bacteriocins in L. rhamnosus and L. crispatus strains 57
4.4.4 Prophage elements and CRISPR loci 58
4.5 Genomics of L. rhamnosus and L. crispatus metabolism 60
4.6 Comparative genomics of L. rhamnosus and L. crispatus 62
4.7 Orthologue grouping of L. rhamnosus and L. crispatus genes 65
4.8 Phylogenetic reconstructions 67
4.9 Intrafamily variation in Lactobacillaceae 67
5 Conclusions 70
Acknowledgements 75
References 76
Appendixes 108

Abstract

Lactobacilli are gram-positive lactic acid bacteria (LAB) and have important implications for food production and preservation as well as human health and wellbeing. These bacteria occupy various niches in and on the human body, such as the gastrointestinal, respiratory, and urogenital tracts, and have been used for centuries in the fermentation of dairy products, the pickling of vegetables, baking, and curing fish, meats, and sausages. Recently, the use of lactobacilli as biotherapeutic agents has attracted interest. However, the molecular basis of host-microbe interactions, food production abilities and beneficial effects on health of lactobacilli are not well understood and deserve more research. In this thesis research, bioinformatics approaches were developed for genome-scale protein function classification, and the genetic composition of two also human-associated Lactobacillus species was determined by means of genome sequencing and computational genomics. Taken together, the results of these analyses illustrated that genome sequencing and computational genomics represent valuable approaches to the study of lactobacilli and to understanding their physiology. Furthermore, these methods provide effective means of identifying lactobacillar components that are involved in host-interactions.

Protein function prediction is one of the most crucial tasks of any genome sequencing project. In this thesis, two bioinformatics software tools were developed for the systematic analysis of protein function that are more advanced than current methods in several respects. The first automatic function prediction method, called LOCP, was developed to fulfil the need for rapid and accurate genome-wide identification of putative pilus operons in gram-positive bacteria. The computational resource was designed to support for both nucleotide sequence input or annotated bacterial protein sequence data and introduced a novel approach that combines similarity searches and statistical detection of sortase- and pilin-motif enriched regions for the prediction of putative pilus operons in gram-positive genomes. Markedly, the tool identified all genuine pilus gene clusters from the test genome sequences and made in the benchmarking test no false predictions. The second bioinformatics tool disclosed an improved homology-based function prediction solution and was created to offer an effective approach to the large-scale computational annotation of uncharacterised bacterial protein sequences. Compared to existing solutions for homology-based function prediction, BLANNOTATOR groups sequences that are found using sequence similarity searches into subsets according to their biological function and uses a set of matches with consistent functional information as the basis for annotation transfer to the query sequence instead of relying on a single match or all matches as many competing tools do. This procedure improved the functional classification substantially, producing consistent results and facilitating comparisons among various organisms. Overall, the two tools developed in this thesis are important additions to the current repertoire of function classification systems that are applicable to bacterial proteins and provided a novel means to classify bacterial proteins at the genome level. Most importantly, annotation accuracy was high, and both tools provided information that otherwise might have been ignored or considered too labour intensive to find.

Lactobacillus rhamnosus GG is a probiotic bacterium that has a long history of safe use in foods and that has a well-documented beneficial effect on human health. To gain

insight into its physiology and to elucidate the lactobacillar components that are involved in interactions with the host, the genomes of L. rhamnosus GG and its closely related dairy isolate L. rhamnosus LC705 were sequenced and analysed. Although the two genomes were shown to exhibit a high degree of synteny, altogether, nine regions of diversity punctuated the colinearity between the two genomes. The five GG-specific diversity regions included a number of genes encoding bacteriophage components and other genes that are implicated in sugar transport, metabolism, and exopolysaccharide (EPS) biosynthesis. In addition, genes for three pilus subunits and a pilin-dedicated sortase were identified in one of the diversity regions. Importantly, the presence of the pili on the cell surface of L. rhamnosus GG was confirmed and one of the GG-specific pilins was shown to be instrumental for the mucus interaction of L. rhamnosus GG. The diversity regions in LC705 strain encoded rhamnose, ribose, and maltose transporters and fermentative capacities that are missing from GG, thereby extending its metabolic versatility beyond that of GG and enabling LC705 to survive in a range of environments.

The genetic makeup of Lactobacillus crispatus was in turn explored by sequencing and analysing the genome of L. crispatus ST1 and performing a comparative genomic analysis of the chicken isolate ST1 and nine other L. crispatus genomes. The analyses revealed a rather compact genome and indicated that the genetic diversity present within L. crispatus has not yet been captured exhaustively. Specifically, the genomes of ST1 and nine vaginal strains were predicted to contain a pan-genome of 3,929 gene families, of which 1,224 families made up the L. crispatus conserved core. Mathematical extrapolations of these data to an infinite number of strains suggested that the core genome reaches a plateau of approximately 1,116 gene families and that the pan-genome doubles in size with the addition of the next 107 genomes, illustrating the value of sequencing many isolates. Interestingly, the comparison of protein-coding gene (CDS) contents revealed differences that are potentially relevant for the genetic adaptation of L. crispatus to different habitats, such as the existence of different EPS biosynthesis gene clusters in different strains and the Type II CRISPR (clustered regularly interspaced palindromic repeats)-Cas (CRISPRassociated) invader defence system that is specific to vaginal strains. In contrast, adhesin genes that are potentially involved in the exclusion and displacement of the bacterial vaginosis-associated species Gardnerella vaginalis were predicted to be present in the L. crispatus core genome, suggesting that all L. crispatus strains might have the potential to prevent bacterial vaginosis.

List of original publications

This thesis is based on the following publications:
I Plyusnin I, Holm L, Kankainen M. (2009) LOCP--locating pilus operons in gram-positive bacteria. Bioinformatics 25:1187-1188.

II Kankainen M, Ojala T, Holm L. (2012) BLANNOTATOR: enhanced homology-based function prediction of bacterial proteins. $B M C$ bioinformatics 13:33

III Kankainen M, Paulin L, Tynkkynen S, von Ossowski I, Reunanen J, Partanen P, Satokari R, Vesterlund S, Hendrickx APA, Lebeer S, De Keersmaecker SC, Vanderleyden J, Hämäläinen T, Laukkanen S, Salovuori N, Ritari J, Alatalo E, Korpela R, Mattila-Sandholm T, Lassig A, Hatakka K, Kinnunen KT., Karjalainen H, Saxelin M, Laakso K, Surakka A, Palva A, Salusjärvi T, Auvinen P, de Vos WM. (2009) Comparative Genomic Analysis of Lactobacillus rhamnosus GG Reveals Pili Containing a Human Mucus-Binding Protein. Proc Natl Acad Sci U S A 106:17193-17198.

IV Ojala T, Kuparinen V, Koskinen JP, Alatalo E, Holm L, Auvinen P, Edelman S, Westerlund-Wikström B, Korhonen TK, Paulin L, Kankainen M. (2010) Genome sequence of Lactobacillus crispatus ST1.J Bacteriol 192:3547-3548.

V Ojala T, Kankainen M, Castro J, Cerca N, Edelman S, WesterlundWikström B, Paulin L, Holm L, Auvinen P. (2014) Comparative genomics of Lactobacillus crispatus suggests novel mechanisms for the competitive exclusion of Gardnerella vaginalis. BMC Genomics 15:1070.

The publications are referred to in the text by their roman numerals.

Abbreviations

Cas	CRISPR-associated protein
CDS	coding DNA sequence
COG	clusters of orthologous groups
Contig	contiguous sequenced region CRISPR clustered regularly interspaced palindromic repeat
DAG	directed acyclic graph
DE	description line
EC	enzyme commission
emPCR	emulsion polymerase chain reaction
EPS	exopolysaccharide
GIT	gastrointestinal tract
GO	gene ontology
GRAS	generally regarded as safe
HMM	hidden Markov model
HMP	human microbiome project
LAB	lactic acid bacteria
MGE	mobile genetic element
ncRNA	noncoding RNA
NGS	next generation sequencing
OLC	overlap-layout-consensus
ORF	open-reading frame
PCR	polymerase chain reaction
PTS	phosphotransferase system
RBH	reciprocal best hit
RBS	ribosomal binding site
RSD	reciprocal smallest distance
S-layer	surface layer
Sn	sensitivity
Sp	specificity
SVM	support vector machine
TC	transporter classification system
WGS	whole-genome shotgun

1 Review of the literature

This chapter introduces the objectives and scope of this dissertation and includes three sections: 1.1) a methodological review of DNA sequencing, sequence assembly and scaffolding, genomic feature calling, and functional classification techniques that are suitable for bacterial whole-genome sequencing; 1.2) an introduction to the general characteristics, phylogeny, taxonomy, and ecological distribution of lactobacilli; and 1.3) an overview of the existing literature on lactobacilli genomics.

1.1 Bacterial whole-genome sequencing

Whole-genome sequencing is the process of determining the order of nucleotides in the DNA molecules of an organism. Beginning with the first experimental determinations of DNA sequence using a location-specific primer extension strategy (Wu \& Kaiser, 1968; Wu \& Taylor, 1971) and following the introduction of the more practical 'plus and minus' (Sanger \& Coulson, 1975), chemical degradation (Maxam \& Gilbert, 1977), and chain-termination (Sanger et al., 1977) sequencing strategies in the late 1970s, DNA sequencing has advanced to the point at which genomes can be sequenced rapidly and affordably (Mardis, 2008). This astounding growth in DNA sequencing capacity and speed has laid the foundation for determining the genomes of tens of thousands of bacterial (Figure 1) and thousands of other organisms in less than two decades and has permanently altered our understanding of microbial life.

Currently, the whole-genome shotgun (WGS) approach is the most widely used method for determining genome sequences (Anderson, 1981). When applied to microbial organisms (Figure 2), the initial standard approach is to grow the microbe from a single colony and then isolate a sufficient quantity of DNA for library construction. Depending on the protocol adopted, the amount used ranges from a few nanograms to tens of micrograms of DNA (Loman et al., 2012). In the second step, the DNA is fragmented into random overlapping DNA sequences that are used as templates for amplification and are sequenced from one (single-end reads) or both (paired reads) ends. For many years, the fragments were inserted into plasmids for cloning and then sequenced using the Sanger method. However, massively parallel sequencing methods are the current standard approach (Mardis, 2008). The third step of the process involves identifying overlaps between the reads and deriving contiguous consensus sequences from the reads, termed contigs. In most cases, however, full genome sequences cannot be built from a single shotgun read library. To improve the contiguity, paired reads from multiple libraries of different insert sizes are utilised or WGS reads are combined with mate-pair reads resulting from a process in which the ends of long ($3-, 6-$, or $8-\mathrm{kb}$) DNA fragments are brought together by circularisation and then sequenced across the ligation regions (Collins \& Weissman, 1984). In addition, dedicated gap-closing techniques can be used to improve assembly contiguity (Figure 2). Previously, the closure of genomes was deemed

necessary by the scientific community; however, this finishing phase is no longer routine (Figure 1) because of the prohibitive cost and labour required by the gap-closing phase. In future, the emergence of sequencing techniques that produce reads over 10 kb in length might provide a novel means to close genomes. The final step of the standard protocol is genome annotation, followed by analysis of the resulting information.

Figure 2. The principal steps involved in obtaining a bacterial genome sequence. In Sanger sequencing, genomic DNA is extracted from a single colony and then fragmented, ligated into a plasmid vector, and used to transform Escherichia coli. For each sequencing reaction, a single E. coli colony is selected, and the plasmid DNA is isolated. In massively parallel sequencing, common adaptors are ligated to fragmented genomic DNA, which is then subjected to PCR-based amplification and massively parallel sequencing. Following read preprocessing and assembly, unrevealed genome regions can be fixed using a variety of methods, wherein adjacent contigs are detected, and the gap between them is sequenced. Fixing gaps produces a finished genome. Genome annotation includes the identification of sequence features and the subsequent association of biological information with these features. These analyses are often followed by other computational analyses, such as whole-genome comparison, phylogenetic analysis, and metabolic network reconstruction.

1.1.1 DNA sequencing technologies

Six DNA sequencing technologies are currently used (Table 1). The Sanger method is the oldest of these and has been the workhorse of DNA sequencing for over 30 years (Sanger et al., 1977; Mardis, 2008). In essence, the Sanger method uses mixtures of deoxy-

992／L990	ع／¢८レ	000乙／ 00008	દદદ8／દદદદદદ	G／દદ乙	$0 / 0$	／（x）әถеләлоэ әшоиә๑
ガ \downarrow カ	L＇80乙	S＇Z	$9{ }^{\circ} \mathrm{t}$	6 ＇ 2901	ε ¢ $દ$ ¢દદレ	（\＄）əэ！ıd əmouə๑
ләшкןodomoн	әృセ」 ‘słsoo దu！̣eıədo	цъбиә реәл ＇еұер әэeds ıоᅵоう	s．олә uo！！u！！！sqns	6u！̣eıədo＇sıouə ләшК｜odomoн	łndu6noxuł ‘słsoo 6uḷeıədo	suoう
10 sэ！！\downarrow do ృo əsn ou＇1s0כ əu！̣วセW	цұбиәן реәу	słsoo 6uḷeıədo ‘イวセュกวว์	słsoo 6u！̣e＿ə．do ＇fnduбпохчц	S．૦лגə uo！̣n！！！？sqns fo әృеג ‘પłбuә реәу	Кэелทээе ‘પłбиәן реәу	sold
sə人／so人／oN	sə人／ON／ON	sə入／sə入／sə入	sə入／sə入／sə入	sə入／sə入／oN	ON／sə入／sə入	xə｜d！！！ ／sц！ed әృеш／puә－рәц！ед
100	L0＇1	200	ع0\％	98°	レレレ	（qW／\＄）\ddagger ¢oo 6uḷerədo
06 －86	Oャレㄴ8	$000 \cdot 86$	$000 \cdot 86$	L66．66	666.66	（\％）Кэелกวэ૪
0008	GZし	0001	ヤ七69	0ε	60°	（4／qw）plə！ ¢
乙\＆	GLE＇0	Oヤて	0001	L＇0	7980000 0	（unı／q૭）pןə！イ əэuənbəs
†	ε	0ヤて	カナレ	£乙	1	（4）əm！ u uny
0乙\＆	ャ0 0	00ヤて	000t	\downarrow	960000＊	（W）unı ıəd słuəmbeı」
001	OOSLレ	OS＋0G	GZし＋GZし	0001	006	（səseq）чৃбиә реәл хеW
0006ヤレ	000002	000G99	0000ヤL	00000G	00096	（\＄）ısoo әu！
\qquad	s！səцłuイs Kq סu！̣uənbəs	6u！poo əseq －омұ pue uо！！еб！！ Kq Du！̣uənbəs	s．оłеu！ әイр әq！！s」əләу	6u！כuənbesoıkd	ио！ฺеи！шшә и！ечэ Кхоәр！о	
əэセృuns peəq uo とつd uo！sןnwヨ	əฺกəə૦u əృ6u！S	yOd ә！！！p！！M／uo！s｜nwヨ	әวe，uns sseן 6 uo yコdəбр！ィя	əэセృиns peəq uo yOd uo！s｜nuヨ	yOd	uo！peıedəıd әłeןdwə」
ャレOZ	OLOZ	900Z	Z10Z	G00Z	9661	рәseәןəy
sə！ฺбоןоичэә৷ ә！！		ә！！！р！！М ｜X00GS D！7OS ／sə！бoןОичગәt Ә！！	00gzbəs！H ｜Bu！̣un｜｜	נר X+ S૭ s，tSャ／әчગоч	｜x0ع sə！நоןоичગәə ә！！	

nucleotides and chain-terminating dideoxy-nucleotides to generate copies from the template that differ in length from each other by one nucleotide. In the process, the DNA sample is divided into four DNA sequencing reactions, which contain all four normal nucleotides, DNA polymerase, and one of four chain-terminating dideoxy-nucleotides in low amounts. As DNA synthesis progresses, DNA polymerase adds nucleotides to the chain. However, the occasional incorporation of a chain-terminating nucleotide into the strand causes DNA polymerase to cease DNA extension, resulting in fragments of different lengths (Sanger et al., 1977). These DNA fragments are then denatured and separated according to mass using gel- or capillary electrophoresis, and the species of terminal base present is identified by exciting the fluorophore attached to the primer (Smith et al., 1986) or chain-terminating base (Prober et al., 1987) using a laser. Notably, incremental improvements to the Sanger method have rendered the technique advantageous for a number of applications, including the sequencing of long polymerase chain reaction (PCR) products and closing genomes by PCR.

Recently, a family of novel DNA sequencing technologies has supplanted the Sanger method (Mardis, 2008). These next-generation sequencing (NGS) platforms can process millions of DNA molecules in parallel and enable inexpensive and rapid sequencing, although at the expense of lower read length and accuracy. During template preparation, millions of template clusters, each comprising a large number of copies of a given template DNA molecule, are created using emulsion PCR (emPCR, Dressman et al., 2003) or bridge amplification (Adessi et al., 2000). Template aggregations are then sequenced in parallel using pyrosequencing (Margulies et al., 2005), sequencing by ligation (Shendure et al., 2005), sequencing by synthesis (Bentley, 2006; Bentley et al., 2008), or ion semiconductor sequencing (Rothberg et al., 2011). A notable exception is the single-molecule real-time sequencing system, which was developed by Pacific Bioscience (Eid et al., 2009) and involves sequencing single-template DNA molecules using DNA polymerases that are immobilised onto a zero-mode waveguide array. The key differences between the six sequencing technologies relate to the number and length of the reads produced (Table 1). In general, these two characteristics are negatively correlated, and technologies that provide long read lengths produce fewer data at higher cost than short-read sequencing instruments. However, the total sequence output from even the lowest capacity NGS instruments is far greater than the amount of sequence data needed to disclose a single bacterial genome; thus, these methods are an appealing choice for projects involving few isolates and benefiting from long contigs. In contrast, the Illumina and SOLiD platforms yield very large volumes of sequence data (Table 1) and are an affordable choice for large whole-genome projects that accommodate fragmented genome representations and for re-sequencing projects.

In terms of accuracy and error profiles, small but significant differences exist among the platforms (Mardis, 2008; Liu et al., 2012; Quail et al., 2012). The 454 and Ion Torrent platforms produce more nucleotide over- and under-calls than the other NGS platforms. These errors emerge from the methodology, which introduces all subsequent bases of one species at once, and from the difficulty in resolving the number of incorporated bases based on signal intensities. Especially troublesome are homopolymers of four or more bases (Voelkerding et al., 2009). In contrast, the Illumina platform suffers from phasing,
fading, and crosstalk-generated noise (Erlich \& Mitra, 2008). Phasing noise results from incorporation of none or more than one nucleotide during sequencing cycles and introduces lagging and leading nascent strands transmitting a mixture of signals; in contrast, fading noise arises from an exponential decay of the fluorescent signal intensity as a function of cycle number. The third noise factor arises from fluorophore crosstalk (Sheikh \& Erlich, 2012). Regarding whole-genome sequencing, errors attributed to the Ion Torrent and 454 platforms are more fatal because the handling of insertion and deletion errors during genome assembly requires the use of computationally intensive gapalignments. Furthermore, insertion and deletion errors in the final contigs hamper gene calling and can cause fragmentation of predicted open reading frames (ORFs). The SOLiD platform, however, is considered accurate (Li et al., 2012). Indeed, the investigation of each dinucleotide by two ligation reactions and the requirement that adjacent colour-calls must agree guarantees high accuracy. Nonetheless, the use of a colour-space coding scheme complicates data analysis, de novo assembly, and integration of the SOLiD data into other genomic resources (Li et al., 2012).

1.1.2 Preprocessing of sequencing data

Modern DNA sequencing instruments generate large amounts of data that have to be preprocessed in several steps to convert them to a usable form (Figure 2). The recovery of human-readable read sequences from sequencing instrument data is referred to as base calling and is the typical first step toward usable data. It includes the transformation of intensity signals to nucleotide calls and the assignment of quality scores (indicating the reliability of the call) to each base (Sheikh \& Erlich, 2012). In most cases, quality scores are reported in terms of logarithmically linked error probabilities termed Phred scores (Ewing \& Green, 1998). Exceptions are the 454 and Ion Torrent error probabilities, which represent the likelihood that a base is an overcall and divide single quality values between two or more bases.

The adjustment of signal data for platform-specific anomalies is another important task that is performed by base callers (Sheikh \& Erlich, 2012). Typically, this step is addressed by the use of a list of signal processing techniques, each tackling a specific error and error source. For example, most Illumina base-calling algorithms correct for fluorescent decay, fluorophore crosstalk, and errors caused by the incomplete removal or incorporation of reversible terminators (Kao et al., 2009; Erlich \& Mitra, 2008; Kircher et al., 2009), whereas Sanger data is corrected for shifts in peak locations, fluorophore crosstalk, and background noise (Ewing et al., 1998). Typically, a vendor-supplied base-calling method is used, because the base-calling process can require substantial amounts of processing time. However, third party programs have been developed as an alternative to vendor software and have been shown to improve the accuracy of base calls. Some popular thirdparty base-calling approaches for the Illumina (Rougemont et al., 2008; Erlich \& Mitra, 2008; Kao et al., 2009; Kircher et al., 2009), SOLiD (Wu et al., 2010) and Roche 454 sequencing platforms (Quinlan et al., 2008; Beuf et al., 2012) are listed in Table 2 and Appendix Table 1.

 scan (Regalia et al., 2002), Bcheck (Yusuf et al., 2010), CMFinder (Yao et al., 2006) 2005), Aragorn (Laslett \& Canback, 2004), tRNAscan-SE (Lowe \& Eddy, 1997), Infernal (Nawrocki et al., 2009), SRP RNAmotif (Macke et al., 2001), RNAmmer (Lagesen et al., 2007), QRNA (Rivas \& Eddy, 2001), RNAz (Washietl et al., GenePRimp (Cruveiller et al., 2005) 2010), Mugsy-Annotator (Angiuoli et al., 2011), ORFCor (Klassen \& Currie, 2013), MICheck Reganor (McHardy et al., 2004), YACOP (Tech \& Merkl, 2003) ORPHEUS (Frishman et al., 1998), CRITICA (Badger \& Olsen, 1999) et al., 2010), ZCURVE (Guo et al., 2003) Minimus2 (Sommer et al., 2007), MAIA (Nijkamp, et al., 2010), GAA (Yao et al., 2012)
Glimmer (Delcher et al., 2007), GeneMark (Besemer et al., 2001), EasyGene (Larsen 2007), BACCardl (Bartels et al., 2005), PAGIT (Swain et al., 2012)
 VAAL (Nusbaum et al., 2008), Amos-Cmp (Pop et al., 2004b)
 SSAKE (Warren et al., 2007), VCAKE (Jeck et al., 2007) Reptile (Yang et al., 2010), HiTEC ((iie et al., 2011), package (Staden et al., 1999), NGS QC Toolkit (Patel FastQC, PrinSeq (Schmieder \& Edwards, 2011), BIGpre (Massingham \& Goldman, 2012), BM-BC (Ji et al., 2012) 2009), Pyrobayes (Quinlan et al., 2008), HPCall (Beuf et Phred (Ewing \& Green, 1998), KB Basecaller
Rolexa (Rougemont et al., 2008), Alta-Cyclic
Software
Category
llers (Sanger) databases is available in Appendix Table 1.
Table 2. Bioinformatic resources that are commonly used in the study of bacterial genomes. More information on the listed software and
prediction Gupta, 2008), SPAAN (Sachdeva et al., 2005) CSS-Palm (Ren et al., 2008), DISIS (Ofran et

PRIAM (Claudel-Renard et al., 2003), KAAS (Moriya et al., 2007), TCDB (Saier et al., 2006), CAZy (Cantarel et al.,
2009), MEROPS (Rawlings et al., 2004), REBASE (Roberts et al., 2010)
 (Scaria et al., 2005), MvirDB (Zhou et al., 2007), ARDB (Liu \& Pop, 2009), DBD (Wilson et al., 2008), antiSMASH

 (Vinayagam et al., 2006), PFP (Hawkins et al., 2006), ConFunc (Wass \& Sternberg, 2008), SIFTER (Engelhardt et al.,

CDD (Marchler-Bauer et al., 2011) d) WVコd
et al., 2012), Rfam (Griffiths-Jones et al., 2003), COG (Tatusov et al., 1997, Tatusov et al., 2003), SEED (Overbeek et
Ori-Finder (Gao \& Zhang, 2008)
BLAST and PSI-BLAST (Altschu
ICEberg (Bi et al., 2012), INTEGRALL (Moura et al., 2009), ACID (Joss et al., 2009), cBar (Zhou et al., 2010) (Vernikos \& Parkhill, 2006), IslandPick (Langille et al., 2008) Mendez et al., 2008), PhiPsy (Akhter et al., 2012), Phage_Finder (Fouts, 2006)

Repeats CRISPR arrays

	uo!pez!!ens!^	
 	səu!!əd!d uo!tełouu*	
	รәәд э!!әuәбо\|Кчд	
 	sıəи6!\|	е әшоиә6-әочМ
	әэuәnbəs $\begin{array}{r}\text { s.\|d!!!!nW }\end{array}$	
 8 wits) ıədde»s	ио!̣!	
 	uo!peool גe\|nı	əวqns

Quality assessment is another important pre-processing step, which aims to pinpoint poor quality reads and typically includes the visualisation of base quality scores, sequence length distributions, and nucleotide distributions. In addition, sequence data can benefit from data cleaning and steps such as adapter and poor quality region trimming and the filtering of chimeric and short reads and other types of sequence artefacts. For example, the removal of bases with poor quality at the end of the reads has a positive impact on downstream analyses (Haridas et al., 2011; Cox et al., 2010). Adaptor cutting has also been shown to be advantageous and ensures that only the relevant part of the read is passed to and considered at the downstream analysis.

An alternative strategy for improving data quality is based on high base coverage and supposedly infrequent and random sequencing errors (Yang et al., 2013). In this setting, sequencing errors are detected by aligning reads to a reference genome and by examining the alignment for uncommon base calls or, in its more generalised form, by decomposing reads into overlapping oligomers of the length k (i.e., k-mers) and identifying infrequent k mers that resemble frequent k-mers (Pevzner et al., 2001; Yang et al., 2013). Typically, k mers that occur only a few times in the data are considered in this spectral alignment approach to represent errors and are rectified by making a minimum number of nucleotide edits to the reads from which they emerged. At present, several spectral alignment methods have been developed that mainly differ with regard to choosing the coverage threshold for the identification of infrequent k-mers. However, this feature is important because overly low thresholds result in uncorrected errors, whereas overly high thresholds affect correct k-mers. Among various spectral alignment tools, Reptile (Yang et al., 2010), HiTEC (Ilie et al., 2011) and ECHO (Kao et al., 2011) have been shown to reliably detect and correct erroneous reads (Yang et al., 2013).

1.1.3 Genome assembly

Genome assembly is the process of assembling short reads into the largest possible continuous sequences, thus providing a representation of the expected genome (Pop, 2009; Flicek \& Birney, 2009; Miller et al., 2010). In essence, this process relies on the assumption that highly similar reads originate from the same position within a genome and involves joining individual overlapping reads into contigs (Pop, 2009; Flicek \& Birney, 2009; Miller et al., 2010). In addition, the process can include a separate scaffolding step to produce larger scaffold structures comprising an ordered set of contigs with intervening gaps representing DNA stretches that are not present in the reads. The sequential phases of current genome assembly methodology are illustrated in Figure 3.

The first phase of genome assembly is contig construction. Currently, this is achieved in most cases using algorithms that are based on either the overlap-layout-consensus (OLC) or the de Bruijn graph approaches (Pop, 2009; Flicek \& Birney, 2009). Alternatively, genome sequences can be reconstructed using the greedy extension approach, in which the best-matching reads are iteratively joined together into contigs until no more reads or contigs can be joined (Miller et al., 2010). Many early assemblers relied on the greedy approach, as do some modern ones (Warren et al., 2007; Jeck et al.,
2007); however, this approach is no longer utilised due to the inherently local assembly process, which can become stuck at a local minimum if the sequence under assembly is extended with a read that would have been more beneficial to other joining operations (Pop, 2009; Miller et al., 2010). Finally, contig building can rely on aligning reads to the reference sequence and on grouping reads by continuity (Pop et al., 2004b; Nusbaum et al., 2008). However, the comparative approach is valid only in the presence of a reference genome with substantial sequence similarity ($\geq 90 \%$) to the genome of interest (Pop et al., 2004b). Table 2 and Appendix Table 1 provide partial lists of the tools that are currently available for genome assembly and scaffolding.

5. Assemble sequences

6. Sequence contigs
7. Scaffolds

8. Ordered scaffolds

Reference genome

9. Draft genome assembly

Figure 3. The sequential phases of current genome assembly methodology. Starting from a large amount of genomic DNA, the DNA is sheared (2) into random fragments, size selected (3), and amplified and sequenced from one or both ends (4). The sequencing reads are then assembled on the basis of sequence overlaps (5), thereby yielding sequence contigs (6). The contigs can then be oriented and ordered based on the read pairs that map to two contigs (7) or with the aid of reference genomes (8).

The OLC approach is one of the two main approaches used and is useful for the assembly of long reads (Pop, 2009; Miller et al., 2010). The OLC process begins with an all-against-all read comparison. The reads and relationships between reads are then structured into a graph with a node for every read and an edge between any pair of reads
that overlap sufficiently well (Pop, 2009; Miller et al., 2010). Using this structure, finding contigs becomes equivalent to finding a path through a graph that visits each node exactly once, termed a Hamiltonian circuit. The OLC approach is highly suitable for reads of varying length because it can employ all of the information obtained from long and short reads (Miller et al., 2010). This approach captures repetitive regions in nodes with multiple connections, thus providing a means by which to exclude these regions and effectively handle sequencing errors. Regardless, identifying the Hamiltonian circuit is an intensive task, and storing each read in a separate node requires memory, thus making the OLC approach somewhat impractical for modern sequencing projects (Pop, 2009; Miller et al., 2010; Flicek \& Birney, 2009). An exception is the SGA assembly package, which exhibits significantly reduced memory requirements and computing time (Simpson \& Durbin, 2012).

The second widely used assembly approach is known as the De Bruijn graph approach and is considered ideal for short read-length, high-coverage data (Pevzner et al., 2001). This strategy relies on deconstructing reads into short k-mer fragments before assembling them into contigs with the help of De Bruijn graphs, in which nodes represents unique k mers and an edge connects all node pairs that overlap by k-1 bases (Pop, 2009; Miller et al., 2010; Flicek \& Birney, 2009). In theory, the number of unique k-mers in the genome determines the number of nodes, thereby allowing the use of a small memory footprint for genomes of limited size and in the presence of repetitive elements. Moreover, De Bruijnbased assemblies are fast to compute because overlaps between the reads are implicitly captured by the graph rather than computed individually; furthermore, a linear-time algorithm exists for finding the Eulerian paths that visit each edge once (Fleischner, 1990). This approach is also considered useful for short-read data. Theoretically, 16-mers should yield reasonable assemblies, and larger k-mers should entail longer contigs; however, parameter optimisation tests have shown that the optimal performance is obtained using moderate (approximately 50) to large (approximately 100) k values (Peng et al., 2012; Jünemann et al., 2014) or a combination of multiple k-mers (Peng et al., 2012; Bankevich et al., 2012). The greatest disadvantage of the De Bruijn graph paradigm is its insensitivity to repetitive regions and read errors. The use of even large k-mers fails to resolve repeat regions, if repeats are longer than the given k-mer value. In the presence of such repeats, the graph will have branching vertices and contain multiple Eulerian paths. In these cases, continuity can however be improved by adding constrains to the graph and finding Eulerian superpaths that traverse the graph via predetermined sub-paths (Pevzner et al., 2001; Pop, 2009). Erroneously called bases near read ends on the other hand result in dead-end "tips", whereas errors in the middle lead to branching nodes and alternate paths termed "bubbles" that start and terminate in the same nodes, each providing an equally good solution. To compensate for these problems, many assemblers employ the spectral alignment approach to correct reads before beginning the assembly (Pevzner et al., 2001; Li et al., 2010; Butler et al., 2008). This approach has been shown to remove up to 66% of the k-mers (Li et al., 2010). The concept of De Bruijn graphs is implemented in several assemblers; of these, ALL-PATHS (Butler et al., 2008) and SPAdes (Bankevich et al., 2012) have performed well in recent genome assembler surveys (Earl et al., 2011; Magoc et al., 2013).

Repetitive regions that are longer than the read length are problematic for genome assembly and cannot be resolved by simply investigating read overlaps regardless of the coverage depth. The position of these repeats and other unrevealed genome regions in the genome can, however, be approximated by supplementing the assembly process with a scaffolding phase in which individual contigs are joined into larger sequence structures that comprise contigs and the intervening gaps (Pop, 2009; Miller et al., 2010). Chiefly, scaffolding exploits information that is derived from paired reads (libraries with insert sizes of approximately 300 to $1,000 \mathrm{bp}$) or mate-pair reads (libraries with insert sizes of 3, 6-, or $8-\mathrm{kb}$; Figure 3). Pairs of contigs that are likely to reside side-by-side in the genome are detected by aligning reads to contigs and by identifying read pairs that match different contigs. The optimal order and orientation of contigs are then solved using heuristic or graph-based approaches that rely on majority voting from a large number of read pairs (Pop, 2009; Miller et al., 2010). Importantly, the length of the gaps can be estimated based on the positions of the paired reads in contigs and expected insert sizes (Pop, 2009). The major disadvantage of this approach is related to the quality of the data and to the difficulty in minimising inconsistency between the assembled contigs and read pair constraints; for this reason, the joining of contigs requires multiple coherently aligned read pairs (Li et al., 2010; Simpson et al., 2009).

Alternative approaches for organising contigs involve the use of PCR-assisted or other gap-closing techniques (Figure 2), optical maps, reference genomes, and multiple genome assemblies. Optical mapping is a technique for generating whole-genome ordered restriction endonuclease maps (Samad et al., 1995). These optical maps not only provide information about restriction fragment sizes, but also provide information regarding the order in which these fragments occur in the DNA. Regarding scaffolding, matches between in silico restriction-digested sequences and fragments in the optical map provide means for stitching contigs together (Nagarajan et al., 2008). The use of reference genome alignments is another method for organising contigs into larger units (Richter et al., 2007; Rissman et al., 2009; Bartels et al., 2005). This approach is increasingly common as the number of sequenced genomes in databases increases; however, the accuracy of the scaffolds depends on the alignment quality and the level of sequence similarity between the contigs and reference genomes. Indeed, even closely related reference genomes are useless in the presence of horizontal transfer and genomic rearrangements. Finally, scaffolds can be constructed by integrating assemblies. For example, methods such as Minimus (Sommer et al., 2007), MAIA (Nijkamp et al., 2010) and GAA (Yao et al., 2012) make use of multiple assemblies to produce meta-assemblies with increased contiguity and accuracy.

1.1.4 Structural annotation

Structural annotation is the aspect of genome annotation that consists of the identification of genomic features (Koonin \& Galperin, 2003; Angelova et al., 2010). In theory, this can be achieved using experimental techniques but is typically attained using computational approaches followed by manual curation due to time and cost. This chapter introduces
bioinformatic strategies for calling CDSs, ncRNA genes, and MGEs in bacterial genomes. Table 2 and Appendix Table 1 list some popular computational tools for structural annotation.

CDS calling is one of the most important steps of structural annotation (Angelova et al., 2010). In its simplest form, CDS calling could consist of scanning genomes for sufficiently long (≥ 90 bases) uninterrupted stretches of DNA between a start codon and a stop codon. However, the screening of such ORFs can yield a certain number of incorrect gene predictions (Koonin \& Galperin, 2003) because true CDSs often echo long ORFs in neighbouring reading frames. An alternative strategy is to take advantage of the statistical properties of the coding sequences and estimate the coding potentials of ORFs or to infer genes based on the similarity of the encoded protein sequences to those of other proteins in public database (Koonin \& Galperin, 2003). Ab initio programmes make predictions using a probabilistic model that distinguishes CDSs from noncoding sequences based on sequence composition and estimates the coding potentials of ORFs. The model employs, for example, the infrequencies of Gs and As at the first codon positions, the infrequency of Gs at the second codon position, and/or amino acid composition differences between coding and noncoding genome regions. Typically, the parameters used in probabilistic models are trained from separately prepared training datasets, which comprise sufficiently long and non-overlapping ORFs from the sequence in question (Delcher et al., 2007), ORFs from the sequence in question showing homology to known proteins in public databases (Larsen \& Krog, 2003), and sequences of a known type. An alternative to the $a b$ initio prediction of genes is to search the target genome for CDSs that are similar to extrinsic evidence (Koonin \& Galperin, 2003). Extrinsic methods include the BLAST-type mapping of ORFs against known gene products and gene callers such as ORPHEUS (Frishman et al., 1998) and CRITICA (Badger \& Olsen, 1999), which infer CDSs based on coding potential and sequence similarity. Finally, software packages exist for refining gene call anomalies (Pati et al., 2010; Cruveiller et al., 2005) and combining evidence from individual gene-finding systems into consensus CDS models (Tech \& Merkl, 2003; McHardy et al., 2004).

To date, no systematic analysis of the gene calling accuracies of different gene finders is available. However, comparisons of methods given in the original papers show that bacterial gene finder algorithms boast an average accuracy of 90% or better (Delcher et al., 2007; Hyatt et al., 2010; Besemer et al., 2001). Moreover, function assignments can be attached to most gene products, indicating that bacterial gene callers are likely accurate. The major hurdles in the use of modern ab initio gene callers involve the identification of short genes ($\leq 150 \mathrm{bp}$), over-annotation, the false prediction of pseudo-genes, and the presence of longer than anticipated overlaps between CDS calls (Besemer et al., 2001; Delcher et al., 2007; Hyatt et al., 2010). The scarcity of stop codons in GC-rich genomes can also impair the accuracy of gene callers that give value for gene length in estimating coding potentials (Hyatt et al., 2010). It is also possible that the probabilistic model may fail in genomic islands with atypical base compositions. In contrast, evidence-based methods can ignore novel CDSs and have longer runtimes than ab initio methods, which scan millions of bases in minutes. Evidence-based gene callers are nonetheless useful in calling CDSs that are ignored by ab initio gene finders and that exhibit homology to
known proteins. For example, current genome annotations appear to lack, on average, 30 bona fide genes that can be identified using a BLAST procedure (Warren et al., 2010).

Another standard analysis in the process of structural genome annotation is the identification of tRNA, rRNA, and other types of ncRNA genes that function directly as RNA rather than being translated to proteins. Traditionally, ncRNA genes are called using comparative genomics methods (Eddy, 2002; Pichon \& Felden et al., 2008). In the case of rRNAs, genes can be called using primary sequence similarity with known rRNA genes (Lagesen et al., 2007). However, other types of ncRNAs often lack common statistical signals in their primary sequences that could be exploited for detection. Instead, their calling often requires methods that use sequence and structural conservation, such as the tRNA prediction system tRNAscan-SE or the general ncRNA search suite Infernal. Both of these algorithms use covariance models to capture the primary consensus and secondary structure information of an RNA family and are very accurate (Lowe \& Eddy, 1997; Nawrocki et al., 2009). However, this performance comes at the expense of runtime, and the analysis requires a template ncRNA structure. The more general approaches for identifying ncRNA genes rely on genomic variations in sequence composition statistics, predict transcripts without long ORFs and with initiation and termination sites, search for sequences that have the ability to adopt given secondary structure patterns (Macke et al., 2001), or use a combination of RNA structure prediction and comparative sequence analyses to test for a characteristic signal (Rivas \& Eddy, 2001; Washietl et al., 2005). These programmes are considered useful for defining the structure of a sequence that is already known to be an RNA gene but are largely immature for use in genome-wide scans (Eddy, 2002; Pichon \& Felden, 2008).

Approximately one tenth of a bacterial replicon is intergenic. Although this portion of the genome is commonly referred to as noncoding, it contains a variety of important sequence features (Madigan et al., 2010). Intergenic regions contain, for example, transcriptional regulatory elements and basal promoter elements that are key players in gene regulation. Such regions are also rich in repetitive elements and contain motifs contributing to the coordination of replication, cell division, DNA segregation, and DNA repair (Touzain et al., 2010). Also visible in the genome are mRNA stem-and-loop structures that control of gene expression. Depending on the type of stem-and-loop structure, these motifs can be called with the help of general ncRNA annotation algorithms and by inferring genomes for rho-independent terminators using software tools such as RNIE (Gardner et al., 2011) and TransTermHP (Kingsford et al., 2007). Intriguingly, stem-and-loop structure annotations provide valuable clues about genome structure and enable the marking of operon endpoints and start sites, because rho-independent terminators are mainly located at transcription termini and transcriptional attenuators are located between the basal promoter elements and the start codons of the 5^{\prime}-most genes of operons. Finally, intergenic regions can be annotated for CRISPR arrays. Because CRISPR arrays consist of short (approximately $20-50 \mathrm{bp}$) direct repeats that are interspaced by variable sequences called spacers, they are routinely inferred using repeat finding algorithms or their modified versions (Bland et al., 2007; Edgar, 2007; Grissa et al., 2007).

MGEs are DNA segments that encode proteins that mediate the movement of DNA within genomes or between bacterial cells. These sequence features can have a tremendous impact on the transfer, recombination, and deletion of host genes, and traces of MGE activity are present in nearly all bacterial genomes (Frost et al., 2005). MGEs are typically annotated based on their similarity to the known MGE members. This paradigm is implemented in the IScan (Wagner et al., 2007) and ISsaga (Varani et al., 2011) methods, enabling the identification of insertion elements using curated references from the ISfinder database (Siguier et al., 2006). This approach can also be used to identify clusters of genes that exhibit similarity to known phage genes (Lima-Mendez et al., 2008; Zhou et al., 2011), integrons and gene cassettes (Moura et al., 2009; Joss et al., 2009), and integrative and conjugative elements (Bi et al., 2012). Furthermore, some computational resources for genomic island annotation build on sequence similarity searches (Langille et al., 2008). Alternatively, the automated detection of MGEs can rely on sequence composition characteristics. The methods included in this category are based on the notion that MGEs are often acquired horizontally and that MGEs can be identified by searching for local variations in sequence composition, such as variations in the $\mathrm{G}+\mathrm{C}$ ratio and dinucleotide bias. Several programmes for the automated detection of MGEs adopt this approach, including those designated for the annotation of plasmids (Zhou \& Xu, 2010), phage-like regions (Srividhya et al., 2007), and genomic islands (Tu \& Ding, 2003; Waack et al., 2006; Vernikos \& Parkhill, 2006). Although these bioinformatic tools are also able to call novel MGEs, sequence composition skew appears to be a less reliable predictor than sequence similarity. For example, genomic island detectors that rely on base composition statistics exhibit less agreement with a dataset of known genomic islands than their homology-based counterparts (Langille et al., 2010).

