
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this

document without permission of its author may be prohibited by law.

CMU-CS-82-119

Computational Geometry
on a Systolic Chip

Bernard Chazelle

Department of Computer Science

Carnegie-Mellon University

Pittsburgh, Pennsylvania 15213

April 1982

This research was sponsored by the Defense Advanced Research Projects Agency (DOD), ARPA Order

No. 3597, monitored by the Air Force Avionics Laboratory Under Contract F33615-81-K-1539.

The views and conclusions contained in this document are those of the authors and should not be

interpreted as representing the official policies, either expressed or implied, of the Defense Advanced

Research Projects Agency or the US Government

i

Table of Contents

1 Introduction

2 The geometric systolic chip

3 Convex hull problems

3.1 The array CHI

3.2 The array CH2

4 Inclusion, Intersection, and Closest-point problems

4.1 Inclusion problems

4.2 Intersection problems

4.3 Closest-point problems

5 Conclusions

11

List of Figures

Figure 1: The one-dimensional systolic array.

Figure 2: Handling critical paths.

Figure 3: The overall structure of die array CHI.

Figure 4: Testing inclusion in the convex hull.

Figure 5: The fold-over operation.

Figure 6: Computing convex hulls in clockwise order.

Figure 7: A systolic scheme for iterative problems.

Figure 8: Testing inclusion.

Figure 9: Continued on next page .../...

Figure 10: The triangulation array TRI in action.

Figure 11: The input cell for CHI.

Figure 12: The generic cell for CH2.

Figure 13: Establishing the status of a new point

Figure 14: The partition of a convex polygon.

Figure 15: The various cases for INT2.

1

Abstract

This paper describes systolic algorithms for a number of geometric problems. Implementations yielding

maximal throughput are given for solving dynamic versions of convex hull, inclusion, range and inverse range

search, planar point location, intersection, triangulation, and closest-point problems.

2

1 Introduction

The pervasive influence of VLSI in the computer science community has given research on parallel

computation its second wind. In contrast with the traditional conception of parallel systems, where several

computers arc each assigned complicated tasks, VLSI computation, especially of systolic nature, involves the

simultaneous use of a great number of very simple processors [MC,K].

As commonly referred to, systolic arrays are one- or two-dimensional arrangements of simple cells locally

connected [ICKl.KLX] 1 . The essential features of systolic cells are their simplicity, regularity, and modularity.

Performance-wise, these characteristics are definite assets, as they ensure high levels of pipelining and

multiprocessing, hence providing massive parallelism. They also affect the economics of the approach by

making circuit development more cost-effective. Indeed, with dropping costs of electronic components and

increasing levels of circuit integration, systems designers are facing the prospect of putting hundreds of

thousands of gates on a single chip, which so far constitutes a formidable challenge. Systolic architectures are

one answer to this challenge. Their modularity permits the designer to decompose the system's architecture

into building blocks which can be used repetitively with simple interfaces.

From the origin, the epithet systolic has been reserved to special-purpose devices, such as multipliers,

priority queues, pattern-matchers, etc... With this perspective, systolic arrays were built with wired-in cell

implementations, which was not to be a handicap as long as the overall reconfigurability of the array, an

essential feature of a systolic architecture, was preserved. Thus the user was essentially given the freedom to

tailor the array to the size of his problem, without having the possibility of modifying the cell definition. If

one wishes, however, to optimize the cell specifications or to allow a more versatile use of the systolic device,

it is essential that the cell behavior be made programmable [D], By doing so, it becomes possible to

experiment with different systolic implementations of a same scheme without having to build different chips

and be caught in the bottleneck of fabrication turnaround. Also, programming the array allows the user to

make it fulfill not just one function, but a whole range of related tasks. The merit of this approach partly

resides in the combination versatility & high-performance which it affords. It must also be mentioned that it

serves pedagogical purposes by putting systolic design into the hands of the laymen, thus making the

conception and use of very high performance devices more accessible.