1.1.5 Protein function prediction

Protein function prediction can be defined as the inference and assignment of specific biological and biochemical roles to proteins (Koonin \& Galperin, 2003). This stage of genome annotation attempts to compile a definitive catalogue of the protein functions of the organism and provides researchers with specific testable hypotheses about the roles of proteins in the cell. This knowledge is critical for understanding life at the molecular level (Koonin \& Galperin, 2003; Rost et al., 2003; Friedberg, 2006; Valencia, 2005). However, genome-scale protein function prediction is a challenging process (Rost et al., 2003; Valencia, 2005; Friedberg, 2006; Schnoes et al., 2009) and involves the use of many functional classification schemes and computational procedures (Table 2 and Appendix Table 1), as discussed in detail below. As with structural genome annotation, the use of automated prediction methods is preferably performed in conjunction with manual annotation.

Functional classification schemes are used to capture biological knowledge in a form that is suitable for computational processing. Regarding bacteria, the functions of proteins are most often available as description lines (DEs, Bairoch et al., 2008). These natural language function labels are the traditional way of describing functional information and
can be very informative. However, DEs, like the natural language itself, are rife with synonyms and ambiguity, making comparison of DEs notoriously difficult (Friedberg, 2006). Another challenge with regard to DEs such as 'DNA gyrase subunit B ' is that protein function is a subjective concept, and different researchers may denote the functions of proteins differently (Friedberg, 2006). In addition to DEs, standardised functional labelling schemes have been developed to unify information about protein function. These schemes employ only certain words and punctuation and describe functional information in a controlled and computationally amenable fashion. Such resources include TIGRFAM (Haft et al., 2003), SEED (Overbeek et al., 2005), the keyword catalogues of UniProt (Bairoch et al., 2008), and orthologous groups of proteins (COG) (Tatusov et al., 1997; Tatusov et al., 2003) that cover general functional aspects and providing a means by which to overview and compare the functional contents of organisms. Additional classification schemes have also been developed for the classification of enzymes (Webb, 1992), enzyme-related functions (Rawlings et al., 2004; Roberts et al., 2010; Cantarel et al., 2009), and transporters (Saier et al., 2006). Noteworthy examples include the Enzyme Classification (EC, Webb, 1992) and Transporter Classification (TC, Saier et al., 2006) systems, which follow a hierarchical structure that allows the measurement of the functional similarity of genes. Another intensively used functional classification scheme is Gene Ontology (GO, Ashburner et al., 2000). Machine-readable GO encompasses three ontologies that describe three aspects of function: molecular function, biological process, and cellular location. These ontologies are non-redundant and are implemented as a directed acyclic graph (DAG) that represents general terms as nodes near the root of the ontology and specific terms as nodes near the leaves of the ontology. Differing from the hierarchical structure, a node can have multiple parents. By definition, if a gene is associated with a term, it is associated with all of its broader level GO terms. Furthermore, each GO term assignment has an evidence code attributed to it, thereby providing a means of separating computationally derived information from manually curated information (Ashburner et al., 2000). Although GO is the most widespread functional classification scheme in use today, its use in bacterial genome annotation is limited by the low number of specific GO descriptions that have been associated with bacterial proteins.

The conventional approach for protein functional classification involves the transfer of biological information on the basis of sequence similarity. The rationale for this approach is that sequences with a high degree of similarity are likely to have evolved from a common ancestor and will also share functional roles (Friedberg, 2006). This type of homology-based functional classification has been shown to be rather accurate and to be able to assign a function to approximately 73% of CDSs in the average genome (Raes et al., 2007); however, this approach is not without problems. Principally, sequence similarity does not imply similarity of function (Eisen, 1998), and transferring annotations based on sequence similarity can propagate existing annotation errors (Schnoes et al., 2009). This analysis method also fails with regard to orphan genes and often results in a set of differently characterised sequences. It also appears that the quality of the prediction depends on the sequence database used (Schnoes et al., 2009), the sequence similarity search method used, and the type of function information to be transferred (Clark \&

Radivojac, 2011). Another shortcoming is the need to separate useful and spurious sequences. Some studies have proposed that as low as 30% amino acid sequence identity is required for assigning complete enzyme function (Valencia, 2005; Devos \& Valencia, 2001) and that inference by similarity performs approximately equally well for all matches above this sequence identity threshold (Clark \& Radivojac, 2011; Altenhoff et al., 2012). In contrast, other researchers argue that below a 70% sequence identity threshold, EC numbers start to diverge rapidly, such that at 30% sequence identity, only a tenth of pairs of proteins share all EC numbers (Rost, 2002; Rost et al., 2003). It appears that the latter conclusions are more accurate regarding bacterial enzymes (Figure 4). Among the manually annotated proteins entries available in the UniProt database, the proportion of pairs in which both proteins are described using the same enzyme code became high above the 50% sequence identity level, whereas at the 30% identity level, only every fifth protein pair was observed to share the same enzyme class.

The functional classification of proteins on a genome-wide scale typically involves a direct sequence-sequence comparison of query proteins against large sequence databases using BLAST (Altschul et al., 1997), FASTA (Pearson \& Lipman, 1988), or PSI-BLAST (Altschul et al., 1997). The function of the prototype sequence is then transferred to the protein under consideration. In its simplest form, predictions are based on information that is associated with the top hit (i.e., the best-BLAST approach) or the most informative description. Based on Figure 4, this approach is accurate provided that it is performed for highly similar enzymes. More elaborate methods have also been proposed that make use of more than one sequence (Abascal \& Valencia, 2003; Kunin \& Ouzounis, 2005, Martin et al., 2004; Vinayagam et al., 2006; Hawkins et al., 2006; Wass \& Sternberg, 2008) or that transfer functions within an evolutionary context (Engelhardt et al., 2005; Zmasek \& Eddy, 2002; Storm \& Sonnhammer, 2002). According to the method comparisons provided in the original papers, the pooling of information over multiple sequences and the additional use of weakly similar sequences as the source of function information appear to be beneficial and increase prediction accuracy. An alternative but fundamentally similar approach is to search for sequence-based signatures. Examples of tools that are designed for finding signatures and resources that archive signature profiles are listed in Table 2 and Appendix Table 1. Overall, the use of protein signatures appears to be more powerful and sensitive for detecting remote homologues than the use of pairwise sequence similarity search tools. Nevertheless, the combination of several methods for functional annotation is recommended because the most suitable method for a particular sequence set cannot be known a priori.

Homology transfer is also the principal method for identifying proteins with specific and predetermined functional roles, such as signal transduction system proteins, virulence factors, and adhesins. For example, function-specialised databases have implemented the possibility of conducting a BLAST-like search against their high-quality sequence sets. Some representative examples in the field of microbiology include databases and services that were developed for mining bacteriocins (van Heel et al., 2013), carbohydrate-active enzymes (Cantarel et al., 2009), cas genes (Haft et al., 2005), signal transduction system proteins (Ulrich \& Zhulin, 2010), antibiotic resistance factors (Scaria et al., 2005; Zhou et al., 2007; Liu \& Pop, 2009), type II Toxin-antitoxin systems (Sevin \& Barloy-Hubler,

2007; Shao et al., 2011), pilus components (developed in Study I), restriction modification system components (Roberts et al., 2010), DNA-binding transcription factors (Wilson et al., 2008), and secondary metabolite biosynthetic loci (Medema et al., 2011).

Figure 4. Conservation of EC number and the power of homology transfer for bacterial enzymes. Protein sequence data was extracted from the UniProt database, and only entries that had been verified either at the RNA level or at the protein level were accepted. Sequence-level identity was quantified using BLAST (default settings), and the fraction of pairwise sequence matches sharing a certain number of EC number digits was tabulated at different levels of pairwise sequence identity. The red line indicates the fraction of sequences that match other sequences at the given or a higher identity range.

Apart from evolutionary counterparts, functional classification can rely on the genomic context of genes. This approach utilises the co-localisation and/or co-evolution of genes to predict functional linkages between encoded proteins and is also practical for genes that match only other uncharacterised genes because the transfer of functional information between organisms is not necessary. Instead, the use of context information provides an opportunity for also transferring information between genes within a single organism. The four major methods for context-based prediction are the phylogenetic profile method (which employs the fact that functionally associated genes appear to be preserved or eliminated in concert during evolution; Pellegrini et al., 1999), the gene fusion method (which relies on gene pairs that occur in parallel as a larger composite gene in other genomes; Marcotte et al., 1999), the gene neighbour method (which searches for genes
with preserved physical genomic proximity; Dandekar et al., 1998), and the co-evolution method (which uses the correlation between phylogenetic trees; Juan et al., 2008). Among these methods, the phylogenetic profile method is considered the most precise and provides comparable performance to homology-based functional classification (von Mering et al., 2005).
$A b$ initio protein function prediction methods predict protein function based on sequence information alone. Unlike other functional prediction methods, these methods are resistant to existing error-prone information in databases and have the advantage of being also suitable for orphan proteins as the analysis does not involve transfer of function from unreliable sources (Ofran et al., 2005; Punta \& Ofran, 2008). However, ab initio methods currently provide only rough approximations of various aspects of function. Nevertheless, promising methods exist for the prediction of subcellular localisation and transmembrane topologies of proteins (Table 2 and Appendix Table 1); these methods providing valuable clues and rather accurate predictions about bacterial secretomes that comprise secreted or surface-associated proteins. With regard to bacterial genome annotation, other aspects of protein function that can be predicted using ab initio methods include amino acids that are involved in DNA binding (Ofran et al., 2007) and binding to various metals (Lippi et al., 2008), virulence-associated factors (Garg \& Gupta, 2008), the probability of a protein being an adhesin (Sachdeva et al., 2005), and palmitoylation sites in protein sequences (Ren et al., 2008). In addition, specialised bioinformatic resources are available that locate proteins that are secreted by type III (Arnold et al., 2009) or IV (Burstein et al., 2009) secretion systems.

1.1.6 Summarisation of genome annotation results

The summarisation and visualisation of genome data are key parts of any genome project and one of the first tasks to be performed following annotation. Typically, genome data are visualised to obtain an overview and to compare genome annotations. This step is also an important quality control step and can reveal assembly errors and genome regions that may need attention. Picture-based structural DNA analysis (e.g., the visualisation of GCskew, AT-content, GC-content, and gene-strand bias) can also be used to identify genomic features such as MGEs and origins of replication. Tools for data visualisation are listed in Table 2 and include standalone genome browsers, such as ACT (Carver et al., 2005), and web services, such as the BLASTatlas (Wassenaar et al., 2010). Additionally, genome annotation results can be recapitulated into genomic feature tables that, typically, provide information about the genome size, GC-content sequence elements, and coding density of the organism in question and of other, closely related organisms. These tables can also highlight the biological aspects of the organism. Genome size is, for example, an indicator of adaptive potential; large rRNA and tRNA gene numbers suggest a short doubling time, and codon usage can be used to shed light on the organism's likely environmental niche (Wassenaar et al., 2010).

1.1.7 Comparative genomics

Whole-genome comparisons are a powerful approach for understanding genomic diversity and the relatedness of organisms (Ali et al., 2013). This approach can reveal fascinating differences and similarities between genomes, is a prerequisite for profiling rapidly evolving sequences (Cooper et al., 2005; Garber et al., 2009), and provides a means to classify species and to describe horizontal gene transfer events (Darling et al., 2004). The two underlying paradigms that are used to identify regions of similarity are local and global sequence alignment (Frazer et al., 2003). The first of these reports all similar subregions of the sequence and also identifies homology in the presence of rearrangements. However, local alignment cannot suggest how the subregions have evolved from their ancestors (Frazer et al., 2003). In contrast to local alignments, global alignments describe an end-to-end alignment of sequences. Aligned regions need to be conserved in both order and orientation (Frazer et al., 2003); thus, this approach is optimal for the comparison of genomes with a high degree of synteny, but it is less good for outlining genomic relatedness of organisms in the presence of horizontal transfer and genomic rearrangements. Nevertheless, both alignment strategies can be useful, especially when explored graphically using comparative alignment viewers such as Combo (Engels et al., 2006) and ACT (Carver et al., 2005). Intuitive visualisation of the whole-genome homology can also be achieved by using dot-plot visualisation software (Krumsiek et al., 2007) and by mapping and visualising genome homology of genes and proteins within a reference strain in comparison to other prokaryotes (Wassenaar et al., 2010). Additionally, whole-genome comparisons can base on advanced genome alignment methods (Darling et al., 2010; Blanchette et al., 2004; Paten et al., 2008; Dubchak et al., 2009, Angiuoli et al., 2011; Rissman et al., 2009) that often mix global and local alignment procedures and can align long sequences while detecting the presence of inversions, translocations, duplications, and gains and losses. However, the use of even the most sophisticated software entails the selection of many mundane parameters (Frith et al., 2010), and these methods perform best with sequences that exhibit significant nucleotide-level similarity and colinearity.

The identification of orthologue groups is a central part of functional classification (Li et al., 2003; Koonin \& Galperin, 2003; Sonnhammer \& Koonin, 2002) and underpins the delineation of phenotype-genotype relationships among bacteria by providing a means of listing genes that are present only in the genomes of those isolates that express the phenotype of interest (Korbel et al., 2005). In general, methods for constructing orthologue groups are classified into distance and tree-based methods. Distance-based methods include the reciprocal best hit (RBH, Tatusov et al., 1996) and reciprocal smallest distance (RSD, Wall et al., 2003) approaches. These methods build on BLAST scores or maximum likelihood estimations of evolutionary distances and they resolve orthologous (i.e., homologues that have evolved by speciation from a single ancestral gene) between two organisms by finding two-way best genome-wide similarities. The software InParanoid extends this concept further (Remm et al., 2001) and exploits the RBH strategy to identify orthologues between two species while applying additional rules to accommodate paralogues that arise from duplication after speciation (i.e., inparalogues).

The rationale behind this approach is that orthologues and inparalogues are more likely to perform the same function than outparalogues that result from duplication preceding the speciation event (Sonnhammer \& Koonin, 2002). Distance-based methods have also been proposed for finding orthologue groups across multiple genomes. These approaches typically use pairwise sequence similarity search methods and cluster RBHs that span multiple genomes using triangular linkage clustering (Tatusov et al., 1997; Jensen et al., 2008), the Markov clustering procedure (Li et al., 2003), maximum weight cliques (Roth et al., 2008), or fully connected sub-graphs (Klimke et al., 2009). Alternatively, orthologue detection can be based on tree reconstruction and on gene and species tree reconciliation (Zmasek \& Eddy, 2002; Storm \& Sonnhammer, 2002). Regardless, assessments of orthologue prediction tools have resulted in contradictory results. One study concluded that EggNOG is the best and OrthoMCL the worst prediction method (Trachana et al., 2011); however, another study endorsed OrthoMCL and InParanoid over other methods (Chen et al., 2007). Confusingly, a recent study proposed that the RBH method might be more accurate and specific than any complex method (Salichos \& Rokas, 2011). Overall, phylogenetic approaches are powerful for capturing evolutionary relationships; however, the computational costs of multiple sequence alignment, the lack of an accurate species trees for a given collection of bacteria, and the complexity of tree reconciliation preclude the use of this approach for the genome-wide identification of orthologues (Rentzsch \& Orengo, 2009; Trachana et al., 2011).

Molecular phylogenetic analyses are frequently used to depict the evolutionary history of a given set of organisms (Williams \& Sarah, 2014). In addition, they can be applied to a single gene family, with each copy of the gene in each organism being included in the analysis (Yang \& Rannala, 2012). The reconciliation of the gene tree with a species tree can then be used to time gene gains, duplications, and losses (Eisen, 1998). Some methods have even been proposed for the genome-scale inference of gene gains and deletions and for the inference of ancestral gene inventories (Mirkin et al., 2003). Relatedness among organisms has typically been estimated by comparing molecular sequences, mostly smallsubunit ribosomal RNAs (Woese, 1987) or ubiquitous housekeeping genes (Konstantinidis \& Tiedje, 2005). The process begins with the extraction of sequences from all species under examination. After obtaining a multiple sequence alignment for the sequences, several phylogenetic methods can be used to infer the phylogeny. These methods can be broadly classified into maximum parsimony, maximum likelihood, Bayesian inference, and distance methods (Yang \& Rannala, 2012), which differ largely in the way in which they choose the best among all possible trees. Maximum parsimony selects the tree that requires the minimum number of character changes from the common ancestral sequences. In maximum likelihood methods, the probability that a certain tree with a set of parameters produces a given set of data is computed, and the tree that makes the given data most probable is chosen. In Bayesian analysis, inferences of phylogeny are based upon the posterior probabilities of phylogenetic trees, whereas distance-based methods calculate the evolutionary distance among sequences of interest and construct a distance matrix that is used to cluster sequences hierarchically (Yang \& Rannala, 2012). Additionally, organism-level evolutionary histories can be estimated from genome-scale datasets. These methods are believed to generate a more accurate picture of evolution,
especially for bacteria that have a high incidence of gene movement from one lineage to another (Brown et al., 2001) and include the derivation of phylogenies from gene content (Snel et al., 1999), gene order (Korbel et al., 2002), and compositional signatures (Fox et al., 1980). Further, phylogenies can be determined on the basis of multiple source-trees (Sanderson et al., 1998) or concatenated single-copy orthologue sequences (Brown et al., 2001; Rokas et al., 2003).

1.1.8 Metabolic and regulatory reconstructions

Metabolic reconstructions provide a starting point for the study of the metabolism of an organism and attempt to include all of the relevant metabolic information of an organism (Oberhardt et al., 2009; Durot et al., 2009). In general, the metabolic information of an organism is represented in terms of metabolic pathways, each of which describes a set of chemical interactions and transformations for the conversion of compounds (Durot et al., 2009). Metabolism-related data can also be conceptualised, and pathways can be integrated into genome-wide networks that usually envision metabolites as nodes and reactions as edges of the network. Although metabolic networks are not generated as often as metabolic pathways in bacterial genome studies, this approach offers a realistic view of metabolism, whereby, in theory, any reaction can have implications for other reactions (Oberhardt et al., 2009; Durot et al., 2009). Typically, metabolic pathway and network reconstructions stem from genome annotations (Oberhardt et al., 2009). Initially, a preliminary list of metabolic and transport reactions relevant for the given organism are harvested; gene name, TC number and EC number assignments and transmembrane protein predictions being the main information sources. Metabolic pathways and networks are then formed by linking individual reactions into increasingly complex structures. Reaction sets can be assembled ab initio by tracking the movement of atoms through the network (Arita, 2004; Heath et al., 2010) or by projecting the metabolic data onto reference metabolic pathways (Moriya et al. 2007; Karp et al., 2002). Finally, the initial metabolic networks are refined based on literature information, manual inspection, experimental data, and bioinformatic tools that annotate inconsistencies between metabolic models and substrate utilisation predictions and that can resolve metabolites or reactions that are disconnected from the rest of the metabolism. For example, Pathway Tools can include missing reactions in pathways if a significant fraction of the remaining reactions of the pathways are supported by genome annotations (Karp et al., 2002). In addition to reconstructing metabolic networks, genome annotation allows the reconstruction of transcriptional regulatory networks (Barabási \& Oltvai, 2004). These networks provide a global picture of the transcriptional machinery of the cell and are constructed by integrating existing knowledge of regulons, operons, and transcriptional regulation interactions with the results of operon and transcription factor binding site screens (Baumbach et al., 2009; Ravcheev et al., 2013). Bioinformatics resources that are relevant to the study of metabolism and transcriptional regulation are listed in Table 2 and Appendix Table 1.

1.1.9 Genome annotation pipelines

Several genome annotation systems that are intended for the automated, in-depth annotation of prokaryotic genomes have been designed and presented in recent years, including the IMG (Markowitz et al., 2012), RAST (Aziz et al., 2008), DOE-JGI MAP (Mavromatis et al., 2009), CG pipeline (Kislyuk et al., 2010), ERGO (Overbeek et al., 2003), and JCVI (Tanenbaum et al., 2010) genome annotation pipelines. Some of these systems are completely automatic online services that have the advantage of simplicity, whereas others are standalone tools that require maintenance but provide an extra level of confidentiality. Some popular bacterial genome annotation systems are listed in Table 2 and Appendix Table 1. Typically, genome annotation pipelines involve a wide array of methods, through which they identify genomic features and assign functional information that describe the biological role of these features. For example, the annotation service of the Broad Institute calls ncRNA genes and CDSs using three automated methods for each. Gene models are clustered, and representative models are selected using heuristics, such as the relative overlap with BLAST hits. Finally, gene models with problems are filtered out (as described in the human microbiome web page; Nelson et al., 2010). The JCVI genome annotation system (Tanenbaum et al., 2010) is another popular annotation system and shares similarities with that of the Broad Institute. CDS prediction employs one ab initio and two evidence-based prediction methods, and the pipeline runs three RNA gene callers over the genome: tRNAScan-SE, ARAGORN, and BLAST searches against Rfam. Other modern annotation pipelines call genes in a highly similar fashion. After gene calling, most bacterial genome annotation systems search the set of predictions against one or more protein databases using BLAST (Markowitz et al., 2012; Aziz et al., 2008; Mavromatis et al., 2009; Kislyuk et al., 2010; Overbeek et al., 2003; Tanenbaum et al., 2010). Further, the gene products are usually also searched via InterProScan against a set of sequence profile databases. In addition to these basic analyses, some annotation pipelines include additional analysis modules and perform protein subcellular localisation prediction (Kislyuk et al., 2010; Tanenbaum et al., 2010; Markowitz et al., 2012) and reconstruct metabolic pathways (Aziz et al., 2008). Some annotation pipelines also have viewers that permit users to rectify old calls and introduce new gene and function calls. Surprisingly, modern genome assemblers and assembly pipelines are scarce in bacterial genome annotation systems; the CG pipeline is the sole exception (Kislyuk et al., 2010). Although the various annotation servers are largely based on the same bioinformatic tools, pipelines appear to produce rather different annotation results. Importantly, the one study that has systematically compared the results of annotation services has documented distinct differences in annotation outputs (Bakke et al., 2009).

1.2 Lactobacilli

The genus Lactobacillus comprises a large, heterogeneous group of gram-positive, nonsporulating, rod-shaped bacteria that have complex nutritional requirements and a low GC-content genome (less than $50 \mathrm{~mol} \%$). These bacteria are acid-tolerant, aero-tolerant or
anaerobic, and aciduric or acidophilic and employ a strictly fermentative metabolism (Hammes \& Vogel, 1995; Felis \& Dellaglio, 2007; Salvetti et al., 2012). They are part of the lactic acid bacteria (LAB) group, which is characterised by the production of lactic acid as the main by-product of carbohydrate fermentation (Kandler \& Weiss, 1986). In general, lactobacilli are encountered in an array of plant-, food-, and animal-related habitats that are rich in carbohydrates (Pot et al., 1994; Hammes \& Vogel, 1995; Felis \& Dellaglio, 2007; Salvetti et al., 2012). Some species, such as Lactobacillus iners, are restricted to specific niches, whereas others demonstrate a notable ability to adapt to a diverse set of environments. Lactobacilli also have a beneficial effect on our daily life and are of great economic importance. Several species are encountered on and in the human body, including the oral cavity, gastrointestinal tract (GIT), and vagina (Hammes \& Vogel, 1995; Walter, 2008; Salvetti et al., 2012); other species are essential in the fermentation of food, beverage, and feed products (Leroy \& Vuyst, 2004; Bernardeau et al., 2006; Giraffa et al., 2010). Recently, members of Lactobacillus have been added to dietary and dairy products for probiotic purposes and to offer benefits for health and wellbeing (Saxelin et al., 2005; Giraffa et al. 2010).

1.2.1 Cellular characteristics of lactobacilli

The cell structure of lactobacilli is typical for that of a gram-positive bacterium and is often organised into three basic architectural regions: the cytoplasm, cell envelope, and surface appendages (Figure 5). The innermost region is the cytoplasm, which is largely the site of metabolism and replication. The cytoplasm contains the nucleoid, which is an irregularly shaped and non-membrane bound region that contains the chromosomal DNA, ribosomes, which are essential for protein synthesis, and an array of non-coding RNA molecules (ncRNA), which are not translated into proteins but function at the RNA level (Madigan et al., 2010). Also included in the cytoplasm are various proteins that are responsible for important functions, such as forming structural components (structural proteins), the catalysis of biochemical reactions (enzymes), and the transmission of molecular signals (transcription factors and signal transducers). The innermost compartment can also carry one or more independently replicating extra-chromosomal DNA molecules (plasmids) that are not essential for survival but can comprise a notable fraction of the total genome (Madigan et al., 2010). Of note, a sizable part of the genome is present as fragments of DNA that are capable of moving around within the genome or between genomes. A wide variety of such mobile genetic elements (MGEs) have been characterised in a number of different lactobacillus strains and include plasmids (Claesson et al., 2006), genomic islands (genome regions that exhibit evidence of horizontal origins; Kleerebezem et al., 2003), transposons (Callanan et al., 2008), and prophages (lysogenic phages that can switch under some conditions to a lytic lifestyle and then infect other bacteria; Ventura et al., 2006).

The cell envelope is a structural compartment that protects the cytoplasm and mediates interactions with the host and environment. In gram-positive lactobacilli, the cell envelope contains a cytoplasmic cell membrane and a thick peptidoglycan layer that is decorated

with proteins, teichoic acids, and polysaccharides (Lebeer et al., 2008; Madigan et al., 2010). In addition, some lactobacilli express an outermost coat, the Surface-layer (Slayer), which is composed of a single protein that completely encases the cell and appears to regulate bacterial contacts with the human dendritic cell (Konstantinov et al., 2008). Some lactobacilli also surround themselves with an exopolysaccharide (EPS), which is either tightly associated with the cell wall or secreted into the surroundings (Lebeer et al., 2008). Interestingly, these ubiquitous components of the cell envelope of lactobacilli have been shown to exert some immune responses and are therefore attractive candidates as probiotic effector molecules (Lebeer et al., 2008). Finally, molecular and genomic studies of lactobacilli have characterised the presence of surface appendages in lactobacilli as being involved in movement (flagella; Forde et al., 2011) or adhesion to surfaces (sortasedependent pili and fimbriae; von Ossowski et al., 2011; Lebeer et al., 2012; Pridmore et al., 2004). The cell envelope also contains membrane-associated proteins that are responsible for such processes as nutrient acquisition, adhesion, cell communication, microbe-host interactions, and stress sensing (Lebeer et al., 2008).

1.2.2 Sugar fermentation

Lactobacilli exhibit a strong ability to degrade various carbohydrates and derive energy mainly from the conversion of sugars into lactic acid. In general, these bacteria degrade hexoses through homo- or heterofermentative carbohydrate fermentation pathways (Hammes \& Vogel, 1995; Pot et al., 1994). First, homofermentative lactobacilli use glycolysis (Embden-Meyerhof-Parnas pathway) to ferment hexoses primarily into lactic acid; most Lactobacillus species fall into this group (Salvetti et al., 2012). In comparison, obligately heterofermentative lactobacilli ferment hexoses and pentoses via the pentose phosphate pathway. During this process, half of the substrate is converted into lactic acid and the rest is metabolised in equimolar amounts to ethanol (or to acetic or formic acid) and carbon dioxide. Finally, facultatively heterofermentative species utilise both pathways and are almost as common as homofermentative lactobacilli species (Salvetti et al., 2012). Genetically, the three modes of sugar fermentation are explained by the absence or presence of genes encoding aldolase and phosphoketolase. Aldolase is present in homofermentative and facultatively heterofermentative species; phosphoketolase is present in obligately and facultatively heterofermentative lactobacilli (Salvetti et al., 2012).

1.2.3 Taxonomy

The genus Lactobacillus, as currently circumscribed, contains over 152 species that exhibit wide phenotypic and genotypic variation. The genus is polyphyletic with the genus Pediococcus and is the largest genus within the family Lactobacillaceae, which in turn belongs to the order Lactobacillales, class Bacilli, and phylum Firmicutes. According to the most recent systematic study (Salvetti et al., 2012), Lactobacillus species can be
subdivided into 29 distinct phylogenetic groups (Figure 6). These groups represent a distinct cluster in the 16 S rRNA gene phylogeny and were named in the study according to the first recognised species of the given group. Some economically and biomedically important phylogenetic Lactobacillus groups are introduced below.

The Lactobacillus delbrueckii group is the largest of the phylogenetic Lactobacillus groups (Salvetti et al., 2012) and contains many species that are essential in food production. For example, L. delbrueckii is widely used as a starter culture in yoghurt manufacturing, whereas Lactobacillus helveticus is important in the manufacture of a range of Swiss- and Italian-type cheeses (Leroy \& De Vuyst, 2004; Giraffa et al., 2010). Included in the group are also GIT-associated species, such as Lactobacillus acidophilus and Lactobacillus johnsonii (Altermann et al., 2005; Pridmore et al., 2004), and species such as Lactobacillus crispatus, Lactobacillus jensenii, and L. iners, which are major constituents of the healthy adult female urogenital tract and important agents of urogenital health (Ma et al., 2012; Martin, 2012). Notably, the L. delbrueckii group includes several commercially distributed probiotic strains that appear to benefit health (Saxelin et al., 2005; Giraffa et al. 2010).

The Lactobacillus salivarius group is a heterogeneous group of 16 homofermentative and 9 facultatively heterofermentative species. The GC content within this group varies widely from 32 to $47 \mathrm{~mol} \%$ (Figure 6), reflecting the fact that the members of this group occupy a wide variety of habitats, including human saliva, vertebrate intestine, soil, water, plants, and food (Forde et al., 2011). Some species of the group appear to be motile and contain genes that encode the flagellar apparatus (Forde et al., 2011).

The Lactobacillus casei group comprises three species; namely, L. casei, Lactobacillus paracasei, and Lactobacillus rhamnosus. These species have a broad ecological distribution and are frequently found in plant material as well as in the oral cavity and GIT of humans and animals (Kandler \& Weiss, 1986). Industrially, L. paracasei, L. rhamnosus, and L. casei have applications as acid-producing starter cultures for milk fermentation and as starter adjunct cultures for the intensification and acceleration of flavour development in bacterial-ripened cheeses (Broadbent et al., 2012; Mäyrä-Mäkinen \& Bigret, 1998). Selected strains, such as L. rhamnosus GG, L. casei Shirota, and L. casei DN114-001, are commercially important probiotic that are added to various products for their potential to enhance the health of humans (Saxelin et al., 2005; Giraffa et al., 2010; Siezen \& Wilson 2010).

The Lactobacillus reuteri group contains 15 species that cover a broad host range. These species have been isolated from foods such as rye-bran fermentations and sourdough, and some are frequent in the GIT of birds, pigs, mice, and rats (Forde et al., 2011; Frese et al., 2011). L. reuteri is also considered indigenous to humans according to some investigations (Walter, 2008).

The Lactobacillus sakei group contains four facultatively heterofermentative species. The best known of the four species is L. sakei, a psychrotrophic bacterium that is found naturally on fresh meat and fish and that is used widely in their fermentation (Chaillou et al., 2005). The Lactobacillus plantarum is another well-studied phylogenetic lactobacilli group. Out of its five facultatively heterofermentative species, the most noteworthy is the genetically heterogeneous L. plantarum, which exhibits remarkable ecological adaptability
and can be recovered from a variety of habitats including fermented foods, vegetables, and the human GIT (Siezen et al., 2010; Siezen \& van Hylckama Vlieg, 2011). Of note, some strains of L. plantarum have probiotic applications (Kleerebezem et al., 2003).

Figure 6. A phylogenetic tree illustrating the evolutionary relationship between Lactobacillus and Pediococcus species based on 16S rRNA gene sequence similarity. The tree was calculated using Tamura Three Parameters as the distance matrix formula and minimum evolution as the tree reconstruction method. The scale bar represents the number of substitutions per site. Bootstrap values are reported in percentages at nodes if $\geq 60 \%$. Clusters containing more than three species were condensed and given the name of the first species described. The number of species in each group is indicated in parentheses, followed by the fermentation mode (A , homofermentative; B , facultatively heterofermentative; and C, obligately heterofermentative), GC content, temperature growth range, and pH growth range. The tree and phenotype data were adapted from Salvetti et al., 2012.

1.2.4 Industrial applications

The large-scale production of dairy products such as cheeses, yogurts, and fermented milks is the best-known industrial application of lactobacilli (Leroy \& De Vuyst, 2004; Bernardeau et al., 2006; Giraffa et al., 2010). However, lactobacilli also play an important role in other types of food fermentation (du Toit et al., 2010, Leroy \& Vuyst, 2004; Bernardeau et al., 2006) and are used for the production and preservation of foods of plant (e.g., pickles, olives, sauerkraut, sourdough bread, and Korean kimchi) and animal (e.g., fermented and dry sausages, salami, and fermented fish) origin, even though lactobacilli can in some cases cause spoilage of meat and seafood products (Varnam, 2002). These processes typically employ lactobacilli as starter cultures that are added to a raw material to accelerate and drive fermentation. Alternatively, preservation can be based on microbes that are naturally present in the raw material (Pfeiler \& Klaenhammer, 2007; Leroy \& De Vuyst, 2004). However, the use of spontaneous fermentation results in less control over the fermentation process and varying product quality,.

Lactobacilli are mainly used in food production for the fermentative conversion of sugars into organic acids, mostly lactic acid. This reduces the sugar content of the product and acidifies the raw material below the pH ranges within which most food-spoilage microbes can grow (Leroy \& De Vuyst, 2004). Acid production can also influence the organoleptic properties of the final product by contributing to the coagulation of milk proteins (Heller, 2001; Giraffa et al., 2010). In addition to acids, lactobacilli are known to produce a variety of other compounds of relevance to food industry. Among these are aroma compounds, lipases, and proteases that play a role in flavour development in cheese (Steele et al., 2012), EPS molecules that can enhance the mouthfeel of yogurts (Vuyst \& Degees, 1999), and proteinaceous antibacterial peptides (i.e. bacteriocins) that can be used as natural food preservatives (Leroy \& De Vuyst, 2004). Some lactobacilli are also able to produce health-enhancing ingredients (e.g., vitamins, bioactive peptides, and antioxidants) that have potential applications as biotherapeutic agents (Saxelin et al., 2005; Giraffa et al., 2010).

Chiefly, lactobacilli are generally regarded as safe (GRAS) organisms and have a long and safe history of application and consumption in the production of fermented foods. Under rare and unusual circumstances, the consumption of Lactobacillus products has been associated with infections in humans (Bernardeau et al., 2008). However, the risk of Lactobacillus infection was estimated in that study to be unequivocally negligible, with approximately only one case per 10 million people over more than a century. In addition to food-related applications, lactobacilli are used to ferment animal feeds, to produce chemicals (Saxena et al., 2009), to produce antibiotics, and as live vaccine carriers (Giraffa et al. 2010).

1.2.5 Lactobacilli in and on animals and humans

Lactobacilli are closely associated with humans and animals. In humans, they are notably abundant in breast milk (Collado et al., 2009), the oral cavity (Walter, 2008), and the
mucosal surfaces of the vagina (Ravel et al., 2011). Importantly, Lactobacillus species that are prevalent in breast milk, such as L. gasseri and Lactobacillus fermentum (Martín et al., 2005), or in the vagina, such as L. crispatus, Lactobacillus gasseri, L. iners, and L. jensenii (Ravel et al., 2011), are often regarded as offering a number of benefits for health and wellbeing (Martín et al., 2005; Martin, 2012).

The human GIT is another site that hosts lactobacilli (Molin et al., 1993; Ahrne et al., 1998; Reuter, 2001; Vaughan et al., 2005; Dal Bello \& Hertel, 2006; Walter, 2008; Ryan et al., 2008; Matsuda et al., 2009) and at least 12 Lactobacillus species have been associated with the human GIT (Table 3). However, the Lactobacillus species composition varies among subjects, and approximately 25% of human faecal samples lack lactobacilli entirely (Walter, 2008). Furthermore, in faecal samples in which lactobacilli are detected, these organisms are found at low levels and account for a minor portion (approximately 0.01% to 0.6%) of the microbiota present (Lebeer et al., 2008). It is therefore believed that only a small number of GIT-associated species are genuine residents of the GIT, and most are considered simply as allochthonous members that are passing through the GIT after originating from fermented food, the oral cavity, or more proximal parts of the GIT (Walter, 2008). In contrast, the presence of lactobacilli in animals and their GITs is more pronounced than in humans. For example, lactobacilli form stable populations in the GITs of pigs, mice, rats, and chickens at sites that are lined with stratified squamous epithelium (Walters, 2008). Although this epithelium type is absent from the human GIT, it is present in the buccal and vaginal cavities, sites at which lactobacilli are abundant (Walter, 2008).

Table 3. Lactobacillus species that are commonly detected in food, human faeces, and in various parts of the human GIT. The data were compiled from Molin et al., 1993; Ahrne et al., 1998; Reuter, 2001; Vaughan et al., 2005; Dal Bello \& Hertel, 2006; Walter, 2008; Ryan et al., 2008; and Matsuda et al., 2009. Brackets indicate the overall size of the resident lactobacillar populations according to Walter, 2005.

	Food	Oral cavity $\left(<10^{3}-10^{6}\right)$	Stomach $\left(<10^{3}\right)$	Small intestine ($<10^{3}-10^{8}$)	$\begin{gathered} \text { Colon } \\ \left(<10^{3}-10^{9}\right) \end{gathered}$	$\begin{gathered} \text { Faeces } \\ \left(<10^{3}-10^{9}\right) \end{gathered}$
L. acidophilus	+	+				+
L. crispatus		+				+
L. casei	+	+				+
L. fermentum	+	+				+
L. gasseri		+	+	+		+
L. paracasei	+	+			+	+
L. plantarum	+	+			+	+
L. reuteri	+		+	+		+
L. rhamnosus	+	+		+	+	+
L. ruminis			+			+
L. sakei	+					+
L. salivarius		+				+

1.2.6 Probiotic lactobacilli

By definition, probiotics are live microorganisms that have a beneficial effect on the health of the host when administered in adequate amounts (Lee \& Salminen, 1995; Saxelin et al., 2005; Giraffa et al. 2010). Although in theory any microorganism could be identified as probiotics, most probiotics in use today are lactobacilli and bifidobacteria (Siezen \& Wilson, 2010). However, not all members of these genera are equally useful as probiotic additives. Preferably, the strains used should be of human origin and should have been proven safe for consumption (Lee \& Salminen, 1995). In addition, probiotic additives should tolerate bile and acid to survive passage through the upper GIT and adhere to human tissues (Giraffa et al. 2010). Commercially distributed strains also should not adversely affect taste and should exhibit good growth characteristics and survive the production and storage processes used (Lee \& Salminen, 1995). The last characteristic is particularly important because a bacterial concentration of $\geq 10^{8}$ colony-forming units per gram appears to be the efficacious dosage (Aureli et al., 2011). Although the list of functional requirements is lengthy, at least some Lactobacillus strains appear to fulfil these criteria; see Table 4 for selected examples. These strains are typically delivered to customers as fermented dairy product or dietary supplements (Saxelin et al., 2005; Giraffa et al. 2010); vaginal suppositories, cereals, and skin lotions representing other examples of products to which probiotic lactobacilli have been added (Krutmann, 2009; RiveraEspinoza \& Gallardo-Navarro, 2010; Salvatore et al., 2011).

Many types of health benefit have been associated with the consumption of probiotic lactobacilli. These include the treatment of gastrointestinal infection and inflammatory bowel disease, the prevention of respiratory tract infections, the treatment of atopic diseases and allergy, the suppression of Helicobacter pylori infection, the prevention of urinary tract infections, anti-diarrheal properties and the treatment of bacterial vaginosis (Saxelin et al., 2005; Uehara et al., 2006; Anukam et al., 2006; Siezen \& Wilson, 2010; Aureli et al., 2011). The potential mechanisms of action involved include a strengthening of the cell barrier function, vitamin supply, the enhancement of healthy microbiota, and antagonism against pathogens via the production of antimicrobials and competitive exclusion (Lebeer et al., 2008; Ventura et al., 2008; Oelschlaeger, 2010). Many probiotics are also believed to secrete immunomodulatory molecules that interact directly with the host (Yan et al., 2007; Lebeer et al., 2008). The physical interaction of cell-surface components with host tissues can also reinforce immune stimulation and provide positive health benefits. However, despite extensive research in the area of probiotics and the fact that probiotic products have been on the market since the creation of Yakult in 1935, none of the numerous commercial probiotic Lactobacillus products have been officially approved for their health-promoting claims in Europe. To date, the European Food Safety Authority has deemed only one general health claim valid; namely, "live cultures in yogurt or fermented milk improve lactose digestion".

Table 4. Representative Lactobacillus strains associated with health-enhancing products. The data were compiled from Siezen \& Wilson 2010 and Saxelin et al., 2005.

Strain	Brand name	Claimed effect
L. casei Shirota	Yakult®	Alleviation of acute diarrhoea
G. rhamnosus GG $®$	Immune stimulation, alleviation of atopic eczema, prevention of diarrhoea, aleviation of symptoms associated with irritable bowel syndrome	
L. acidophilus NCFM	Howaru®	Improvement of intestinal health, alleviation of symptoms associated with irritable bowel syndrome, gastrointestinal ecology
L. casei DN114-001	Boost® $®$ Diarrhoea treatment, gut infections,	
L. reuteri 55730		Alleviation of colic, pathogen inhibition

1.3 Lactobacillus genomes

The first 135 Lactobacillus genomes to be published included 38 finished and 97 draft genomes (Table 5 and Appendix Table 2). These genomes have enabled researchers to gain insight into the ecology, evolution, and biological role of lactobacilli and represent in total 46 different species that vary widely in GC content ($32-53 \%$), tRNA gene number (25 to 98), coding efficiency ($49-91 \%$), and genome size ($1.2-3.8 \mathrm{Mb}$). Below, some of the most valuable discoveries from the first 135 Lactobacillus genome projects are outlined in detail.
L. delbrueckii is the largest of the 29 phylogenetic Lactobacillus groups (Salvetti et al., 2012). The first genomes of this phylogenetic group to be resolved were the approximately $2.0-\mathrm{Mb}$ genomes of L. johnsonii NCC 533 (Pridmore et al., 2004) and L. acidophilus NCFM (Altermann et al., 2005). Notably, these two GIT-associated isolates possess a bile salt hydrolase and various types of adhesins that support their persistence in the GIT. Their ability to synthesise cofactors and vitamins is in contrast limited and both isolates can synthesise only some amino acids de novo. These deficiencies are, however, alleviated by their broad repertoires of peptidases, proteases, and transporters, which allow efficient amino acid acquisition from the surrounding medium. As for these GITassociated strains, genomes are available for several dairy-related isolates of the L. delbrueckii group. These include L. delbrueckii ATCC11842, which is known for its worldwide application in yogurt production (van de Guchte et al., 2006), and L. helveticus DPC 4571, a Swiss cheese isolate that is recognised for its ability to reduce bitterness and increase flavour development in cheese (Callanan et al., 2008). Intriguingly, L. helveticus DPC 4571 has few cell-surface-protein-encoding genes and does not encode bile salt hydrolase, despite its striking genome conservation with L. acidophilus NCFM (Callanan et al., 2008). Analysis of the L. delbrueckii ATCC11842 genome has revealed an exceptionally high number of rRNAs, tRNAs, and partial carbohydrate-utilisation pathways, suggesting that this genome has undergone a recent phase of size reduction (van

1	92	OZ	18レレ	$\varepsilon \cdot \downarrow$	uewnh	レ／レ	\downarrow	рә！！！ssejoun
\downarrow	89	89ε	ャ®๑乙	L＇乙	usem əjdd \forall	L／L	\downarrow	
8－1	0Zレ－6Z	Oカカームレ	てヤ9て－てSGレ	L＇て－6＇レ	！чэш！${ }^{\text {y }}$ ‘uewny 	GZ／G	てし	sn！uen！！es 7
L－L	†8－99	عLL－Gカレ	988L－て981	$6 \cdot 1-8 \cdot 1$	әбesnes	カ／乙	乙	！әуеs 7
6－0	レレレ－Gを	0乙\＆－¢	818て－レGOL	8＊でぐし	auiviod 	SI／6	£乙	بəұnวı 7
S－1	¢8－乙9	عSL－LZ	ヤGLE－GGLZ		‘uewny ‘əБе！！s ‘səл！！○	9／Z	9	misızueld 7
乙	¢9	961	8961	0 －	」əәg	レ／レ	\downarrow	sиедиәшәәəеш 7
L－L	乙8－6を	ع91－LZし	8乌عL－ヤ8てし	ガレーがし	цరnopınos＇əyes	G／Z	乙	sиeıоп！
6－0	9Zレ－0	してがと	0عとて－カカレレ	ガて－でし	əגnł！ уеК рәұиәшдәғ＇Кц！ер ‘ләәg	LZルレ	19	
G－0	92－0	てヤ6－Sレ	SGZE－6LLZ	$1 \times-G^{\prime}$＇	Kıołesoqe｜‘ssimnoy ‘uewny 	$\varepsilon / \varepsilon$	LI	！Pseo 7
S－0	8L－カワ	ヤLG－ヤEL	¢ટદદ－て6๕て	$0{ }^{\circ} \varepsilon^{-9} \underbrace{\circ}$	Ки！леэ ןело ‘әи！м ＇uewny＇juejd uol！onpord ןоиецłә ‘’onb！！dəəłs uлоう	てレ／	G	！əขцэпя 7
S－1	18－19	ちGて－乌¢乙	レヤ0と－8してて	レ＇モ－¢＇乙	әбе！！s ‘əu！M	OL／レ	乙	s！＾әıq 7
て－レ	LS－GG	6ヤを－06乙	0ャtて－七¢\＆Z	S＇Z－s＇Z	ə6esnes	レレZ	乙	sп！меұиәш！！ 7
S91	səuə6 VNY		sSOJ	$\begin{gathered} (q W) \\ \text { чłбuәך } \end{gathered}$	əo．nos	su！̣elłs pəouənbəs प！！M sə！うəds	su！edis pəouənbəs	てしOZ＂旧 łə！！ u！se әшеи әреן

de Guchte et al., 2006). Finally, genomes for L. crispatus, L. jensenii, and L. iners isolates have provided novel perspectives on the genomic basis of urogenital lactobacilli. These genomes have, for example, revealed the lack of a complete bacteriocin synthesis apparatus and most known adhesion factors in L. iners AB-1 (Macklaim et al., 2011) and the presence of three bacteriolysin and seven adhesion and colonisation-related protein encoding loci in the L. crispatus core-genome (Study V).

The genomes of the sequenced L. casei group members are approximately 2.8 Mb in size (Table 5) and appear to all harbour a repertoire of genes that are involved in sugar uptake, carbohydrate utilisation, and amino acid biosynthesis (Makarova et al., 2006; Cai et al., 2009; Morita et al., 2009). Importantly, pilus gene clusters similar to those that were disclosed in the genome study of L. rhamnosus GG (Study III) are also widespread and have hitherto been identified in the genomes of all probiotic (Douillard et al., 2013a) and various other (Douillard et al., 2013b; Kant et al., 2014) members of this Lactobacillus phylogenetic group. These genome investigations have also provided insights into the genetic complexity of these species and have been helpful in defining the scale and scope of biomedically important effector molecules in the L. casei group that have previously been associated with a cytokine production (Péant et al., 2005), promotion of in vitro intestinal epithelial homeostasis (Yan et al., 2007; Lebeer et al., 2008), and adaptation of strain GG to the host environment (Lebeer et al., 2009). Other genome studies have on the other hand provided valuable insights into the genomic niche-associated evolution of L. casei and have determined the scale and scope of genetic variation of this versatile and important species (Cai et al., 2009).

The L. salivarius group is the second most speciose group of the genus Lactobacillus, and includes representatives of both non-motile (13) and motile (12) Lactobacillus species (Salvetti et al., 2012). The genomes associated with this phylogenetic group range from 1.9 to 2.7 Mb and can consist of multiple large replicons. For example, a megaplasmid comprises 11% of the genome of L. salivarius UCC118 (Claesson et al., 2006). Although this megaplasmid contains no essential genes, it encodes functions that are beneficial to the host cell, such as the ability to use additional sugars, to hydrolyse bile salt, and to produce supplementary amino acids. The plasmid also includes a locus that encodes and is required for the synthesis of bacteriocin (Claesson et al., 2006), which is active against Listeria monocytogenes (Corr et al., 2007). Analysis of the genome of Lactobacillus ruminis ATCC 27782 has been highly useful in understanding the nature of flagellummediated motility in the genus Lactobacillus and has revealed a complete set of flagellum biogenesis genes (Forde et al., 2011). The genome study has also described genes that share similarity with known pilin genes, suggesting that L. ruminis ATCC 27782 might contain a sortase-dependent pilus organelle.

Genomes in the L. reuteri group are on average 2.1 Mb and contain on average 2,055 CDSs (Table 5). They appear to be rich in genes encoding putative cell-surface-associated proteins (Båth et al., 2005; Saulnier et al., 2011), and some strains possess an EPS gene cluster that is involved in modulating host immune responses (Saulnier et al., 2011). In addition, genomic island coding for the production of a broad-spectrum antimicrobial substance termed reuterin has been identified in selected L. reuteri strains. This reuterin island is particularly interesting because the production of reuterin appears to be linked to
the prevention of gastrointestinal infections (Saulnier et al., 2011). Moreover, genomic analyses have revealed loci that are associated with the production of vitamins B_{1} (Saulnier et al., 2011) and B_{12} (Morita et al., 2008), although it remains an open question whether L. reuteri produces an active (Mohammed et al., 2014) or inactive (Santos et al., 2007) form of vitamin B_{12}.

Other economically or biologically important lactobacilli are found in the L. sakei and L. plantarum groups (Table 5). These include the psychrotrophic bacterium L. sakei 23 K (Chaillou et al., 2005). Based on its genome, this organism has metabolic pathways for arginine catabolism and purine nucleoside scavenging. Other notable features include genes implicated in dealing with the harsh conditions associated with food processing and allowing growth on meat during refrigeration and in the presence of curing salts. Genome analysis have also revealed auxotrophy for all amino acids except aspartate and glutamic acid (Chaillou et al., 2005). Another noteworthy strain is L. plantarum WCFS1, which is the first organism from the Lactobacillus genus to be sequenced (Kleerebezem et al., 2003). The genome of L. plantarum WCFS1 is large, close to 3.3 Mb in size, and appears to encode a number of transporters and enzymes for the uptake and utilisation of sugars, thus providing an explanation for the widespread distribution of the L. plantarum species in nature (Kleerebezem et al., 2003). The authors also described a number (>200) of extracellular proteins that could enable exchange signals with the environment and adherence to surfaces (Kleerebezem et al., 2003).

1.3.1 Computational genomics of Lactobacillus

The current Lactobacillus genome data were largely obtained using Sanger and Roche 454 sequencing technologies (Appendix Table 3). The first 15 genomes were chiefly determined using Sanger technology (Kleerebezem et al., 2003; Pridmore et al., 2004; Altermann et al., 2005; Chaillou et al., 2005; Makarova et al., 2006; Claesson et al., 2006; van de Guchte et al., 2006; Frese et al., 2011; Macklaim et al., 2011; Morita et al., 2008); after these genomes, sequencing has typically relied on the Roche 454 platform. For example, in 2009, most Lactobacillus genome projects were obtained using the Roche 454 platform (Appendix Table 3). Surprisingly, sequence data were generated using the Illumina sequencing platform alone in only three cases (part of the human microbiome project (HMP); Nelson et al., 2010). As expected, Newbler represents the most popular assembler. In addition, Phrap, Jazz, Velvet, and CLC bio genome assemblers have been employed in more than two genome projects (Appendix Table 3). Among the 97 draft assemblies, the median contig number is 75 . Given their high degree of sequence similarity and synteny with finished assemblies, draft assemblies are however presumed to offer a near-complete picture of the genome. The unresolved regions of these genomes most likely comprise primarily long, repetitive sequences, such as those encoding ribosomal genes, MGEs, and repetitive structures of some surface-protein genes (Seepersaud et al., 2005; Edelman et al., 2012). The most notable exception is the genome assembly of L. rhamnosus MTCC 5462, which comprises 2,543 contigs and might include a notable number of contigs that end in incomplete gene sequences (Prajapati et al., 2012).

As expected for sequences with GC contents ranging from 32 to 59% (Marine et al., 2011), the genomic GC content has not affected assembly quality, and no obvious correlation was detected between the contig numbers and the GC contents of different Lactobacillus genomes.

Regarding genome annotation, no single bioinformatic tool or approach has gained supremacy (Appendix Table 3). Structural annotation has relied on several gene callers, mainly Glimmer, GeneMark, tRNAscan-SE, and RNAmmer, as was the case in the 55 genome projects that were processed using the BCM, JCVI, or PGAAP genome annotation pipelines. Functional classification has primary been performed using BLAST and domain search tools. On occasion, protein functions have been amended manually (Kleerebezem et al., 2003; Pridmore et al., 2004; Altermann et al., 2005; Chaillou et al., 2005; Makarova et al., 2006; Claesson et al., 2006; van de Guchte et al., 2006; Frese et al., 2011; Macklaim et al., 2011; Morita et al., 2008; Cai et al., 2009; Study III; Morita et al., 2009; Study IV; McNulty et al., 2011; Forde et al., 2011). Overall, the level of manual curation is higher for finished genomes and genomes that were processed before 2010, as reflected by their higher rates of start site consistency and exact DEs. In particular, more attention was given to the annotation of the first 15 Lactobacillus genomes. The initial annotations were in these projects generated using a variety of methods and curated manually. Many of the more recent genomes have on the other hand chiefly relied on the non-human assisted use of protein function prediction services. However, annotation processes are generally poorly documented, which complicated the comparison of annotation processes. For 14 genomes, no information was offered; for another 67 genomes, only the general protocol of the sequencing centre that had performed the sequencing was listed. Significantly, in various instances, neither genome annotations nor sequences have been updated since the data release by means other than the automatic annotation systems used by the databases. Annotations between different genomes can thus be inconsistent, even for strains of the same species. The most notable exception is the genome of L. plantarum WCFS1, which was re-sequenced and re-annotated by Siezen et al. recently (Siezen et al., 2012).

1.3.2 Comparative genomics of Lactobacillus

Comparative analyses of Lactobacillus have expanded our understanding of the molecular evolution, diversity, and function of lactobacilli. Importantly, these studies have revealed significant functional and genomic variance between Lactobacillus genomes (Boekhorst et al., 2004; Pridmore et al., 2004; Canchaya et al., 2006; Berger et al., 2007; Ventura et al., 2008; Canchaya et al., 2006; Claesson et al., 2008; Morita et al., 2008; Azcarate-Peril et al., 2008; O'Sullivan et al., 2009; Kant et al., 2011a; Lukjancenko et al., 2012). For example, only 28 large regions of conserved gene order, ranging in size from 7 to 75 genes, were found in a comparative analysis of L. plantarum WCFS1 and L. johnsonii NCC 533 genomes (Boekhorst et al., 2004). A lack of gene order synteny has also been shown for other distant lactobacilli, whereas the genomes of closely related lactobacilli tend to exhibit a high degree of gene order conservation across their entire genomes
(Canchaya et al., 2006; Berger et al., 2007; Ventura et al., 2008). However, even the genomes of closely related strains of the same lactobacilli species can differ by one or more genomic islands (Pridmore et al., 2004; Study III; Morita et al., 2008; Azcarate-Peril et al., 2008). These regions of diversity typically lack similarity with other lactobacilli regions and contain genes that might be relevant for environmental adaptation. For example, genomic islands contain genes coding for EPS biosynthesis in L. gasseri ATCC 33323 (Azcarate-Peril et al., 2008), fimbrial components in L. johnsonii NCC 533 (Pridmore et al., 2004), pilus fibres in L. rhamnosus GG (Study III), and B_{12} and reuterin biosynthesis in L. reuteri JCM 1112^{T} (Morita et al., 2008). In addition, horizontal gene transfer has been linked to the ability of L. plantarum WCFS1 to adapt to a variety of niches, to the adaptation of L. delbrueckii to dairy environments (Liu et al., 2009; van de Guchte et al., 2006), and to the acquisition of amino acid metabolism, lipid biosynthesis, and restriction endonuclease genes during the evolution of L. helveticus DPC 4571 (Callanan et al., 2008). However, predicting laterally acquired genome regions is not always straightforward. For example, the sequencing and analysis of the genomes of L. ruminis ATCC 27782 and ATCC 25644 identified a bacteriocin cluster in ATCC 27782, although it remained unclear whether ATCC 25644 also contained a complete bacteriocin locus; some genes associated with bacteriocin production were missing and the others did not assemble into a single contig in the latter strain (Forde et al., 2011).

Comparative genomics studies have revealed interesting biological similarities and differences among lactobacilli. The lactobacilli genomes, for example, appear to contain a constant fraction of flavour-related genes, independently of their isolation. The approximately $2.0-\mathrm{Mb}$ genomes of L. delbrueckii ATCC 11842 and L. acidophilus NCFM, for example, code for 15 and 14 flavour-related enzymes (Liu et al., 2008), even though the first is a dairy isolate and the second is a human isolate. Analysis of Lactobacillus secretomes has revealed that on average, 8% of a lactobacilli proteome represents secreted or surface-associated proteins (Zhou et al., 2010; Kant et al., 2010). The largest predicted secretome (approximately 9% of the predicted proteome) is that of L. acidophilus NCFM, whereas the smallest predicted secretome (approximately 5% of the predicted proteome) was that of L. reuteri DSM 20016 (Kant et al., 2010). Comparative genomics has been used to measure the diversity of CRISPR-cas systems, revealing that approximately two thirds of the analysed Lactobacillus strains have a CRISPR locus (Horvath et al., 2009). Mucus-binding domain screens have been used to measure the prevalence of mucusbinding proteins in lactobacilli; the most abundant mucus-binding domain-containing proteins were found in GIT-associated lactobacilli, supporting the idea that mucus-binding proteins are involved in adherence to the intestinal mucus that covers intestinal epithelial cells (Boekhorst et al., 2006).

1.3.3 Comparative core and pan-genomics of Lactobacillus

The microbial pan-genome comprises a core and an accessory gene pool (Tettelin et al., 2005). Core genes are conserved across all isolates of a given group of organisms, whereas accessory genes are present in some but not all strains (Tettelin et al., 2005). In general,
core genes are responsible for basic cellular processes and the main phenotypic traits of the group, whereas accessory genes contribute to diversity within the group and enable adaptation to specific environments (Medini et al., 2005). When applied to Lactobacillus genomes, core genome investigations have defined differing sets of 593 (Canchaya et al., 2006), 141 (Claesson et al., 2008), 383 (Kant et al., 2011a), and 363 (Lukjancenko et al., 2012) core genes that are shared by all lactobacilli. These apparently contradictory results are tentatively explained by methodological differences and by the number of genomes analysed in the individual studies; 5 by Canchaya et al., 2006, 12 by Claesson et al., 2008, 20 by Kant et al., 2011a, and 20 by Lukjancenko et al., 2012. Surprisingly, the impact of genome number and the consequence of sequentially adding more genomes and the core genome size of an infinite number of Lactobacillus genomes were not estimated in any of the studies, as is typically performed in core and pan-genome studies (Medini et al., 2005). Nevertheless, these and other comparative studies have provided key insights into the genome evolution of Lactobacillus and revealed that the gene complements are the results of extensive gene losses and gains during evolution (Claesson et al., 2008; Kant et al., 2011a) and are devoid of habitat-specific genes (Claesson et al., 2008; O'Sullivan et al., 2009), and that the core genome contains only a few genus-specific genes (Claesson et al., 2008; Canchaya et al. 2006).

The core genomes of specific Lactobacillus species have also sparked interest. The establishment of the level of intraspecies diversity in seven Lactobacillus species using comparative genomic hybridisation and the mapping of short-read sequences to reference genomes revealed that individual strains lack $3-24 \%$ of the genes of the given reference genome and that the size of the core genome is correlated with the total size of a single reference genome (Siezen et al., 2010; van Hemert et al., 2010; Meijerink et al., 2010; Berger et al., 2007; Cai et al., 2009; Raftis et al., 2011; Nyquist et al., 2011; Frese et al., 2011; Douillard et al., 2013b). Additionally, whole-genome assembly comparisons have been used for the investigation of genetic diversity in L. paracasei (Smokvina et al., 2013), L. rhamnosus (Kant et al., 2014), and L. casei (Broadbent et al., 2012). This approach is more powerful than read-mapping and microarray-based approaches and can call genes that are present in genomes other than the reference genome. Using this approach, gene loss and gain was found to be the dominant force in genome evolution within both Lactobacillus species, although some variation took the form of differences in universally conserved genes. For example, L. casei strains exhibited $>99 \%$ identity to the 16 S rRNA sequence of L. casei ATCC 334. Nevertheless, on average, 119 strain-specific gene families are present in each genome, and only 61% of any individual genome is shared by all 17 strains. Mathematical modelling of the data indicates extensive genome diversity and that the L. casei pan-genome contains 9,072 gene families, of which 1,600 are common to all individuals (Broadbent et al., 2012).

2 Aims of the study

The aim of this study was to develop algorithms for the automated function prediction of bacterial protein sequences and to advance our understanding of Lactobacillus physiology by annotating the genomes of L. rhamnosus GG and LC705 and L. crispatus ST1. Genes in the genomes that exhibited functions that are involved in interactions with the host and that responsible for strain-specific characteristics were of particular interest. To determine the scale and scope of genetic variation in L. crispatus and to infer physiological traits that are common for all L. crispatus, pan-genomic strategies were also considered. Overall, the goal was to develop efficient and accurate ways to annotate bacterial genomes.

3 Materials and methods

The bioinformatics methods developed are described in detail with appropriate references in original publications I and II. Detailed descriptions of materials and methods used in the genome investigations are in the original papers III-V.

3.1 Evaluation of bioinformatics methods

A comprehensive assessment of the newly developed bioinformatics methods is available in the original publications I and II. Briefly, the performance of the LOCP software tool (Study I) was evaluated based on 20 completely or partially sequenced genomes with known pilus operons. In this process, the genes in these genomes were assigned scores of their highest ranked LOCP predictions or were assigned a score of zero indicating that the gene was not reported by LOCP. The ability of LOCP to distinguish genuine pilus-related from other genes was then assessed using receiver operating characteristic analysis. In Study II, the data used in the development process of BLANNOTATOR were obtained from UniProt (Bairoch et al., 2008). Protein function labels were restored to the state preceding the functional characterisation of the test sequences using scripts that were developed in-house. The details of the restoring process as well as the use of competing protein function classification methods and statistical tests are in the original paper II. In addition, a retrospective assessment of the classification accuracy of nine gene-calling systems was performed, and this assessment is described in this thesis. Specifically, CDSs in L. rhamnosus GG, L. rhamnosus LC705, and L. crispatus ST1 were called using nine gene-calling tools, and the sensitivity, specificity, and F-score (i.e., the harmonic mean of the sensitivity and specificity) were computed at the single-base level. The gold standard sets that were used in the comparison were the manually annotated gene models from the genomes as well as regions with and without transcriptional activity in L. rhamnosus GG. Transcriptome data were compiled from three previous L. rhamnosus GG gene expression studies (Laakso et al., 2011; Koskenniemi et al., 2011; Koponen et al., 2012) and comprised 626,450 bases with evidence of transcription (defined as bases that are covered by probes with an intensity value ≥ 5 standard deviations above the mean intensity of negative control probes in ≥ 18 of the 360 RNA samples described in these three studies).

3.2 Strains and growth conditions

The Lactobacillus strains that were sequenced in Studies III-IV included L. rhamnosus GG (ATCC 53103), L. rhamnosus LC705 (DSM 7061), and L. crispatus ST1. To prepare genomic DNA, each strain was grown in the de Man, Rogosa, and Sharpe (de Man et al., 1960) broth at $37^{\circ} \mathrm{C}$. DNA was extracted as previously described (Pitcher et al., 1989).

3.3 Sequencing and assembly

Whole-genome sequencing was done at the DNA sequencing and Genomics Laboratory at the Institute of Biotechnology, University of Helsinki. Briefly, DNA from L. rhamnosus GG and LC705 was processed according to publication III. Plasmid and fosmid libraries were sequenced using an ABI 3730 DNA sequencing instrument and Big Dye chemistry (Applied Biosystems, Foster City, CA, USA), whereas genomic fragment libraries were sequenced using Roche GS 20 pyrosequencing (454 Life Sciences/Roche Applied Biosystems, Branford, CT, USA). In Study IV, genomic DNA from L. crispatus ST1 was used for 454 library construction and sequenced using a Roche 454 instrument with GS FLX chemistry (454 Life Sciences/Roche Applied Biosystems, Branford, CT, USA). All DNA reads were processed and assembled using the Staden Package (Staden et al., 1999) and/or Newbler (454 Life Sciences/Roche Applied Biosystems, Branford, CT, USA). For gap closure, the PCR-amplified fragments obtained using genomic DNA were sequenced using an ABI 3730 instrument and Big Dye chemistry (Applied Biosystems, Foster City, CA, USA).

3.4 Accession numbers for the submitted data

The genome sequences of L. rhamnosus GG and LC705 and the plasmid pLC1 have been deposited in the EMBL nucleotide sequence database under accession numbers FM179322, FM179323, and FM179324, respectively. The genome sequence of L. crispatus ST1 has been deposited in the EMBL nucleotide sequence database under accession number FN692037.

3.5 Publicly available genome sequences

The genome data used in Studies III-V were downloaded from the GenBank database (Benson et al., 2013) and the PATRICK database (Gillespie et al., 2011), as indicated in the original publications. The genome data referenced in this dissertation were downloaded in April 2012 from GenBank (Benson et al., 2013) and the PATRICK database (Gillespie et al., 2011). The NCBI database was preferred over the PATRICK database when a genome was available at both databases, provided the NCBI entry was properly annotated. Where possible, scaffold assemblies were preferred.

3.6 Structural and functional annotation

The genomes in Studies III and IV were scanned for CDSs, tRNAs, rRNAs, CRISPRs, genomic islands, prophage-like clusters, and rho-independent transcription terminators
using an array of computational methods (Table 6). Predicted protein sequences were then searched against a variety of databases and further processed using a set of bioinformatics tools with the aim of assigning function (Table 6). Automated computer annotations were verified, and discrepancies were resolved manually. Detailed descriptions of databases and software tools used are in the original papers III-IV. In Study V, genome sequences were mined for CRISPRs, genomic islands, plasmids, and prophage-like regions using a variety of methods (Table 6). A functional annotation update was also performed to ensure that protein function predictions were of identical quality for all of the investigated L. crispatus genomes. An overview of the computational methods used in Study V is presented in Table 6. The use of these tools is described in detail in the corresponding publication. Where feasible, the methods developed in Studies I and II were used to obtain details about pilus-like gene clusters and protein functions, respectively, in Studies III-V.

3.7 Metabolic pathway reconstruction

Using the KAAS tool (Moriya et al., 2007), CDSs within the genomes of L. rhamnosus GG, L. rhamnosus LC705, and L. crispatus ST1 were annotated for EC numbers describing enzymatic activity. Metabolic pathway reconstructions were then realised by associating enzymatic activities with combined KEGG (Kanehisa et al., 2004) and MetaCyc (Krieger et al., 2004) reference reaction pathways and by manually investigating reaction maps. To resolve the precise metabolic activity of genes with partial EC codes, the enzymatic activity supported by the API 50 CH (BioMérieux, Marcy l'Etoile, France) carbohydrate-fermenting patterns was chosen where possible. In Study V, EC codes were determined using KAAS software (Moriya et al., 2007) and the FMM server was used to assemble these EC codes to metabolic pathways (Chou et al., 2009).

3.8 Comparative analyses

The methods used in Studies III-V for orthologue analysis, phylogenetic tree construction, and whole-genome alignment are summarised in Table 6. The L. rhamnosus wholegenome nucleotide alignments that are presented in this thesis were generated using BLASTN (Altschul et al., 1997) and ACT (Carver et al., 2005). The L. rhamnosus draft genomes were ordered and oriented with respect to the genome sequence of L. rhamnosus GG using progressive Mauve (Rissman et al., 2009). To produce the L. crispatus wholegenome nucleotide alignments that are presented in this thesis, matching genome blocks between the genome of L. crispatus ST1 and the genomes of L. crispatus CTV-05, L. helveticus DPC 4571, L. acidophilus NCFM, L. johnsonii NCC 533, L. gasseri ATCC 33323, and L. delbrueckii ATCC 11842 were identified using PROmer and visualised using a MUMmer plot (Kurtz et al., 2004). The draft genome of L. crispatus CTV-05 was ordered and oriented with respect to the genome sequence of L. crispatus ST1 using progressive Mauve (Rissman et al., 2009).

3.9 Core and pan-genome analyses

Orthologue and paralogue groups among the L. crispatus genomes were in Study V identified using BLASTP (Altschul et al., 1997) and OrthoMCL (Li et al., 2003). To estimate the development of the size of the core and pan-genome as a function of the number of sequenced strains, orthologue and paralogue groups were determined iteratively for increasing numbers of sequenced genomes. At each sample size, the analysis was repeated 50 times with different random sets of L. crispatus genomes. The core genome trend was extrapolated by fitting an exponential decay (Tettelin et al., 2005) to the medians of the core orthologue groups using a weighted least-squares regression. The number of pan-groups in an infinite number of L. crispatus genomes was predicted by fitting a power-law (Tettelin et al., 2005) to the pan-group medians using a weighted leastsquares regression. The regression analyses were performed using the $n l s$ function as implemented in the statistical software R (Ihaka \& Gentleman, 1996). The methods used for identifying the orthologue and paralogue groups among the Lactobacillaceae genomes and for estimating the Lactobacillaceae core and pan-genome sizes were the same as those described in Study V with the exception of using a double exponential decay (Bottacini et al., 2010) for the core genome data. The results of Lactobacillaceae analyses are presented in this thesis.

WW」				
			pıedəэ ‘」Эヲ＇NıS甘79	ұиәши6！｜！е әшоиәб－әюочМ
7Wイบd＇əлnセw	7WK૫d＇уગ૦｜я๖＇əગsnw			
7כพочюо	גənb！！！	p！ouesedul	p！ouexedu｜	ұиәшиб！sse боןочдо
				s！sイıeue дәчłO
－	dәңеэоา	WWHW＇dod！ 7 ＇dIeu6！	WWHWL＇dod！7 ‘dleub！	әшоүәләэ
（pəs！＾ə」）WVコd	（pəs！＾ə」）WVコd	W $\forall \pm d$	W $\forall \pm d$	
ләpu！${ }^{\text {dedad }}$	ләрu！ ¢ $^{\text {dodd }}$	ләpu！${ }^{\text {didad }}$	ләрu！${ }^{\text {dedodd }}$	sə6̂eydodd
7ヨコナด	LS甘7 ${ }^{\text {＇ueosoıddətu｜}}$	ueosoddıətu｜	ueosorduətu｜	suloupəəeg
шeytolı	шejyפו1	meytoli	mejy9II	səuə6 seo
SVFY＇sdoapw	SVFY＇人Zej＇sdorew	SVFY＇人Zej＇sdorew	SVFry＇人Zej＇sdodaw	səmイzuヨ
gaכ	80○1	gOO1＇dV＊sueı」	gaO1＇dVVsue．」	s．əれodsueı」
－	O）of ueosodddepu｜	O○ of ueosodddatu｜	O○ of ueosoddratu｜	suıəı Кбоᅵоґио әиә๑
yOLVIONN $\forall 79$ 	‘ueosoudдəұul అ૦૭ ‘IS甘y			$\begin{array}{r} \text { uo!papard } \\ \text { uo!̣ount ןerəuәす } \end{array}$
ләмә！＾рие｜S｜	Val－IVd	$\forall \mathrm{Ol}-\mathrm{IVd}$	\forall OI－IVd	spue｜S！ग！wouəo
1ego	－	－	－	sб！！̣⿺辶э рәłеןə p！useld
－	dHயıə」sueı」	dHuıəısueג」	dHயuә」sueı」	
yอ－yヨาld	y๐－y y $^{\text {dild }}$	yว－yヨาld	yo－y	ydSİy
－	ISVY ‘ \exists S－ueos \forall NYł	ヨs－ueos \forall NY	O〇¢ヨ ‘ \exists－－ueวs \forall NYł	$\forall N \not \subset$
－	ISVy＇əəmu＊Ny	ı \quad um \forall Ny	O〇¢ヨ ‘əəmu＊Ny	$\forall N 4$
－	ISV¢＇ 1 S甘7	1S甘า9 ‘əəшш！！		Saつ
snıeds！ı0 7	LIS snıeds！uo 7	902О7 snsoumeчr ${ }^{\prime} 7$	๑๑ snsоишечı 7	

Table 6．Methods used for annotation of the L．rhamnosus GG，L．rhamnosus LC705，and L．crispatus genomes．

4 Results and discussion

The main objective of this study was to develop algorithms for protein classification that go beyond the present practice in several aspects and to advance our understanding of Lactobacillus physiology with the aid of genome sequencing and comparative genomics approaches. In particular, novel insights into the physiology, ecology, and biochemistry of lactobacilli were provided by comparing the genome of the widely studied (Bernardeau et al., 2006) and commercially significant (Saxelin et al., 2005; Giraffa et al. 2010) probiotic bacterium L. rhamnosus GG with the genome of the industrial dairy strain L. rhamnosus LC705 (Suomalainen \& Mäyrä-Mäkinen, 1999). Furthermore, the comparative analysis of L. crispatus genomes unveiled cross-species conserved adhesion components that could protect the vagina from pathogen attack. The comparison also highlighted an array of other interesting differences and similarities between the vaginal L. crispatus isolates and L. crispatus ST1, which is known for its strong adherence to the chicken alimentary canal and to human vaginal and buccal cells (Edelman et al., 2012). In the following chapters, the main findings of these studies are presented in detail. First, the bioinformatics approaches used are described; then, the outcomes of the Lactobacillus genome studies are summarised.

4.1 Novel tools for predicting the function of bacterial proteins

Recently developed protein function prediction methods provide a comprehensive and efficient means for inferring protein function (see for example, Abascal \& Valencia, 2003; Kunin \& Ouzounis, 2005; Martin et al., 2004; Vinayagam et al., 2006; Hawkins et al., 2006; Wass \& Sternberg, 2008; Engelhardt et al., 2005; Zdobnov \& Apweiler, 2001) but can sometimes fail to characterise pilins (Scott \& Zähner, 2006) and produce unreliable functional calls (Friedberg, 2006; Rost, 2002; Rost et al., 2003). To overcome these difficulties, new computational approaches were developed for pilus operon (Study I) and protein function (Study II) prediction. As described in the following chapters, these newly developed bioinformatics tools provided many interesting insights into the physiology of L. rhamnosus and L. crispatus.

Pili are long filamentous protein assemblies that are located on the surface of bacteria and are often involved in the adhesion of bacteria to host cells (Madigan et al., 2010). In gram-positive bacteria, these structures typically comprise one major pilin protein and two auxiliary pilin proteins that are cross-linked by a sortase enzyme (Telford et al., 2006; Scott \& Zähner, 2006). It appears that the pilin genes are usually located in an operon with a sortase gene (Scott \& Zähner, 2006) and that their protein products display various features that are characteristic of gram-positive pilins, such as a positively charged tail and a membrane-spanning domain at the C terminus, an E box, a sortase recognition site (a LPXTG motif), a pilin motif, and a Sec-dependent secretion signal peptide (Telford et al., 2006). In addition, sequence comparisons with gram-positive pilins have revealed conserved sequence motifs that stabilise the structure (Kang et al., 2009). Although these
motifs have enabled the search for putative pilus operons (Ton-That \& Schneewind, 2003), a novel bioinformatic algorithm was proposed in Study I for the systematic screening of pilus operons in gram-positive genomes. This tool, LOCP, which is written in Perl, scans sequences with five pilin-, five sortase recognition site-, and three sortase enzyme profile HMMs. Each sequence is labelled either as a hit (if at least one HMM model is matched) or as a miss, after which genome regions that are enriched with hits are identified based on a hypergeometric distribution. The use of a discrete distribution to locate gene runs that are statistically enriched in sequence features borrows from the concept of a previously described prophage-finding program (Lima-Mendez et al., 2008) and was shown to distinguish genuine pilus clusters precisely from other genome regions. Specifically, LOCP identified all 28 genuine pilus clusters and made no false predictions in the given 20 evaluation genomes (the area under the curve was approximately 0.99). To date, no other bioinformatics tools other than LOCP have been developed for locating pilus operons in bacterial genomes.

To facilitate bacterial genome annotation, a new protein function classification system was created in Study II. Leveraging the advantages of DEs and GOs, the software BLANNOTATOR generates predictions based on database hits that are associated with consistent protein function information. This strategy is similar to those employed in the CLAN (Kunin \& Ouzounis, 2005) and ConFunc (Wass \& Sternberg, 2008) protein classification systems and is known to be less error-prone to annotation anomalies than methods that rely on a single or all database hits, such as the PFP (Hawkins et al., 2006) and the ARGOT2 (Falda et al., 2012) tools. Importantly, BLANNOTATOR was exceedingly helpful in systematising DEs and generated precise function predictions in evaluation tests. When applied to the predicted proteins of L. crispatus ST 1 , the algorithm assigned a biologically acceptable DE for 85% of the query sequences. In comparison, RAST- (Aziz et al., 2008) or BLAST-based approaches provided a valid function prediction for approximately only 58 and 69% of the proteins in the test set. This method was particularly useful for predicting the function of proteins for which the top database hits were uninformative, as discussed in detail in Study II. The accuracy of BLANNOTATOR was further benchmarked by simulating the annotation process for more than 3,000 high-quality annotated bacterial protein entries and by assessing the ability of BLANNOTATOR to reproduce current annotations based on annotation information that predated the functional characterisation of the test entries. For this dataset, the method produced more precise predictions than any of the five other function classification approaches (i.e., most significant BLAST match, the top informative BLAST match, the most common annotation among BLAST hits, the annotation associated with the highest cumulative BLAST bit score, and a word-based scoring scheme) that were tested. However, performance differences between the protein function prediction approaches were marginal, and even the worst performing approaches provided reasonable accuracy, indicating that major improvements in the field of homology-based function transfer are less likely to occur in future.

4.2 L. rhamnosus and L. crispatus genome sequencing

The objectives of Studies III (initiated in 2004) and IV (initiated in 2008) were to produce finished genomes for the previously undescribed isolates of L. rhamnosus and L. crispatus using the WGS sequencing and assembly strategy (Fleischmann et al., 1995). To achieve this, the genomes of L. rhamnosus GG, L. rhamnosus LC705, and L. crispatus ST1 were sequenced using a combination Roche pyrosequencing and Sanger sequencing. These platforms provided approximately 17-19× read sequence coverage for each genome (Table 7) and were preferred in the process over Illumina sequencers because of their long read length (Shendure \& Ji, 2008). A collection of PCR-assisted techniques was then applied to improve genome assemblies, providing to resolve all the gaps in the draft genomes of both L. rhamnosus GG and LC705 and all but one gap in the draft genome of L. crispatus ST1. Despite a single gap region remaining in the L. crispatus ST1 assembly, each assembly provided valuable information about the general genome features of the organism (Table 7). They also represented an important step forward in the biology of that species because, before their release, only two L. rhamnosus and five L. crispatus genome sequences had been deposited in public sequence databases (mainly generated by the HMP; Nelson et al., 2010).
L. rhamnosus GG is one of the most extensively studied lactobacilli strains (Saxelin et al., 2005; Bernardeau et al., 2006) and has shown promising results for the treatment or prevention of respiratory tract infections (Hatakka et al., 2001; Hojsak et al., 2010), certain types of diarrhoea (Isolauri et al., 1991; Guandalini et al., 2000; Szajewska \& Mrukowicz, 2001), and atopic diseases (Kalliomäki et al., 2001; Kalliomäki et al., 2003; Kalliomäki et al., 2007). The identity of the specific effector molecules behind these beneficial effects was however chiefly lacking prior to the Study III, illustrating the value of knowing its genome sequence. Indeed, the determination and annotation of the genome of L. rhamnosus GG uncovered several genes of potential biomedical importance and expanded our knowledge of the L. rhamnosus bacterial components far beyond the few earlier in vitro verified instances (Vélez et al., 2007; Yan et al., 2007; Iliev et al., 2008; Lebeer et al., 2009). At the summary statistics level (Table 7), strain GG was identified to be comparable to other L. casei and L. paracasei and L. rhamnosus strains (reflecting the close phylogenetic relationships among these strains). It was observed to have one of the largest Lactobacillus genomes and it was predicted to contain only a slightly fewer CDSs and tRNA genes than the largest known lactobacilli genome from L. plantarum WCFS1 (Kleerebezem et al., 2003). A large majority (78%) of CDSs were predicted to start with an ATG and approximately 20% of all CDSs were preceded by a putative RBS (Figure 7), which is defined here as a DNA sequence located at a maximum of -20 bases from the start codon and showing strong similarity to the genome-specific RBS position weight matrix motif model. Genome mining of other genomic features revealed three prophagelike regions and a CRISPR locus that was notably similar to that of L. salivarius UCC118 and L. casei BL23 (Horvath et al., 2009).

1	2	1	0	1	！Pol पdSIty
$\angle 9$	†9	LS	19	LG	səuәб \forall NY
t－1	\dagger	s－乙	G	G	suodedo \forall NYd
Z98	Z68	008	¢98	$0 \angle 8$	
乙	97	62	82	$\angle 乙$	\％әueıquəmsueı」
ع1	\＆1	ャレ	Sl	ャレ	\％depodsue．」
乙Z	†て	GZ	GZ	七て	\％әuイzuヨ
$\angle 9$	LL	69	ZL	£L	\％pepp！pald uo！poung
L／01／88	G／6／98	IL／OL／tL	ILILI8L	ZI／LILLL	
ャ6Lて	†てOZ	9762	Z662	カ七6て	Saכ
L9＇E8	$00 \cdot 88$	ャ1．08	00＇s8	00＇98	\％イоиә！！
LE	LE	$\angle \nabla$	$\angle \square$	$\angle t$	
$\forall N$	乙	$\forall \mathrm{N}$	1	0	sp！useld
ナル	1	6Lt	1	1	sployeos
9LStEZZ	19LEt0Z	t99Z68Z	901ع®0¢	ILIOLOE	dqW＇əz！s əmouəכ
$\forall \mathrm{N}$	81	$\forall N$	61	$\angle 1$	әбеләлоэ реәу
$\forall N$	ع9／9	$\forall N$	LS／E	LS／E	（！！！
$\forall N$	LEOZ69N」	$\forall N$	とてと6LLW」	てZع6＜LW」	כЈV
smıedsto 7	LIS snıeds！${ }^{\circ} 7$	sпsоишеч1 7	S0Lכา snsoumeyt 7	Э૭ snsouweчı ${ }^{\circ} 7$	

The dairy-associated strain L. rhamnosus LC705 is widely used in the manufacture of cheese products (Saxelin et al., 2011). LC705 also is one of the main components of a bacterial multispecies product that appears to alleviate irritable bowel syndrome symptoms (Kajander et al., 2005; Kajander et al., 2008) and appears to be immunologically active by inducing the expression of a diverse array of immune response genes in human macrophages (Miettinen et al., 2012) and mast cells (Oksaharju et al., 2011). Intriguingly, the dairy strain LC705 adheres poorly to human mucus (Tuomola et al., 2000) and Caco-2 cells (Jacobsen et al., 1999) and is markedly less effective in colonising humans than strain GG (Saxelin et al., 2010), which originates from the stool specimen of a healthy human (Silva et al., 1987). In Study III, the genome of L. rhamnosus LC705 was revealed to be slightly larger than that of strain GG. This strain was observed to contain a $2.97-\mathrm{Mb}$ circular chromosome and a $64.5-\mathrm{kb}$ circular plasmid that together included 2,992 CDSs, 61 tRNA genes, and 5 rRNA operons (Table 7). Approximately 77\% of the CDSs in L. rhamnosus LC705 were found to begin with ATG and approximately 20% of them were preceded by an RBS (Figure 7), highlighting the similarity between the genomic compositions of L. rhamnosus LC705 and L. rhamnosus GG. Notably, LC705 was predicted to contain three prophage-like regions, indicating that transduction might have been an important mechanism for genome evolution in this species, as has been proposed for L. casei (Broadbent et al., 2012).

The chicken isolate L. crispatus ST1 has been shown to colonise various areas of the chicken alimentary canal (Edelman et al., 2002) and has in the literature been documented to strongly adhere to human vaginal epithelial cells, apparently through the high-molecular-mass Lactobacillus epithelium adhesin known as LEA (Edelman et al., 2012). Other noteworthy traits associated with L. crispatus ST1 include its inhibition of the adhesion of avian pathogenic E. coli (Edelman et al., 2003) and its ability to secrete proteins that enhance the cleavage of plasminogen into biologically active fragments (Hurmalainen et al., 2007). In an effort to advance our understanding about the physiology of L. crispatus ST1 and to catalogue its adhesion factor potential, the genome of L. crispatus ST1 was determined and analysed in Study IV. The final genome assembly is delimited by a small gap of approximately 590 bp in the lea gene and was estimated to be approximately 2.04 Mb in size, representing the smallest L. crispatus genome reported to date. The genome was predicted to be devoid of plasmids and was found to have a low GC content (37\%), which is similar to the GC contents of its closest relatives, L. acidophilus (Altermann et al., 2005; 35\%) and L. helveticus (Callanan et al., 2008; 38\%) but is different from those of L. rhamnosus GG and LC705 (47\%). In terms of functional features, strain ST1 resembled the previously described L. crispatus strains and was predicted to contain $2,024 \mathrm{CDSs}$ (Table 7), several of which might contribute to the maintenance of vaginal health (Study IV). An in-depth analysis of the CDS models revealed that ATG is the most common start codon in strain ST1 and that the use of alternative start codons is consistent with observations made in other L. crispatus, whereby TTG and GTG were associated with 10 and 9% of CDSs, respectively (Table 7). Only 6% of CDSs exhibited an RBS motif, similar in number to the observations for L. crispatus 125-2-CHN, JV-V01, and 214-1 but less than half of the number of observations for the remaining four L. crispatus strains. In Study V, a comparative genomics analysis of
L. crispatus ST1 and nine vaginal L. crispatus isolates was carried to investigate the scale and scope of the pan- and core genomic potential of and genomic diversity in L. crispatus.