The purpose of this work is to present a class-related systolic processor based on the approach just

described. This processor is a programmable systolic array aimed for solving a wide class of geometric

problems in a highly unifying manner. This class of problems contains many of the most basic questions of

The best general exposition of systolic architectures can be found in [K1J.

3

computational geometry. Among others, we will find dynamic versions of convex hull, inclusion, range and

inverse range search, planar point location, intersection, triangulation, and closest-point problems. Whenever

possible, we will insist on the dynamic aspect of the problem, for it is often where systolic solutions are at their

best. On the other hand, many applications areas involve problems of an inherently dynamic nature, with

which we must cope. For example, air traffic control necessitates the real-time solution of closest-point

problems on an ever-changing set of points.

After discussing the advantages of systolic architectures in terms of increased adaptability and cost-

effectiveness, we should investigate the gains in performance to expect from a systolic treatment of

computational geometry. To begin with, let us roughly describe our systolic architecture. We consider only

one-dimensional arrays, i.e., arrays with a single string of cells, each connected to their one or two neighbors.

Furthermore, communications with the outside world (typically, a host computer) takes place solely at either

of the end-cells. It results from this configuration that although there may be full parallelism in the arrays, the

number of I/O operations at any time is always bounded by a constant. We do not make this assumption for

the sake of simplicity, but for the sake of realism. Indeed, in most applications, the systolic device will receive

its data from a sequential computer, therefore the assumption we are making is not a choice but an inevitable

reality.

Being now ready to turn our attention to performance considerations, we immediately derive, from the

assumption above, that N pieces of data cannot be processed in fewer than N systolic steps. This may seem

like a serious handicap, when compared to the 0 (N
2

) or 0(Nlog N) running times typically offered by

sequential geometric algorithms. One may hope at best the gain of a factor N or log N; however, asymptotic

figures based on big-Oh considerations are not too relevant in the matter. Indeed, the sole performance goal

in our case is to maximize the throughput, i.e., have the systolic array keep up as closely as possible with the

host/device data rate. This data rate is dependent on the pin bandwidth of the chip, or sometimes in real-time

applications, on the rate at which data is made available to the host by the outside (e.g., radar, sensor). Note

that the new emphasis made here reflects yet another departure from the traditional study of computational

complexity.

It is often the case that a circuit will receive streams of data, each of them pertaining to a different instance ,

of the problem. In this case, maximizing the throughput is called pipelining, and to measure the adequacy of

the circuit to respond to a stream of requests, we look at its period, a concept introduced in [VU]. Roughly,

the period of a circuit is the minimum delay between two consecutive sets of inputs. Of course, it is highly

desirable that our systolic designs have period 0(1). which often involves preventing the occurrence of

clusters or of die presence of cells waiting for others in order to complete execution. Wc will discuss these

issues in detail later on.

4

In the next section, we describe the general features of the geometric systolic array, then proceed with a

detailed description of the algorithms in the remaining sections. Because of the intricacy of some of these

algorithms, we have chosen to keep die descriptions at a fairly intuitive level, relegating die details of the

implementations as well as the proofs of correctness to the Appendix.

Figure 1: The one-dimensional systolic array.

2 The geometric systolic chip

Most of the systolic arrays which we will describe in this paper have the basic outlook of fig.l. Interaction

with the outside world takes place solely at the end cells, called boundary cells. All of the other cells, called

generic, are alike, and although boundary cells are assigned additional tasks for I/O purposes, they usually

don't differ drastically from the generic cells. Each cell contains a small amount of memory, in die form of a

few registers. We distinguish two kinds of registers:

1. Working registers for either storing data (point, edge, angle,...) or for providing temporary storage

for the computations.