Collectively, the results indicate that L. rhamnosus GG and LC705 contain a genome of approximately 3.0 Mb and that L. crispatus ST1 has a genome that is a bit over 2.0 Mb . Although these were not the first L. rhamnosus or L. crispatus strains to be determined at the genome level, they were the first for these two species to be assigned into a single scaffold, thereby extending the collection of high-quality genomes that are available for the L. casei clade beyond L. casei (Makarova et al., 2006; Cai et al., 2009) and the collection of high-quality genomes that are available for the L. delbrueckii clade beyond L. johnsonii (Pridmore et al., 2004; Wegmann et al., 2009), L. acidophilus (Altermann et al., 2005), L. delbrueckii (van de Guchte et al., 2006), L. delbrueckii (Makarova et al., 2006), L. helveticus (Callanan et al., 2008), and L. gasseri (Azcarate-Peril et al., 2008); thus, this research opened new avenues for the comparative genomics of Lactobacillus.

Figure 7. Comparison of consensus CDS models in the Lactobacillus, L. rhamnosus GG, L. rhamnosus LC705, and L. crispatus ST1 genomes. From left to right: the spacing distribution between the 5' A residue of the RBS and the translational start point, the sequence logo of the translation start point, the length distribution of CDSs, the sequence logo of the translational stop point, and the length distribution of intergenic regions. The median (and interquartile ranges) of the CDS and intergenic region lengths is indicated.

4.3 Gene calling in L. rhamnosus and L. crispatus sequences

Identifying CDSs in genomes is one of the first and most crucial steps in any genome sequence analysis (Angelova et al., 2010) and should receive a great deal of care because annotation errors made at this step of the analysis can have detrimental consequences on
our understanding of the functional capacity of the organism. To ensure that as few annotation errors as possible had occurred at the initial automated gene calling step in Studies III and IV, an extensive set of gene callers was applied to the L. rhamnosus GG and LC705 and L. crispatus ST1 genomes to evaluate their performance at locating genes within their genomes. Of the nine tested gene-calling systems, Glimmer (Delcher et al., 2007) was among the top performers in terms of sensitivity and specificity (Table 8). However, the performance of Glimmer was comparable to those of GeneMark (Besemer et al., 2001) and Prodigal (Hyatt et al., 2010), and only marginal differences existed between these three methods, as has been observed in previous gene-calling performance tests (Hyatt et al., 2010; Angelova et al., 2010). The accuracy of the remaining methods was slightly lower; however, their gene models also matched fairly well with the manually reviewed CDS models and regions in the GG genome with transcriptional activity. An exception to the above was ERGO's gene-calling software (Overbeek et al., 2003), which produced gene calls that did not match those obtained using the other methods and those observed in other lactobacilli. Specifically, the ERGO system preferred CDSs that started from codons other than ATG and produced CDS models that were aligned only partially with those found in sequence databases, suggesting that this service might not provide optimal results for lactobacilli. This result is consistent with the results of an earlier genome investigation, wherein the re-annotation of the genome of Caulobacter crescentus strain NA1000 resulted in a reduction in the use of rare codons and led to the improved annotation of 7% of the original 3,879 ERGO gene models (Ely \& Scott, 2014). Another interesting finding was that low sensitivity values were evident in the gene expression test (Table 8). This is partially explained by the presence of polycistronic transcripts that can include intergenic regions (and are thus expressed) but also relates to the finding that various probes targeting an antisense region produced an expression signal that was higher than the chosen threshold.

Table 8. Comparison of CDS calls of nine gene callers. CDS calls were compared against manually refined annotation data and regions with and without transcriptional activity in L. rhamnosus GG. The sensitivity (Sn) is the fraction of gold standard bases that was captured by each prediction, and specificity (Sp) is the fraction of non-gold standard bases that was captured by each prediction.

	GG CDSs		LC705 CDSs		ST1 CDSs		GG microarray	
Method	Sn	Sp	Sn	Sp	Sn	Sp	Sn	Sp
Glimmer	98.2%	99.4%	98.5%	99.3%	99.1%	99.8%	61.7%	95.5%
Prodigal	98.3%	99.2%	98.4%	99.3%	99.0%	99.6%	61.8%	95.5%
GeneMark	98.1%	99.2%	98.3%	99.2%	99.3%	99.3%	61.8%	95.5%
EasyGene	96.8%	99.7%	97.0%	99.7%	98.6%	99.7%	58.3%	96.0%
YACOP	96.2%	99.6%	96.3%	99.5%	97.4%	99.6%	58.4%	96.2%
RAST	98.3%	98.4%	96.7%	97.5%	98.8%	98.6%	64.1%	95.3%
ERGO	59.0%	95.5%	-	-	-	-	58.1%	80.4%
Critica	95.6%	99.7%	95.4%	99.6%	97.4%	99.7%	56.8%	96.5%
Zcurve	98.1%	96.9%	98.0%	97.1%	99.2%	98.5%	63.5%	92.0%

Overall, the three top-performing gene-calling systems were almost equal in quality. However, the rank of Glimmer as the performing method in five out of the eight performance tests provide a strong justification for the choice of Glimmer for initial gene calling. It is, however, possible that Glimmer might have missed some CDSs residing in genome regions with an abnormal base composition and failed to characterise the correct start site for some CDSs. However, the manual annotation phase, which constituted the manual editing of start sites and the screening of intergenic regions for missed CDSs, should have rectified these problems in the L. rhamnosus GG and LC705 and L. crispatus ST1 genomes.

4.4 Functional annotation of L. rhamnosus and L. crispatus

Protein functional prediction consisted of running a battery of automatic, mostly homology-based function prediction tools, followed by manual curation of the results. The tools developed in Studies I and II were also used. A specific focus was placed on CDSs that code for EPS biosynthesis, extracellular proteins, antimicrobial peptides, proteinaceous adhesion factors, enzymes, prophage-like proteins, and CRISPR-Cas system components. Figure 8 outlines the main findings of these analyses.

4.4.1 General functional prediction of L. rhamnosus and L. crispatus genes

The application of bioinformatic methods constituted a central component of the functional classification of the predicted proteins. In general, the bioinformatic analysis provided important insights into the physiology of L. rhamnosus GG, L. rhamnosus LC705, and L. crispatus ST1 and enabled the assignment of initial functions to $72-77 \%$ of the predicted proteins; $10-13 \%$ of the predicted proteins represented conserved proteins with unknown functional roles, and $13-15 \%$ of the predicted proteins lacked homology information and remained classified as hypothetical. The success rate of the annotation processes was similar to those described in various earlier (Kleerebezem et al., 2003; Pridmore et al., 2004; Altermann et al., 2005) and more recent (Forde et al., 2011; Macklaim et al., 2011) Lactobacillus genome studies, indicating the presence of a rather constant fraction of classifiable CDSs in any Lactobacillus genome regardless of publication date. Automatic protein function prediction was especially successful in defining genes that encode transcription factors, two-component regulatory systems, and enzymes, suggesting that the functional assignment of these gene types did not require much manual input. In contrast, the automated protein function prediction was less useful for proteinaceous adhesins, host-interaction factors, CRISPR-Cas systems, and transporters. This situation appears to be reminiscent of the results obtained in other Lactobacillus genome sequence studies, given the number of studies focusing on rediscovering these types of proteins in lactobacilli (Boekhorst et al., 2006; Zhou et al., 2008; Horvath et al., 2009; Kleerebezem et al., 2010; Kant et al., 2010;). Moreover, the concordance between the results generated by different protein function prediction

procedures was low. In Study II, BLANNOTATOR generated a correct prediction (an annotation that was accepted by the human operator) for approximately 85% of the L. crispatus gene products for which it assigned a function. In contrast, the two other homology-based protein function prediction tools that were applied to this dataset generated supported annotations for approximately 58% (RAST) and approximately 69% (the best BLAST approach) of the gene products with approved functional annotation, indicating the importance of choosing the correct annotation method. However, it should be noted that different methods failed with regard to different proteins and that pooling the results was necessary in several instances. For example, the best-BLAST approach was poor at producing component composition annotations for phosphotransferase system (PTS) transporter genes, unlike the InterProScan; RAST failed at calling CRISRP-cas components, unlike BLANNOTATOR; and GO term predictions were overly general when calling adhesins but were highly useful in classifying proteases.

4.4.2 Host-interaction molecules in L. rhamnosus and L. crispatus strains

The computational prediction of localisation sites of L. rhamnosus GG and LC705 and L. crispatus ST1 proteins revealed that close to 10% of these predicted proteins are secreted and/or membrane-associated and are therefore potentially involved in processes such as nutrient acquisition, cell communication, microbe-host interaction, and adhesion (Lebeer et al., 2008; Kleerebezem et al., 2010; Segers \& Lebeer, 2014). Although the values are in good agreement with those seen for closely related lactobacilli (Kleerebezem et al., 2010), these predictions provide only an initial guess of the secretomes. Particularly, a relatively limited number of concordances appeared between the predictions and experimentally determined cell envelope (Koskenniemi et al., 2011) or secreted (Sanchez et al., 2009) proteins in L. rhamnosus GG. There also is a noted disagreement between the results from different studies. For example, two subsequent studies have defined that the secretomes of strains GG and LC705 could contain over 80 (Zhou et al., 2008) and 700 (Kant et al., 2010) more proteins than observed in Study III. In the first case, most disagreements were related to proteins that are N-terminally (Study III defining 149-159 fewer predictions) or C-terminally (Study III describing 18-19 more predictions) anchored, despite of the obvious similarities in the underlying computational procedures. Which of the approaches is preferable remained unclear; however, the high rate of false-positives (84%) that were reported according to the N-terminally anchored sorting predictions of LocateP (Berlec et al., 2011) argues against the other study. Despite the uncertainty of the sorting predictions, subcellular-location predictors were used in Studies III and IV because homology-based functional inference failed to provide clues about protein sorting. GO annotation data from the cellular component ontology were assigned to approximately only 30% of the CDSs, whereas the ambiguous naming of known extracellular proteins excluded the use of gene names.

Bacterial surface polysaccharides are ubiquitous components of the cell envelope of lactobacilli and are purportedly involved in determining host-microbe interactions (Lebeer et al., 2008). In particular, a long galactose-rich EPS molecule from L. rhamnosus GG is
important for required for optimal survival of strain GG inside the murine GIT (Lebeer et al., 2011) and an EPS with high rhamnose content from another L. rhamnosus strain has been shown to stimulate various cytokines in human cell-line experiments (Chabot et al., 2001; Péant et al., 2005). The EPS gene cluster of LC705 that was discovered in Study III exhibited high similarity to EPS loci present in four other L. rhamnosus strains and shown to produce an EPS with high rhamnose content (Péant et al., 2005). In contrast, the EPS locus in L. rhamnosus GG was genetically different from that of the L. rhamnosus LC705 and verified the presence of a previously identified EPS gene cluster in strain GG (Lebeer et al., 2008), providing groundings for the comparison of the genomic neighbourhoods of these two EPS gene clusters. Regarding L. crispatus, some strains have been observed to produce EPS (Donnarumma et al., 2014). However, the genetic composition of EPS loci in L. crispatus has remained uncharacterised, despite of the vast amount of literature on EPS clusters in closely related Lactobacillus genomes (Pridmore et al., 2004; Altermann et al., 2005; Callanan et al., 2008; van de Guchte et al., 2006; Azcarate-Peril et al., 2008). In Study V, eight L. crispatus strains were identified to include a gene cluster associated with EPS biosynthesis. Each of these eight clusters was predicted to comprise a set of five highly conserved genes encoding a transcriptional regulator, a polymerisation and chain length determination protein, a tyrosine protein kinase, a protein-tyrosine phosphatase, and a priming glycosyltransferase. In contrast, differences in the glycosyltransferase genes situated at the 5 ' end of the L. crispatus EPS clusters suggested that the EPSs might contain different sugar monomers and glycosidic linkages.

Adhesion to host tissues has long been considered a central factor and a prerequisite for the long-term colonisation by and realisation of the health benefits of probiotic bacteria (Lee \& Salminen 1995; Pfeiler \& Klaenhammer, 2007; Siezen \& Wilson, 2010; Segers \& Lebeer, 2014; Lebeer et al., 2008;). However, prior to Studies III-IV, few adhesins been identified in L. rhamnosus (Chan et al., 1985) or in L. crispatus (Antikainen et al., 2002; Hurmalainen et al., 2007; Edelman et al., 2012), suggesting that new insights into L. rhamnosus and L. crispatus adhesion factors were enabled by the analysis of their genome sequences. In Studies III and V, proteins were classified into adhesion- or colonisationrelated protein domain families. The domains were collected from PFAM, and their potential adhesion or colonisation associations were determined by manual examination of the corresponding literature. In Study III, this approach revealed over 30 putative proteinaceous adhesion and colonisation factors in both L. rhamnosus GG and LC705, including many that have later been verified experimentally (Vélez et al., 2010; Lebeer et al., 2012; von Ossowski et al., 2011) and some others with physiological roles that have yet to be verified, such as the 382.1 KDa protein in L. rhamnosus LC705 that contains several collagen-binding domains. The search also revealed SpaCBA pilin subunits in L. rhamnosus GG that has been proven to be critical for its efficient adherence to human cells (Study III; von Ossowski 2010; Lebeer et al., 2012). Repeating the analysis for L. crispatus using a revised domain list revealed nine to 13 adhesion- and colonisationrelated proteins in each L. crispatus strain, many of which are part of the L. crispatus core genome. Notably, this search failed to characterise the LEA-protein, which is critical for the adhesion of strain ST1 to vaginal epithelial cells (Edelman et al., 2012) and that was in Study IV shown to displace Gardnerella vaginalis from vaginal cells, indicating that

LEA-mediated adhesion might involve some yet undisclosed bacterial adhesion domain. Intriguingly, application of the revised domain set to L. rhamnosus GG and LC705 returned only eight and ten proteins, respectively. A detailed investigation of the functional annotations of the two sequence sets revealed differences in carbohydrateactive enzymes, indicating that the first domain set might have included erroneous, non-adhesion-related PFAM models. In addition to the PFAM search, protein functional information was used in the search for adhesins. However, the scarcity of adhesion-related GO annotations and the inconsistent naming of known bacterial adhesins in public databases precluded the use of these search strategies at full power.

Although pilins were successfully reported by searching for adhesion- or colonisationrelated protein domain families, the approach used in Study III was found to be laborious for the genome-scale mining of hundreds of genomes. Thus, a new tool was developed in Study I for the systematic screening of pilus operons in bacterial genomes and then used to investigate the distribution of pilus clusters in all complete gram-positive prokaryotic genomes that had been deposited in NCBI database. Interestingly, putative pilus operons were found in 67 out of the 181 genomes analysed, including four lactobacilli genomes. Further analysis with all available Lactobacillus genomes that are listed in Appendix Table 2 demonstrated the presence of putative pilus genes clusters in 29 strains. Putative pilus gene clusters were identified in selected L. gasseri, L. reuteri, and L. ruminis strains. In addition, pilus operons were found to be an almost universal feature of the L. casei group, with the exception of L. rhamnosus MTCC 5462. The wide distribution of pilus gene clusters within the L. casei group has recently been described in other studies and for a greater number of L. rhamnosus genomes, revealing (i) the occurrence of SpaCBA pilin subunits in 4 out of 13 (Kant et al., 2014) and in 34 out of 100 (Douillard et al., 2013b) L. rhamnosus strains and (ii) the presence of SpaFED pilin subunits in all strains that were investigated (Douillard et al., 2013b; Kant et al., 2014). Of note, LOCP returned some false predictions based on the gene annotations. The fraction of false positives in the analysis was however tolerable and substantially less than the number of sequences in these protein collections that contained an LPXTG-motif or an E-box (typically used to search pilins).

4.4.3 Bacteriocins in L. rhamnosus and L. crispatus strains

Lactobacilli produce an extensive set of antimicrobial substances including metabolic byproducts (Daeschel, 1989; Leroy \& Vuyst, 2004; Nes \& Johnsborg, 2004) such as lactic acid, acetic acid, ethanol, diacetyl, and hydrogen peroxide, as well as bacteriocins (peptides or small proteins that exhibit antimicrobial activity; Riley \& Wertz, 2002; Jack et al., 2005). Notably, bacteriocin-producing lactobacilli are of great importance for use in food preservation (Leroy \& Vuyst, 2004; Nes \& Johnsborg, 2004; Cotter et al., 2005; Mills et al., 2011) because they can protect food against contamination with specific pathogenic and spoilage organisms, such as L. monocytogenes (Corr et al., 2007) and Clostridium tyrobutyricum (Jiménez-Díaz et al., 1993) without affecting harmless LAB. In Study III, an $8.7-\mathrm{kb}$ putative type IIb bacteriocin locus was identified in the GG genome.

In addition to two short bacteriocin structural genes, the locus appeared to encode five genes implicated in immunity, bacteriocin production, and bacteriocin processing, indicating that strain GG (like several other L. rhamnosus strains, Jacobsen et al., 1999) produces a bacteriocin. However, contradictory evidence exists regarding the role of bacteriocin in the antimicrobial activity of strain GG and whether the inhibition of Salmonella typhimurium by strain GG is due to bacteriocin activity (Silva et al. 1987; Jacobsen et al., 1999) or to lactic acid accumulation (De Keersmaecker et al., 2006). A similar locus was identified in the LC705 genome. However, this region appeared to be non-functional because two of its genes were truncated and were probably pseudogenes. The in silico analysis of the L. crispatus genomes described in Study V revealed loci in each strain, which encoded bacteriolysins that are similar to the previously described enterolysin A (Nilsen et al. 2003) and helveticin J (Joerger \& Klaenhammer, 1990), which lyse sensitive cells by catalysing cell wall hydrolysis. In addition, vaginal L. crispatus isolates contained genes that are implicated in the production of class II bacteriocins, indicating that these strains might produce an active bacteriocin, as previously reported for L. crispatus ATCC 33820 (Kim \& Rajagopal, 2001) and L. crispatus JCM 2009 (Tahara \& Kanatani, 1997).

Although bioinformatics services exist for mining bacteriocin loci from genomes (van Heel et al., 2013), the annotation of bacterial genomes for bacteriocins is not an easy task due to the small size and low degree of conservation of bacteriocins and the fact that they are often omitted from genome annotations and/or lack descriptive functional descriptions. Furthermore, genome regions surrounding bacteriocin genes and genes that are implicated in both the production and processing of bacteriocins are often enriched in pseudogenes. During manual annotation, these problems can be tackled by searching the surroundings of bacteriocin-related genes for small ORFs and by comparing these ORFs to HMMs that correspond to bacteriocin-related sequences, as was performed in Studies III and IV. Alternatively, bacteriocin calling can be based on bacteriocin prediction systems, such as BAGEL (van Heel et al., 2013), as was done in Study V. In general, these two approaches should be very similar and result in comparable protein sets; however, differences are possible. For example, BAGEL revealed four class III bacteriocin loci for ST1, two of which were also identified in a manual search. However, analysis of the GG and LC705 genomes using BAGEL revealed seven bacteriocins, including only half of the bacteriocin type II leader motif proteins that were described in Study III; these findings indicate the difficulty of the prediction task involved, at least for these genomes.

4.4.4 Prophage elements and CRISPR loci

Based on the in silico identification of prophage-like regions (Lima-Mendez et al., 2008), the genome of L. rhamnosus GG had two large and one short putative prophage element, whereas the genome of LC705 had one large and two short putative prophage elements. The prophage-like regions in the LC705 genome shared a low similarity to those in GG and resided at different locations, suggesting an important role for bacteriophage in L. rhamnosus evolution, as has previously been proposed for L. casei (Cai et al., 2009) and is
reminiscent of the high degree of diversity seen among prophages that have been identified in the genomes of L. gasseri, L. salivarius, and L. casei previously (Ventura et al., 2006). Consistent with the high level of lysogeny (77\%) in vaginal L. crispatus strains (Damelin et al., 2011), each vaginal L. crispatus isolate was predicted to have at least one putative prophage element in Study V. Conversely, the genome of L. crispatus ST1 revealed no putative prophage elements, possibly due to the fact that it was predicted to have a different type of CRISPR locus than the vaginal isolates. Overall, computational tools were successful in identifying prophage-like clusters, and the methods used appeared to capture all relevant prophage elements and resulted in only one false prediction: a prophage like-region in L. crispatus ST1 that harboured housekeeping genes. Moreover, the phage-finder services helped in the annotation of phage-related genes.

CRISPR-Cas systems constitute a widespread class of RNA-based immunity systems that control invasions of bacteriophages and plasmids in prokaryotes (Deveau et al., 2010; Marraffini \& Sontheimer, 2010). These systems are present in approximately two-thirds of Lactobacillus strains (Horvath et al., 2009) and provide an exceptional tool for the control of phage infections (Marraffini \& Sontheimer, 2010); a significant and prevalent threat that disrupts dairy fermentation cycles, thus stalling the manufacturing chain and lowering the quality of the end product (Mc Grath et al., 2007). In Study III, a genomic screen for CRISPR repeats identified the presence of one CRISPR array in the genome of strain GG. This region comprised of 24 perfect repeats, and the spacers showed substantial sequence identity with various L. rhamnosus-specific phages, indicating that they might be its phage targets. Further, the CRISPR array located next to four Type I cas genes, corroborating the possibility of a functional system. Intriguingly, the Cas-proteins showed notable similarity to those described in L. salivarius UCC188 and L. casei BL23 but not to those described in L. casei ATCC 344 (Horvath et al., 2009), indicating that these Cas-proteins have not followed an evolutionary development similar to that of their bacterial hosts. No CRISPRCas systems were detected in strain LC705. In Study V, full or partial CRISPR-Cas systems were identified in each of the studied L. crispatus strains. All vaginal L. crispatus isolates contained at least one Type II cas gene and a CRISPR array comprising 36-bp direct repeats and at least two to six spacer sequences each. Homology searches among the spacers, and public virus and plasmid sequences did not reveal the putative targets of the crRNAs, suggesting a pool of undisclosed vaginal bacteriophages and plasmids. However, many of the spacers were shared by different vaginal strains, indicating that these isolates might have encountered common invaders in the past. Unlike the vaginal L. crispatus isolates, L. crispatus ST1 was predicted to carry eight Type I cas genes and two CRISPR arrays comprising 15 and 16 repeats. The repeats were highly similar and resembled a repeat that was recently described as present in vaginal metagenome samples (Rho et al., 2012). In contrast, the spacers of these systems did not match known plasmid or virus sequences. Similar to the prophage search tools described above, the CRISPR array scanners were accurate and reliable. The tools uncovered all CRISPR-appearing genomic regions, accurately predicted CRISPR array boundaries, and resulted in only one false prediction; namely, a CRISPR array situated within the LCRIS_01228 gene in L. crispatus ST1. Thus, genome sequencing and computational biology provide a powerful means for annotating prophage elements and CRISPR arrays in Lactobacillus.

4.5 Genomics of L. rhamnosus and L. crispatus metabolism

Metabolic pathway reconstructions were used to investigate carbohydrate metabolism and amino acid biosynthesis pathways in L. rhamnosus GG, L. rhamnosus LC705, and L. crispatus ST1. Overall, substantial percentages of genes were identified as involved in transport ($13-15 \%$) or enzymatic reactions ($22-25 \%$; Studies III and IV), percentages that are consistent with those described for other L. rhamnosus and L. crispatus genomes (Table 7). The assignment of these genes into reference pathways provided some of the first insights into the biosynthetic capabilities of these organisms and indicated that strains GG and LC705 can synthesise nine amino acids de novo and synthesise three through inter-conversion. Additionally, genes for the conversion of serine to cysteine were annotated for plasmid pLC 1 , extending the biosynthetic potential of LC705 beyond that of L. rhamnosus GG, which appeared to lack the genes that are implicated in this conversion. These biosynthetic capabilities are reminiscent of those of L. casei ATCC 344, which was annotated to have nine amino acid biosynthesis routes (Makarova et al., 2006), and are almost comparable to the collection of metabolic pathways that was described for the versatile L. plantarum, which was predicted to contain complete pathways for the biosynthesis of most amino acids (Kleerebezem et al., 2003). Through de novo synthesis and amino acid inter-conversions, L. crispatus ST1 was predicted to be able to produce eight amino acids (Study IV). Bioinformatic analysis of vaginal L. crispatus genomes suggested that these and the strain ST1 share the same biosynthetic potential, except for CTV-05, which was predicted to be auxotrophic for aspartate (Study V). These biosynthetic capabilities are similar to those found in L. johnsonii NCC 533, L. acidophilus NCFM, and L. helveticus DPC 4571, which have been reported to have the ability to produce 4 (Pridmore et al., 2004), 10 (Altermann et al., 2005), and 4 (Callanan et al., 2008) amino acids (either de novo or as derivatives), respectively.

To compensate for their limited amino acid biosynthetic capabilities, many strains of Lactobacillus have developed sophisticated proteolytic and transport systems to obtain amino acids from their habitats (Pridmore et al., 2004; Altermann et al., 2005). Indeed, based on in silico analyses, L. rhamnosus GG, L. rhamnosus LC705, and L. crispatus ST1 contain arrays of extracellular proteinases, cytoplasmic peptidases, and peptide and amino acid transporters. This result suggests that these bacteria exhibit enhanced abilities to utilise exogenous amino acids and peptides. Notably, L. rhamnosus GG and LC705 were predicted to have nearly identical casein degradation systems, although only LC705 has the ability to degrade milk protein (Study III). Regarding pyrimidine and purine biosynthesis, L. crispatus ST1, L. rhamnosus GG, and L. rhamnosus LC705 resembled their close relatives. Similar to L. johnsonii NCC 533 (Makarova et al., 2006), L. crispatus ST1 needs to obtain pyrimidines from its environment, whereas L. rhamnosus GG and LC705 were predicted to synthesise both types of nucleotide bases, as has previously been described for L. casei ATCC 334 (Makarova et al., 2006).

Genomic analysis revealed that both L. rhamnosus GG and LC705 include a series of genes that code for sugar metabolism and that these strains exhibit rather similar carbohydrate metabolism. Two noteworthy exceptions were the maltose and rhamnose pathways, which were found to be intact and functional only in LC705. In addition,
analyses presented in Study III revealed GG-specific frameshifts in two genes that act in lactose utilisation, providing a plausible explanation for the results obtained from a sugar utilisation assay, which indicated that GG cannot utilise lactose, unlike its dairy counterpart, LC705 (Study III). Moreover, similar sets of glycosidase genes were predicted to be present in the genomes of L. rhamnosus GG and LC705. Based on functional annotations and protein-sorting analyses, approximately ten of these genes contribute to peptidoglycan hydrolysis and the decomposition of complex polysaccharides.

The in silico reconstruction of L. crispatus sugar utilisation pathways suggested that L. crispatus can use a range of carbohydrates (Study V), as has previously been reported for several other members of the L. delbrueckii group (Pridmore et al., 2004; Altermann et al., 2005; Azcarate-Peril et al., 2008). As with amino acid biosynthesis, CTV-05 differed the most and was predicted to lack various sugar utilisation pathways that were present in the other strains, most likely because of the sequencing gaps that are present in the corresponding genomic loci. Interestingly, L. crispatus pathway data argue against the classical grouping of L. crispatus as a homofermentative species (Salvetti et al., 2012). Instead, pathways for both homofermentation (the Embden-Meyerhof-Parnas pathway) and heterofermentation (the pentose phosphoketolase pathway) were observed in all L. crispatus strains investigated in Study V, as is typical of facultatively heterofermentative species (Pot et al., 1994; Hammes \& Vogel, 1995; Felis \& Dellaglio, 2007; Salvetti et al., 2012; Salvetti et al., 2013).

Practically, the reconstruction of metabolic pathways involved the use of a battery of bioinformatics tools and resources (Table 6). In Study III, KEGG reference pathways were noted to be useful for obtaining an overall view of metabolism but were often insufficient for explaining specific metabolic capabilities due to their complexity. In contrast, the reaction maps in the MetaCyc database contain on average only 4.4 reactions (Altman et al., 2013) and allowed the efficient examination of whether genes for a particular bioconversion were present in the organism (Studies III and IV). Overall, the data in these reaction pathway collections agreed well, which is consistent with the reported high degree of overlap (63%) between the KEGG and MetaCyc reaction spaces (Altman et al., 2013). However, inconsistencies were also observed. According to the KEGG, reaction 4.4.1.8 transforms pyruvate into cysteine. In contrast, MetaCyc found that this transformation involved another reaction and an enzyme that was not found in L. crispatus ST1, indicating a lack of cystathionine beta-lyase reaction in ST1. Other discrepancies involved reactions 1.1.1.351 (which catalyses the reduction of 6-phosphogluconate to ribulose 5-phosphate) and 1.2.1.59 (which catalyses the sixth step of glycolysis) that were associated with the phosphoketolase and Embden-Meyerhof-Parnas pathways only in MetaCyc and KEGG maps, respectively. In Study V, the presence of metabolic routes was tested by matching each strain's EC complement against the EC sets that are annotated to enable the conversion of a given starting compound to a particular end product. Metabolic routes between two given compounds were retrieved using the FMM web-server (Chou et al., 2009), which connects different KEGG maps and reconstructs metabolic pathways between metabolites. This approach greatly reduced the amount of work involved in understanding metabolic activities, although the test was found to yield some false
positive calls due to an unrealistic linking between some reactions. The FMM service also ignored some metabolic conversions that were recognised by the KEGG web service, possibly causing some pathways to remain undetected. Overall, use of the KEGG and MetaCyc databases and the reference-pathway approach were crucial for understanding the metabolic capabilities of L. rhamnosus GG, L. rhamnosus LC705, and L. crispatus ST1. The FMM server aided the process but at the cost of yielding some errors. However, the level of errors is acceptable considering the workload involved with reconstructing pathways manually, especially if there is a need to investigate tens or hundreds of genomes.

Figure 9. Alignment of nine L. rhamnosus genomes using ACT. The vertical bands between the genomes represent BLASTN matches (bit score ≥ 500) between the two sequences. Forward and reverse matches are indicated by red and blue, respectively. The draft genome sequences were ordered and oriented according to the genome sequence of L. rhamnosus GG (FIN) using progressive Mauve.

4.6 Comparative genomics of L. rhamnosus and L. crispatus

Whole-genome alignment is a powerful tool for understanding the genetic forces that have shaped genomes (Ali et al., 2013; Darling et al., 2004). It has promoted the discovery of key lactobacilli effector molecules (Morita et al., 2008) and has vastly expanded our
knowledge of the diversity and complexity that exists among Lactobacillus species (Forde et al., 2011; Boekhorst et al., 2004; Canchaya et al., 2006; Berger et al., 2007; Ventura et al., 2008; van de Guchte et al., 2006; Broadbent et al., 2012). In Study III, a wholegenome comparison revealed a high degree of stability among the genomes of L. casei group bacteria, a finding that has recently been confirmed in several other studies (Cai et al., 2009; Broadbent et al., 2012; Douillard et al., 2013a). The high level of genome relatedness and synteny is further underscored by a genome comparison of nine L. rhamnosus isolates, which revealed notable whole-genome synteny and no evidence of chromosomal rearrangements between these nine L. rhamnosus strains (Figure 9). Specifically, the nine L. rhamnosus isolates shared approximately 88% of their DNA. The colinearity was however noted to be punctuated by 1-182 genomic islands, which were generally consistent with genomic island predictions and exhibited abnormal sequence compositions, further attesting to their foreign origin and suggesting a key role for lateral gene transfer during L. rhamnosus evolution. In particular, the genomes of L. rhamnosus GG and L. rhamnosus LC705 shared extensive synteny, which was found to be punctuated by four (strain LC705) to five (strain GG) genome regions that displayed nucleotide composition deviations relative to the remainder of the genome. An examination of these genome regions in Study III revealed many genes of biomedical importance and implicated in EPS biosynthesis, host colonisation (SpaCBA pilins), prophage, and metabolism-related functions. It was further concluded that the GG-specific EPS and prophage and LC705-specific sugar utilisation islands were most likely acquired by horizontal gene transfer at a late point of divergence. In contrast, the phylogenetic distribution of the SpaCBA cluster in the lineage was best explained by a horizontal gene transfer by the common ancestor of L. casei and L. rhamnosus, as was apparent in more recent and broader comparative genome analyses that confirmed the presence of SpaCBA genes in the genomes of many L. casei strains (Broadbent et al., 2012) but only in a few L. rhamnosus strains (Douillard et al., 2013a; Douillard et al., 2013b; Kant et al., 2014).

As expected, genome alignments between L. crispatus strains revealed a high level of similarity and synteny (Study V). The genomes of 214-1 and SJ-3C-US were the most conserved; approximately 97% of their sequences were conserved in at least one other strain. The least related strain was the L. crispatus ST1; only approximately 82% of the genome of this isolate being alignable with the genomes of the nine vaginal isolates, underscoring its non-human origin. The data also indicated that the genome size differences observed in L. crispatus are not due to chromosomal insertions, inversions, deletions, or re-arrangements. Instead, horizontally acquired genomic islands and putative prophage elements explain a notable portion of the genomic differences in L. crispatus (Study V). Interestingly, the conservation of gene order in L. crispatus genomes has survived over a long evolutionary timescale and is also present in other lactobacilli of the L. delbrueckii group. Specifically, comparisons of the genomes of selected lactobacilli from the L. delbrueckii group revealed extensive sequence similarity and genome synteny between L. crispatus ST1 and other strains from this group (Figure 10) and indicated that the same overall gene order known to exist between most other members of the subgroup (Canchaya et al., 2005; Berger et al., 2007; Callanan et al., 2008) is also valid for strain ST1. The most noteworthy exception was observed by comparing the L. crispatus ST1 and
L. gasseri ATCC 33323 genomes; this comparison revealed sequence scrambling around the replication terminus, which is best explained using the fork replication theory (Tillier \& Collins, 2000; Canchaya et al., 2005).

Figure 10. Comparison of the genome of L. crispatus ST1 with the genomes of selected lactobacilli of the L. delbrueckii group. PROmer alignments of the genome of L. crispatus ST1 with the genomes of L. crispatus CTV-05, L. helveticus DPC 4571, L. acidophilus NCFM, L. johnsonii NCC 533, L. gasseri ATCC 33323, and L. delbrueckii ATCC 11842 are shown. Red dots indicate conserved DNA sequences in the same orientation. Blue dots indicate conserved DNA sequences in the reverse orientation.

In addition to pairwise alignment approaches, sophisticated genome alignment tools were tested to address the problem of whole-genome alignment. The L. rhamnosus GG, L. rhamnosus LC705, and L. casei ATCC 334 genomes were aligned using Mauve (Darling et al., 2004; Rissman et al., 2009), TBA (Blanchette et al., 2004), and MUMmer (Kurtz et al., 2004). Of these sophisticated genome alignment tools tested, the Mauve alignment tool (Darling et al., 2004; Darling et al., 2010) was considered the most suitable alignment package for studying these lactobacilli genomes. However, even Mauve did not provide an additional level of detail over simpler alignment approaches. Moreover, because the genomes in question were small (Table 7) and alignments were largely collinear, manual
interpretation of the results was not laborious. Thus, it appeared that simple alignment techniques were sufficient for collinear and closely related bacterial genomes, such as those that were investigated in Studies III-V. Among the pairwise alignment approaches examined, ACT (Carver et al., 2005) was most practical due to its ability to visualise several genomes simultaneously (see Figure 9). An obvious defect of this approach was that the results depend on the piling order and that an incorrect piling order can hide interesting genome differences. In contrast, summarisation of the alignment information over several dotplots was found laborious (see Figure 10), even though figures generated using dotplot visualisation utilities, such as Gepard (Krumsiek et al., 2007) and MUMmer (Kurtz et al., 2004), provided more information. Although not considered comparative genomics approaches, methods for sequence composition based genomic island prediction were noted to be useful for whole-genome alignment validation and for explaining the emergence of alignment-free genomic regions. However, sequence composition based genome island predictors were found to produce inconsistent results. For example, the IslandViewer resource (Langille \& Brinkman, 2009) identified 102 genomic islands that constituted approximately 7% of the L. crispatus pan-genome. Shockingly, no genomic islands were recovered by all three methods included in the IslandViewer resource, and only six were supported by two methods (Study V).

4.7 Orthologue grouping of L. rhamnosus and L. crispatus genes

Three orthologue grouping tools were evaluated in Studies III-V. In Study III, orthologue groups were identified using a search strategy similar to that used in the InParanoid tool (Remm et al., 2001). Although accurate, conversion of the multiple pairwise orthologue groups into multi-species clusters was found to be a laborious process; thus, this approach was abandoned. Instead, orthologue groups were identified in Studies IV and V using the OrthoMCL tool (Li et al., 2003), which was noted to exhibit a good balance of sensitivity and specificity. In addition, a maximal clique approach based on RBHs was tested but not further used because long run time requirements (Study IV). Similar to previous ortholog assessment studies (Salichos \& Rokas, 2011; Trachana et al., 2011), the three orthologue grouping tools were noted to produce comparable results. For example, L. rhamnosus GG and LC705 were predicted to have 364 and 430, respectively, CDSs lacking orthologous counterparts in the other L. rhamnosus strain or in L. casei ATCC 344 according to the InParanoid search strategy (Study III). In contrast, OrthoMCL identified 273 and 292 such CDSs, respectively. More recently, an RBH comparison was conducted on the protein collections of 13 L. rhamnosus strains (Kant et al., 2014). However, this analysis revealed only 94 and 26 unique elements for GG and LC705, partly because of methodological differences and partly because of the inclusion of new L. rhamnosus genomes, such as that of another strain GG isolate (Morita et al., 2013).

In Study V, the extent of the core and pan genomic potential of ten L. crispatus isolates was calculated. It was predicted that pan-genome of these ten strains comprised 3,929 orthologue groups, 1,224 of which were present in each strain (Study V). This set of core groups captured approximately 31% of the given collection of orthologous groups and was
comparable to those observed previously for L. casei (approximately 29\%; Broadbent et al., 2012), L. paracasei (approximately 43\%; Smokvina et al., 2013), and L. rhamnosus (approximately 43\%; Kant et al., 2014). Based on the regression analysis, the core was also considered a good estimate of the final orthologue group repertoire of an unlimited number of L. crispatus strains. Regarding strain-specific functions, on average each L. crispatus strain was predicted to contain 131 orphan orthologous groups. However, the number of orphan groups ranged widely from 51 for strain MV-1A-US to 287 for strain FB077-07. Surprisingly, even the more phylogenetically distant L. casei and L. rhamnosus species have been reported contained approximately a 100 strain-specific elements (Broadbent et al., 2012; Kant et al., 2014), which might indicate that strain-specific gene pools of different Lactobacillus species are relatively same in size irrespective of the phylogenetic distance, life habitat, and genome size of the given species. Methodologically, the current Lactobacillus pan and core-genome investigations were comparable. However, some studies involved the use of relatively simple orthologue grouping approaches (Kant et al., 2014), whereas others were based on more sophisticated procedures (Broadbent et al., 2012; Smokvina et al., 2013; Study V). Some studies also failed to address functional annotation anomalies and inconsistencies that resulted from differences in the original protein function predictions. Given the relative high number of orthologue groups that contained sequences with inconsistent original protein function annotations (approximately 36% for L. crispatus; Study V), studies omitting the reannotation phase might have misidentified the correct biological role for some orthologues. Resolving the annotation anomalies among the L. crispatus using the BLANNOTOATOR tool at least improved the annotation consistency and allowed the assignment of more similar functional descriptions to orthologous sequences in Study V.

Comparative genomics data were also used to resolve gene-phenotype relationships. For example, this approach was applied in Study III to proteinaceous adhesion factors of L. rhamnosus GG and LC705 to aid in understanding the role of these adhesins in microbe-host interactions. Specifically, the initial screen for adhesion factors identified several types of proteins in L. rhamnosus GG (31 adhesins) and LC705 (37 adhesins) with adhesion- or colonisation-related protein domain families. Using comparative genomics, this protein set was narrowed to eight GG-specific candidates purportedly involved in determining its host-microbe interactions. Importantly, the gene-phenotype correlation analysis exhibited high specificity and sensitivity and was able to identify SpaC, which has recently been shown to be the single most important adhesin of GG (Lebeer et al., 2012), as well as other proteins for which roles in adhesion and biofilm formation (Vélez et al., 2010) or mucus binding (Ossowski et al., 2011) have been verified. Interestingly, the current L. rhamnosus genome data would have resulted in a stronger association between SpaCBA genes and host cell binding if L. rhamnosus strains LMS2-1 and E800 had shown levels of adherence that were comparable to that of GG, based on the notion that the spaCBA genes are present only in the genomes of L. rhamnosus strains GG, LMS2-1, and E800 (Kant et al., 2014). All other GG-adhesins found in Study III have a counterpart in at least one other L. rhamnosus strain.

At the time of Study V, ten L. crispatus genomes were available in public databases. However, the full exploitation of these data was limited by the lack of commensurable
phenotype information for the studied bacteria. Nevertheless, the genome comparisons that were conducted in Study V revealed interesting relationships between the isolation source and putative prophage elements and between the natural habitat of these strains and adaptive immunity systems, suggesting that different types of CRISPR-Cas systems are beneficial in different niches (Study V). In addition, ortholog assignments of the L. crispatus and G. vaginalis protein complements and projection of the adhesion factor information across species was able in Study V used to identify L. crispatus core-genome encoded proteins that are implicated in the competitive exclusion of G. vaginalis, providing an explanation for the inverse association between L. crispatus and G. vaginalis colonization in the human vagina (Fredricks et al., 2007; Srinivasan et al., 2012; Shipitsyna et al., 2013).

4.8 Phylogenetic reconstructions

Similar to molecular phylogenetic approaches (Felis \& Dellaglio, 2007; Salvetti et al., 2012), the phylogenomic strategy adopted in Study III revealed that L. rhamnosus is closely related to L. casei. In particular, the study revealed a close phylogenetic relationship between L. rhamnosus GG and LC705 and demonstrated that among the 25 LABs that were tested, these strains were particularly phylogenetically close to L. casei ATCC 334. The relationship between L. casei and L. rhamnosus was supported with 100% confidence, corroborating the known assignment of L. rhamnosus to the L. casei subgroup (Felis \& Dellaglio, 2007; Salvetti et al., 2012), together with L. casei and L. paracasei as well as Lactobacillus zeae, which was recently reclassified as L. casei by Salvetti et al., 2012.

In Study V, a Lactobacillus phylogeny was derived from the concatenated alignment of 72,019 single-nucleotide polymorphisms from the core regions of three L. acidophilus, ten L. crispatus, five L. helveticus, and one Bacillus subtilis strains. The analysis yielded a tree with a high confidence and indicated that L. crispatus and L. helveticus were sister species to L. acidophilus. This finding contradicted some previous reports indicating that L. crispatus and L acidophilus cluster together first (Canchaya et al., 2006; Felis \& Dellaglio, 2007; Salvetti et al., 2012) but agreed with some other phylogenomic studies (Kant et al., 2011a). Among the L. crispatus cluster, the chicken isolate ST1 was the first to branch off from the others.