2. I/O registers for communicating data between adjacent cells.

To avoid dealing with implementation details at this point (we will take up these issues in the appendix), we

may regard I/O registers as being conceptually "located" on the connection wires between the cells. These

registers arc protected by gates which can be cither open or locked according to the current clock phase. We

assume that the whole systolic array is synchronous, and that each cell operates in lock-step. For simplicity, we

also assume the existence of two clocks 9 1 and <p2 beating in opposition. This allows us to separate input and

output stages easily by requiring that input (rcsp. output) gates should all be open (rcsp. locked) at tp1 and

vice versa at <p2 (fig.2). The lapse of time between two phases <p^ is called a systolic cycle. It is to be

distinguished from the clock cycle internal to each cell, which is likely to be much shorter. Indeed, a systolic

5

cycle must correspond at least to a number of internal clock cycles necessary for a cell to complete the

execution of its stored program. We should observe that this clocking arrangement is not unique; systolic

arrays with asynchronous and/or adjacent cells operating in opposite cycles are perfectly feasible, so the

choice made here serves only explanatory purposes, wlog.

~7. i-1

, Cell

Z ±

V.

- r z

Cell

~7.

7 Z
Cell

i + 1

Read-In

Cell

k i - l

i-1

Cell Cell

Write-Out

i + 1

Figure 2: Handling cridcal paths.

The only bit of notation, used throughout, that needs be introduced here concerns the representation of

points by capital letters, A,M,X with a{ denoting the ith coordinate of point A in a Cartesian system of

coordinates.

3 Convex hull problems

Estimating a population parameter in statistics, or simulating chemical reactions often require computing

the convex hull of a set of points in a dynamic fashion [S]. In the former case, one wishes to strip away the

convex hull of the set of points to remove the outliers of the sample, then remove the convex hull of the

remainder, and iterate on this process until only (l-2a)N points remain (N and a are respectively the size of

the sample and a chosen trimming factor). This leads to the definition of the depth of a point as the number of

convex hulls that have to be stripped from the sample until the point is removed. For static and dynamic

solutions to convex hull problems on a conventional machine, sec [S,Pl,LE,J,OV].

To fulfill our purposes, we will devise a systolic structure which supports the following operations
2

.

1. Insert/delete point M.

2. Find and report all the vertices of the convex hull in clockwise or counterclockwise order.

Iliroughout this section, we will assume the dimension of the space to be 1

6

3. Determine whether an arbitrary point iM lies inside or outside the convex hull.

As usual with dynamic convex hull routines, deletions and insertions proceed in very different ways. To

cope with this problem, we will describe two systolic arrays, CHI and CH2, supporting the following

operations.

Array CHI

1. Insert/delete point M.

2. Report all vertices of convex hull (in arbitrary order).

3. Determine whether point M lies inside or outside die convex hull.

Array CH2

1. Insert point M.

2. Report all vertices of convex hull in clockwise (or counterclockwise) order.

3. Determine whether point M lies inside or outside the convex hull.

We observe that in order to support the operations listed at the beginning, it suffices to connect CHI and

CH2 together.

3.1 The array CH1

CHI consists of N cells, so as to handle up to N points at any given time, each cell storing one point. All

operations (updates and queries) are initiated at the input cell with the answers emanating from the output

cell(fig.3).

Input

Cell

.., , ,.,,. ,„ y Generic

Cell

Output

Cell

Input

Cell
 ̂ >>

Generic

Cell

Output

Cell

' M HOST HOST >> '

Figure 3: The overall structure of the array CHI.

Implementing Operation 1 is straightforward. Points to be inserted arc pumped into the left cell, and travel

7

from left to right stopping at the first vacant cell. A point to be deleted is input in the same way, moving from

left to right until it encounters the cell where its copy is stored, which it dien marks as vacant. Note that the

array does not keep track of die order of the vertices around the convex hull. Operation 3 relics on the

following geometric property.

Lemma 1: Let M 0 , . . . ,M N - 1 be a list of N points in the order induced by an angular sweep

around a point M. This point lies inside die convex hull of M^.-.^M^j^ if and only if no angle of

the form (M.MM. + 1) [mod N] exceeds 180 degrees.

Proof: A consequence of the fact that a point lies outside the convex hull iff there exists a line

containing it, with all the points on one side of the convex hull. •

Figure 4: Testing inclusion in the convex hull.

Lemma 1 shows that we simply have to make the query point M travel from left to right maintaining th

value of the largest angle (M.MM. + 1) encountered so far. This is done by a trivial case analysis, illustrated i:

fig.4. To alleviate the notation, we define F(M,A,B) as the sign of the expression u m ^ v m ^ w , wher

8

uX+vY + w = 0 is an equation of the line passing through A and B J . This provides us with an easy

characterization of whether two points iM,P lie on the same side of AB, i.e., they do iff F(M,A,B) = F(P,A,B).

For simplicity, we will always assume that no three points are ever collinear
4

. Let T=(M,A.B) be the triplet

of points yielding the largest angle so far. M will travel along with diis piece of information, which must be

tested against each new point encountered, then updated before proceeding to anodier cell. Testing T against

a new point C leads to the operations described in fig.4.

The handling of Operation 3 should be clear by now, so can proceed with Operation 2. One solution would

be, in a first stage, to output copies of all the points, then in a second stage, re-input them one after the other,

while executing Operation 3. To achieve the same result in place, we can view the systolic array as a strip of

paper. The idea is then to pick it up at the input cell end and fold it over, pulling die input cell over from left

to right (fig.5).

Figure 5: The fold-over operation.

To ensure that each cell will indeed look at all the others, we must update both the covering cells moving

right and the covered cells not yet in motion. The updating is of the same nature as in Operation 3. Note diat

the left end of the folded strip will move twice as slowly as the input cell. For tiiis reason, no operation on the

systolic array should be initiated within N systolic cycles after the start of Operation 2. This will ensure diat no

query will ever propagate to a cell already engaged in a computation for a previous query. To implement this

Wchaveu = V = b l ~ a l ' w = a l b 2 - a 2 ^ 1 '

^Relaxing this requirement involves adding only a few simple, uninteresting details to the algorithms, so it is legitimate to allow such

simplificauons.

9

fold-over operation, we need essentially two signals: one is the query itself, which follows the right-end of the

covering strip. The other follows the odier end, and is necessary to signal die cell diat at the cycle following

the next, it will have to send a copy of itself to die right, thus becoming the current left front of the covering

strip. See Appendix for details.

3 .2 The array CH2

This structure supports only insertions, but in return, it provides an ordered description of the convex hull,

at any time. Also, since the array stores only the vertices of the convex hull, it can support an arbitrary

number of insertions, as long as this convex hull always keeps a number of vertices on the order of N. To

begin with, let us give the geometric background behind the algorithm. Assume that M 0 , . . . ,M p - 1 are the

vertices of a convex p-gon P, given in clockwise order. Let M be an arbitrary point outside P, and let Q denote

the convex hull of Pu{M}. Considering the infinite line passing through an edge e of P, it is easy to see that

adding M to the convex hull will cause the disappearance of e if and only if die line lies between M and

P. This motivates the introduction of the function G, defined by the relation:

G(M,A,B) = (a 2 - b - ,) m 1 - h (b 1 - a 1) m 2 - h a 1 b 2 - a 2 b 1

Note that F(M,A,B) = sign G(M,A,B). The following result is simply a more formal statement of the remark

above, and we leave out the proof - see illustration in fig.6. Once again, in the following, we shall assume that

no three points may be collinear.

Figure 6: Computing convex hulls in clockwise order.

10

Lemma 2: Let M n M , be the vertices of a convex p-gon P, in clockwise order. Let M be an
l) P"L

arbitrary point and Q denote the convex hull of Pu{M}.

1. M lies inside P iff G(M,M.,M i + 1)<0, for all i; 0<i</?-1 [mod p].

1 MM. , is an edge of Q iff G(M,M.,M. _/-,)<(). Also, if M docs not lie inside P, it is a vertex
i i+i ° ^ i

of Q and its adjacent vertices are, in clockwise order, M and M v , defined uniquely

by G(M u . r M u ,M)<0, G(M u + 1 ,M u ,M)<0 , G(M v. 1,M,M y)<0, and G (M ^ r M,M v)<0.