4.9 Intrafamily variation in Lactobacillaceae

In addition to the genome analyses presented in Studies III-V, a comparative analysis of the available Lactobacillus and Pediococcus genomes is presented here to better describe this family and to determine the scale and scope of the pan and core genomic potentials of these bacteria. Using BLAST (Altschul et al., 1997) and OrthoMCL (Li et al., 2003), the full complement of Lactobacillaceae protein sequences was assigned to 30,693 orthologue
groups. The pan-genome was found to be approximately 15 -fold the size of a single genome and was predicted to be open, based on a power-law regression (positive exponent $\beta=0.526 \pm 0.003$, Figure 11). Notably, the pan-genome was found to grow by at least one orthologue group per additional genome until 3.18 million isolates have been sequenced, emphasising the need to sequence more Lactobacillaceae genomes. A relatively large fraction of the orthologue groups of any given isolate was conserved and shared by at least one other organism in this group. Genomes that were the only representative of their species, such as Lactobacillus kisonensis F0435, had the largest strain-specific gene pools (over 20% of their orthologue groups are orphans), whereas strains such as L. reuteri DSM 20016^{T} and JCM 1112^{T}, which originated from the same isolate, included only a few strain-specific elements. The average number of orphan orthologue groups in each Lactobacillaceae was 114, which is approximately the same average value as that reported for individual Lactobacillus species (Broadbent et al., 2012; Kant et al., 2014; Study V). As expected, the size of the core genome decreased with the addition of genomes: on average, ten genomes produced a core genome of 530 orthologue groups, whereas a set of twenty genomes produced a collection of 389 core orthologue groups. This trend is reminiscent of that observed in previous core genome analyses (Tettelin et al., 2005; Bottacini et al., 2010; Broadbent et al., 2012). It is also interesting that the Lactobacillaceae core genome curve was consistent with two previous total core estimates, which suggested 383 and 363 orthologue groups for a set of 20 and 21 Lactobacillus genomes, respectively (Kant et al., 2011a; Lukjancenko et al., 2012). Notably, extrapolation of the core genome curve showed that the core genome reaches a plateau at 59 ± 10 orthologue groups for an infinite number of Lactobacillaceae (Figure 11), whereas the current Lactobacillaceae core genome included 66 orthologue groups, a value that approximates well the predicted core genome. Therefore, the strains included in the analysis can be judged to have represented the common features of the family Lactobacillaceae quite well. However, because some draft genomes contain up to hundreds of sequence gaps, genuine gene products might have been ignored in this analysis, thereby causing an under-estimation of the size of the core genome and a slight over-estimation of the size of the pan-genome. The extent of this error is unknown and remains to be elucidated. Moreover, because this extrapolation curve was the first to be fitted to Lactobacillaceae core genome data, the validity of the goodness of estimation remains open. Nevertheless, the data undoubtedly indicate the presence of large repertoires of undiscovered genes in Lactobacillaceae genomes that are yet to be sequenced and suggest that the Lactobacillaceae core is perhaps smaller than previously anticipated (Canchaya et al., 2006; Kant et al., 2011a; Lukjancenko et al., 2012).

Figure 11. Pan- and core genomes of Lactobacillaceae according to the number of considered genomes. At each step, N genomes were chosen 50 times randomly, and the pan-genome and the core genome were recalculated. The dashed lines represent least squares fits to the medians, and R^{2} describes the suitability of the fit. The boxes represent the $25-75$ percentiles, the horizontal lines represent the medians, and the whisker data represent the extremes estimated from 50 iterations. The pan-genome curve is a least squares fit of the power law $y=k N^{\beta}$ to medians. An exponent $\beta>0$ indicates an open pan-genome. The regression analysis for the core genome was performed by fitting a double exponential decay $y=\kappa_{l}{ }^{(-N / \tau l)}+\kappa_{2}{ }^{(-N / z)}+\Omega$ to the medians with a least square regression. Ω is the asymptotic core genome size.

5 Conclusions

Whole-genome sequencing of bacteria and genome mining is a powerful approach for addressing microbiological questions (Fleischmann et al., 1995; Mardis, 2008; Loman et al., 2012). However, the extraction of biological knowledge involves the handling of vast amounts of sequence data and is largely beyond human limits; thus, researchers rely on sophisticated computational procedures (Edwards \& Holt, 2013; Richardson \& Watson, 2013; Ali et al., 2013). In this thesis, two new algorithms were developed for laborious genome annotation tasks: LOCP and BLANNOTATOR. The LOCP service is based on the detection of genomic segments that are enriched in sortase and pilin-resembling genes and provides a major step forward in understanding the distribution of pilus appendixes in gram-positive bacteria. The other novel tool was designed for the functional annotation of bacterial protein sequences. Based on sequence similarity searches and clustering the annotation space, BLANNOTATOR yields DEs that are accurate and that do not suffer from annotation anomalies. While developing the algorithm, DEs were preferred over GO annotations, because of their great value in inferring host-interaction factors. In addition to automated protein function prediction methods, this study focused on the genomics of Lactobacillus and demonstrated the power of computer-assisted genome annotation for improving our understanding of the biochemistry, niche-adaptation, and host-interactions of lactobacilli. In particular, three Lactobacillus genomes were sequenced and annotated. Genome analysis identified genes that are instrumental for survival and of industrial value. Importantly, for each of the investigated species, comparative genomics identified hostinteraction factors, the roles of which were validated using experimental methodologies.

First, two software tools were designed for laborious bacterial genome annotation processes for which bioinformatics solutions did not exist prior to these studies: one for locating pilus operons and another for DE prediction. In Study I, a new algorithm was presented to manage the cumbersome and slow process of locating pilus operons in grampositive genomes. Unlike the error-prone and arduous manual curation of pilus gene regions, LOCP was designed for ease of use and to accurately locate pilus operons from any set of sequences. For example, LOCP analysis of the 135 Lactobacillus genomes that are listed in Appendix Table 2 revealed 29 potential pilus carriers among these organisms, many of which have been recently verified using other approaches (Broadbent et al., 2012; Kant et al., 2014). In Study II, an effort was made to explore the possibilities for improving annotation anomalies and inconsistencies, which are rather common in sequence databases (Andorf et al., 2007; Schnoes et al., 2009). During the manual curation processes, existing protein function prediction tools were noted to inconsistently classify orthologues and genes that were judged to share the same protein functions. Because manual correction of these annotation errors was laborious, BLANNOTATOR was developed in Study II. Comparisons based on simulated data indicated that BLANNOTATOR was better than the five other protein function prediction methods that were tested in Study II and that this method made function calls with a highly consistent nomenclature. However, even the simplest protein function prediction strategies, such as the best BLAST approach, performed well in Study II; this illustrates that substantial improvements using homology-based annotation alone are unlikely to be made in the
future. However, the most important benefit of the method developed in Study II resulted from its ability to systematise DE calls, thereby influencing the manual curation process and the comparative analysis of protein function. The ability to classify proteins into consistent classes was especially useful for determining host-interaction factors and when dealing with multiple organisms, such as in Study V , where the functional catalogues of ten L. crispatus strains needed to be commensurable.

Second, the genomes of L. rhamnosus GG and LC705 were sequenced and annotated in Study III. These organisms were chosen for genomic investigation to map molecules that might explain their successful use in preventing and treating various diseases (Hojsak et al., 2010; Hatakka et al., 2001; Isolauri et al., 1991; Guandalini et al., 2000; Szajewska \& Mrukowicz, 2001; Kalliomäki et al., 2001; Kalliomäki et al., 2003; Kalliomäki et al., 2007; Kajander et al., 2005; Kajander et al., 2008) and to identify the bacterial components that are responsible for their adhesion to human tissues (Jacobsen et al., 1999; Tuomola et al., 2000; Saxelin et al., 2010). Among the approximately 3,000 genes in each strain, Study III disclosed those that are implicated in EPS biosynthesis, sugar and peptide usage, and the production of a putative bacteriocin. The study also revealed the presence of two gram-positive pilus gene clusters in L. rhamnosus genomes. Using immunoblotting and immunogold electron microscopy, the expression of a spaCBA gene cluster in strain GG was in Study III shown, and the presence of this pilus structure on the cell surface was confirmed. This finding represented the first description of such a pilus structure in lactobacilli and established the presence of these adhesion structures in non-pathogenic bacteria. Furthermore, the mucus-binding capacity of the SpaC subunit and its importance for the adhesion between strain GG and human intestinal mucus was demonstrated in Study III. Recently, further evidence has accumulated that describes the role of SpaC pilin in adhesion (von Ossowski et al., 2010; Lebeer et al., 2012), confirming that this pilin plays a crucial role in the adhesion of strain GG to human tissues. Although recent studies have demonstrated the absence of SpaFED pili on the cell surface of L. rhamnosus GG (Reunanen et al., 2010), the fact that the SpaFED genes are present in the genomes of many L. rhamnosus (Douillard et al., 2013b; Kant et al., 2014) and L. casei (Broadbent et al., 2012) strains corroborates their potential importance in the adhesion processes of L. casei group bacteria. Notably, the discovery that the SpaC pilin is essential for the efficient adherence of strain GG to human tissues was based on ortholog analysis and represents an impressive demonstration of the power of comparative genomics in predicting host-interaction factors in lactobacilli. Specifically, 31 proteins purportedly involved in adhesion or colonisation were detected in the GG. Only eight of these proteins were however predicted to be GG-specific, thus providing a plausible explanation for the differing adhesion characteristics of the two L. rhamnosus strains to human mucus (Jacobsen et al., 1999; Tuomola et al., 2000; Saxelin et al., 2010). It is clear that without this type of analysis, all 31 of the genes identified in Study III would have had to been validated experimentally. In contrast to the successful detection of adhesion factor components, the search for molecules mediating immune responses failed, because not much known about the role of LC705 in disease alleviation. This failure indicates the role of commensurable phenotype information in comparative genomics. Overall, the L. rhamnosus GG and LC705 genomes are the first two genomes of free-living organisms to
have been sequenced in Finland and have provided a notable framework for various Lactobacillus comparative genomics studies and other studies that attempt to understand the mechanism underlying the interaction of probiotics with host tissues.

Finally, the genomic potential of L. crispatus ST1 was determined in Study IV and compared to those of nine vaginal L. crispatus isolates in Study V. Chicken-isolated ST1 was subjected to whole-genome sequencing to reveal the coding regions of genes encoding LEA and other adhesins. Although a complete genome could not be produced in the study, the project generated a high-quality reference genome with only one unresolved region (within the lea gene) and provided a valuable insight to the genomic foundations of an important urogenital species. Bioinformatic analysis of the nearly complete genome of ST1 identified approximately 2,100 genes, including genes that are implicated in EPS biosynthesis, antimicrobial activity, acquired resistance against bacteriophages, and adhesion. The metabolic pathways constructed in Study V revealed auxotrophy for 12 amino acids. The analysis also highlighted the presence of both pentose phosphate and glycolytic pathways in L. crispatus, defining the species as facultatively heterofermentative; this finding contradicts earlier assumptions (Salvetti et al., 2012; Salvetti et al., 2013). Extensive comparative genomic analysis provided evidence for considerable sequence identity and synteny among the genomes of the ten L. crispatus isolates that were investigated in Study V. Moreover, the study revealed genes in the L. crispatus core genome coding for adhesins that are involved in the competitive exclusion of G. vaginalis from vaginal cells, thus providing an attractive explanation for the proven inverse association between L. crispatus and G. vaginalis colonisation in the human vagina (Fredricks et al., 2007; Srinivasan et al., 2012; Shipitsyna et al., 2013). Importantly, the competitive exclusion process was demonstrated to result from the coreencode LEA protein (Edelman et al., 2012) by measuring the adhesion capacity of vaginal L. crispatus and G. vaginalis isolates to vaginal cells in the presence and absence of pretreatment with LEA-specific Fab fragments. Collectively, Studies IV and V established the genetic landscape of key urogenital lactobacilli. They suggested significant relationships between the life environments of different L. crispatus isolates and their adaptive immunity systems and revealed proteins that might protect the vagina from G. vaginalis and bacterial vaginosis. These studies also demonstrated the benefit of including phenotypically characterised strains in sequencing projects and indicated that the linking of bacterial traits to genes is easier when using well-characterised strains (as in Study III).

In conclusion, Studies III-V highlighted the power of whole-genome sequencing for generating new hypotheses about lactobacilli and their host-interaction factors. However, the success of sequencing studies is affected by several choices. First, one needs to choose an appropriate sequencing method. At present, lactobacilli have been sequenced largely using the Roche 454 platform (Appendix Table 2), which provides a long read length and good accuracy (Liu et al., 2012; Quail et al., 2012). This sequencing approach is feasible, given that longer reads appear to result in assemblies that are more continuous than shorter reads. However, sequencing costs might be substantially reduced without sacrificing too much quality using other sequencing machines that yield comparable read lengths at a lower price per sample (Table 1). Second, if the assembly phase fails to assign reads into single contigs, the desired genome-finishing level needs to be chosen. Although draft
genomes are cheap and fast to produce, they miss data and can suffer from truncated genes (Klassen \& Currie, 2012). The problems are mainly caused during the assembly of lowcoverage areas, ribosomal gene clusters, and repetitive elements; however, there is no guarantee that important genes will not be missed in draft genomes. Nevertheless, the risk of missing an important gene is rather small, as was evident from a high level of sequence relatedness and colinearity that was in Study V found between the draft and high-quality L. crispatus genomes.

The third choice to make is to decide the level of manual curation of the genome data. In Studies III and IV, a semi-automated annotation strategy was used, whereby the gene start sites and functional annotations were subjected to manual curation. In this process, the manual curation of gene start sites was based on comparing the gene models among lactobacilli and affected only a small fraction of L. rhamnosus GG, L. rhamnosus LC705, and L. crispatus ST1 CDSs, suggesting that the current gene-calling systems are accurate (as shown in Table 8) or, at least, call genes consistently across lactobacilli. The manual curation of function calls involved comparing protein function calls, reviewing the protein functions of orthologous sequences, and choosing the best alternatives. This step made the data more interpretable and enabled the description of gene functions with nomenclature that was more consistent; however, this step affected only some hundreds of genes in each genome. Moreover, the refinements made were mostly cosmetic and rarely changed the predicted protein function completely, indicating that the manual curation did not provide any additional advantage for a large majority of L. rhamnosus GG, L. rhamnosus LC705, and L. crispatus ST1 proteins. Specifically, the bioinformatic tools that were used in Studies III-V (Table 6) performed remarkably well for enzymes, phage-related proteins, and transcription factors in the given bacteria. In contrast, the classification of genes that were implicated in EPS production, adhesion, and antimicrobial activity was less satisfactory (Studies III-V). Thus, it was necessary to generate annotation data for these proteins using specific tools and to manually refine the results provided by the automated methods. It was also noted that in various instances, DEs were more informative than the GO terms of the corresponding gene products. In particular, GO terms were of limited value in the quest for genes that are involved in immunomodulatory processes, bacterialhost interaction, and the production of bacteriocins. Unfortunately, the large vocabulary that is present in DEs precludes their use for the automated cataloguing of protein genes into categories. Surprisingly, the various gene callers and protein function prediction approaches examined provided results of almost equal quality, indicating that the choice of gene caller or automated protein function prediction method might not be as critical as stated previously (Bakke et al., 2009). It remains to be determined whether these findings are specific to Lactobacillus or can be generalised to a wider array of bacteria.

The power of comparative genomics and genome island prediction in identifying genes determining host-microbe interactions was also demonstrated. In Study III, comparative analyses suggested key roles for the SpaCBA pilins in the adhesion of L. rhamnosus GG to human tissues. In Study V, protein comparison data revealed a role for the LEA protein in the competitive exclusion of G. vaginalis from vaginal cells. Notably, both discoveries were confirmed experimentally. Based on the successful analyses, it can be concluded that comparative genomics provides an appealing starting point to call host-interaction factors
and gene-phenotype associations in Lactobacillus. However, the success of comparative approaches in resolving correlations between genotypes and phenotypes appears to depend more on the amount of commensurate biological information available for each organism (Study III) than on the number of genomes under study (Study V). Comparative analyses should therefore be based on organisms for which commensurate empirical information is available rather than on the genome assemblies of poorly characterised bacteria, such as those generated as a part of the HMP (Nelson et al., 2010). The HMP is however useful for studies aiming to find functions universally conserved in the given set of organisms, as in Study V, where comparative genomics was used to investigate the genetic mechanisms underlying the inverse association between L. crispatus and G. vaginalis colonisation in the human vagina (Fredricks et al., 2007; Srinivasan et al., 2012; Shipitsyna et al., 2013). Genomic island calling represents another useful computational method for the annotation of host-microbe interaction, as was exemplified in Study III by the finding of an island in L. rhamnosus GG that contains genes for 3 secreted pilins and a pilin-dedicated sortase. The approach was also useful in the annotation of putative prophage elements in vaginal L. crispatus strains. Based on Studies III-V, it can be argued that the use of genomic island predictors for Lactobacillus genomes is advisable and these predictors can reveal genomic regions that code for functions that differentiate the given strain from others. Importantly, this approach can even be fruitful for identifying genes that underlie strain-specific traits in the absence of evolutionary counterparts. Nevertheless, orthology grouping and genome island prediction are simply methods that allow finding patterns of sequence conservation. To understand the biological relevance of the conservation patterns and to filter patterns, sequences underlying these patterns need to be associated with function information, using tools such as LOCP (Study I) and BLANNOTATOR (Study II). For example, application of the LOCP tool to the Study III data helped to understand which of the 364 GG-specific proteins are relevant for adhesion and provided additional information for the support of pilus-encoding gene clusters in strains GG and LC705. BLANNOTATOR on the hand played a pivotal role in Study V and provided to classify proteins into consistent classes. It is clear that without this analysis, functions of many host-interaction factors would have remained undetected.

To conclude, this study has described two bioinformatics algorithms for cumbersome genome annotation tasks and has disclosed the genomes of two also human-associated Lactobacillus species: L. rhamnosus and L. crispatus. The algorithms yielded impressive accuracy and were of great value in improving our understanding of Lactobacillus hostinteraction factors. Annotation of the L. rhamnosus and L. crispatus genomes has provided new insights into the physiological, genetic, biochemical, and fermentative properties of two biomedically important Lactobacillus species. Markedly, analyses revealed molecules involved in host-interaction and those that might protect the vagina from pathogen attack, thereby representing a major advance in understanding the host-interaction mechanisms of lactobacilli.

Acknowledgements

The study was mainly carried out at the Institute of Biotechnology and Faculty of Biomedicine, University of Helsinki during 2007-2010. Some additional studies were carried out during 2010-2014 at Valio Ltd. and Faculty Biomedicine, University of Helsinki. The work was financially supported by Valio Ltd and the Viikki Doctoral Programme in Molecular Biosciences, Biocenter Finland.

I am most grateful to my supervisor, professor Liisa Holm, for her guidance and provision of splendid facilities. It has been a pleasure to be part of her research group. My co-authors in Valio Ltd., Faculty of Veterinary Medicine and Faculty of Microbiology are also acknowledged for their valuable contribution. Everything that I know about bacteria I have learned from you. I am especially grateful to professor Willem de Vos and Dr Soile Tynkkynen for their through guidance. My co-authors and colleagues at the Institute of Biotechnology are thanked for genome sequencing services and helpful discussions on topics of bioinformatics. Professors Mauno Vihinen and docent David Fewer are thanked for reviewing my thesis. Finally, I want to thank my family for supporting me during my long days and nights.

References

Abascal F, Valencia A: Automatic annotation of protein function based on family identification. Proteins 2003, 53(3):683-692.
Abriouel H, Benomar N, Pérez Pulido R, Cañamero MM, Gálvez A: Annotated Genome Sequence of Lactobacillus pentosusMP-10, Which Has Probiotic Potential, from Naturally Fermented Aloreña Green Table Olives. J Bacteriol 2011, 193(17):4559-4560.
Adessi C, Matton G, Ayala G, Turcatti G, Mermod J, Mayer P, Kawashima E: Solid phase DNA amplification: characterisation of primer attachment and amplification mechanisms. Nucleic Acids Res 2000, 28(20):e87-e87.
Ahrne S, Nobaek S, Jeppsson B, Adlerberth I, Wold A, Molin G: The normal Lactobacillus flora of healthy human rectal and oral mucosa. J Appl Microbiol 1998, 85(1):88-94.
Ai L, Chen C, Zhou F, Wang L, Zhang H, Chen W, Guo B: Complete Genome Sequence of the Probiotic Strain Lactobacillus casei BD-II. J Bacteriol 2011, 193(12):3160-3161.
Akhter S, Aziz RK, Edwards RA: PhiSpy: a novel algorithm for finding prophages in bacterial genomes that combines similarity- and composition-based strategies. Nucleic Acids Res 2012, 40(16):e126.
Ali A, Soaeres SC, Barbosa E, Santos AR, Barh D, Bakhtiar SM, Hassan SS, Ussery DW, Silva A, Miyoshi A, Azevedo V: Microbial Comparative Genomics: An Overview of Tools and Insights Into The Genus Corynebacterium. J Bacteriol Parasitol 2013, 4(2):167.
Altenhoff AM, Studer RA, Robinson-Rechavi M, Dessimoz C: Resolving the ortholog conjecture: orthologs tend to be weakly, but significantly, more similar in function than paralogs. PLoS Comput Biol 2012, 8(5):e1002514.
Altermann E, Russell WM, Azcarate-Peril MA, Barrangou R, Buck BL, McAuliffe O, Souther N, Dobson A, Duong T, Callanan M, et al: Complete genome sequence of the probiotic lactic acid bacterium Lactobacillus acidophilus NCFM. Proc Natl Acad Sci U S A 2005, 102(11):3906-3912.
Altman T, Travers M, Kothari A, Caspi R, Karp P: A systematic comparison of the MetaCyc and KEGG pathway databases. BMC Bioinformatics 2013, 14(1):112.
Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997, 25(17):3389-3402.
Anderson S: Shotgun DNA sequencing using cloned DNase I-generated fragments. Nucleic Acids Res 1981, 9(13):3015-3027.
Andorf C, Dobbs D, Honavar V: Exploring inconsistencies in genome-wide protein function annotations: a machine learning approach. BMC Bioinformatics 2007, 8(1):284.
Angelova, M, Slobodan K, Ljupco K: Computational methods for gene finding in prokaryotes. ICT Innovations 2010: 11-20.

Angiuoli S, Hotopp JD, Salzberg S, Tettelin H: Improving pan-genome annotation using whole genome multiple alignment. BMC Bioinformatics 2011, 12(1):272.
Antikainen J, Anton L, Sillanpää J, Korhonen TK: Domains in the S-layer protein CbsA of Lactobacillus crispatus involved in adherence to collagens, laminin and lipoteichoic acids and in self-assembly. Mol Microbiol 2002, 46(2):381-394.
Anukam KC, Osazuwa E, Osemene GI, Ehigiagbe F, Bruce AW, Reid G: Clinical study comparing probiotic Lactobacillus GR-1 and RC-14 with metronidazole vaginal gel to treat symptomatic bacterial vaginosis. Microbes Infect 2006, 8(12-13):27722776.

Arita M: The metabolic world of Escherichia coli is not small. Proc Natl Acad Sci U S A 2004, 101(6):1543-1547.
Arnold R, Brandmaier S, Kleine F, Tischler P, Heinz E, Behrens S, Niinikoski A, Mewes H, Horn M, Rattei T: Sequence-based prediction of type III secreted proteins. PLoS Pathog 2009, 5(4):e1000376.
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al: Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 2000, 25(1):25-29.
Aureli P, Capurso L, Castellazzi AM, Clerici M, Giovannini M, Morelli L, Poli A, Pregliasco F, Salvini F, Zuccotti GV: Probiotics and health: an evidence-based review. Pharmacol Res 2011, 63(5):366-376.
Axelsson L, Rud I, Naterstad K, Blom H, Renckens B, Boekhorst J, Kleerebezem M, van Hijum S, Siezen RJ: Genome Sequence of the Naturally Plasmid-Free Lactobacillus plantarum Strain NC8 (CCUG 61730). J Bacteriol 2012, 194(9):23912392.

Azcarate-Peril MA, Altermann E, Goh YJ, Tallon R, Sanozky-Dawes RB, Pfeiler EA, O'Flaherty S, Buck BL, Dobson A, Duong T, et al: Analysis of the genome sequence of Lactobacillus gasseri ATCC 33323 reveals the molecular basis of an autochthonous intestinal organism. Appl Environ Microbiol 2008, 74(15):4610-4625.
Aziz R, Bartels D, Best A, DeJongh M, Disz T, Edwards R, Formsma K, Gerdes S, Glass E, Kubal M, et al: The RAST Server: Rapid Annotations using Subsystems Technology. BMC Genomics 2008, 9(1):75.
Badger JH, Olsen GJ: CRITICA: coding region identification tool invoking comparative analysis. Mol Biol Evol 1999, 16(4):512-524.
Bairoch A, Bougueleret L, Altairac S, Amendolia V, Auchincloss A, Puy GA, Axelsen K, Baratin D, Blatter M, Boeckmann B, et al: The Universal Protein Resource (UniProt). Nucleic Acids Res 2008, 36(suppl 1):D190-D195.
Bakke P, Carney N, Deloache W, Gearing M, Ingvorsen K, Lotz M, McNair J, Penumetcha P, Simpson S, Voss L, et al: Evaluation of three automated genome annotations for Halorhabdus utahensis. PLoS One 2009, 4(7):e6291.
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, et al: SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012, 19(5):455-477.

Barabási A, Oltvai ZN: Network biology: understanding the cell's functional organization. Nat Rev Genet 2004, 5(2):101-113.
Bartels D, Kespohl S, Albaum S, Drüke T, Goesmann A, Herold J, Kaiser O, Pühler A, Pfeiffer F, Raddatz G, et al: BACCardI-a tool for the validation of genomic assemblies, assisting genome finishing and intergenome comparison. Bioinformatics 2005, 21(7):853-859.
Båth K, Roos S, Wall T, Jonsson H: The cell surface of Lactobacillus reuteri ATCC 55730 highlighted by identification of 126 extracellular proteins from the genome sequence. FEMS Microbiol Lett 2005, 253(1):75-82.
Baumbach J, Tauch A, Rahmann S: Towards the integrated analysis, visualization and reconstruction of microbial gene regulatory networks. Brief Bioinform 2009, 10(1):7583.

Bendtsen JD, Nielsen H, Widdick D, Palmer T, Brunak S: Prediction of twin-arginine signal peptides. BMC Bioinformatics 2005, 6(1):167.
Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW: GenBank. Nucleic Acids Res 2013, 41(Database issue):D36-42.
Bentley DR: Whole-genome re-sequencing. Curr Opin Genet Dev 2006, 16(6):545-552.
Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown CG, Hall KP, Evers DJ, Barnes CL, Bignell HR, et al: Accurate whole human genome sequencing using reversible terminator chemistry. Nature 2008, 456(7218):53-59.
Berger B, Pridmore RD, Barretto C, Delmas-Julien F, Schreiber K, Arigoni F, Brüssow H: Similarity and Differences in the Lactobacillus acidophilus Group Identified by Polyphasic Analysis and Comparative Genomics. J Bacteriol 2007, 189(4):1311-1321.
Berlec A, Zadravec P, Jevnikar Z, Štrukelj B: Identification of Candidate Carrier Proteins for Surface Display on Lactococcus lactis by Theoretical and Experimental Analyses of the Surface Proteome. Appl Environ Microbiol 2011, 77(4):1292-1300.
Bernardeau M, Guguen M, Vernoux JP: Beneficial lactobacilli in food and feed: long-term use, biodiversity and proposals for specific and realistic safety assessments. FEMS Microbiol Rev 2006, 30(4):487-513.
Bernardeau M, Vernoux JP, Henri-Dubernet S, Guéguen M: Safety assessment of dairy microorganisms: The Lactobacillus genus. Int J Food Microbiol 2008, 126(3):278-285.
Besemer J, Lomsadze A, Borodovsky M: GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res 2001, 29(12):2607-2618.
Beuf KD, Schrijver JD, Thas O, Criekinge WV, Irizarry RA, Clement L: Improved base-calling and quality scores for 454 sequencing based on a Hurdle Poisson model. BMC Bioinformatics 2012, 13(1):303.
Bi D, Xu Z, Harrison EM, Tai C, Wei Y, He X, Jia S, Deng Z, Rajakumar K, Ou H: ICEberg: a web-based resource for integrative and conjugative elements found in Bacteria. Nucleic Acids Res 2012, 40(D1):D621-D626.

Blanchette M, Kent WJ, Riemer C, Elnitski L, Smit AFA, Roskin KM, Baertsch R, Rosenbloom K, Clawson H, Green ED, et al: Aligning Multiple Genomic Sequences With the Threaded Blockset Aligner. Genome Res 2004, 14(4):708-715.
Bland C, Ramsey TL, Sabree F, Lowe M, Brown K, Kyrpides NC, Hugenholtz P: CRISPR recognition tool (CRT): a tool for automatic detection of clustered regularly interspaced palindromic repeats. BMC Bioinformatics 2007, 8(1):209.
Boekhorst J, Helmer Q, Kleerebezem M, Siezen RJ: Comparative analysis of proteins with a mucus-binding domain found exclusively in lactic acid bacteria. Microbiology 2006, 152(1):273-280.
Boekhorst J, Siezen RJ, Zwahlen M, Vilanova D, Pridmore RD, Mercenier A, Kleerebezem M, de Vos WM, Brüssow H, Desiere F: The complete genomes of Lactobacillus plantarum and Lactobacillus johnsonii reveal extensive differences in chromosome organization and gene content. Microbiology 2004, 150(11):3601-3611.
Boetzer M, Henkel CV, Jansen HJ, Butler D, Pirovano W: Scaffolding pre-assembled contigs using SSPACE. Bioinformatics 2011, 27(4):578-579.
Boisvert S, Laviolette F, Corbeil J: Ray: simultaneous assembly of reads from a mix of high-throughput sequencing technologies. J Comput Biol 2010, 17(11):1519-1533.
Bottacini F, Medini D, Pavesi A, Turroni F, Foroni E, Riley D, Giubellini V, Tettelin \mathbf{H}, van Sinderen \mathbf{D}, Ventura \mathbf{M} : Comparative genomics of the genus Bifidobacterium. Microbiology 2010, 156(11):3243-3254.
Bowers PM, Pellegrini M, Thompson MJ, Fierro J, Yeates TO, Eisenberg D: Prolinks: a database of protein functional linkages derived from coevolution. Genome Biol 2004, 5(5):R35.
Broadbent JR, Neeno-Eckwall EC, Stahl B, Tandee K, Cai H, Morovic W, Horvath P, Heidenreich J, Perna NT, Barrangou R, et al: Analysis of the Lactobacillus casei supragenome and its influence in species evolution and lifestyle adaptation. BMC Genomics 2012, 13:533-2164-13-533.
Brouwer RW, van den Hout MC, Grosveld FG, van Ijcken WF: NARWHAL, a primary analysis pipeline for NGS data. Bioinformatics 2012, 28(2):284-285.
Brown JR, Douady CJ, Italia MJ, Marshall WE, Stanhope MJ: Universal trees based on large combined protein sequence data sets. Nat Genet 2001, 28(3):281-285.
Burstein D, Zusman T, Degtyar E, Viner R, Segal G, Pupko T: Genome-scale identification of Legionella pneumophila effectors using a machine learning approach. PLoS Pathog 2009, 5(7):e1000508.
Butler J, MacCallum I, Kleber M, Shlyakhter IA, Belmonte MK, Lander ES, Nusbaum C, Jaffe DB: ALLPATHS: de novo assembly of whole-genome shotgun microreads. Genome Res 2008, 18(5):810-820.
Cai H, Thompson R, Budinich MF, Broadbent JR, Steele JL: Genome sequence and comparative genome analysis of Lactobacillus casei: insights into their nicheassociated evolution. Genome Biol Evol 2009, 1:239.
Callanan M, Kaleta P, O'Callaghan J, O'Sullivan O, Jordan K, McAuliffe O, Sangrador-Vegas A, Slattery L, Fitzgerald GF, Beresford T, et al: Genome Sequence of Lactobacillus helveticus, an Organism Distinguished by Selective Gene Loss and Insertion Sequence Element Expansion. J Bacteriol 2008, 190(2):727-735.

Canchaya C, Claesson MJ, Fitzgerald GF, van Sinderen D, O'Toole PW: Diversity of the genus Lactobacillus revealed by comparative genomics of five species. Microbiology 2006, 152(11):3185-3196.
Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B: The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 2009, 37(suppl 1):D233-D238.
Carver TJ, Rutherford KM, Berriman M, Rajandream M, Barrell BG, Parkhill J: ACT: the Artemis comparison tool. Bioinformatics 2005, 21(16):3422-3423.
Chabot S, Yu HL, De Léséleuc L, Cloutier D, Van Calsteren MR, Lessard M, Roy D, Lacroix M, Oth D: Exopolysaccharides from Lactobacillus rhamnosus RW-9595M stimulate TNF, IL-6 and IL-12 in human and mouse cultured immunocompetent cells, and IFN- γ in mouse splenocytes. Le Lait 2001, 81(6):683-697.
Chaillou S, Champomier-Verges MC, Cornet M, Crutz-Le Coq AM, Dudez AM, Martin V, Beaufils S, Darbon-Rongere E, Bossy R, Loux V, et al: The complete genome sequence of the meat-borne lactic acid bacterium Lactobacillus sakei 23K. Nat Biotechnol 2005, 23(12):1527-1533.
Chan RC, Reid G, Irvin RT, Bruce AW, Costerton JW: Competitive exclusion of uropathogens from human uroepithelial cells by Lactobacillus whole cells and cell wall fragments. Infect Immun 1985, 47(1):84-89.
Chen F, Mackey AJ, Vermunt JK, Roos DS: Assessing performance of orthology detection strategies applied to eukaryotic genomes. PLoS One 2007, 2(4):e383.
Chen C, Ai L, Zhou F, Wang L, Zhang H, Chen W, Guo B: Complete Genome Sequence of the Probiotic Bacterium Lactobacillus casei LC2W. J Bacteriol 2011, 193(13):3419-3420.
Chevreux B, Pfisterer T, Drescher B, Driesel AJ, Müller WE, Wetter T, Suhai S: Using the miraEST assembler for reliable and automated mRNA transcript assembly and SNP detection in sequenced ESTs. Genome Res 2004, 14(6):1147-1159.
Cho Y, Choi JK, Kim J, Lim Y, Ham J, Kang D, Chun J, Paik H, Kim G: Genome Sequence of Lactobacillus salivarius GJ-24, a Probiotic Strain Isolated from Healthy Adult Intestine. J Bacteriol 2011, 193(18):5021-5022.
Chou C, Chang W, Chiu C, Huang C, Huang H: FMM: a web server for metabolic pathway reconstruction and comparative analysis. Nucleic Acids Res 2009, 37(suppl 2):W129-W134.

Claesson MJ, van Sinderen D, O'Toole PW: Lactobacillus phylogenomics-towards a reclassification of the genus. Int J Syst Evol Microbiol 2008, 58(12):2945-2954.
Claesson MJ, Li Y, Leahy S, Canchaya C, van Pijkeren JP, Cerdeño-Tárraga AM, Parkhill J, Flynn S, O'Sullivan GC, Collins JK, et al: Multireplicon genome architecture of Lactobacillus salivarius. Proc Natl Acad Sci U S A 2006, 103(17):6718-6723.
Clark WT, Radivojac P: Analysis of protein function and its prediction from amino acid sequence. Proteins 2011, 79(7):2086-2096.
Claudel-Renard C, Chevalet C, Faraut T, Kahn D: Enzyme-specific profiles for genome annotation: PRIAM. Nucleic Acids Res 2003, 31(22):6633-6639.

Collado M, Delgado S, Maldonado A, Rodriguez J: Assessment of the bacterial diversity of breast milk of healthy women by quantitative real-time PCR. Lett Appl Microbiol 2009, 48(5):523-528.
Collins FS, Weissman SM: Directional cloning of DNA fragments at a large distance from an initial probe: a circularization method. Proc Natl Acad Sci U S A 1984, 81(21):6812-6816.
Cooper GM, Stone EA, Asimenos G, Green ED, Batzoglou S, Sidow A: Distribution and intensity of constraint in mammalian genomic sequence. Genome Res 2005, 15(7):901-913.
Corr SC, Li Y, Riedel CU, O'Toole PW, Hill C, Gahan CG: Bacteriocin production as a mechanism for the antiinfective activity of Lactobacillus salivarius UCC118. Proc Natl Acad Sci U S A 2007, 104(18):7617-7621.
Cotter PD, Hill C, Ross RP: Bacteriocins: developing innate immunity for food. Nat Rev Microbiol 2005, 3(10):777-788.
Cox MP, Peterson DA, Biggs PJ: SolexaQA: At-a-glance quality assessment of Illumina second-generation sequencing data. BMC Bioinformatics 2010, 11(1):485.
Cruveiller S, Le Saux J, Vallenet D, Lajus A, Bocs S, Medigue C: MICheck: a web tool for fast checking of syntactic annotations of bacterial genomes. Nucleic Acids Res 2005, 33(suppl 2):W471-W479.
Daeschel MA: Antimicrobial factors from lactic acid bacteria for use as food preservatives. Food Technol 1989, 43:484-490
Dal Bello F, Hertel C: Oral cavity as natural reservoir for intestinal lactobacilli. Syst Appl Microbiol 2006, 29(1):69-76.

Damelin LH, Paximadis M, Mavri-Damelin D, Birkhead M, Lewis DA, Tiemessen

 CT: Identification of predominant culturable vaginal Lactobacillus species and associated bacteriophages from women with and without vaginal discharge syndrome in South Africa. J Med Microbiol 2011, 60(Pt 2):180-183.Dandekar T, Snel B, Huynen M, Bork P: Conservation of gene order: a fingerprint of proteins that physically interact. Trends Biochem Sci 1998, 23(9):324-328.
Darling AE, Mau B, Perna NT: progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One 2010, 5(6):e11147.
Darling AC, Mau B, Blattner FR, Perna NT: Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 2004, 14(7):1394-1403.
Darzentas N: Circoletto: visualizing sequence similarity with Circos. Bioinformatics 2010, 26(20):2620-2621.
De Keersmaecker SC, Verhoeven TL, Desair J, Marchal K, Vanderleyden J, Nagy I: Strong antimicrobial activity of Lactobacillus rhamnosus GG against Salmonella typhimurium is due to accumulation of lactic acid. FEMS Microbiol Lett 2006, 259(1):89-96.
Delcher AL, Bratke KA, Powers EC, Salzberg SL: Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 2007, 23(6):673-679.
De Man, JC, Rogosa D, and Sharpe ME: A medium for the cultivation of lactobacilli. J appl Bacteriol 1960, 23(1):130-135.

Deveau H, Garneau JE, Moineau S: CRISPR/Cas system and its role in phage-bacteria interactions. Аппи Rev Microbiol 2010, 64:475-493.
Devos D, Valencia A: Intrinsic errors in genome annotation. Trends Genet 2001, 17(8):429-431.
Do CB, Mahabhashyam MS, Brudno M, Batzoglou S: ProbCons: Probabilistic consistency-based multiple sequence alignment. Genome Res 2005, 15(2):330-340.
Donnarumma G, Molinaro A, Cimini D, De Castro C, Valli V, De Gregorio V, De Rosa M, Schiraldi C: Lactobacillus crispatus L1: high cell density cultivation and exopolysaccharide structure characterization to highlight potentially beneficial effects against vaginal pathogens. BMC Microbiol 2014, 14(1):137.
Douillard FP, Ribbera A, Järvinen HM, Kant R, Pietilä TE, Randazzo C, Paulin L, Laine PK, Caggia C, von Ossowski I, et al: Comparative Genomic and Functional Analysis of Lactobacillus casei and Lactobacillus rhamnosus Strains Marketed as Probiotics. Appl Environ Microbiol. 2013a, 79(6):1923-1933.
Douillard FP, Ribbera A, Kant R, Pietila TE, Jarvinen HM, Messing M, Randazzo CL, Paulin L, Laine P, Ritari J, et al: Comparative genomic and functional analysis of 100 Lactobacillus rhamnosus strains and their comparison with strain GG. PLoS Genet 2013b, 9(8): e1003683.
Dressman D, Yan H, Traverso G, Kinzler KW, Vogelstein B: Transforming single DNA molecules into fluorescent magnetic particles for detection and enumeration of genetic variations. Proc Natl Acad Sci U S A 2003, 100(15):8817-8822.
du Toit M, Engelbrecht L, Lerm E, Krieger-Weber S: Lactobacillus: the next generation of malolactic fermentation starter cultures-an overview. Food Bioprocess Technol 2011, 4(6):876-906.
Dubchak I, Poliakov A, Kislyuk A, Brudno M: Multiple whole-genome alignments without a reference organism. Genome Res 2009, 19(4):682-689.
Durot M, Bourguignon P, Schachter V: Genome-scale models of bacterial metabolism: reconstruction and applications. FEMS Microbiol Rev 2009, 33(1):164-190.
Earl D, Bradnam K, St. John J, Darling A, Lin D, Fass J, Yu HOK, Buffalo V, Zerbino DR, Diekhans M, et al: Assemblathon 1: A competitive assessment of de novo short read assembly methods. Genome Res 2011, 21(12):2224-2241.
Eddy SR: Accelerated profile HMM searches. PLoS Comput Biol 2011, 7(10):e1002195.
Eddy SR: Computational genomics of noncoding RNA genes. Cell 2002, 109(2):137-140.
Edelman S, Leskela S, Ron E, Apajalahti J, Korhonen TK: In vitro adhesion of an avian pathogenic Escherichia coli O78 strain to surfaces of the chicken intestinal tract and to ileal mucus. Vet Microbiol 2003, 91(1):41-56.
Edelman S, Westerlund-Wikstrom B, Leskela S, Kettunen H, Rautonen N, Apajalahti J, Korhonen TK: In Vitro Adhesion Specificity of Indigenous Lactobacilli within the Avian Intestinal tract. Appl Environ Microbiol 2002, 68(10):5155-5159.
Edelman SM, Lehti TA, Kainulainen V, Antikainen J, Kylväjä R, Baumann M, Westerlund-Wikstrom B, Korhonen TK: Identification of a high-molecular-mass Lactobacillus epithelium adhesin (LEA) of Lactobacillus crispatus ST1 that binds to stratified squamous epithelium. Microbiology 2012, 158(Pt 7):1713-1722.