The array CH2 has the same overall structure as CHI (fig.3). Instead of a point, each cell now stores an

edge of die convex hull, however, and the left-to-right order in the array corresponds to a clockwise traversal

of die boundary of the convex hull. Operation 1 (inserting point hf) causes M to travel from the input cell to

the output cell, computing the function G defined above in order to determine whedier M lies inside the

convex hull. If it lies outside, two edges have to be added to the structure, and in general, a bunch of

consecutive edges (at least one, anyhow) must be removed. More precisely, assume that M.M. + 1 , . . . ,M. - 1Mj

are the consecutive edges of P to be removed. Upon encountering M.M. + 1 , M must cause the cell currently

visited to substitute MM for M.M. ^ All the subsequent cells will delete their contents, until M encounters

the first edge (MjM^ + 1) not to be affected by the insertion of M. At this point, the current cell must hand the

cell M j M j + 1 to its right-hand side neighbor, and keep the edge MM. in store. M has now ceased to cause

changes in the array, and it can terminate its motion. However, there is now one cell in the array with two

edges. To repair this anomaly, we make sure that the cell keeps its additional edge but forward its former

contents to its right neighbor. This only causes to shift the anomaly one cell to the right, but iterating on this

process will eventually cause the last non-vacant cell to release an edge to its neighbor, which solves the

problem. This phenomenon is known as rippling, as it mimics the propagation of a wave in water. We should

observe that if the last non-vacant cell has no right neighbor, overflow must be reported. However, the

insertion may have just cause the deletion of a number of edges, in which case reporting overflow is

undesirable. In general, we pose as a requirement that no overflow should be reported if there is any vacant cell

in the array, no matter where. To comply with this rule, we must ensure that vacant cells which have edges on

their right-hand side, i.e., holes, must be filled by edges from the right. To do so, it suffices to have each cell

always check whether its left hand-side neighbor is vacant, in which case it must pass its contents to it. As a

result, it appears that, in general, two opposite motions will take place within die array: one, to the right,

corresponds to queries and insertions, while the other, leftwards, is meant to fill die holes just created.

Operation 2 simply involves pumping out all the edges of the array through the input cell, thus preserving the

(counterclockwise) order of the edges. Operation 3 is a simple application of Lemma 2, similar to Operation 1,

yet without altering the state of the array. The query point M travels left-to-right, checking its location with

respect to each edge in turn. If M is always found to lie on the same side of the edge as the interior of the

polygon, inclusion must be reported, otherwise M lies outside the convex hull. Sec Appendix for details.

11

4 Inclusion, Intersection, and Closest-point problems

We next show that many of the most common geometric problems can be solved by means of a simple

unifying scheme. The underlying idea, already used in aridimctic or pattern matching [K.FK,KL], exploits

the inherent suitability of systolic designs to testing each input data against the contents of each cell, in a

pipeline fashion.

More precisely, let S 1,...,SN be the data stored in the array, and let ^ , 0 . denote a list of queries in the

order with which they arrive at the input cell: the goal is to compute for each query die value of T k ^ f

defined by the recurrence relation: T^
1

* = 0,

T k

(0

= F (T k

f r l

l S A)

y . — t
in

- > X
out

y
out

X < X
out in

y <
 p

(y ,S , X .)
J out in ' i ' in

Figure 7: A systolic scheme for iterative problems.

Figure 7 sketches a systolic solution for this class of problems. As we will see, it is possible, in most cases, to

make the systolic scheme dynamic, that is, capable of handling updates in the array. If no order among the S/s

is required, a delete (e) operation simply results in marking the cell storing e vacant, while insert (e) causes the

storing of e in the first cell vacant from the left If on the other hand, some order is to be preserved among the

S/s, an insert operation will involve searching for the appropriate (non-ncccssarily vacant) cell, and store the

new clement in it, thus possibly causing the remaining cells to ripple to the right. Symmetrically, deleting an

element will incur the creation of a hole and the start of a leftward motion aimed at filling it, resulting in the

propagation of the hole to the right end of the array.

12

For a list of applications areas where the geometric problems addressed next arise in practice, Shamos'

thesis [S] is the first source to turn to.

4.1 Inclusion problems

1) Point / Polygon

Does point M lie in polygon P = Mr..M^

The polygon is taken to be simple
5

, but no convexity assumptions are made. It is possible to achieve unit

period with the following systolic scheme. The register Sj holds the pair (M.,M. x) , where the list M 1 5 . . . ,M N

corresponds to a clockwise traversal of the boundary of P. The variables x and y of fig.7 are respectively the

point M and the pair (uv,uV), where uv and u V are the edges of P with u,v (resp. u\v') giving the clockwise

direction, such that their intersection with the vertical line L passing through M forms the smallest segment so

far containing M (fig.8). Testing for the inclusion of point M involves pumping M throughout the array, from

left to right, updating the pair of edges in y on the fly.

Figure 8: Testing inclusion.

A polygon is simple if no pair of non-adjacent edges intersect

13

Lety. = (AA'.BB'), with D A = LnAA' and D B = LnBB'.

L e t D
n

= M j M . + 1 n L

i f D l i e s o n D A D B

then

i f M l i e s o n D A D

then y 0 U t - (A A ' , M i M i + 1)

else y ^ - f l J B W i j M , ^)

else

X

o u t
< — X

i n

If D A (rcsp. D R) is undefined, it can be set to + infinity (resp. - infinity), for convenience.

Eventually, the array can output an inclusion message if v . falls into case b) of fig.8, or a non-inclusion
out

signal if it falls into case c). This is a simple application of the Jordan Curve Theorem, stating that a closed

curve in the plane divides the plane into two parts: the inside and the outside. Note that the scheme used

above is far from unique, and other tests for inclusion may lead to equally simple systolic structures. For

example, simply counting the number of intersections with the line L above and below M is sufficient, since

these numbers are even iff M lies inside the polygon.

2) Planar point location

Given a planar graph with faces f^f^ and a point M9 determine the face where M lies.

For this problem, several sequential algorithms with an optimal 0(log N) query time exist [S,LT,P2], but

for the most part, require complicated preprocessing. Instead, we can design a very simple systolic array to

solve this problem with unit period. To do so, we simply represent the graph by placing in the array, next to

each other, clockwise descriptions of the faces. Since in this way, each edge is represented exactly twice, and

since the total number of edges of a planar graph does not exceed the number of faces, up to within a constant

factor, no more than a linear number of cells will be required. We can now view the graph as a union of

polygons, represented in the array by consecutive sublists of edges. Locating a query point M comes down to

testing the point for inclusion with respect to each polygon in turn, as previously described, finally concluding

with a report of the name of die unique polygon which contains M.

14

3) Range search

In one dimension, the problem consists of computing the number of segments containing a query

point, given a set of N collinear segments. In two dimensions, the goal is to report the number of

rectangles containing a query point, given a set of N iso-reel angles (sides parallel to the X-Y-axes)

[BW,BO,NP,E,M].

The systolic array will simply store one segment (rcsp. rectangle) in each cell, so that the query point can

scan the array left-to-right, checking for inclusion in the segment (resp. rectangle) stored in each cell, and

updating the partial count. Note that die problem can be extended to arbitrary polygons instead of only

iso-rec tangles.

4) Inverse range search

Given a set of segments (resp. rectangles), and given a query segment (or a query rectangle), report

the number of segments (resp. rectangles) that intersect the query object [BW,BO,NP,E,M].