Edgar RC: PILER-CR: fast and accurate identification of CRISPR repeats. BMC Bioinformatics 2007, 8(1):18.
Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004, 32(5):1792-1797.
Edwards D, Holt K: Beginner's guide to comparative bacterial genome analysis using next-generation sequence data. Microb Inform Exp 2013, 3(1):2.
Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, Peluso P, Rank D, Baybayan P, Bettman B, et al: Real-Time DNA Sequencing from Single Polymerase Molecules. Science 2009, 323(5910):133-138.
Eisen JA: Phylogenomics: improving functional predictions for uncharacterized genes by evolutionary analysis. Genome Res 1998, 8(3):163-167.
Ely B, Scott LE: Correction of the Caulobacter crescentus NA1000 Genome Annotation. PLoS ONE 2014, 9(3):e91668.
Engelhardt BE, Jordan MI, Muratore KE, Brenner SE: Protein molecular function prediction by Bayesian phylogenomics. PLoS Comput Biol 2005, 1(5):e45.
Engels R, Yu T, Burge C, Mesirov JP, DeCaprio D, Galagan JE: Combo: a whole genome comparative browser. Bioinformatics 2006, 22(14):1782-1783.
Erlich Y, Mitra PP: Alta-Cyclic: a self-optimizing base caller for next-generation sequencing. Nat Methods 2008, 5(8):679-682.
Ewing B, Green P: Base-calling of automated sequencer traces usingPhred. II. error probabilities. Genome Res 1998, 8(3):186-194.
Ewing B, Hillier L, Wendl MC, Green P: Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 1998, 8(3):175-185.
Falda M, Toppo S, Pescarolo A, Lavezzo E, Di Camillo B, Facchinetti A, Cilia E, Velasco R, Fontana P: Argot2: a large scale function prediction tool relying on semantic similarity of weighted Gene Ontology terms. BMC Bioinformatics 2012, 13:S14.
Felis GE, Dellaglio F: Taxonomy of Lactobacilli and Bifidobacteria. Curr Issues Intest Microbiol 2007, 8(2):44-61.
Felsenstein J: Phylip; Phylogeny Inference Package Version 3.2. Cladistics 1989, 5:164166.

Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage AR, Bult CJ, Tomb JF, Dougherty BA, Merrick JM, et al: Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 1995, 269(5223):496-512.
Fleischner H: Eulerian graphs and related topics: Elsevier; 1990.
Flicek P, Birney E: Sense from sequence reads: methods for alignment and assembly. Nat Methods 2009, 6:S6-S12.
Forde BM, Neville BA, O'Donnell MM, Riboulet-Bisson E, Claesson MJ, Coghlan A, Ross RP, O'Toole PW: Genome sequences and comparative genomics of two Lactobacillus ruminis strains from the bovine and human intestinal tracts. Microb Cell Fact 2011, 10(Suppl 1):S13.
Fouts DE: Phage_Finder: automated identification and classification of prophage regions in complete bacterial genome sequences. Nucleic Acids Res 2006, 34(20):5839-5851.

Fox GE, Stackebrandt E, Hespell RB, Gibson J, Maniloff J, Dyer TA, Wolfe RS, Balch WE, Tanner RS, Magrum LJ, et al: The phylogeny of prokaryotes. Science 1980, 209(4455):457-463.
Frazer KA, Elnitski L, Church DM, Dubchak I, Hardison RC: Cross-Species Sequence Comparisons: A Review of Methods and Available Resources. Genome Res 2003, 13(1):1-12.
Fredricks DN, Fiedler TL, Thomas KK, Oakley BB, Marrazzo JM: Targeted PCR for detection of vaginal bacteria associated with bacterial vaginosis. J Clin Microbiol 2007, 45(10):3270-3276.
Frese SA, Benson AK, Tannock GW, Loach DM, Kim J, Zhang M, Oh PL, Heng NC, Patil PB, Juge N, et al: The evolution of host specialization in the vertebrate gut symbiont Lactobacillus reuteri. PLoS Genet 2011, 7(2):e1001314.
Friedberg I: Automated protein function prediction-the genomic challenge. Brief Bioinform 2006, 7(3):225-242.
Frishman D, Mironov A, Mewes H, Gelfand M: Combining diverse evidence for gene recognition in completely sequenced bacterial genomes. Nucleic Acids Res 1998, 26(12):2941-2947.
Frith MC, Hamada M, Horton P: Parameters for accurate genome alignment. BMC Bioinformatics 2010, 11(1):80.
Frost LS, Leplae R, Summers AO, Toussaint A: Mobile genetic elements: the agents of open source evolution. Nat Rev Microbiol 2005, 3(9):722-732.
Gao F, Zhang C: Ori-Finder: a web-based system for finding oriCs in unannotated bacterial genomes. BMC Bioinformatics 2008, 9(1):79.
Garber M, Guttman M, Clamp M, Zody MC, Friedman N, Xie X: Identifying novel constrained elements by exploiting biased substitution patterns. Bioinformatics 2009, 25(12):i54-i62.
Gardner PP, Barquist L, Bateman A, Nawrocki EP, Weinberg Z: RNIE: genomewide prediction of bacterial intrinsic terminators. Nucleic Acids Res 2011, 39(14):5845-5852.
Garg A, Gupta D: VirulentPred: a SVM based prediction method for virulent proteins in bacterial pathogens. BMC Bioinformatics 2008, 9(1):62.
Gascuel O: BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data. Mol Biol Evol 1997, 14(7):685-695.
Gillespie JJ, Wattam AR, Cammer SA, Gabbard JL, Shukla MP, Dalay O, Driscoll T, Hix D, Mane SP, Mao C, et al: PATRIC: the Comprehensive Bacterial Bioinformatics Resource with a Focus on Human Pathogenic Species. Infect Immun 2011, 79(11):4286-4298.
Giraffa G, Chanishvili N, Widyastuti Y: Importance of lactobacilli in food and feed biotechnology. Res Microbiol 2010, 161(6):480-487.
Goudenège D, Avner S, Lucchetti-Miganeh C, Barloy-Hubler F: CoBaltDB: Complete bacterial and archaeal orfeomes subcellular localization database and associated resources. BMC microbiol 2010, 10(1):88.
Griffiths-Jones S, Bateman A, Marshall M, Khanna A, Eddy SR: Rfam: an RNA family database. Nucleic Acids Res 2003, 31(1):439-441.

Grissa I, Vergnaud G, Pourcel C: CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res 2007, 35(suppl 2):W52-W57.

Guandalini S, Pensabene L, Zikri MA, Dias JA, Casali LG, Hoekstra H, Kolacek S, Massar K, Micetic-Turk D, Papadopoulou A, et al: Lactobacillus GG administered in oral rehydration solution to children with acute diarrhea: a multicenter European trial. J Pediatr Gastroenterol Nutr 2000, 30(1):54-60.
Guinane CM, Kent RM, Norberg S, Hill C, Fitzgerald GF, Stanton C, Ross RP: Host specific diversity in Lactobacillus johnsonii as evidenced by a major chromosomal inversion and phage resistance mechanisms. PLoS One 2011, 6(4):e18740.
Guindon S, Gascuel O: A Simple, Fast, and Accurate Algorithm to Estimate Large Phylogenies by Maximum Likelihood. Syst Biol 2003, 52(5):696-704.
Guo F, Ou H, Zhang C: ZCURVE: a new system for recognizing protein-coding genes in bacterial and archaeal genomes. Nucleic Acids Res 2003, 31(6):1780-1789.
Haft DH, Selengut J, Mongodin EF, Nelson KE: A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS Comput Biol 2005, 1(6):e60.
Haft DH, Selengut JD, White O: The TIGRFAMs database of protein families. Nucleic Acids Res 2003, 31(1):371-373.
Ham J, Kim H, Seol K, Jang A, Jeong S, Oh M, Kim D, Kang D, Kim G, Cha C: Genome Sequence of Lactobacillus salivarius NIAS840, Isolated from Chicken Intestine. J Bacteriol 2011, 193(19):5551-5552.
Hammes WP, Vogel RF: The genus Lactobacillus. In The Genera of Lactic Acid Bacteria. Volume 2. Edited by Wood BJB, Holzapfel WH. Springer; 1995:19-54.
Haridas S, Breuill C, Bohlmann J, Hsiang T: A biologist's guide to de novo genome assembly using next-generation sequence data: A test with fungal genomes. J Microbiol Methods 2011, 86(3):368-375.
Hatakka K, Savilahti E, Ponka A, Meurman JH, Poussa T, Nase L, Saxelin M, Korpela R: Effect of long term consumption of probiotic milk on infections in children attending day care centres: double blind, randomised trial. BMJ 2001, 322(7298):1327.
Hawkins T, Luban S, Kihara D: Enhanced automated function prediction using distantly related sequences and contextual association by PFP. Protein Sci 2006, 15(6):15501556.

Heath AP, Bennett GN, Kavraki LE: Finding metabolic pathways using atom tracking. Bioinformatics 2010, 26(12):1548-1555.
Heavens D, Tailford LE, Crossman L, Jeffers F, MacKenzie DA, Caccamo M, Juge N: Genome Sequence of the Vertebrate Gut Symbiont Lactobacillus reuteri ATCC 53608. J Bacteriol 2011, 193(15):4015-4016.

Hebert EM, Saavedra L, Taranto MP, Mozzi F, Magni C, Nader ME, Font de Valdez G, Sesma F, Vignolo G, Raya RR: Genome sequence of the bacteriocin-producing Lactobacillus curvatus strain CRL705. J Bacteriol 2012, 194(2):538-539.
Heller KJ: Probiotic bacteria in fermented foods: product characteristics and starter organisms. Am J Clin Nutr 2001, 73(2):374s-379s.

Hernandez D, François P, Farinelli L, Østerås M, Schrenzel J: De novo bacterial genome sequencing: millions of very short reads assembled on a desktop computer. Genome Res 2008, 18(5):802-809.
Hojsak I, Abdovic S, Szajewska H, Milosevic M, Krznaric Z, Kolacek S: Lactobacillus GG in the prevention of nosocomial gastrointestinal and respiratory tract infections. Pediatrics 2010, 125(5):e1171-7.
Horvath P, Coûté-Monvoisin A, Romero DA, Boyaval P, Fremaux C, Barrangou R: Comparative analysis of CRISPR loci in lactic acid bacteria genomes. Int J Food Microbiol 2009, 131(1):62-70.
Hunter S, Jones P, Mitchell A, Apweiler R, Attwood TK, Bateman A, Bernard T, Binns D, Bork P, Burge S, et al: InterPro in 2011: new developments in the family and domain prediction database. Nucleic Acids Res 2012, 40(D1):D306-D312.
Hurmalainen V, Edelman S, Antikainen J, Baumann M, Lahteenmaki K, Korhonen TK: Extracellular proteins of Lactobacillus crispatus enhance activation of human plasminogen. Microbiology 2007, 153(Pt 4):1112-1122.
Hyatt D, Chen G, LoCascio P, Land M, Larimer F, Hauser L: Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010, 11(1):119.
Ihaka R, Gentleman R: R: A language for data analysis and graphics. J Comp Graph Stat 1996, 5(3):299-314.
Ilie L, Fazayeli F, Ilie S: HiTEC: accurate error correction in high-throughput sequencing data. Bioinformatics 2011, 27(3):295-302.
Iliev ID, Tohno M, Kurosaki D, Shimosato T, He F, Hosoda M, Saito T, Kitazawa H: Immunostimulatory Oligodeoxynucleotide Containing TTTCGTTT Motif from Lactobacillus rhamnosus GG DNA Potentially Suppresses OVA-specific IgE Production in Mice. Scand J Immunol 2008, 67(4):370-376.
Isolauri E, Juntunen M, Rautanen T, Sillanaukee P, Koivula T: A human Lactobacillus strain (Lactobacillus casei sp strain GG) promotes recovery from acute diarrhea in children. Pediatrics 1991, 88(1):90-97.
Jack RW, Tagg JR, Ray B: Bacteriocins of gram-positive bacteria. Microbiol Rev 1995, 59(2):171-200.
Jacobsen CN, Nielsen VR, Hayford A, Møller P, Michaelsen K, Paerregaard A, Sandström B, Tvede M, Jakobsen M: Screening of probiotic activities of forty-seven strains of Lactobacillus spp. by in vitro techniques and evaluation of the colonization ability of five selected strains in humans. Appl Environ Microbiol 1999, 65(11):49494956.

Jeck WR, Reinhardt JA, Baltrus DA, Hickenbotham MT, Magrini V, Mardis ER, Dangl JL, Jones CD: Extending assembly of short DNA sequences to handle error. Bioinformatics 2007, 23(21):2942-2944.
Jensen LJ, Julien P, Kuhn M, von Mering C, Muller J, Doerks T, Bork P: eggNOG: automated construction and annotation of orthologous groups of genes. Nucleic Acids Res 2008, 36(suppl 1):D250-D254.

Ji Y, Mitra R, Quintana F, Jara A, Mueller P, Liu P, Lu Y, Liang S: BM-BC: a Bayesian method of base calling for Solexa sequence data. BMC Bioinformatics 2012, 13 Suppl 13:S6.
Jiménez E, Langa S, Martín V, Arroyo R, Martín R, Fernández L, Rodríguez JM: Complete Genome Sequence of Lactobacillus fermentum CECT 5716, a Probiotic Strain Isolated from Human Milk. J Bacteriol 2010a, 192(18):4800-4800.
Jiménez E, Martín R, Maldonado A, Martín V, Gómez de Segura A, Fernández L, Rodríguez JM: Complete Genome Sequence of Lactobacillus salivarius CECT 5713, a Probiotic Strain Isolated from Human Milk and Infant Feces. J Bacteriol 2010b, 192(19):5266-5267.
Jiménez-Díaz R, Rios-Sánchez RM, Desmazeaud M, Ruiz-Barba JL, Piard JC: Plantaricins S and T, Two New Bacteriocins Produced by Lactobacillus plantarum LPCO10 Isolated from a Green Olive Fermentation. Appl Environ Microbiol 1993, 59(5):1416-1424.
Joss MJ, Koenig JE, Labbate M, Polz MF, Gillings MR, Stokes HW, Doolittle WF, Boucher Y: ACID: annotation of cassette and integron data. BMC Bioinformatics 2009, 10(1):118.
Juan D, Pazos F, Valencia A: High-confidence prediction of global interactomes based on genome-wide coevolutionary networks. Proc Natl Acad Sci U S A 2008, 105(3):934-939.
Jünemann S, Prior K, Albersmeier A, Albaum S, Kalinowski J, Goesmann A, Stoye J, Harmsen D: GABenchToB: A Genome Assembly Benchmark Tuned on Bacteria and Benchtop Sequencers. PLoS ONE 2014, 9(9):e107014.
Joerger MC, Klaenhammer TR: Cloning, expression, and nucleotide sequence of the Lactobacillus helveticus 481 gene encoding the bacteriocin helveticin J. J Bacteriol 1990, 172(11):6339-6347.
Kajander K, Hatakka K, Poussa T, Farkkila M, Korpela R: A probiotic mixture alleviates symptoms in irritable bowel syndrome patients: a controlled 6-month intervention. Aliment Pharmacol Ther 2005, 22(5):387-394.
Kajander K, Myllyluoma E, Rajilic-Stojanovic M, Kyronpalo S, Rasmussen M, Jarvenpää S, Zoetendal EG, de Vos WM, Vapaatalo H, Korpela R: Clinical trial: multispecies probiotic supplementation alleviates the symptoms of irritable bowel syndrome and stabilizes intestinal microbiota. Aliment Pharmacol Ther 2008, 27(1):48-57.
Kalliomäki M, Salminen S, Arvilommi H, Kero P, Koskinen P, Isolauri E: Probiotics in primary prevention of atopic disease: a randomised placebo-controlled trial. Lancet 2001, 357(9262):1076-1079.
Kalliomäki M, Salminen S, Poussa T, Arvilommi H, Isolauri E: Probiotics and prevention of atopic disease: 4-year follow-up of a randomised placebo-controlled trial. Lancet 2003, 361(9372):1869-1871.
Kalliomäki M, Salminen S, Poussa T, Isolauri E: Probiotics during the first 7 years of life: a cumulative risk reduction of eczema in a randomized, placebo-controlled trial. J Allergy Clin Immunol 2007, 119(4):1019-1021.

Kandler O, Weiss N: Genus Lactobacillus Beijerinck 1901, $212^{\text {AL }}$. In Bergey's manual of systematic bacteriology. Volume 2. Edited by Williams ST, Sharpe ME, Holt JG, Williams and Wilkins: 1986:1209-1234.
Kang HJ, Paterson NG, Gaspar AH, Ton-That H, Baker EN: The Corynebacterium diphtheriae shaft pilin SpaA is built of tandem Ig-like modules with stabilizing isopeptide and disulfide bonds. Proc Natl Acad Sci U S A 2009, 106(40):16967-16971.
Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M: The KEGG resource for deciphering the genome. Nucleic Acids Res 2004, 32(suppl 1):D277-D280.
Kant R, Blom J, Palva A, Siezen RJ, de Vos WM: Comparative genomics of Lactobacillus. Microb Biotechnol 2011a, 4(3):323-332.
Kant R, Paulin L, Alatalo E, de Vos WM, Palva A: Genome sequence of Lactobacillus amylovorus GRL1118, isolated from pig ileum. J Bacteriol 2011b, 193(12):31473148.

Kant R, Paulin L, Alatalo E, de Vos WM, Palva A: Genome sequence of Lactobacillus amylovorus GRL1112. J Bacteriol 2011c, 193(3):789-790.
Kant R, Rintahaka J, Yu X, Sigvart-Mattila P, Paulin L, Mecklin JP, Saarela M, Palva A, von Ossowski I: A comparative pan-genome perspective of niche-adaptable cell-surface protein phenotypes in Lactobacillus rhamnosus. PLoS One 2014, 9(7):e102762.
Kao W, Chan AH, Song YS: ECHO: a reference-free short-read error correction algorithm. Genome Res 2011, 21(7):1181-1192.
Kao W, Stevens K, Song YS: BayesCall: A model-based base-calling algorithm for highthroughput short-read sequencing. Genome Res 2009, 19(10):1884-1895.
Karp PD, Paley S, Romero P: The pathway tools software. Bioinformatics 2002, 18(suppl 1):S225-S232.
Kergourlay G, Messaoudi S, Dousset X, Prévost H: Genome Sequence of Lactobacillus salivarius SMXD51, a Potential Probiotic Strain Isolated from Chicken Cecum, Showing Anti-Campylobacter Activity. J Bacteriol 2012, 194(11):3008-3009.
Kim D, Choi S, Kim D, Kim RN, Nam S, Kang A, Kim A, Park H: Genome Sequence of Lactobacillus versmoldensis KCTC 3814. J Bacteriol 2011a, 193(19):5589-5590.
Kim D, Choi S, Kang A, Nam S, Kim D, Kim RN, Kim A, Park H: Draft Genome Sequence of Lactobacillus zeae KCTC 3804. J Bacteriol 2011b, 193(18):5023-5023.
Kim D, Choi S, Kang A, Nam S, Kim D, Kim RN, Kim A, Park H: Draft Genome Sequence of Lactobacillus malefermentans KCTC 3548. J Bacteriol 2011c, 193(19):5537-5537.
Kim D, Choi S, Kang A, Nam S, Kim D, Kim RN, Kim A, Park H: Draft Genome Sequence of Lactobacillus mali KCTC 3596. J Bacteriol 2011d, 193(18):5037-5037.
Kim JW, Rajagopal SN: Antimicrobial activities of Lactobacillus crispatus ATCC 33820 and Lactobacillus gasseri ATCC 33323. J Microbiol 2001, 39:146-148.
Kingsford CL, Ayanbule K, Salzberg SL: Rapid, accurate, computational discovery of Rho-independent transcription terminators illuminates their relationship to DNA uptake. Genome Biol 2007, 8(2):R22.
Kircher M, Stenzel U, Kelso J: Improved base calling for the Illumina Genome Analyzer using machine learning strategies. Genome Biol 2009, 10(8):R83.

Kislyuk AO, Katz LS, Agrawal S, Hagen MS, Conley AB, Jayaraman P, Nelakuditi V, Humphrey JC, Sammons SA, Govil D, et al: A computational genomics pipeline for prokaryotic sequencing projects. Bioinformatics 2010, 26(15):1819-1826.
Klassen J, Currie C: Gene fragmentation in bacterial draft genomes: extent, consequences and mitigation. BMC Genomics 2012, 13(1):14.
Klassen JL, Currie CR: ORFcor: Identifying and Accommodating ORF Prediction Inconsistencies for Phylogenetic Analysis. PLoS One 2013, 8(3):e58387.
Kleerebezem M, Boekhorst J, van Kranenburg R, Molenaar D, Kuipers OP, Leer R, Tarchini R, Peters SA, Sandbrink HM, Fiers MW, et al: Complete genome sequence of Lactobacillus plantarum WCFS1. Proc Natl Acad Sci U S A 2003, 100(4):1990-1995.
Kleerebezem M, Hols P, Bernard E, Rolain T, Zhou M, Siezen RJ, Bron PA: The extracellular biology of the lactobacilli. FEMS Microbiol Rev 2010, 34(2):199-230.
Klimke W, Agarwala R, Badretdin A, Chetvernin S, Ciufo S, Fedorov B, Kiryutin B, O'Neill K, Resch W, Resenchuk S, et al: The National Center for Biotechnology Information's Protein Clusters Database. Nucleic Acids Res 2009, 37(suppl 1):D216D223.
Konstantinidis KT, Tiedje JM: Towards a genome-based taxonomy for prokaryotes. J Bacteriol 2005, 187(18):6258-6264.
Konstantinov SR, Smidt H, de Vos WM, Bruijns SCM, Singh SK, Valence F, Molle D, Lortal S, Altermann E, Klaenhammer TR, et al: S layer protein A of Lactobacillus acidophilus NCFM regulates immature dendritic cell and T cell functions. Proc Natl Acad Sci U S A 2008, 105(49):19474-19479.
Koonin EV, Galperin, MY: Sequence-Evolution-Function: Computational Approaches in Comparative Genomics, Kluwer Academic: 2003.
Koponen J, Laakso K, Koskenniemi K, Kankainen M, Savijoki K, Nyman TA, de Vos WM, Tynkkynen S, Kalkkinen N, Varmanen P: Effect of acid stress on protein expression and phosphorylation in Lactobacillus rhamnosus GG. J Proteomics 2012, 75(4):1357-1374.
Korbel JO, Snel B, Huynen MA, Bork P: SHOT: a web server for the construction of genome phylogenies. Trends Genet 2002, 18(3):158-162.
Korbel JO, Doerks T, Jensen LJ, Perez-Iratxeta C, Kaczanowski S, Hooper SD, Andrade MA, Bork P: Systematic Association of Genes to Phenotypes by Genome and Literature Mining. PLoS Biol 2005, 3(5):e134.
Koskenniemi K, Laakso K, Koponen J, Kankainen M, Greco D, Auvinen P, Savijoki K, Nyman TA, Surakka A, Salusjarvi T, et al: Proteomics and transcriptomics characterization of bile stress response in probiotic Lactobacillus rhamnosus GG. Mol Cell Proteomics 2011, 10(2):M110.002741.
Koskinen P, Toronen P, Nokso-Koivisto J, Holm L: PANNZER: high-throughput functional annotation of uncharacterized proteins in an error-prone environment. Bioinformatics 2015.
Krieger CJ, Zhang P, Mueller LA, Wang A, Paley S, Arnaud M, Pick J, Rhee SY, Karp PD: MetaCyc: a multiorganism database of metabolic pathways and enzymes. Nucleic Acids Res 2004, 32(suppl 1):D438-D442.

Krogh A, Larsson B, Von Heijne G, Sonnhammer EL: Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 2001, 305(3):567-580.
Krumsiek J, Arnold R, Rattei T: Gepard: a rapid and sensitive tool for creating dotplots on genome scale. Bioinformatics 2007, 23(8):1026-1028.
Krutmann J: Pre-and probiotics for human skin. J Dermatol Sci 2009, 54(1):1-5.
Kunin V, Ouzounis CA: Clustering the annotation space of proteins. BMC Bioinformatics 2005, 6(1):24.
Kurtz S, Schleiermacher C: REPuter: Fast computation of maximal repeats in complete genomes. Bioinformatics 1999, 15(5):426-427.
Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, Salzberg SL: Versatile and open software for comparing large genomes. Genome Biol 2004, 5(2):R12.
Laakso K, Koskenniemi K, Koponen J, Kankainen M, Surakka A, Salusjarvi T, Auvinen P, Savijoki K, Nyman TA, Kalkkinen N, et al: Growth phase-associated changes in the proteome and transcriptome of Lactobacillus rhamnosus GG in industrial-type whey medium. Microb Biotechnol 2011, 4(6):746-766.
Lagesen K, Hallin P, Rødland EA, Stærfeldt H, Rognes T, Ussery DW: RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007, 35(9):3100-3108.
Langille MG, Brinkman FS: IslandViewer: an integrated interface for computational identification and visualization of genomic islands. Bioinformatics 2009, 25(5):664665.

Langille MG, Hsiao WW, Brinkman FS: Detecting genomic islands using bioinformatics approaches. Nat Rev Microbiol 2010, 8(5):373-382.
Langille M, Hsiao W, Brinkman F: Evaluation of genomic island predictors using a comparative genomics approach. BMC Bioinformatics 2008, 9(1):329.
Larsen TS, Krogh A: EasyGene-a prokaryotic gene finder that ranks ORFs by statistical significance. BMC Bioinformatics 2003, 4(1):21.
Laslett D, Canback B: ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res 2004, 32(1):11-16.
Lebeer S, Vanderleyden J, De Keersmaecker SC: Genes and molecules of lactobacilli supporting probiotic action. Microbiol Mol Biol Rev 2008, 72(4):728-764.
Lebeer S, Claes IJ, Verhoeven TL, Vanderleyden J, De Keersmaecker SC: Exopolysaccharides of Lactobacillus rhamnosus GG form a protective shield against innate immune factors in the intestine. Microb Biotechnol 2011, 4(3):368-374.
Lebeer S, Claes I, Tytgat HL, Verhoeven TL, Marien E, von Ossowski I, Reunanen J, Palva A, Vos WM, Keersmaecker SC, et al: Functional analysis of Lactobacillus rhamnosus GG pili in relation to adhesion and immunomodulatory interactions with intestinal epithelial cells. Appl Environ Microbiol 2012, 78(1):185-193.
Lebeer S, Verhoeven TL, Francius G, Schoofs G, Lambrichts I, Dufrene Y, Vanderleyden J, De Keersmaecker SC: Identification of a Gene Cluster for the Biosynthesis of a Long, Galactose-Rich Exopolysaccharide in Lactobacillus
rhamnosus GG and Functional Analysis of the Priming Glycosyltransferase. Appl Environ Microbiol 2009, 75(11):3554-3563.
Lechner M, Hernandez-Rosales M, Doerr D, Wieseke N, Thevenin A, Stoye J, Hartmann RK, Prohaska SJ, Stadler PF: Orthology detection combining clustering and synteny for very large datasets. PLoS One 2014, 9(8): 105015.
Lee Y, Salminen S: The coming of age of probiotics. Trends Food Sci Technol 1995, 6(7):241-245.
Lee JH, Chae JP, Lee JY, Lim J, Kim G, Ham J, Chun J, Kang D: Genome Sequence of Lactobacillus johnsonii PF01, Isolated from Piglet Feces. J Bacteriol 2011a, 193(18):5030-5031.
Lee JH, Valeriano VD, Shin Y, Chae JP, Kim G, Ham J, Chun J, Kang D: Genome Sequence of Lactobacillus mucosae LM1, Isolated from Piglet Feces. J Bacteriol 2012, 194(17):4766-4766.
Lee S, Cho Y, Lee AH, Chun J, Ha N, Ko G: Genome Sequence of Lactobacillus ruminis SPM0211, Isolated from a Fecal Sample from a Healthy Korean. J Bacteriol 2011b, 193(18):5034-5034.
Leplae R, Hebrant A, Wodak SJ, Toussaint A: ACLAME: a CLAssification of Mobile genetic Elements. Nucleic Acids Res 2004, 32(suppl 1):D45-D49.
Leroy F, De Vuyst L: Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food Sci Technol 2004, 15(2):67-78.
Li L, Stoeckert CJ, Roos DS: OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res 2003, 13(9):2178-2189.
Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, Li Y, Li S, Shan G, Kristiansen K, et al: De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 2010, 20(2):265-272.
Lima T, Auchincloss AH, Coudert E, Keller G, Michoud K, Rivoire C, Bulliard V, de Castro E, Lachaize C, Baratin D, et al: HAMAP: a database of completely sequenced microbial proteome sets and manually curated microbial protein families in UniProtKB/Swiss-Prot. Nucleic Acids Res 2009, 37(suppl 1):D471-D478.
Lima-Mendez G, Van Helden J, Toussaint A, Leplae R: Prophinder: a computational tool for prophage prediction in prokaryotic genomes. Bioinformatics 2008, 24(6):863865.

Lippi M, Passerini A, Punta M, Rost B, Frasconi P: MetalDetector: a web server for predicting metal-binding sites and disulfide bridges in proteins from sequence. Bioinformatics 2008, 24(18):2094-2095.
Liu B, Pop M: ARDB—antibiotic resistance genes database. Nucleic Acids Res 2009, 37(suppl 1):D443-D447.
Liu L, Li Y, Li S, Hu N, He Y, Pong R, Lin D, Lu L, Law M: Comparison of nextgeneration sequencing systems. J Biomed Biotechnol 2012, 2012.
Liu M, Siezen RJ, Nauta A: In Silico Prediction of Horizontal Gene Transfer Events in Lactobacillus bulgaricus and Streptococcus thermophilus Reveals Protocooperation in Yogurt Manufacturing. Appl Environ Microbiol 2009, 75(12):4120-4129.

Liu M, Nauta A, Francke C, Siezen RJ: Comparative Genomics of Enzymes in FlavorForming Pathways from Amino Acids in Lactic Acid Bacteria. Appl Environ Microbiol 2008, 74(15):4590-4600.
Liu S, Leathers TD, Copeland A, Chertkov O, Goodwin L, Mills DA: Complete Genome Sequence of Lactobacillus buchneri NRRL B-30929, a Novel Strain from a Commercial Ethanol Plant. J Bacteriol 2011, 193(15):4019-4020.
Loman NJ, Constantinidou C, Chan JZ, Halachev M, Sergeant M, Penn CW, Robinson ER, Pallen MJ: High-throughput bacterial genome sequencing: an embarrassment of choice, a world of opportunity. Nat Rev Microbiol 2012, 10(9):599606.

Lowe TM, Eddy SR: tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 1997, 25(5):0955-964.
Lukjancenko O, Ussery DW, Wassenaar TM: Comparative genomics of Bifidobacterium, Lactobacillus and related probiotic genera. Microb Ecol 2012, 63(3):651-673.
Ma B, Forney LJ, Ravel J: Vaginal microbiome: rethinking health and disease. Annu Rev Microbiol 2012, 66:371-389.
Macke TJ, Ecker DJ, Gutell RR, Gautheret D, Case DA, Sampath R: RNAMotif, an RNA secondary structure definition and search algorithm. Nucleic Acids Res 2001, 29(22):4724-4735.
Macklaim JM, Gloor GB, Anukam KC, Cribby S, Reid G: At the crossroads of vaginal health and disease, the genome sequence of Lactobacillus iners AB-1. Proc Natl Acad Sci U S A 2011, 108 Suppl 1:4688-4695.
Madigan MT, Martinko JM, Parker J, Brock TD: Brock biology of microorganisms. $13^{\text {th }}$ edition. Benjamin Cummings. 2010.
Madupu R, Richter A, Dodson RJ, Brinkac L, Harkins D, Durkin S, Shrivastava S, Sutton G, Haft D: CharProtDB: a database of experimentally characterized protein annotations. Nucleic Acids Res 2012, 40(D1):D237-D241.
Magoc T, Pabinger S, Canzar S, Liu X, Su Q, Puiu D, Tallon LJ, Salzberg SL: GAGE-B: an evaluation of genome assemblers for bacterial organisms. Bioinformatics 2013, 29(14):1718-1725.
Makarova K, Slesarev A, Wolf Y, Sorokin A, Mirkin B, Koonin E, Pavlov A, Pavlova \mathbf{N}, Karamychev V, Polouchine N, et al: Comparative genomics of the lactic acid bacteria. Proc Natl Acad Sci U S A 2006, 103(42):15611-15616.
Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, et al: CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res 2011, 39(suppl 1):D225-D229.

Marcotte EM, Pellegrini M, Ng H, Rice DW, Yeates TO, Eisenberg D: Detecting protein function and protein-protein interactions from genome sequences. Science 1999, 285(5428):751-753.
Mardis ER: Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet 2008, 9:387-402.

Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen Z, et al: Genome sequencing in microfabricated high-density picolitre reactors. Nature 2005, 437(7057):376-380.
Marine R, Polson SW, Ravel J, Hatfull G, Russell D, Sullivan M, Syed F, Dumas M, Wommack KE: Evaluation of a transposase protocol for rapid generation of shotgun high-throughput sequencing libraries from nanogram quantities of DNA. Appl Environ Microbiol 2011, 77(22):8071-8079.
Markowitz VM, Chen IA, Palaniappan K, Chu K, Szeto E, Grechkin Y, Ratner A, Jacob B, Huang J, Williams P, et al: IMG: the integrated microbial genomes database and comparative analysis system. Nucleic Acids Res 2012, 40(D1):D115D122.
Marraffini LA, Sontheimer EJ: CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat Rev Genet 2010, 11(3):181-190.
Martin DH: The microbiota of the vagina and its influence on women's health and disease. Am J Med Sci 2012, 343(1):2.
Martin DM, Berriman M, Barton GJ: GOtcha: a new method for prediction of protein function assessed by the annotation of seven genomes. BMC Bioinformatics 2004, 5(1):178.
Martin M: Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 2011, 17(1):pp. 10-12.
Martín R, Olivares M, Marín ML, Fernández L, Xaus J, Rodríguez JM: Probiotic potential of 3 lactobacilli strains isolated from breast milk. J Hum Lact 2005, 21(1):817.

Massingham T, Goldman N: All Your Base: a fast and accurate probabilistic approach to base calling. Genome Biol 2012, 13(2):R13.
Matsuda K, Tsuji H, Asahara T, Matsumoto K, Takada T, Nomoto K: Establishment of an analytical system for the human fecal microbiota, based on reverse transcriptionquantitative PCR targeting of multicopy rRNA molecules. Appl Environ Microbiol 2009, 75(7):1961-1969.
Mavromatis K, Ivanova NN, Chen IA, Szeto E, Markowitz VM, Kyrpides NC: The DOE-JGI Standard operating procedure for the annotations of microbial genomes. Stand Genomic Sci 2009, 1(1):63.
Maxam AM, Gilbert W: A new method for sequencing DNA. Proc Natl Acad Sci U S A 1977, 74:560-564.
McHardy AC, Goesmann A, Pühler A, Meyer F: Development of joint application strategies for two microbial gene finders. Bioinformatics 2004, 20(10):1622-1631.
Mc Grath S, Fitzgerald GF, van Sinderen D: Bacteriophages in dairy products: pros and cons. Biotechnol J 2007, 2(4):450-455.
McNulty NP, Yatsunenko T, Hsiao A, Faith JJ, Muegge BD, Goodman AL, Henrissat B, Oozeer R, Cools-Portier S, Gobert G, et al: The impact of a consortium of fermented milk strains on the gut microbiome of gnotobiotic mice and monozygotic twins. Sci Transl Med 2011, 3(106):106ra106.
Medema MH, Blin K, Cimermancic P, de Jager V, Zakrzewski P, Fischbach MA, Weber T, Takano E, Breitling R: antiSMASH: rapid identification, annotation and
analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res 2011, 39(suppl 2):W339-W346.
Medini D, Donati C, Tettelin H, Masignani V, Rappuoli R: The microbial pan-genome. Curr Opin Genet Dev 2005, 15(6):589-594.
Meijerink M, van Hemert S, Taverne N, Wels M, de Vos P, Bron PA, Savelkoul HF, van Bilsen J, Kleerebezem M, Wells JM: Identification of genetic loci in Lactobacillus plantarum that modulate the immune response of dendritic cells using comparative genome hybridization. PLoS One 2010, 5(5):e10632.
Miettinen M, Pietilä TE, Kekkonen RA, Kankainen M, Latvala S, Pirhonen J, Osterlund P, Korpela R, Julkunen I: Nonpathogenic Lactobacillus rhamnosus activates the inflammasome and antiviral responses in human macrophages. Gut Microbes 2012, 3(6):510-522.
Miller JR, Koren S, Sutton G: Assembly algorithms for next-generation sequencing data. Genomics 2010, 95(6):315-327.
Mills S, Stanton C, Hill C, Ross RP: New developments and applications of bacteriocins and peptides in foods. Annu Rev Food Sci Technol 2011, 2:299-329.
Mirkin BG, Fenner TI, Galperin MY, Koonin EV: Algorithms for computing parsimonious evolutionary scenarios for genome evolution, the last universal common ancestor and dominance of horizontal gene transfer in the evolution of prokaryotes. BMC Evol Biol 2003, 3:2.
Mohammed Y, Lee B, Kang Z, Du G: Capability of Lactobacillus reuteri to Produce an Active Form of Vitamin B12 under Optimized Fermentation Conditions. Journal of Academia and Industrial Research (JAIR) 2014, 2(11):617.
Molin G, Jeppsson B, Johansson M, Ahrne S, Nobaek S, Ståhl M, Bengmark S: Numerical taxonomy of Lactobacillus spp. associated with healthy and diseased mucosa of the human intestines. J Appl Microbiol 1993, 74(3):314-323.
Morgat A, Coissac E, Coudert E, Axelsen KB, Keller G, Bairoch A, Bridge A, Bougueleret L, Xenarios I, Viari A: UniPathway: a resource for the exploration and annotation of metabolic pathways. Nucleic Acids Res 2012, 40(D1):D761-D769.
Morita H, Toh H, Fukuda S, Horikawa H, Oshima K, Suzuki T, Murakami M, Hisamatsu S, Kato Y, Takizawa T, et al: Comparative Genome Analysis of Lactobacillus reuteri and Lactobacillus fermentum Reveal a Genomic Island for Reuterin and Cobalamin Production. DNA Res 2008, 15(3):151-161.
Morita H, Toh H, Oshima K, Murakami M, Taylor TD, Igimi S, Hattori M: Complete Genome Sequence of the Probiotic Lactobacillus rhamnosus ATCC 53103. J Bacteriol 2009, 191(24):7630-7631.
Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M: KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 2007, 35(suppl 2):W182-W185.
Moura A, Soares M, Pereira C, Leitão N, Henriques I, Correia A: INTEGRALL: a database and search engine for integrons, integrases and gene cassettes. Bioinformatics 2009, 25(8):1096-1098.

Munoz-Merida A, Viguera E, Claros MG, Trelles O, Perez-Pulido AJ: Sma3s: a three-step modular annotator for large sequence datasets. DNA Res 2014, 21(4):341353.

Mayra-Makinen A, Bigret M: Industrial use and production of lactic acid bacteria. In Lactic Acid Bacteria - Microbiology and Functional Aspects. Edited by Salminen S, Wright AV. Marcel Dekker Inc: 1998: 73-102.
Nagarajan N, Read TD, Pop M: Scaffolding and validation of bacterial genome assemblies using optical restriction maps. Bioinformatics 2008, 24(10):1229-1235.
Nam S, Choi S, Kang A, Kim D, Kim D, Kim RN, Kim A, Park H: Genome Sequence of Lactobacillus coryniformis subsp. coryniformis KCTC 3167. J Bacteriol 2011a, 193(4):1014-1015.
Nam S, Choi S, Kang A, Kim D, Kim RN, Kim A, Kim D, Park H: Genome Sequence of Lactobacillus farciminis KCTC 3681. J Bacteriol 2011b, 193(7):1790-1791.
Nam S, Choi S, Kang A, Kim D, Kim RN, Kim A, Kim D, Park H: Genome Sequence of Lactobacillus animalis KCTC 3501. J Bacteriol 2011c, 193(5):1280-1281.
Nam S, Choi S, Kang A, Kim D, Kim RN, Kim D, Kim A, Park H: Genome Sequence of Lactobacillus suebicus KCTC 3549. J Bacteriol 2011d, 193(19):5532-5533.
Nam S, Choi S, Kang A, Lee KS, Kim D, Kim RN, Kim D, Park H: Genome Sequence of Lactobacillus fructivorans KCTC 3543. J Bacteriol 2012, 194(8):2111-2112.
Nawrocki EP, Kolbe DL, Eddy SR: Infernal 1.0: inference of RNA alignments. Bioinformatics 2009, 25(10):1335-1337.
Nelson KE, Weinstock GM, Highlander SK, Worley KC, Creasy HH, Wortman JR, Rusch DB, Mitreva M, Sodergren E, Chinwalla AT, et al: A catalog of reference genomes from the human microbiome. Science 2010, 328(5981):994-999.
Nes IF, Johnsborg O: Exploration of antimicrobial potential in LAB by genomics. Curr Opin Biotechnol 2004, 15(2):100-104.
Nijkamp J, Winterbach W, van den Broek M, Daran J, Reinders M, de Ridder D: Integrating genome assemblies with MAIA. Bioinformatics 2010, 26(18):i433-i439.
Nilsen T, Nes IF, Holo H: Enterolysin A, a cell wall-degrading bacteriocin from Enterococcus faecalis LMG 2333. Appl Environ Microbiol 2003, 69(5):2975-2984.
Nusbaum C, Ohsumi TK, Gomez J, Aquadro J, Victor TC, Warren RM, Hung DT, Birren BW, Lander ES, Jaffe DB: Sensitive, specific polymorphism discovery in bacteria using massively parallel sequencing. Nat Methods 2008, 6(1):67-69.
Nyquist OL, McLeod A, Brede DA, Snipen L, Aakra 』, Nes IF: Comparative genomics of Lactobacillus sakei with emphasis on strains from meat. Mol Genet Genomics 2011, 285(4):297-311.
Oberhardt MA, Palsson BØ, Papin JA: Applications of genome-scale metabolic reconstructions. Mol Syst Biol 2009, 5(1).
Oelschlaeger TA: Mechanisms of probiotic actions-a review. Int J Med Microbiol 2010, 300(1):57-62.
Ofran Y, Mysore V, Rost B: Prediction of DNA-binding residues from sequence. Bioinformatics 2007, 23(13):i347-i353.