Once again, testing pairwise intersection requires constant time, which ensures unit period. The algorithm

is straightforward and needs no further development

The last two problems arise constandy in graphics [NS], and in design-rule checking for VLSI circuits

[BO,BW]. Often, however, instead of a mere number of intersections, an explicit report of all the intersecting

pairs is desired. To give our systolic arrays this added capability, it is sufficient to add only a few instructions

to the algorithms. One solution is to prescribe that upon encountering an intersection, a query first sends the

intersecting pair forward to the next cell, then only proceeds in the same direction. Of course, this will cause a

slowdown, therefore to prevent overtaking by subsequent queries, we require that before moving an object to

the next cell, the algorithm first check the vacancy of that cell. To that end, each cell must keep sending vacant

or occupied signals to its left hand-side neighbor. The scheme is somewhat similar to the traffic management

described for CH2, so we refer to the appendix for details. We should observe that with the actual reporting

of intersecting pairs, the array still yields maximal throughput, since the output flow is always kept at its

maximum. The concept of period, based on input rate, becomes meaningless, however, since a glut due to

intense output activity may cause a slowdown in the input rate.

4 .2 Intersection problems

For sequential algorithms, see [S,SH,BW,BO,NP].

5) Intersection of polygons

Given two polygons P.Q, determine whether they intersect

If we wish to determine only if the boundaries intersect, we may simply store the edges of P in the systolic

array, and have those of Q travel left-to-right, testing each edge encountered for intersection. It is easy to

15

extend the method and solve the general problem by observing diat P and Q intersect if and only if at least

one of the following conditions is satisfied:

1. A vertex of P lies in Q.

2. A vertex of Q lies in P.

3. The boundaries of P and Q intersect

Thus it suffices to add to each cell two copies of the procedure described for Problem 1); one with respect

to P, the other with respect to Q. Note that each cell must check whether the passing edge is die last edge of

Q, in which case, it must tag a yes or no signal to the tail of Q to acknowledge if cither endpoint of the edge

stored in the cell lies inside Q or no t This is straightforward, and details are left to the attention of the reader.

6) Intersection of half-planes

Given N half-planes H^M^ compute their intersection.

This problem requires Q(Nlog N) time on a conventional machine [S,SH,B]. As usual, we expect our

systolic implementation to yield maximal throughput and thus display an overall O(N) time performance.

Moreover, as we will see, it is easy to provide the array with the capability of handling queries and updates,

without losing on the overall performance. This addition is very similar to the connection of. CHI and CH2

described earlier for the solution of dynamic convex hull problems. Actually, the similarity between the two

problems is very deep, for it stems from the geometric duality which exists between convex hulls and

intersections of half-spaces [B,PM].

Let I be the intersection of the N half-planes H 1 , . . . ,H N . If I is not empty, it is a convex polygon with

possibly one open side, i.e„ two edges that are half-lines meeting at infinity6. It is possible to represent I

either by a list of the lines supporting the edges of I, in arbitrary order, or if we wish more information, by a

list L of edges (A,B), as they appear in a clockwise traversal of the boundary. In case of an open polygon I, we

require that the vertex at infinity should appear at the ends of the list For example, we may have two points

I r I k , in the list

L=={(I r Ap , (A r Ap , . . . , (A k , I k)}

with the understanding that the edge llAl (resp. A k I k) is the infinite ray starting at A x (rcsp. A k) and passing

through I 1 A 1 (resp. A k I k) .

S o l e , for the sake of completeness, that the intersection I may also be reduced to a single half-plane or an infinite parallel strip.

16

Similarly to CHI and CH2, we will design two systolic arrays INT1 and INT2 to support the following

operations:

Array INT1

1. Insert/delete half-plane H.

2. Report all lines on the boundary of I, in arbitrary order.

3. Determine whether point M lies in I.

Array INT2

1. Insert half-plane H.

2. Report all vertices of I in clockwise (or counterclockwise) order.

3. Determine whether point M lies in I.

Because of the similarity with CHI and CH2, we may only sketch the algorithms. Any standard

representation of half-planes is adequate. For example, (u,v,w,>) can be used to denote the half-plane

uX + vY -h w > 0.