Ofran Y, Punta M, Schneider R, Rost B: Beyond annotation transfer by homology: novel protein-function prediction methods to assist drug discovery. Drug Discov Today 2005, 10(21):1475-1482.
Oh S, Roh H, Ko H, Kim S, Kim KH, Lee SE, Chang IS, Kim S, Choi I: Complete Genome Sequencing of Lactobacillus acidophilus 30SC, Isolated from Swine Intestine. J Bacteriol 2011, 193(11):2882-2883.
Oksaharju A, Kankainen M, Kekkonen RA, Lindstedt KA, Kovanen PT, Korpela R, Miettinen M: Probiotic Lactobacillus rhamnosus downregulates FCER1 and HRH4 expression in human mast cells. World J Gastroenterol 2011, 17(6):750-759.
O'Sullivan O, O'Callaghan J, Sangrador-Vegas A, McAuliffe O, Slattery L, Kaleta P, Callanan M, Fitzgerald G, Ross RP, Beresford T: Comparative genomics of lactic acid bacteria reveals a niche-specific gene set. BMC microbiol 2009, 9(1):50.
Overbeek R, Begley T, Butler RM, Choudhuri JV, Chuang H, Cohoon M, de CrécyLagard V, Diaz N, Disz T, Edwards R, et al: The Subsystems Approach to Genome Annotation and its Use in the Project to Annotate 1000 Genomes. Nucleic Acids Res 2005, 33(17):5691-5702.
Overbeek R, Larsen N, Walunas T, D'Souza M, Pusch G, Selkov E, Liolios K, Joukov V, Kaznadzey D, Anderson I, et al: The ERGO ${ }^{\text {TM }}$ genome analysis and discovery system. Nucleic Acids Res 2003, 31(1):164-171.
Patel RK, Jain M: NGS QC Toolkit: a toolkit for quality control of next generation sequencing data. PLoS One 2012, 7(2):e30619.
Paten B, Herrero J, Beal K, Fitzgerald S, Birney E: Enredo and Pecan: genome-wide mammalian consistency-based multiple alignment with paralogs. Genome Res 2008, 18(11):1814-1828.
Pati A, Ivanova NN, Mikhailova N, Ovchinnikova G, Hooper SD, Lykidis A, Kyrpides NC: GenePRIMP: a gene prediction improvement pipeline for prokaryotic genomes. Nat Methods 2010, 7(6):455-457.
Péant B, LaPointe G, Gilbert C, Atlan D, Ward P, Roy D: Comparative analysis of the exopolysaccharide biosynthesis gene clusters from four strains of Lactobacillus rhamnosus. Microbiology 2005, 151(6):1839-1851.
Pearson WR, Lipman DJ: Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A 1988, 85(8):2444-2448.
Pellegrini M, Marcotte EM, Thompson MJ, Eisenberg D, Yeates TO: Assigning protein functions by comparative genome analysis: Protein phylogenetic profiles. Proc Natl Acad Sci U S A 1999, 96(8):4285-4288.
Peng Y, Leung HCM, Yiu SM, Chin FYL: IDBA-UD: a de novo assembler for singlecell and metagenomic sequencing data with highly uneven depth. Bioinformatics 2012, 28(11):1420-1428.
Petersen TN, Brunak S, von Heijne G, Nielsen H: SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 2011, 8(10):785-786.
Pevzner PA, Tang H, Waterman MS: An Eulerian path approach to DNA fragment assembly. Proc Natl Acad Sci U S A 2001, 98(17):9748-9753.
Pfeiler EA, Klaenhammer TR: The genomics of lactic acid bacteria. Trends Microbiol 2007, 15(12):546-553.

Pichon C, Felden B: Small RNA gene identification and mRNA target predictions in bacteria. Bioinformatics 2008, 24(24):2807-2813.
Pitcher DG, Saunders NA, Owen RJ: Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol 1989, 8(4):151-156.
Pittet V, Ewen E, Bushell BR, Ziola B: Genome Sequence of Lactobacillus rhamnosus ATCC 8530. J Bacteriol 2012, 194(3):726-726.
Pop M: Genome assembly reborn: recent computational challenges. Brief Bioinform 2009, 10(4):354-366.
Pop M, Kosack DS, Salzberg SL: Hierarchical scaffolding with Bambus. Genome Res 2004a, 14(1):149-159.
Pop M, Phillippy A, Delcher AL, Salzberg SL: Comparative genome assembly. Brief Bioinform 2004b, 5(3):237-248.
Pot B, Ludwig W, Kersters K, Schleifer K: Taxonomy of lactic acid bacteria. In Bacteriocins of lactic acid bacteria. Edited by De Vuyst L, Vandamme EJ. Chapman and Hall; 1994:13-90.
Prajapati JB, Khedkar CD, Chitra J, Suja S, Mishra V, Sreeja V, Patel RK, Ahir VB, Bhatt VD, Sajnani MR, et al: Whole-Genome Shotgun Sequencing of Lactobacillus rhamnosus MTCC 5462, a Strain with Probiotic Potential. J Bacteriol 2012, 194(5):1264-1265.
Prajapati JB, Khedkar CD, Chitra J, Suja S, Mishra V, Sreeja V, Patel RK, Ahir VB, Bhatt VD, Sajnani MR, et al: Whole-Genome Shotgun Sequencing of an IndianOrigin Lactobacillus helveticus Strain, MTCC 5463, with Probiotic Potential. J Bacteriol 2011, 193(16):4282-4283.
Price AL, Jones NC, Pevzner PA: De novo identification of repeat families in large genomes. Bioinformatics 2005, 21 (suppl 1):i351-i358.
Pridmore RD, Berger B, Desiere F, Vilanova D, Barretto C, Pittet A, Zwahlen M, Rouvet M, Altermann E, Barrangou R, et al: The genome sequence of the probiotic intestinal bacterium Lactobacillus johnsonii NCC 533. Proc Natl Acad Sci U S A 2004, 101(8):2512-2517.
Prober JM, Trainor GL, Dam RJ, Hobbs FW, Robertson CW, Zagursky RJ, Cocuzza AJ, Jensen MA, Baumeister K: A system for rapid DNA sequencing with fluorescent chain-terminating dideoxynucleotides. Science 1987, 238(4825):336-341.
Punta M, Ofran Y: The rough guide to in silico function prediction, or how to use sequence and structure information to predict protein function. PLoS Comput Biol 2008, 4(10):e1000160.
Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, Pang N, Forslund K, Ceric G, Clements J, et al: The Pfam protein families database. Nucleic Acids Res 2012, 40(D1):D290-D301.
Quail MA, Smith M, Coupland P, Otto TD, Harris SR, Connor TR, Bertoni A, Swerdlow HP, Gu Y: A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics 2012, 13(1):341.
Quinlan AR, Stewart DA, Strömberg MP, Marth GT: Pyrobayes: an improved base caller for SNP discovery in pyrosequences. Nat Methods 2008, 5(2):179-181.

Raes J, Harrington ED, Singh AH, Bork P: Protein function space: viewing the limits or limited by our view? Curr Opin Struct Biol 2007, 17(3):362-369.
Raftis EJ, Salvetti E, Torriani S, Felis GE, O'Toole PW: Genomic Diversity of Lactobacillus salivarius. Appl Environ Microbiol 2011, 77(3):954-965.
Rahman O, Cummings SP, Harrington DJ, Sutcliffe IC: Methods for the bioinformatic identification of bacterial lipoproteins encoded in the genomes of Gram-positive bacteria. World J Microbiol Biotech 2008, 24(11):2377-2382.
Ravcheev DA, Best AA, Sernova NV, Kazanov MD, Novichkov PS, Rodionov DA: Genomic reconstruction of transcriptional regulatory networks in lactic acid bacteria. BMC Genomics 2013, 14(1):94.
Ravel J, Gajer P, Abdo Z, Schneider GM, Koenig SS, McCulle SL, Karlebach S, Gorle R, Russell J, Tacket CO, et al: Vaginal microbiome of reproductive-age women. Proc Natl Acad Sci U S A 2011, 108 Suppl 1:4680-4687.
Rawlings ND, Tolle DP, Barrett AJ: MEROPS: the peptidase database. Nucleic Acids Res 2004, 32(suppl 1):D160-D164.
Regalia M, Rosenblad MA, Samuelsson T: Prediction of signal recognition particle RNA genes. Nucleic Acids Res 2002, 30(15):3368-3377.
Remm M, Storm CE, Sonnhammer EL: Automatic clustering of orthologs and inparalogs from pairwise species comparisons. J Mol Biol 2001, 314(5):1041-1052.
Ren J, Wen L, Gao X, Jin C, Xue Y, Yao X: CSS-Palm 2.0: an updated software for palmitoylation sites prediction. Protein Eng Des Sel 2008, 21(11):639-644.
Rentzsch R, Orengo CA: Protein function prediction-the power of multiplicity. Trends Biotechnol 2009, 27(4):210-219.
Reunanen J, von Ossowski I, Hendrickx AP, Palva A, de Vos WM: Characterization of the SpaCBA pilus fibers in the probiotic Lactobacillus rhamnosus GG. Appl Environ Microbiol 2012, 78(7):2337-2344.
Reuter G: The Lactobacillus and Bifidobacterium microflora of the human intestine: composition and succession. Curr Issues Intestinal Microbiol 2001, 2(2):43-53.
Rho M, Wu YW, Tang H, Doak TG, Ye Y: Diverse CRISPRs evolving in human microbiomes. PLoS Genet 2012, 8(6):e1002441.
Richardson EJ, Watson M: The automatic annotation of bacterial genomes. Brief Bioinform 2013, 14(1):1-12.
Richter DC, Schuster SC, Huson DH: OSLay: optimal syntenic layout of unfinished assemblies. Bioinformatics 2007, 23(13):1573-1579.
Riley MA, Wertz JE: Bacteriocins: evolution, ecology, and application. Annu Rev Microbiol 2002, 56:117-137.
Rissman AI, Mau B, Biehl BS, Darling AE, Glasner JD, Perna NT: Reordering contigs of draft genomes using the Mauve aligner. Bioinformatics 2009, 25(16):2071-2073.
Rivas E, Eddy SR: Noncoding RNA gene detection using comparative sequence analysis. BMC Bioinformatics 2001, 2(1):8.
Rivera-Espinoza Y, Gallardo-Navarro Y: Non-dairy probiotic products. Food Microbiol 2010, 27(1):1-11.

Roberts RJ, Vincze T, Posfai J, Macelis D: REBASE-a database for DNA restriction and modification: enzymes, genes and genomes. Nucleic Acids Res 2010, 38(suppl 1):D234-D236.

Rokas A, Williams BL, King N, Carroll SB: Genome-scale approaches to resolving incongruence in molecular phylogenies. Nature 2003, 425(6960):798-804.
Rost B: Enzyme function less conserved than anticipated. J Mol Biol 2002, 318(2):595608.

Rost B, Liu J, Nair R, Wrzeszczynski KO, Ofran Y: Automatic prediction of protein function. Cell Mol Life Sci 2003, 60(12):2637-2650.
Roth AC, Gonnet GH, Dessimoz C: Algorithm of OMA for large-scale orthology inference. BMC Bioinformatics 2008, 9(1):518.
Rothberg JM, Hinz W, Rearick TM, Schultz J, Mileski W, Davey M, Leamon JH, Johnson K, Milgrew MJ, Edwards M, et al: An integrated semiconductor device enabling non-optical genome sequencing. Nature 2011, 475(7356):348-352.
Rougemont J, Amzallag A, Iseli C, Farinelli L, Xenarios I, Naef F: Probabilistic base calling of Solexa sequencing data. BMC Bioinformatics 2008, 9(1):431.
Ryan KA, Jayaraman T, Daly P, Canchaya C, Curran S, Fang F, Quigley EM, O'Toole PW: Isolation of lactobacilli with probiotic properties from the human stomach. Lett Appl Microbiol 2008, 47(4):269-274.
Sachdeva G, Kumar K, Jain P, Ramachandran S: SPAAN: a software program for prediction of adhesins and adhesin-like proteins using neural networks. Bioinformatics 2005, 21(4):483-491.
Saier MH, Tran CV, Barabote RD: TCDB: the Transporter Classification Database for membrane transport protein analyses and information. Nucleic Acids Res 2006, 34(suppl 1):D181-D186.
Salichos L, Rokas A: Evaluating ortholog prediction algorithms in a yeast model clade. PLoS One 2011, 6(4): 18755.
Salmela L: Correction of sequencing errors in a mixed set of reads. Bioinformatics 2010, 26(10):1284-1290.
Salvatore S, Salvatore S, Cattoni E, Siesto G, Serati M, Sorice P, Torella M: Urinary tract infections in women. Eur J Obstet Gynecol Reprod Biol 2011, 156(2):131-136.
Salvetti E, Torriani S, Felis G: The Genus Lactobacillus: A Taxonomic Update. Probiotics Antimicrob Proteins 2012, 4(4):217-226.
Samad A, Huff EF, Cai W, Schwartz DC: Optical mapping: a novel, single-molecule approach to genomic analysis. Genome Research 1995, 5(1):1-4.
Sanchez B, Schmitter JM, Urdaci MC: Identification of novel proteins secreted by Lactobacillus rhamnosus GG grown in de Mann-Rogosa-Sharpe broth. Lett Appl Microbiol 2009, 48(5):618-622.
Sanderson MJ, Purvis A, Henze C: Phylogenetic supertrees: Assembling the trees of life. Trends Ecol Evol 1998, 13(3):105-109.
Sanger F, Coulson AR: A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J. Mol. Biol 1975, 94:441-448.

Salvetti E, Fondi M, Fani R, Torriani S, Felis GE: Evolution of lactic acid bacteria in the order Lactobacillales as depicted by analysis of glycolysis and pentose phosphate pathways. Syst Appl Microbiol 2013, 36(5):291-305.
Sanger F, Nicklen S, Coulson AR: DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 1977, 74(12):5463-5467.
Santos F, Vera JL, Lamosa P, de Valdez GF, de Vos WM, Santos H, Sesma F, Hugenholtz J: Pseudovitamin is the corrinoid produced by Lactobacillus reuteri CRL1098 under anaerobic conditions. FEBS Lett 2007, 581(25):4865-4870.
Saulnier DM, Santos F, Roos S, Mistretta TA, Spinler JK, Molenaar D, Teusink B, Versalovic J: Exploring metabolic pathway reconstruction and genome-wide expression profiling in Lactobacillus reuteri to define functional probiotic features. PLoS One 2011, 6(4):e18783.
Saxelin M, Myllyluoma E, Korpela R: Developing LGG ${ }^{\circledR}$ Extra, a Probiotic Multispecies Combination. In Probiotics and health claims. Edited by Kneifel W, Salminen S. Wiley-Blackwell; 2011:249-262
Saxelin M, Lassig A, Karjalainen H, Tynkkynen S, Surakka A, Vapaatalo H, Jarvenpää S, Korpela R, Mutanen M, Hatakka K: Persistence of probiotic strains in the gastrointestinal tract when administered as capsules, yoghurt, or cheese. Int J Food Microbiol 2010, 144(2):293-300.
Saxelin M, Tynkkynen S, Mattila-Sandholm T, de Vos WM: Probiotic and other functional microbes: from markets to mechanisms. Curr Opin Biotechnol 2005, 16(2):204-211.
Saxena RK, Anand P, Saran S, Isar J: Microbial production of 1,3-propanediol: Recent developments and emerging opportunities. Biotechnol Adv 2009, 27(6):895-913.
Scaria J, Chandramouli U, Verma SK: Antibiotic Resistance Genes Online (ARGO): A Database on vancomycin and ßlactam resistance genes. Bioinformation 2005, 1(1):5.
Schmieder R, Edwards R: Quality control and preprocessing of metagenomic datasets. Bioinformatics 2011, 27(6):863-864.
Schnoes AM, Brown SD, Dodevski I, Babbitt PC: Annotation error in public databases: misannotation of molecular function in enzyme superfamilies. PLoS Comput Biol 2009, 5(12): 1000605.
Scott JR, Zähner D: Pili with strong attachments: Gram-positive bacteria do it differently. Mol Microbiol 2006, 62(2):320-330.
Seepersaud R, Hanniffy SB, Mayne P, Sizer P, Le Page R, Wells JM: Characterization of a Novel Leucine-Rich Repeat Protein Antigen from Group B Streptococci That Elicits Protective Immunity. Infect Immun 2005, 73(3):1671-1683.
Segers M, Lebeer S: Towards a better understanding of Lactobacillus rhamnosus GG host interactions. Microb Cell Fact 2014, 13:S7.
Sevin EW, Barloy-Hubler F: RASTA-Bacteria: a web-based tool for identifying toxinantitoxin loci in prokaryotes. Genome Biol 2007, 8(8):R155.
Shao Y, Harrison EM, Bi D, Tai C, He X, Ou H, Rajakumar K, Deng Z: TADB: a web-based resource for Type 2 toxin-antitoxin loci in bacteria and archaea. Nucleic Acids Res 2011, 39(suppl 1):D606-D611.

Sheikh MA, Erlich Y: Base-Calling for Bioinformaticians. In Bioinformatics for High Throughput Sequencing. Edited by Rodriguez-Ezpeleta N, Hackenberg M, Aransay AM. Springer; 2012:67-83.
Shendure J, Ji H: Next-generation DNA sequencing. Nat Biotechnol 2008, 26(10):11351145.

Shendure J, Porreca GJ, Reppas NB, Lin X, McCutcheon JP, Rosenbaum AM, Wang MD, Zhang K, Mitra RD, Church GM: Accurate multiplex polony sequencing of an evolved bacterial genome. Science 2005, 309(5741):1728-1732.
Shipitsyna E, Roos A, Datcu R, Hallen A, Fredlund H, Jensen JS, Engstrand L, Unemo M: Composition of the vaginal microbiota in women of reproductive agesensitive and specific molecular diagnosis of bacterial vaginosis is possible? PLoS One 2013, 8(4):e60670.
Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Soding J, et al: Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 2011, 7:539.
Siezen RJ, van Hylckama Vlieg JET: Genomic diversity and versatility of Lactobacillus plantarum, a natural metabolic engineer. Microb Cell Fact 2011, 10.
Siezen RJ, Wilson G: Probiotics genomics. Microb Biotechnol 2010, 3(1):1-9.
Siezen RJ, Francke C, Renckens B, Boekhorst J, Wels M, Kleerebezem M, van Hijum SA: Complete resequencing and reannotation of the Lactobacillus plantarum WCFS1 genome. J Bacteriol 2012, 194(1):195-196.
Siezen RJ, Tzeneva VA, Castioni A, Wels M, Phan HT, Rademaker JL, Starrenburg MJ, Kleerebezem M, Molenaar D, van Hylckama Vlieg JE: Phenotypic and genomic diversity of Lactobacillus plantarum strains isolated from various environmental niches. Environ Microbiol 2010, 12(3):758-773.
Siguier P, Pérochon J, Lestrade L, Mahillon J, Chandler M: ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res 2006, 34(supp1 1):D32-D36.
Silva M, Jacobus NV, Deneke C, Gorbach SL: Antimicrobial substance from a human Lactobacillus strain. Antimicrobial Agents and Chemotherapy 1987, 31(8):1231-1233.
Simpson JT, Durbin R: Efficient de novo assembly of large genomes using compressed data structures. Genome Res 2012, 22(3):549-556.
Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ, Birol İ: ABySS: a parallel assembler for short read sequence data. Genome Res 2009, 19(6):1117-1123.
Smith LM, Sanders JZ, Kaiser RJ, Hughes P, Dodd C, Connell CR, Heiner C, Kent SB, Hood LE: Fluorescence detection in automated DNA sequence analysis. Nature 1986, 321(6071):674-679.
Smokvina T, Wels M, Polka J, Chervaux C, Brisse S, Boekhorst J, van Hylckama Vlieg JE, Siezen RJ: Lactobacillus paracasei comparative genomics: towards species pan-genome definition and exploitation of diversity. PLoS One 2013, 8(7):e68731
Snel B, Bork P, Huynen MA: Genome phylogeny based on gene content. Nat Genet 1999, 21(1):108-110.
Sommer D, Delcher A, Salzberg S, Pop M: Minimus: a fast, lightweight genome assembler. BMC Bioinformatics 2007, 8(1):64.

Sonnhammer EL, Koonin EV: Orthology, paralogy and proposed classification for paralog subtypes. Trends Genet 2002, 18(12):619-620.
Srinivasan S, Hoffman NG, Morgan MT, Matsen FA, Fiedler TL, Hall RW, Ross FJ, McCoy CO, Bumgarner R, Marrazzo JM, et al: Bacterial communities in women with bacterial vaginosis: high resolution phylogenetic analyses reveal relationships of microbiota to clinical criteria. PLoS One 2012, 7(6):e37818.
Srividhya K, Alaguraj V, Poornima G, Kumar D, Singh G, Raghavenderan L, Katta AM, Mehta P, Krishnaswamy S: Identification of prophages in bacterial genomes by dinucleotide relative abundance difference. PLoS One 2007, 2(11):e1193.
Staden R, Beal K, Bonfield J: The Staden Package, 1998. In Bioinformatics methods and protocols. Volume 132. Edited by Misener S, Krawetz S. Springer; 1999:115-130.
Steele J, Broadbent J, Kok J: Perspectives on the contribution of lactic acid bacteria to cheese flavor development. Curr Opin Biotechnol 2012, 24(2):135-141.
Storm CE, Sonnhammer EL: Automated ortholog inference from phylogenetic trees and calculation of orthology reliability. Bioinformatics 2002, 18(1):92-99.
Sun Z, Chen X, Wang J, Zhao W, Shao Y, Guo Z, Zhang X, Zhou Z, Sun T, Wang L, et al: Complete Genome Sequence of Lactobacillus delbrueckii subsp. bulgaricus Strain ND02. J Bacteriol 2011, 193(13):3426-3427.
Suomalainen TH, Mäyrä-Mäkinen AM: Propionic acid bacteria as protective cultures in fermented milks and breads. Le Lait 1999, 79(1):165-174.
Swain MT, Tsai IJ, Assefa SA, Newbold C, Berriman M, Otto TD: A post-assembly genome-improvement toolkit (PAGIT) to obtain annotated genomes from contigs. Nat Protoc 2012, 7(7):1260-1284.
Szajewska H, Mrukowicz JZ: Probiotics in the treatment and prevention of acute infectious diarrhea in infants and children: a systematic review of published randomized, double-blind, placebo-controlled trials. J Pediatr Gastroenterol Nutr 2001, 33 Suppl 2:S17-25.
Tahara T, Kanatani K: Isolation and partial characterization of crispacin A, a cellassociated bacteriocin produced by Lactobacillus crispatus JCM 2009. FEMS Microbiol Lett 1997, 147:287-290.
Tanenbaum DM, Goll J, Murphy S, Kumar P, Zafar N, Thiagarajan M, Madupu R, Davidsen T, Kagan L, Kravitz S, et al: The JCVI standard operating procedure for annotating prokaryotic metagenomic shotgun sequencing data. Stand Genomic Sci 2010, 2(2):229-237.
Tatusov RL, Koonin EV, Lipman DJ: A genomic perspective on protein families. Science 1997, 278(5338):631-637.
Tatusov RL, Mushegian AR, Bork P, Brown NP, Hayes WS, Borodovsky M, Rudd KE, Koonin EV: Metabolism and evolution of Haemophilus influenzae deduced from a whole-genome comparison with Escherichia coli. Curr Biol 1996, 6(3):279-291.
Tatusov R, Fedorova N, Jackson J, Jacobs A, Kiryutin B, Koonin E, Krylov D, Mazumder R, Mekhedov S, Nikolskaya A, et al: The COG database: an updated version includes eukaryotes. BMC Bioinformatics 2003, 4(1):41.
Tech M, Merkl R: YACOP: Enhanced gene prediction obtained by a combination of existing methods. In Silico Biol 2003, 3(4):441-451.

Telford JL, Barocchi MA, Margarit I, Rappuoli R, Grandi G: Pili in gram-positive pathogens. Nat Rev Microbiol 2006, 4(7):509-519.
Tettelin H, Masignani V, Cieslewicz MJ, Donati C, Medini D, Ward NL, Angiuoli SV, Crabtree J, Jones AL, Durkin AS, et al: Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: Implications for the microbial "pangenome". Proc Natl Acad Sci U S A 2005, 102(39):13950-13955.
Tillier ERM, Collins RA: Genome rearrangement by replication-directed translocation. Nat Genet 2000, 26(2):195-197.
Tompkins TA, Barreau G, de Carvalho VG: Draft genome sequence of probiotic strain Lactobacillus rhamnosus R0011. J Bacteriol 2012, 194(4):902-902.
Ton-That H, Schneewind O: Assembly of pili on the surface of Corynebacterium diphtheriae. Mol Microbiol 2003, 50(4):1429-1438.
Torto-Alalibo T, Collmer C, Gwinn-Giglio M: The Plant-Associated Microbe Gene Ontology (PAMGO) Consortium: community development of new Gene Ontology terms describing biological processes involved in microbe-host interactions. BMC microbiol 2009, 9(Suppl 1):S1.
Touzain F, Petit M, Schbath S, El Karoui M: DNA motifs that sculpt the bacterial chromosome. Nat Rev Microbiol 2010, 9(1):15-26.
Trachana K, Larsson TA, Powell S, Chen W, Doerks T, Muller J, Bork P: Orthology prediction methods: a quality assessment using curated protein families. Bioessays 2011, 33(10):769-780.
Tu Q, Ding D: Detecting pathogenicity islands and anomalous gene clusters by iterative discriminant analysis. FEMS Microbiol Lett 2003, 221(2):269-275.
Tuomola EM, Ouwehand AC, Salminen SJ: Chemical, physical and enzymatic pretreatments of probiotic lactobacilli alter their adhesion to human intestinal mucus glycoproteins. Int J Food Microbiol 2000, 60(1):75-81.
Uehara S, Monden K, Nomoto K, Seno Y, Kariyama R, Kumon H: A pilot study evaluating the safety and effectiveness of Lactobacillus vaginal suppositories in patients with recurrent urinary tract infection. Int J Antimicrob Agents 2006, 28 Suppl 1:S30-4.
Ulrich LE, Zhulin IB: The MiST2 database: a comprehensive genomics resource on microbial signal transduction. Nucleic Acids Res 2010, 38(suppl 1):D401-D407.
Valencia A: Automatic annotation of protein function. Curr Opin Struct Biol 2005, 15(3):267-274.
van de Guchte M, Penaud S, Grimaldi C, Barbe V, Bryson K, Nicolas P, Robert C, Oztas S, Mangenot S, Couloux A, et al: The complete genome sequence of Lactobacillus bulgaricus reveals extensive and ongoing reductive evolution. Proc Natl Acad Sci U S A 2006, 103(24):9274-9279.
van Heel AJ, de Jong A, Montalban-Lopez M, Kok J, Kuipers OP: BAGEL3: Automated identification of genes encoding bacteriocins and (non-)bactericidal posttranslationally modified peptides. Nucleic Acids Res 2013, 41(Web Server issue):W448-53.
van Hemert S, Meijerink M, Molenaar D, Bron P, de Vos P, Kleerebezem M, Wells J, Marco M: Identification of Lactobacillus plantarum genes modulating the cytokine
response of human peripheral blood mononuclear cells. BMC microbiol 2010, 10(1):293.
Varani AM, Siguier P, Gourbeyre E, Charneau V, Chandler M: ISsaga is an ensemble of web-based methods for high throughput identification and semi-automatic annotation of insertion sequences in prokaryotic genomes. Genome Biol 2011, 12(3):R30.
Varnam A: Lactobacillus: occurrence and significance in non-dairy foods. Microbiol Today 2002, 29:13-17.
Vaughan EE, Heilig HG, Ben-Amor K, Vos WM: Diversity, vitality and activities of intestinal lactic acid bacteria and bifidobacteria assessed by molecular approaches. FEMS Microbiol Rev 2005, 29(3):477-490.
Vélez MP, Petrova MI, Lebeer S, Verhoeven TL, Claes I, Lambrichts I, Tynkkynen S, Vanderleyden J, De Keersmaecker SC: Characterization of MabA, a modulator of Lactobacillus rhamnosus GG adhesion and biofilm formation. FEMS Immunol Med Microbiol 2010, 59(3):386-398.
Vélez MP, Verhoeven TLA, Draing C, Von Aulock S, Pfitzenmaier M, Geyer A, Lambrichts I, Grangette C, Pot B, Vanderleyden J, et al: Functional Analysis of dAlanylation of Lipoteichoic Acid in the Probiotic Strain Lactobacillus rhamnosus GG. Appl Environ Microbiol 2007, 73(11):3595-3604.
Ventura M, O'Flaherty S, Claesson MJ, Turroni F, Klaenhammer TR, van Sinderen D, O'Toole PW: Genome-scale analyses of health-promoting bacteria: probiogenomics. Nat Rev Microbiol 2008, 7(1):61-71.
Ventura M, Canchaya C, Bernini V, Altermann E, Barrangou R, McGrath S, Claesson MJ, Li Y, Leahy S, Walker CD, et al: Comparative Genomics and Transcriptional Analysis of Prophages Identified in the Genomes of Lactobacillus gasseri, Lactobacillus salivarius, and Lactobacillus casei. Appl Environ Microbiol 2006, 72(5):3130-3146.
Vernikos GS, Parkhill J: Interpolated variable order motifs for identification of horizontally acquired DNA: revisiting the Salmonella pathogenicity islands. Bioinformatics 2006, 22(18):2196-2203.
Vinayagam A, del Val C, Schubert F, Eils R, Glatting K, Suhai S, König R: GOPET: a tool for automated predictions of Gene Ontology terms. BMC Bioinformatics 2006, 7(1):161.
Voelkerding KV, Dames SA, Durtschi JD: Next-generation sequencing: from basic research to diagnostics. Clin Chem 2009, 55(4):641-658.
Vogel RF, Pavlovic M, Ehrmann MA, Wiezer A, Liesegang H, Offschanka S, Voget S, Angelov A, Bocker G, Liebl W: Genomic analysis reveals Lactobacillus sanfranciscensis as stable element in traditional sourdoughs. Microb Cell Fact 2011, 10 Suppl 1:S6.
von Mering C, Jensen LJ, Snel B, Hooper SD, Krupp M, Foglierini M, Jouffre N, Huynen MA, Bork P: STRING: known and predicted protein-protein associations, integrated and transferred across organisms. Nucleic Acids Res 2005, 33(suppl 1):D433-D437.
von Ossowski I, Reunanen J, Satokari R, Vesterlund S, Kankainen M, Huhtinen H, Tynkkynen S, Salminen S, de Vos WM, Palva A: Mucosal Adhesion Properties of the Probiotic Lactobacillus rhamnosus GG SpaCBA and SpaFED Pilin Subunits. Appl Environ Microbiol 2010, 76(7):2049-2057.
von Ossowski I, Satokari R, Reunanen J, Lebeer S, De Keersmaecker SC, Vanderleyden J, de Vos WM, Palva A: Functional characterization of a mucusspecific LPXTG surface adhesin from probiotic Lactobacillus rhamnosus GG. Appl Environ Microbiol 2011, 77(13):4465-4472.
Vuyst L, Degeest B: Heteropolysaccharides from lactic acid bacteria. FEMS Microbiol Rev 1999, 23(2):153-177.
Waack S, Keller O, Asper R, Brodag T, Damm C, Fricke WF, Surovcik K, Meinicke P, Merkl R: Score-based prediction of genomic islands in prokaryotic genomes using hidden Markov models. BMC Bioinformatics 2006, 7(1):142.
Wagner A, Lewis C, Bichsel M: A survey of bacterial insertion sequences using IScan. Nucleic Acids Res 2007, 35(16):5284-5293.
Wagner I, Volkmer M, Sharan M, Villaveces JM, Oswald F, Surendranath V, Habermann BH: morFeus: a web-based program to detect remotely conserved orthologs using symmetrical best hits and orthology network scoring. BMC Bioinformatics 2014, 15:263.
Wall D, Fraser H, Hirsh A: Detecting putative orthologs. Bioinformatics 2003, 19(13):1710-1711.
Walter J: Ecological role of lactobacilli in the gastrointestinal tract: implications for fundamental and biomedical research. Appl Environ Microbiol 2008, 74(16):49854996.

Walter J: The microecology of lactobacilli in the gastrointestinal tract. In Probiotics and Prebiotics: Scientific Aspects. Edited by Tannock GW. Horizon Scientific Press; 2005:51-82.
Wang Y, Wang J, Ahmed Z, Bai X, Wang J: Complete Genome Sequence of Lactobacillus kefiranofaciens ZW3. J Bacteriol 2011a, 193(16):4280-4281.
Wang Y, Chen C, Ai L, Zhou F, Zhou Z, Wang L, Zhang H, Chen W, Guo B: Complete Genome Sequence of the Probiotic Lactobacillus plantarum ST-III. J Bacteriol 2011b, 193(1):313-314.
Warren AS, Archuleta J, Feng W, Setubal JC: Missing genes in the annotation of prokaryotic genomes. BMC Bioinformatics 2010, 11(1):131.
Warren RL, Sutton GG, Jones SJ, Holt RA: Assembling millions of short DNA sequences using SSAKE. Bioinformatics 2007, 23(4):500-501.
Washietl S, Hofacker IL, Stadler PF: Fast and reliable prediction of noncoding RNAs. Proc Natl Acad Sci U S A 2005, 102(7):2454-2459.
Wass MN, Sternberg MJ: ConFunc-functional annotation in the twilight zone. Bioinformatics 2008, 24(6):798-806.
Wassenaar TM, Binnewies TT, Hallin PF, Ussery DW: Tools for Comparison of Bacterial Genomes. In Handbook of Hydrocarbon and Lipid Microbiology. Edited by Timmis K. Springer; 2010:4313-4327.

Webb EC: Enzyme nomenclature 1992: recommendations of the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology on the nomenclature and classification of enzymes: San Diego: Academic Press; 1992.
Wegmann U, Overweg K, Horn N, Goesmann A, Narbad A, Gasson MJ, Shearman C: Complete Genome Sequence of Lactobacillus johnsonii FI9785, a Competitive Exclusion Agent against Pathogens in Poultry. J Bacteriol 2009, 191(22):7142-7143.
Williams TA, Sarah EH: An introduction to phylogenetics and the tree of life. Meth Microbiol 2014, 41:2-6.
Wilson D, Charoensawan V, Kummerfeld SK, Teichmann SA: DBD-taxonomically broad transcription factor predictions: new content and functionality. Nucleic Acids Res 2008, 36(suppl 1):D88-D92.
Woese CR: Bacterial evolution. Microbiol Rev 1987, 51(2):221-271
Wu H, Irizarry RA, Bravo HC: Intensity normalization improves color calling in SOLiD sequencing. Nat Methods 2010, 7(5):336-337.
Wu R, Kaiser AD: Structure and base sequence in the cohesive ends of bacteriophage lambda DNA. J. Mol. Biol 1968, 35:523-537.
Wu R, Taylor E: Nucleotide sequence analysis of DNA. II. Complete nucleotide sequence of the cohesive ends of bacteriophage lambda DNA. J. Mol. Biol 1971, 57:491-511.
Yan F, Cao H, Cover TL, Whitehead R, Washington MK, Polk DB: Soluble proteins produced by probiotic bacteria regulate intestinal epithelial cell survival and growth. Gastroenterology 2007, 132(2):562-575.
Yang X, Chockalingam SP, Aluru S: A survey of error-correction methods for nextgeneration sequencing. Brief Bioinform 2013, 14(1):56-66.
Yang X, Dorman KS, Aluru S: Reptile: representative tiling for short read error correction. Bioinformatics 2010, 26(20):2526-2533.
Yang Z, Rannala B: Molecular phylogenetics: principles and practice. Nat Rev Genet 2012, 13(5):303-314.
Yao G, Ye L, Gao H, Minx P, Warren WC, Weinstock GM: Graph accordance of nextgeneration sequence assemblies. Bioinformatics 2012, 28(1):13-16.
Yao Z, Weinberg Z, Ruzzo WL: CMfinder-a covariance model based RNA motif finding algorithm. Bioinformatics 2006, 22(4):445-452.
Yu NY, Wagner JR, Laird MR, Melli G, Rey S, Lo R, Dao P, Sahinalp SC, Ester M, Foster LJ, et al: PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 2010, 26(13):1608-1615.
Yusuf D, Marz M, Stadler P, Hofacker I: Bcheck: a wrapper tool for detecting RNase P RNA genes. BMC Genomics 2010, 11(1):432.
Zdobnov EM, Apweiler R: InterProScan-an integration platform for the signaturerecognition methods in InterPro. Bioinformatics 2001, 17(9):847-848.
Zerbino DR, Birney E: Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 2008, 18(5):821-829.

Zhang T, Luo Y, Liu K, Pan L, Zhang B, Yu J, Hu S: BIGpre: a quality assessment package for next-generation sequencing data. Genomics Proteomics Bioinformatics 2011, 9(6):238-244.
Zhang W, Yu D, Sun Z, Wu R, Chen X, Chen W, Meng H, Hu S, Zhang H: Complete Genome Sequence of Lactobacillus casei Zhang, a New Probiotic Strain Isolated from Traditional Homemade Koumiss in Inner Mongolia, China. J Bacteriol 2010, 192(19):5268-5269.
Zhang Z, Liu C, Zhu Y, Zhong Y, Zhu Y, Zheng H, Zhao G, Wang S, Guo X: Complete Genome Sequence of Lactobacillus plantarum JDM1. J Bacteriol 2009, 191(15):5020-5021.
Zhao W, Chen Y, Sun Z, Wang J, Zhou Z, Sun T, Wang L, Chen W, Zhang H: Complete Genome Sequence of Lactobacillus helveticus H10. J Bacteriol 2011, 193(10):2666-2667.
Zheng HJ, Wang BF, Zhang XL, Han H, Lu G, Jin L, Pu SY, Hu QP, Zhu GF, Wang SY, et al: The complete genome sequence of Lactobacillus delbrueckii subsp. bulgaricus 2038. Trends Cell Mol Biol 2008, 3:15-30.
Zhou C, Smith J, Lam M, Zemla A, Dyer MD, Slezak T: MvirDB-a microbial database of protein toxins, virulence factors and antibiotic resistance genes for biodefence applications. Nucleic Acids Res 2007, 35(suppl 1):D391-D394.
Zhou F, Xu Y: cBar: a computer program to distinguish plasmid-derived from chromosome-derived sequence fragments in metagenomics data. Bioinformatics 2010, 26(16):2051-2052.
Zhou M, Boekhorst J, Francke C, Siezen RJ: LocateP: genome-scale subcellularlocation predictor for bacterial proteins. BMC Bioinformatics 2008, 9(1):173.
Zhou M, Theunissen D, Wels M, Siezen R: LAB-Secretome: a genome-scale comparative analysis of the predicted extracellular and surface-associated proteins of Lactic Acid Bacteria. BMC Genomics 2010, 11(1):651.
Zhou Y, Liang Y, Lynch KH, Dennis JJ, Wishart DS: PHAST: a fast phage search tool. Nucleic Acids Res 2011, 39(suppl 2):W347-W352.
Zimin AV, Marcais G, Puiu D, Roberts M, Salzberg SL, Yorke JA: The MaSuRCA genome assembler. Bioinformatics 2013, 29(21):2669-2677.
Zmasek CM, Eddy SR: RIO: analyzing proteomes by automated phylogenomics using resampled inference of orthologs. BMC Bioinformatics 2002, 3(1):14.

Appendixes

еұер			
てIOZ＇u！ec \％lated		ج！	
Itoz＇• ¥ə бueपz	еұер SSN	әıd9Ія	
โIOZ＇spıемрヲ 8 дәрә！шчэ		bəsu！ld	
－		つరł¢5』	
sıoןoว 6u！！｜eว			
Otoz＇•• ұə nM		p！osy	
		$\\|$ IIJdH	
		saleqorkd	
		s！qI	
で0て＇リア ¥ə！！	 	ว¢－Wด	
乙IOZ＇uemplos \％meyбu！ssew	bu！seyd		
	еұер әэиәnbəs eu！unnıI		
	sW＾S səsn łечł еұер еu！		
	K！！！enb бu！！｜eכ 	ехәן0y	
sə！ןбоןоичכәұ SפN u！бu！！ןe әseg			
－			
	 	рәృપд	
Кбоןоичวәұ ләбues u！бu！！eכ әseg			
Јə¢	uo！？d！ujsə	рочдәW	

		人＊४
	sumoдде्य Би！ 	＊כynsew
		səp $\forall d S$
		aseq पdeлб u！！nıg ә0
ャ00て＇ノе ұә хпәл＾әчว		VYIW
てIOZ＇u！quna 8 uosdm！		\forall SS
$800 乙$＇ノе ұә zәриеидән		$\forall N \exists \square \exists$
		」əવMəN
	人ıquesse	иоиә6 peseq－deןләло
L00乙＇ノе дә＞วә¢	ио！ұวәлио	ヨ习习ว＾
LOOZ＇「е ұә иәлиеМ		ヨy甘SS
OLOz＇egəupes		כヨyHS－p！ıq／н
ITOZ＇ノе ұә оеу		OHכヨ
		כヨ ！${ }^{\text {H }}$
OLOZ＇夗抽 бие入		ә！ไdə¢

$7 \forall H M \forall \forall N$ s！s介ןeue
Toolkit for NGS data preprocessing
Finds and removes adapter sequences from high－throughput sequencing data
multiplexin component
Software pipeline to automate the primary analysis of Illumina data．Includes de－Brouwer et al．， 2012
Staden et al．， 1999
Martin， 2011

L00乙＇ノ® дə 」əшəsəg	 	צைeWəuว
		」әшแ！！
てIOZ＇リヒ ұә oe入	meגбoıd	$\forall \forall \bigcirc$
		$\forall I V W$
		Zsnumu！
		sıоұелбәұu！ \ıquess\％
てIOZ＇ノе ұә и！емs	бu！p！oŋృeวs pəseq әшоиәб әวиәдәృә」 	LIЭ ${ }^{\text {d }}$
	 	IpıeכЈナg
L00乙＇ノе дә дәұчว！	 	Ne7so
		$\forall W O S$
		\exists ヨdSS
		snqueg
		dwo－soury
8002 ＇将 \ddagger uneqsnn		$7 \forall \forall \wedge$
	s．əəquosse a	
	 	ss＾g＊
	sə！ıeגq！！əวuənbəs 	ұәл｜əへ
010て		олоиәрd \forall OS
		SH $\perp \forall d-77 \forall$
	swı0д7e｜d	

ио！̣ग！pəd		
LOOZ＇\pp 8 senty		$\forall N Y O$
LOOZ＇ノе ұә иәsəбеา		дəmu＊Ny
		！！？ouviny
		s．ıO！כ！pead $\forall N 8 T$ u
	 	ฯวәчวIW
ε ¢0て＇ə！	sбоןочдло рәұеןдд 人ןәsoן „о sұәs moд」 	10כ」\％
	 	」оңеұоиu＊－রsбnw
		dWIVdəuวפ
sן007 ұиәшәи！ృə．ןəpou sas		
	ヨ＾УกכZ pue גəயய！！！ 	dOJV人
ャ00て＇ノе дә イрленว		лоиебәу
	 	\forall OILİЗ
		SnヨHdyo
s．ıоңว！pəлd saכ әseq－əэนәр！＾ヨ		
		$\exists \wedge$ घกวz
OLOZ＇ノе ұə ¥7e入t	 	Ie6！pold
		әиәэへseヨ

 әseqełер ләрu！！SI səəuənbəs uo！มəәsuI

s！sরןeue əл！
 Extension to the PILER family of repeat analysis algorithms for fast and accurate by sliding windows

models
Annotat
Bioinfor
Predicts structurally conserved and thermodynamically stable RNA secondary structures Lowe \＆Eddy， 1997 Laslett \＆Canback， 2004
Bland et al．， 2007
Gardner et al．， 2011
LOOZ＂「е 子ə рдоృsбu！प्र

Regalia et al．， 2002

Z $\forall N$ Y

Price et al．， 2005

słeəday
צコ－yヨาId
1007 sKease ydSİכ
 Intrinsic terminators

Detects RNase P RNA genes using pattern matching and covariance models
RNA motif finding algorithm that uses both expectation maximization and
səวuənbəs $\forall N G$ ग！шouәб
for searching DNA sequence databases
Gene finding system that uses covarial
 Gene caller that uses covariance models to detect tRNAs cloverleaf
 Employs heuristic algorithms to predict tRNA and tmRNAs based on secondary structure in multiple sequence alignments
ヨs－ueวsynyz
unoбexv
」әрu！』ฟつ
»әәчગ્વ
ueวs－dys
ןеидәృиI
－
cBar INTEGRALL
ACID
cBar ICEber suod צग!dpue|SI

PAI-IDA
IslandViewer
SIGI-HMM
Genomic islands
Prophinder
ProphageDB
PHAST
ProphageDB Database of prophage elements and phage remnants Homology-based tool to annotate prophage sequences comparative genomics appraoches to locate prophage regions
Database of prophage elements and phage remnants Heuristic statistics
characteristics of prophages including similarity of phage proteins as well as othe Phage detection algorithm that calls prophag

Provides access to a list of functional ontologies
Database dedicated to the collection and classification of mobile genetic elements.
Web application pipeline for insertion sequence annotation

Leplae et al., 2004

s00z＇•е ұә ұрлецІәбиョ		Y ® $^{\text {L－IIS }}$
	uo！̣วunf дәృu！of sə！！ృo」d 	эunıuoว
	 	scems
	 	dョd
II 1 pnłS	人」ənb ә૫7 о7 ұәsqns ұรəq 	४O\＆
	 	て109४＊
900 ＇$^{\prime \prime}$ 抻 шебекеи！＾		1ヨdO9
ャ00\％＇ノе дә u！quew	sธoןomo 	ечכұоэ
s00z＇s！unozno z u！uny	 	Nサ7כ
	sбооошоч әd！	7nJun」
		QOכ
		oıdıə̧uI
$6007 \times 1{ }^{\prime \prime}$ дә вu！	 	d $\forall W \forall H$

6u!uts

 suep 人6oןowoy pue sə!!!ueł оұu! pə!!!!ssep sulə

 Tool for locating pilus operons in gram-positive bacteria
Method for automated enzyme detection. Relies on

Software pipeline for secondary metabolite biosynthesis gene cluster identification
 Antibiotic resistance gene database
Database of protein toxins, virulence factors and antibiotic resistance genes
 Resource for type 2 toxin-antitoxin loci in prokaryotes

1007 Би!u!u әшоиәб и!эо!!әұәеq pəseq-qәМ
and allows to query different databases at one go
Advanced function classification
Tool that combines different protein signature recognition methods into one resource
Zdobnov \& Apweiler, 2001

		」addenfSOYł，
乙00乙＇＾pp 8 y yəsewz		Oİ
ع00て＇师 дә ॥ем	 	OSY
		H9Y
	 	907legos
6002 ＇ 1 ¢ ұə plouv		
8002 ＇水 \ddagger noyz	 	dәңеכО
		WWHW
	 	dieubis
8002 ＇㪀抻 иешчеу		dod！ 7
	 	d7e7
		$0^{\circ} \mathrm{E} \wedge$ qlyosd
		uo！peosol dejnilouqns
S007＇ıе дә еләрцэеs		$N \forall \forall d S$
		pəıd7นə！n⿺𠃊八
L00z＇$/$ д дә иедо		SISIO
	səl！s uo！fe｜イоұ！mied sto！pard	mered－SSJ
	uO！P！${ }_{\text {uead }}$	
	 	syu！｜oud

	 	OWI
		sou！ןəd！
†00て＇•• ұә еs！чәиех		Эฺヨメ
て，	sкемчдеd 	кемчдеd！uп
	 	วイวełə\％
6002 ＇リе ұә почว	 	WWョ
z00z＇رе ұә dıè		Sloot кемчдеd
		d！！イYd
L66I＇｜ənวseפ	sə！uәбоןКиd әłеш！	cNo！g
ع00て＇ノе дә uopu！n		7WКपd
		人पd！S
		dУЭЭ
	sұиәшәрə	u！entsuoo fo uo！p！pend
OIOて＇ノе ұə лееиәssem	 	se｜re」S＊าg
LOOZ＇ıе 子ə уә！sumı＞	səวuәnbəs омұ иәәмұәq sұuәшәбиеддедәд pue 	p．edəэ
	 	」əиб！！e ə＾new

К\！1®！！u！s		
OTOZ＇sełuəzıe0		
9002 ＇ノе дә səəбuヨ	ләмә！＾әшоиәб әл！ұелеdшоว облヲ	oquos
	 	」כV
OLO乙＇ノе дә лееиəssem	sıoןoכ se pəұtold әגe әןnכәןоu 	serfe әшоиәอ
		uo！łez！ןens！＾
		I＾J¢
－	әu！！əd！d uo！fełouuv ग！fo人ıeyold dolরeg	Wวย
－		วұп！？sui peosg
－		d $\forall \forall \bigcirc$ d
ع00乙＇$/$ Р ұә уәәqләло		Oפษヨ
	イ｜quәsse әч7 ио siooł 	əu！！əd！
6002 ＇ノе ұә s！	әu！！əd！̣ uo！̧ełouue ןe！qoxכ！W	
	әрои ग！！оqеұәu ұృецр e әכnpoıd of pəsn әq ueว 	LS甘Y

	I	85	681	てヤ0¢	みอл	6.2	600て＇て0＊0て	¥onpodd Kıוֹe0	Se3 77	
OTOZ＇ノе ұə uosjən	0	$6 t$	O†I	โて0¢	み¢	0 ¢	800て＇80•9z	ـIפ uewnh	se3 7	乙：00＜8 ！əsejened 7
010z＇ノе ұә биечz	S	†	ャ9	8ヤ8て	әұә｜dسоว	6^{\prime}＇	010でく0＇てI	ss！unoy	Se3 77	биечZ ！əseว 7
โ102＇ノе ұә иәчว	S	εL	Ss	ャ9tを	әұә！duoว	［＇ε		łonpoad人ц！ep ue！！oбuow	Se3 7	MZכา ！əseכ ${ }^{\text {7 }}$
	0	0	$\varepsilon 8$	カャロ		I＇ε	800て＇90＊6I		SE3 7	ยนาด！วseว 7
	5	七	で	ャ0てع		I ${ }^{\prime}$ ¢		ss！unoy	SEJ 7	
	S	SL	てL	ILLて		$6^{\circ} \mathrm{Z}$	900て＇01•¢	әธәәцว ss！MS	se3 7	ャع์ วЈ」ษ ！əseว 7
OTOZ＇ノe ұə uos｜ən	0	$t \downarrow$	905	£8โย	\＃－ג	$6^{\prime} 2$	エTOZ＇てI＇9I	人！！＾е כ ןeло uemnh	วnq ${ }^{\circ} 7$	6عヶ0』 s！u！бenuejesed 7
OLOZ＇ノe ұə uosjən	I	97	$\downarrow \angle S$	ડてદદ	みел	$0^{\circ} \varepsilon$	てTOZ＇I0＇0I	ןело uewnh	วnq ${ }^{\prime} 7$	S\＆ャ0』 s！suəuos！y ${ }^{7}$
OLOZ＇侯抽 Uos｜ən	I	09	061	16Lて	み－」	9＇Z	6002＇Z0＇6I	әu！M	วnq ${ }^{7}$	0628 כЈЬ甘！！рлеб！！ 7
	S	8L	\downarrow ¢	て6とて	әдә｜duoว	9^{\prime}＇	エLOZ＇ャ0•8I	子ue．d uolponpord ןоечғョ	วกq 7	
OLOZ＇状 ұə uosjən	I	09	8 8て	て00¢	Hera	6＇Z	600て＇て0＇zI	人！！ィет ןедо иешин	วnq 7	LLSII OJ」 ！
	5	18	ડદて	8 ¢てZ	әұə｜dwoว	$\varepsilon ’ 乙$	900て＇01・と	әбе！！	วıq 7	L9ع כЈ」 s！＾əıq 7
	I	19	tSて	โヤ0¢	Heג0	［＇ε	600て＇Z0＇zI	әu！M	ә»я 7	
	て	SS	062	ャらとて	みела	\downarrow ¢	エ0で90•tて	！mejes pəұuәuıə」	！1e 7	
qtioz＇ノ抻 men	I	LS	$6 \downarrow \varepsilon$	0カカて	みeda	S＇Z	OTOででくし	әбеsnes	！${ }^{\text {¢ } 7}$	
	S9I	รəuәБ $\forall N y$	sdno」Б Боןочұло	sSOJ	snłełs	（qW） чұбиәา		əコınos	әреı	ms！ue5ıo

Appendix Table 2．Characteristics of the sequenced Lactobacillus and their genomes．

	6	ててI	$\angle 9$	Z9SI		6．1	900て＇s0＊9て	unбo人 ue！uebjng	$1 \partial \square^{\prime} 7$	てヤ8！
	6	SIT	It	Z6くI		6． 1	エIOZ＇モ0＇£0		$1 ə p$＇7	8દ0Z ！！＞วəпıqıəр 7
$\wedge \mathrm{I}$ 人pnłS	†	$9 L$	ZL	ちてOて	\＃ел	$0 \cdot \square$		do．ว иәуगчว	$1 ə \square \cdot 7$	ILS smłeds！ 7
OLOZ＇ノセ ұə uosiən	ε	IL	$9 \downarrow$ I	†くIて	みeג	I＇Z	010て＇L0＇80	еu！¢бл ueunh	$1 ə p$＇7	Sn－כを－¢S smzeds！ı 7
OLOz＇ノe ұə uosjən	0	$\angle \mathrm{S}$	9「	0عとて	み－л0	ガて	6002＇01 ${ }^{\text {²0 }}$	еи！̣бе＾uewnh	$1 \partial{ }^{\prime \prime} 7$	
OTOZ＇ノe ұə uosjən	0	乙9	てて	ISIZ	みセ」	$\varepsilon \cdot 乙$	6002＊80＊ャて	еи！̣бе＾uewnh	1 ＇7	
OLOz＇ノe ұə uosjən	I	99	£9	6022	みอл	I＇て	$600{ }^{\prime} \downarrow 0^{\circ} \angle$ ¢	еи！̣бе＾uewnh	$1 \partial{ }^{\prime \prime} 7$	โ0＾－＾［ snłeds！ 7
	I	IS	SII	8ヵてて	\％eג	ガて	0102＊01＊6て	еи！̣бе＾uewnh	เəр 7	S0－＾1כ smłeds！ 7
	I	Ss	OS	を912	み－л	I＇て	010て＇と0•IT	еи！̣бе＾uewnh	$1 ə p \cdot 7$	
	0	$\angle S$	†て	2802	みอлด	$\varepsilon ' 乙$		eu！$¢ \mathrm{e}$ ¢ ueminh	$1 ə p \cdot 7$	NHO－て－SZI smłeds！ı 7
	\downarrow	tL	$\angle S$	026I		$0 \cdot \square$	エ10て＇と0＊6て	LIכ әuluod	$1 \partial \square^{\prime} 7$	8It
כtuoz＇le ұə quex	\checkmark	ZL	IZI	IZIて		I＇Z	010でIT「6I	səวə¢ әu！pıod	$1 \not \partial{ }^{\prime} 7$	てIIt¢У sпıолоィイme 7
OLOZ＇ノe 子ə uosion	I	85	281	カ891	サ－ג	S＇I	010でャ0・とて	ҒОМ ュəəq рə！！！！！	$1 ə p \cdot 7$	t99II WSa snola＜iolイue 7
	†	七L	62	て981	әұә引dسоว	$0 \cdot \%$	S00て＇I0＊L	səวə®」 ueunh		WJJN sn！！${ }^{\text {\％}} 7$
OTOz＇ 1 ¢ ұə uosjən	I	19	64	020Z	みела	$0 \cdot 2$	600て＇E0＊0T	－	$1 ə p \cdot 7$	96＜ь כЈı sп！！чdop！כe 7
	t	SL	ZL	6SOZ	әұә引dسоว	I＇Z	エ10て＇と0＊ 0	ـIפ әu！MS		כS0E snl！${ }^{\text {¢ }} 7$
	ε	$\angle S$	182	8562	み⿺𠃊口	$\underline{~} \quad$＇	ILOZ．90＊ IZ	ıonb！！dəəృs uı0כ	se3 7	
	ε	£9	SI	$6 I \angle Z$	サ®	$6^{\prime} 2$	โTOZ＇IT＊	 	SE3 7	［f00y snsoumeчt 7
	ε	$\varepsilon \varsigma$	てヤ6	Şてを	\％esa	s＇z	エ10でヤ0＊ 0	ןеכәел uewnh	Se3 7	29tS כJıW snsoumeyt 7
	I	IS	ZOT	SSIE	みอлด	T ${ }^{\circ}$	600て＇E0＇91	LIT uewnh	SE3 7	［－ZSW7 snsoumeyd 7
III 人pnłS	S	$9 L$	カナ	て662		$0 \cdot \varepsilon$	600て＇60＇z0		Se3 7	S0Lכר snsoumeчд 7
－	I	$\varepsilon \subseteq$	69	8SLて	サ－ג	$6{ }^{\circ}$	800て＇60＇IT	әऽәәцว	SE3 7	IOONH Snsoumeчд 7
	S	IL	02	†¢8て		$0^{\circ} \mathrm{\varepsilon}$	6002＇60 ${ }^{\text {s }}$ \％	səวəe」 ueunt	Se3 7	95 snsoumeyd 7
III 人pnłS	S	ZL	6ε	カセ6て		$0 \cdot \varepsilon$	600て＇60²0	səวə®」 ueunt	SE3 7	7－7 7 ¢
	S	SL	S9	L882		$0 \cdot \varepsilon$	น上でしだと0	－	Se3 7	0६S8 כОค snsoumeyı 7
OTOZ＇ノe ұə uosjən	I	9t	S9I	ャโ0¢	みセג	6 6		səวə®」 uewnh	Se3 7	ZSOIZ כอค＊snsoumeyı 7

 e－t＾โ0＾u！⿰习习า sıəu！ 7 sદદદI WSa sıau！ 7 L．iners ATCC 55195 L．iners AB－1

L．helveticus H10 L．helveticus DPC 4571

L．helveticus DSM 20075 | L．gasseri SV－16A－US |
| :--- |
| L．helveticus DPC 4571 | L．gasseri SJ－9E－US L．gasseri MV－22 L．gasseri JV－v03

 L．gasseri 224－1 $\begin{array}{lllllllll}\text { L．gasseri 202－4 } & \text { L．del } & \text { Human vagina } & 03.06 .2009 & 1.8 & \text { Draft } & 1773 & 21\end{array}$ $t-\varepsilon \perp-t+0 / \varepsilon 00 z 9$ d
L．delbrueckii L．del
L．delbrueckii ND02 ZLOOZ WSa ！！צวənıq｜əp •7
とદ9โ－I WכNכ！！！ววฉกมq｜əค •7

 еи！бел чешин ห！！

วาที่ากว

 ε＇I otoz＇ot＇so ₹＇I 0LOZ＇0T＇so 0
0
$\stackrel{y}{0}$
0
0 － N
i
N
ö
0 02．02．2010

16．02．2011

 o
0
\vdots
N
0
0
0 o
0
\vdots
$\tilde{0}$
0
0
 0
$\dot{\sim}$
$\stackrel{0}{0}$
0
0 9002＇01・を1
13．07．2010 2.0
－TOZ•Tた6I
โนัて＇と0＇0โ
LIOZ $60<0$

$\varepsilon \cdot I$
$\stackrel{\rightharpoonup}{\omega} \stackrel{\rightharpoonup}{\omega} \stackrel{\rightharpoonup}{\sim} \stackrel{\rightharpoonup}{\omega}$
2.0
1.8
2.2
I＇Z
0.2
1.8 $\stackrel{\rightharpoonup}{6}$ O ～
 $\stackrel{\square}{\square}$
ә્ว｜dس०ว 물

$\stackrel{\stackrel{\omega}{\omega}}{\stackrel{\sim}{\bullet}}$ $\stackrel{\square}{7}$
みยеа 묵 Draft Traditional Cheese
еи！бел иешин eu！be＾ueunh eu！be＾ueunh еu！நe＾ueunt Human eu！be＾ueunt еи！நீл uешин eu！be＾ueunt еu！நе＾uешин Human urine Human Human vagina еu！நீ＾＾ueunt ห！！！рәұиәшдә 1978 $8 \angle 02$
 8891
$\stackrel{\stackrel{\rightharpoonup}{\circ}}{v}$
1909
N N $\stackrel{\stackrel{\rightharpoonup}{\circ}}{\circ}$
$\stackrel{\stackrel{\circ}{\omega}}{\stackrel{\circ}{\omega}}$

G $\stackrel{\rightharpoonup}{\omega}$ $\approx \omega$
Э
s

$$
\stackrel{\rightharpoonup}{\circ}
$$

77
21 v しّ ज 4
ก $\stackrel{\ddots}{\bullet}$
 69
万

$$
\stackrel{\perp}{\sim}
$$

$$
\stackrel{\rightharpoonup}{\sim}
$$

O	\＆
+	$+\circ$

 otoz＇夗 дə uosiən

 0toz＇伊 ұə uos｜ən otoz＇化抻 uosian Nelson et al．， 2010 Nelson et al．， 2010
 oloz＇旧za uosian OTOZ＇「リセ ¥ə Uosiən
otor＇•• zる uos｜ən
 OTOZ＇旧 子ə uosiən

	I	†9	$\downarrow \varepsilon$	SSLZ	みел	$8^{\wedge} \varepsilon$	ILOZ＇S0＇とて	иәәцб рәұиәшдə」	eld 7	OI－dW snsozued ${ }^{\text {7 }}$
	乙	S9	96I	8961	7．ena	$0{ }^{\circ} \mathrm{Z}$	IIOZ＇90＇で	дəəя	12017	8t૬\& זכוכ sиеұиәшләәәеш ‘7
ILOz＂ノe ұə ןəбоへ	L	Z8	LZI	ヤ8てI	әұәᅵdmoว	\dagger^{\prime} I	ITOZ＇60＇90	4бnopanos	nı 7	เ0とI＇I MW」 s！suәวs！วueıдиеs＇7
	I	6ε	ع9I	8SとI	みอл	ャ「	1102＇I0＇so	әyes pa！！ods	пı 7	
OLOZ＇状 дə uosjən	I	8 S	102	0IてZ	\％ело	でて	600て＇て0＊6I	LIכ ueunn	$1 \partial p \cdot 7$	Lャ09I WSU S！suəunł！ 7
	0	0		29Iて	әұə｜dmoว	ャて	IIOZ＇so＇sz	и！елб	$1 ə р \cdot 7$	EMZ suə！
セโIOZ＇リヒ ұə әəา	ε	$\varepsilon \downarrow$	\＆II	9ヤ8I	7eda	6．I	ILOZ＇90＊8て	รəวə¢ дəાБ！	$1 \partial p \cdot 7$	10』d ！！uosuyo！ 7
	9	$\angle 6$	$\angle 乙$	IZ8I	әұə｜dmoว	$0 \cdot 7$	ャ00て＇て0＇zo	Lİ ueunh	$12 p \cdot 7$	દદS ככN ！！uosuyo！ 7
	\downarrow	$\angle 9$	$\angle S$	S\＆ 1	әұәᅵdшоэ	8.1	600て＇し1＊ 0	LIS Kınıod	ノəр 7	S8L6İ！！！ 7
	b	89	$\angle I$	ZLLI	әұə｜dmoว	$0 \cdot \square$	エ10でャ0＊OZ	LIS วu！${ }_{\text {dod }}$	$1 \partial р \cdot 7$	9 9\％9 JdQ ！！
OLOZ＇状 ұə uosjən	I	SS	96	8\＆8I		8＇I	600て＇て0＊6I	poolq uewnh	$1 \partial p \cdot 7$	00乙દદ כЈ」 ！！
	0	6t	て9	0ع9I	みел	L＇I	6002＇01＊I0	eu！be＾ueminh	$1 \partial p \cdot 7$	Sก－甘L－โS ！！uəsuə！ 7
	乙	£9	$\angle \varepsilon$	OStI	みела	9＇I	6002＇z0＇6I	eu！be＾uewnh	ןəр 7	9โ＾－＾¢！！uəsua！ 7
OLOZ＇$/$ 抲 Uosjən	0	OS	II	$9 \angle \bullet I$	7－10	L＇I	600て＇80＊ャて	eu！be＾ueunh	$1 ə p \cdot 7$	NHJ－て－LZ ！！uəsuə！${ }^{\text {7 }}$
OLOZ＇状抻 uosjən	I	97	IZ	SLSI	\％	L＇I	6002＊90•®	еи！̣бе＾uewnh	৷əр 7	
	乙	09	$\varepsilon \downarrow$	$\angle \triangleright \varepsilon I$	みел	L＇I	800て＇01．bI	eu！be＾ueunh	ノəр 7	ESIT！！uəsuə！ 7
	0	OS	ε	0くヤI	7eג0	9＇I	6002＊01＊I0	eu！be＾uewnh	ノəр 7	NHJ－E－SIT ！！
	I	IS	$\varepsilon 乙$	9LてI	みела	$\varepsilon \cdot I$	エ10でと0＇く0	eu！be＾uewnh	ן扣 7	9－09 IIdn sıəu！ 7
OLOZ＇状抻 Uos｜ən	I	£ऽ	くI	98II	7－ג	$\varepsilon \cdot I$	エ10て＇と0＊ 0	eu！be＾ueunh	ノəр 7	－－¢ちI IIdn sıəu！ 7
	I	6t	IZ	\＆くてI	7．	$\varepsilon \cdot I$		eu！be＾ueunh	ノəр 7	व－0I＾EOSZ NIdS sıəu！ 7
OLOZ＇状抻 Uos｜ən	0	62	$\angle 乙$	8\＆てI	7－גव	$\varepsilon \cdot I$	ILOZ＇ヤ0＇si	eu！be＾ueunh	ノəр 7	9TOちI NIdS sıəu！ 7
	I	IS	S	0IてI	7－л	$\varepsilon \cdot I$	OLOZ＇IT•to	eu！be＾ueunh	$1 ə р \cdot 7$	e－-800 ¢ $\ddagger \forall \exists 7$ Sıəu！ 7
OLOZ＇ 1 ¢ дə uosjən	I	67	εI	S92I	7 y	$\varepsilon \cdot I$	OLOZ「IT「か	eu！be＾ueunh	ノəр 7	
OLOZ＇戉抻 Uosjən	I	てS	St	LLてI	み－л	\downarrow^{\prime} ¢	OTOZ＇IT「か	eu！bje＾ueunh	$1 ə р \cdot 7$	
OLOZ＇状抻 Uos｜ən	I	ZS	ゅて	9SてI		$\varepsilon \cdot \tau$	OLOZ＇IT「も0	еи！़бе＾ueunh	ノəр 7	
OLOZ＇状抽 Uos｜ən	I	IS	$\angle 乙$	8عとI	みएव	$\varepsilon \cdot I$	OTOZ＇01•so	eu！be＾ueunh	$1 ə p \cdot 7$	

Γ
0
0
0
0
0
0
0
0
0
L．reuteri JCM 1112
L．reuteri DSM 20016
L．reuteri CF48－3A
L．reuteri ATCC 53608
 L．oris PB013－T2－3 L．oris F0423 L．mucosae LM1

L．fermentum IFO 3956 L．reu

 L．coleohominis 101－4－CHN
ItO9I WSO！！子ue＇7

L．reu

ฝ் กอ่ 7 กอง＇7
 กอม 7
asnow

НІэ әu！мs
eu！நe＾ueunt

Human oral
Human milk

รจก！ㅇ

800でく0＇sて

0IOZ＇90＇6て
600て＇zo＇てI
600て＇01’т0
0たロでなくした
600でャ0 $\angle 2$

묵
$\underset{\sim}{N}$

$\stackrel{\rightharpoonup}{\circ} \underset{\sim}{\sim}$
$\stackrel{\stackrel{\rightharpoonup}{\infty}}{\stackrel{\rightharpoonup}{\omega}}$合
$\underset{\sim}{\omega}$ ज $\underset{\omega}{ }$ か $\underset{\alpha}{\underset{\sim}{N}} \underset{\sim}{\omega} \underset{\omega}{\oplus}$

ज $\underset{\sim}{\sim}$ シ

 1

$\stackrel{\omega}{\omega}$

qitoz＇رe za бием

 otor＇＇リe zə uosjən IIOZ＇侯 ¥ə วรココ
 Morita et al．， 2008
 Nelson et al．， 2010 тоz＇旧 дә suәлеән
 OTOZ＇陁 子ə uosiən

てTして＇旧 ұə әәา

OTOZ＂ノe ұə uosjən	I	92	02	I8IT	みฺ•	$\varepsilon \cdot I$	โ10で0さ・と0	LIS uewnh	－	$\forall \forall\lrcorner \angle \vdash^{-} \tau^{-} L^{\text {d }}$ ds 7
	I	85	89ع	†¢ऽ乙	\％ел	く＇て	โ10で90•亡て	पsem əidd \forall	วе＾ 7	
	L	66	69	カIOZ	әұə¢ᅵ以оว	I＇Z	900て＇と0＇0¢	\perp IS uewnh	jes 7	8！tכว sn！uen！！es 7
	8	て01	LS	TLLI	\％एл	$0 \cdot 7$	てIOて＇\＆0・ヤธ	」Iפ иәуग！บว	IES＇7	ISAXWS sn！uen！les＇7
	L	ع0I		6981	\％	$0{ }^{\circ} \mathrm{Z}$	ITOて＇S0＇IE	รəวə®」 иวみว！чว	IES＇7	0t8SVIN sm！uen！！es 7
	\downarrow	£8	†8	9＜8I	みएл	$0 \cdot 7$	ITOZ＇90＇60	sәวəe，uewnh	Ies＇7	ャて－โら sn！uen！！es＇7
	L	OZI	$\angle I$	ZSSI		I＇Z	OLOでく0＇く0	y y！W uewnh	IES 7	
	乙	99	\downarrow ¢	9L6I	7．10	$0^{\prime} \mathrm{Z}$	6002＇Z0＇6I	人！！ィеכ ן．גо uewnh	Ies ${ }^{\circ} 7$	It
OTOZ＇ノe 子ə uosjən	I	85	801	IてIて	7－ג	0 ＇Z	010でく0＇6I	eu！be＾uewnh	Ies＇7	egioj－＾－9ti－Sכも sn！̣ел！！es 7
qItoz＇状 ұə วəา	I	乙9	69ε	9 9をて	\＃－d	て＇て	110て＇90＇60	səวəe，uewnh	Ies＇7	IIZOWdS S！u！um 7
	I	65	262	ISZて	\％速	I＇Z	600て＇Z0＇6I	səวəセ」 uewnh	Ies＇7	tャ9SZ כЈฝ S！u！und 7
	I	85	0ヤt	で9て	\％esa	く＇て	ITOZ＇90•Iて	әכ！n！ əldd \forall	Ies＇7	
	I	62	દてZ	とて8I	み－ג	6＇I	010でてI＇60	！чэш！＞	les＇7	
－	ε	SS	98ε	て9Zて	7es	$\varepsilon \cdot 乙$	IIOで90•Iて	әธәәบว	Ies＇7	
	L	¢8	$\varepsilon \angle I$	S88T	әұә引duоว	6＇I	S00て＇It「てO	әбеsnes чวuә」	yes＇7	પ્રદz ！วyes＇7
	I	95	StI	298I	7－10	8＇I	ILOZ＇01．92	әбesnes рәұиәшスə」	Yes＇7	S0L 7Уว snłeィ．inว 7
OLOZ＇状抻 Uos｜ən	ε	乙9	961	0＜81	みएव	8＇I	600て＇Z0＊6I	eu！$¢$ ¢e＾uemnt	กอม 7	0tS6t כЈ」 S！｜eu！
0LOz＇归抻 Uosjən	9	88	$\varepsilon \downarrow$	00عZ		$\varepsilon ' 乙$	1102＇90＊0Z	Y \l！W uewnh	กอม 7	ZIIZOS ！ـəұกə」 7
OLOZ＇ 1 ¢ дə uosjən	9	IIT	8 I	S60Z		I＇Z	600て＇Z0＊6I	y lıW uewnh	กอง 7	\forall I－tWW ！
	I	95	tS	Stoz	7 7edo	6.1	600 ＇• $^{\circ} 0$ O	रl！W uewnh	กอม 7	ع－ZWW！」əұกə」 7

ャ60ع00dว	әи！̣ธu uoļełouuv SפI	әи！ฺиヨ uо！？еłоиu＊SSI	дə¢Мə		$0 ६ \varsigma 8$ วכค snsoumeyd 7
00000000入Z」V		 	ұәл৷əへ	eutwni｜I	乙SOIZ כЈ」甘 snsoumeyd＇7
00000010＾פכ＊	I＾J	Wวย		」əらues／eu！	て0દऽ々 כว⿺𠃊 ！əsejened 7
S8ャ066SazN	I＾J®	әұпท！？sui peog	－	†St	乙：00＜8 ！əsejened 7
†80100dつ	－	－	deıyd	－	
919200dJ	－	－	－	」əбues／eu！	MZכา ！əseว 7
ObILLIW」	7VIWS＊	7VIW9＊	desud	¢St	ยนาด！วseว 7
819Z00dJ	－	－			II－ه¢ ！ OSe ＇7
とてヤ000dつ	LSV78－ISd／פОכ		zze［	ләбues	
000000โ0入ヨЭ		 	ұәл৷ə	eu！wni｜I	$68 \vdash 0$ ¢！s！uБeıuejeıed 7
000000I0［89V		 	ұәлəəへ	eu！unn｜II	S\＆t0』 s！suəuos！y 7
000000T0dפכ＊	I＾J¢	Wวร	дəવмə	」əбues／eu！	0628 כЈЬ甘！！рлеб！！ 7
ZS9200dJ	OWI	OWI	」əવMəN	」əБues／eu！	
000000TOHOJV	I＾J¢	Wวร	дə¢Mə	」əбues／eu！	
9โち000dJ	1S＊78－ISd／פ0כ		zze［	」əбues	
000000โ0כפכ＊	I＾J¢	Wว¢	дəવмə	」əБues／eu！	s0દĽ כЈ」甘 s！＾əıq 7
000000โ0Уכもg	1S甘7	ュəسயயVNy 	дə¢¢MəN	ャSt	
0000001010ヨ			дəŋммәN	†St	
כวヤ	uo！＋eqouuv Ieuolpoung	ธи！！｜อว әัวฺ	ə｜qயəss \forall		us！uебло

L．crispatus SJ－3C－US L．crispatus MV－3A－US L．crispatus MV－1A－US โ0＾－＾［ smłeds！
 L．crispatus 214－1
NHO－Z－sZI smzeds！̣ว 7 L．amylovorus GRL1118

 L．acidophilus ATCC 4796
L．acidophilus 30SC
L．acidophilus 30SC
L．rhamnosus LMS2－1
L．rhamnosus MTCC 5462
L．rhamnosus R0011
L．zeae KCTC 3804

r
-
3
0
3
0
0
0
4
5
3
0
0 L．rhamnosus HN001 r
7
3
0
3
0
0
n
n
n
n
L．rhamnosus GG

A
A
A \downarrow ヶt
ィəбues／tSt
-
лəбues
$t S t$
」əбues／eu！unili／tst
」əбues／tSゅ
••6ues／tst
」əбues／tst
JSOE sп！̣dop！̣e＇ 7

－

」əાવMəN
ィəાવмə
」əાવMəN」əાવMəN
」əાવMəN
」əાqМəN
－
ュəાવМəN
 •वмәN」əાવMəN 2
\sum_{2}^{0}
$\frac{0}{1}$
－

d $\forall \forall פ d$

Newbler
Newbler
Phrap
Newbler
Phrap／New
bler
Gap4

RAST／Glimmer／tRNAscan－ SE／RNAmmerm／BLAST
WNy／גə d甘VOd

Wวg

I＾ว

Wวg
」S甘าg
LS甘7 $/$

әұпт！？sui peoдg
BLAST／PFAM

WӨコd／』S甘าg
$d \forall \forall O d$
PGAAP
GAMOLA／COG
I＾ગ
$d \forall \forall \supset d / \perp S \forall y$
1S甘79
d $\forall \forall$ D
PGAAP
I＾ગ
d $\forall \forall$ dd
」əயumもNy

／d $\forall \forall$ Sue $\perp /$／oddəə
SZ $2 /$／acon／イzej／2doyjw

$d \forall \forall פ d$
S甘サy／gaכค／KZeכ／SdoyヨW
000000IOLOOV
 LZ886999ZN 000000IO甘サント 9عくIをราפ²～ 000000โ0சதロも
09 $2869{ }^{\text {T }}$ ZN
609200dう
8عとZ00dJ
000000IONNG
をع0000dJ
000000TONHJV
6SऽZ00dつ
000000โ0రెכも
000000I0כหפナ 00000010W入ヨ习
000000IOZIכ甘
をてE6LTWョ
00000010 LM ${ }^{0}$
8bSIIOd \forall
てZと6くIWョ
e－tヘIO＾u！̣วeา sıəu！ 7
setel WSa sıau！ 7
S6ISS JOL甘 S」əu！ 7
L．iners AB－1

 L．gasseri SJ－9E－US
L．gasseri SV－16A－US Sก－ヨ6－［S ！！

L．gasseri ATCC 33323
L．gasseri JV－V03

L．delbrueckii DSM 20072
L．delbrueckii ND02
L．delbrueckii CNCM I－1632
L．delbrueckii DSM 20072
L．delbrueckii CNCM I－1519

L．delbrueckii 2038

」əાવМəN

」əાવМə
snu！u！u！
дə૧мәN
••－
иәреұя
дəવмәN
」əવМəก
」ə｜qMəN
zze［
－

zze［
bler
mən／deıud
454
\dagger \dagger
」əбues／eu！wnili／tst
tSt

\dagger \dagger
Sanger
$t S t$

\downarrow カ \downarrow
дə6ues
\dagger St
\downarrow St $t s t$
」əбues／eu！
\downarrow \dagger S \dagger
tSt
ュəбues
ュəбues
」əбues
•ə6ues／tst
I＾כ®
Wวя
Wวя ヨs－ueวs $\forall N$ y
RAST／GeneMark／Glimmer／
d $\forall \forall$ Od
әиәбедәW／גәшш！！

әұп？！？Sui peoıg
Wวg
Wวя
\exists－ueวs $\forall N$

I＾J
I＾J
I＾כ؟ I＾J®
Wวร
WJa
GeneMarkS／tRNAscan－SE
Oפyヨ／7もIWפも

> פןו!ִшшш
」əயயய $\forall N y / \exists S$

I＾Jエ
I＾Jエ
I＾Jエ
IVJโ
d $\forall \forall$ D d
$\stackrel{u}{\grave{\vdots}}$
ERGO／BLAST
BLAST／PFAM
W $\forall \exists \mathrm{d} / \perp \mathrm{S} \forall 7 \mathrm{G}$
I＾J
I＾ว์
」S甘าg－ISd ЭOכ
I＾J®
I＾J
Iへコエ
I＾J
dS甘7g
1S甘78－ISd／פOว
Agmial／ERGO
AST／RPS－BLAST／
ScanProsite
MEROPS／TCDB／KAAS

000000โ0ZHヨヲ
000000TONTJV
000000L0Xd $\ddagger \forall$
NZ＿ADHG01000000
000000โ07人ヨ \forall
6てヤて00dコ
000000T0W7כV
LIS000dJ
000000IOAOAV 000000tonadも七S8S66SÓZN 000000200כJV
عโt000dJ
000000IOZOJV 000000โ01Vヨ I七民Z00dつ 000000I0กXヨ 000000000••V $00000000 \mathrm{MH} \mathrm{H} \forall$ てાち000dつ をらてぃS6 つ
9SI000dJ
LEOZ69Nョ
Lojd！！uosuyo！ 7

S8L6Is ！！uosuyo！ 7
L．johnsonii DPC 6026 00乙દદ วЈ」甘！！uosuyo！‘7

L．jensenii 27－2－CHN
L．jensenii 269－3
L．jensenii 1153
L．jensenii 115－3－CHN

L．iners SPIN $2503 \mathrm{~V} 10-\mathrm{D}$
L．iners UPII $143-\mathrm{D}$
L．iners SPIN 1401G

L．iners LEAF 2053A－b

L．iners LactinV 09V1－c L．iners LactinV 03V1－b เSt \downarrow カ \downarrow NA A A A A \dagger ちゅ
 \downarrow St \dagger St $\stackrel{A}{\mathrm{~A}}$ tSt ュəбues／tSヶ ・よ6ues／tSt ュəБues／eu！̣un｜II／ちSt $\dagger S \triangleright$
 カ $+$ \dagger ヶ \downarrow deлчd 」əбues әројиороэ RAST／Glimmer FrameD／BLAST／tRNAscan－SE ヨS
иә
Phrap／Stad
дәવ

дəાqМә」дqм

дəןqu
」əાવмəN」əવМә
Newbler Newbler Newbler」əવMəN」əાવМəN Newbler дə૧МәN 2
\sum_{0}^{2}
$\frac{0}{7}$ $\begin{array}{ll}2 & 2 \\ \sum_{0}^{0} & \sum_{z} \\ \frac{0}{0} & \frac{0}{0} \\ & \end{array}$

gaว $/$／פOJ／W $\forall \exists d / \perp$ S
RAST

Wวg
әұกว！？suI peoıg
Wכ』
LS甘79／

I＾J®

I＾ગ
I＾ગ
I＾J
I＾วโ
I＾J؟
I＾J® I＾J® I＾J์
000000โ0โరも甘
FN298497

† 1886999^{-}ZN
000000T0イOכV
000000Z05Mg \forall

000000โ0ンXヨ
000000I0โXヨ 00000010४Hヨヲ 000000T0dXヨ \forall 000000โ0インㅋヨ 000000โ0โメヨ 000000โОНУヨヲ 000000IOIイヨヨ 000000TONHヨ \forall 000000โ00Нヨ \forall 000000T0dHヨ

ESd Snכ！！used L．fermentum CECT 5716
L．fermentum IFO 3956 L．fermentum ATCC 14931 NHЈ－६－8г шпұиәшдәя 7 L．coryniformis KCTC 3535
L．coryniformis KCTC 3167 L．coleohominis 101－4－CHN L．antri DSM 16041 ISIOM wnsezueld 7
 L．plantarum NC8

L．plantarum ATCC 14917
L．pentosus MP－10
L．malefermentans KCTC 3548
†OEI＇I MWL s！suәวs！วueддиеs＇7
L．fructivorans KCTC 3543
L．ultunensis DSM 16047
 L．kefiranofaciens ZW3
454
ュəбues

$t S t$

\dagger St
\vdash $\dagger \downarrow$
 лə6ues
eu！wnili／tSt
\dagger S $\dagger ~$
\dagger St
\downarrow ヶヵ
」əбues／ちSt

Newbler

мәn／deıuд

Newbler \qquad

дəןq
Mən／deat

Broad Institute	JCVI
BCM	JCVI
-	-
Glimmer／BLAST／EMBOSS／	BLAST／PFAM／COG
tRNAscan－SE	
-	-

ヨS－ueวs $\forall N Y 7$
RAST／Glimmer／RNAmmer／ әиәБеұәฟ／дәшш！！
BCM
－
${ }^{-}$
－
wכa
tRNAscan－SE
RAST／Glimmer／RNAmmer／

ヨS－ueวs $\forall N$ Y7
RAST／Glimmer／RNAmmer／
Wวg
Glimmer／GeneMark
OOOOOOOONDIV
Lع6800d \forall
عと0Z00dJ
000000โ0IפכV
NZ＿GG704699
000000โOSOヨ
000000โ0イ7ヨ
て0886959 ${ }^{-}$ZN
000000โ07רナ
を9Zsร67も
てZZZ00dJ
LI9IOOdO 000000Z0Zפゴ
LI8TL8ป」
O00000TONJVG
I9ヵてOOdつ
000000 โ0人Oヨヨ
000000IOกפכ゙
ャ9くて00dつ
IIZOWdS s！u！uma 7
tャ9SZ ככเ甘 S！u！un」 7
L．mali KCTC 3596
L．animalis KCTC 3501

L．sakei 23K
L．curvatus CRL 705
L．vaginalis ATCC 49540
L．reuteri SD2112
 L．reuteri MM2－3
L．reuteri mlc3
L．reuteri Ipuph

L．reuteri ATCC 53608

L．oris F0423
әројиороว
／גəяям
L．mucosae LM1
L．mucosae LM1
әN／o！qכาว 」əбues／eu！unn！i／tst
дəๆмәN tSt
\downarrow ヶヵ
 tSt」əбues
\dagger ¢ \dagger

Sanger」əБues／tst
454／Illumina／Sanger
$t S t$」əбues／tSt

$t s t$
454／Illumina

Phrap
Newbler
Newbler
Newbler

Newbler」əાqMəN」ə｜qMəN
Newbler」ə｜qMəN
」əાммә
」ə૧Мəก
Phrap
ュə૧Mən」əqМəก
 әN／о！qวาว ヨS－ueวs $\forall N$ y
RAST／Glimmer／RNAmmer／ ヨS－ueวs $\forall N \not \subset 7$

dVVOd

Wวg
n
3
Wכళ
ヨS－ueวs $\forall N \not \subset 7$

WWI

OWI
I＾J〔
I＾כ؟
ISVy
I＾ગโ
๑०ว／」S४าด
WVヨd／0גdגəłuI／7VIWפV
ISGA/RAST
I＾J
I＾J
Iへכ
эOכ／W甘ョd／LS＊7g
INT

IWI
Iへכ
I＾כ®
$\perp S \forall 78 / \perp S \forall \cup$
000000IOLOョ \forall
000000ZOSכつఈ
000000I0dJも8
000000โ0」Oヨ 000000โOSJもG
ع0s9ع6ษว
000000I0ng9V
000000โ0＾ソコナ
000000Z0Xפコナ
000000โ09าวV
000000โOMVヨ
000000I0XVヨ \forall
I8ZL00d甘
0000000109HO
000000ZOSכシว 000000Z0ZdV甘
000000โ07クヨヲ
000000T07上－\forall
00000000NJIV

000000IOヌMכV	I＾J¢	Ie6！podd	」əવМə	ャSt	
000000I00J＊g	1S甘7	 	дəવмəN	ャSt	6†S¢ Оฝัไ snכ！qəns＇7
દદて000dJ	90つ⿺／つOJ／Oэ¢ヨ	 	dexud	」əбues	8LIJOn sn！лen！les＇7
000000007JIV	LSVY		\forall VIW	ゅSt	ISOXWS sn！uen！！es ${ }^{7}$
O00000IONWコ ${ }^{\text {L }}$	IS甘Y	」Sヲ7a／」S甘บ	дə｜qм әN／о！৭วาว	eu！	0t8SVIN sn！uen！！es＇7
000000โ01OJ ${ }^{\text {d }}$		IS甘Y	дə｜qм әN／o！̣วาว	eu！umnliltst	†て－โ5 sп！лen！！es ‘7
†عOZ00dכ	－	－	」əવMəN	†St	
000000I0」Эכ ${ }^{\text {a }}$	I＾J®	Wวป	дə¢MəN	」əбues／eu！	
	I＾J®	I＾J®	дə¢мәN	†St	egIoJ－＾－9โt－Sכ＊snıuen！！es＇7
			」ə｜¢M		