The only point to investigate about INT1 is, in Operation 2, the type of matching involved in the "fold-

over" process. To begin with, it is easy to see that a half-plane H. contributes an edge to I iff its supporting

line lies in the intersection of the N- l remaining half-planes H 1 , . . . ,H i . 1 ,H i + 1 , . . . ,H N . Then since the

intersection of L with the intersection of any subset of H x H N is, if not empty, a segment, a half-line, or L{

itself, it can be expressed by means of at most two points, which can then be updated as L. is matched against

each Hj in turn. All of the other features of INT1 are similar to those of CHI. As for INT2, we assume that,

at all times, the array contains a clockwise description of I, with each edge stored in a separate cell. Once

again, all the operations are handled as in CH2, including the hole-filling process; only the case analysis for

Operation 1, the center-piece of the algorithm, needs to be detailed, which is done in the appendix.

4.3 Closest-point problems

7) Nearest-neighbor

Given N points. M^Af^ and a query point M, detertnine the nearest neighbor of M - see

[S,BSW,BWY].

For this problem, we allow the dimension of the space to be arbitrary and the distance to be based on any

of the L r L2.....L norms 7. Whereas efficient solutions on a conventional machine involve the use of fancy

^Recall that the L^-norm of a vector (x v . . . x H) in a Euclidean d-space is (1 x ^ 4 - . . . + |x r f p] ^^.

17

data structures (e.g., Voronoi diagrams, planar point location search trees, k-d trees, etc.) entailing substantial

implementation overhead, a simple dynamic systolic scheme can be devised as follows:

Once again, we store one point per cell. Queries travel left-to-right, determining their nearest neighbor on

the fly. To do so, each query is accompanied by the the closest point found so far. Updates in the structure

are handled as in CHI, that is, inserting a point into the first available cell encountered, and deleting it by

simply marking the corresponding cell vacant If desired, a report-all-nearest-neighbors query can be added to

the set of allowed operations. This instruction, which causes the nearest neighbor of each point in the array to

be output can be implemented by the fold-over procedure of CHI. See Appendix for details.

Applications areas where a device for reporting near-neighbors would be of great interest are many. Air

traffic control is one example: in this situation, typically, a few radars transmit streams of signals giving

updates on the position of near-by airplanes, and minimum safety distances between planes must be

constantly ensured. To speed up the signaling of anomalous positions, an emergency output port can be

reserved on each cell, with direct link to the host Although slightly unsystolic, this feature is totally feasible as

long as emergency reports remain rare events.

8) Euclidean minimum spanning tree

Given N points in the plane, construct a tree of minimum total length whose vertices are the given

pointsfSJ.

C. Savage, in [SA], proposes a systolic structure for computing the connected components of a graph. This

structure is a one-dimensional systolic array, which can be connected to Lciserson's priority queue [L], so as to

compute the minimum spanning tree in linear time.

9) Triangulation

Partition the convex hull of N points Mr„MN into triangles, using only segments between the

points.

This problem, which arises frequently in numerical analysis {finite element method numerical

interpolations, etc.), has an Q(Nlog N) lower bound on a sequential machine [S]. A one-dimensional systolic

scheme can yet achieve linear time, while supporting the following features.

18

Array TRI

1. Insert a point in the triangulation.

2. Determine in which face of the triangulation a query point lies.

3. Report all the triangles of the triangulation by giving, for each, a clockwise order list of its vertices.

The array TRI computes an arbitrary triangulation, without any consideration of
 , ,

goodness
,

\ Since in

many cases, however, it is crucial that certain quality criteria are met, e.g, minimizing a function of the edges,

the array might be used more advantageously within the framework of a more complicated heuristic. Each

occupied cell may serve one of two purposes: cither it stores an edge of the convex hull (R=(A,B)) with A,B

giving the clockwise orientation, or it stores the vertices of a triangle in clockwise order. We also require that,

from left to right, the edges stored in the cells of the first kind should appear in clockwise order (fig.9). Finally

we assume the existence of a flag F to signal the first edge of cither the upper or the lower chain - see

description of CH2 in the appendix for more details. With this arrangement, Operation 2 simply involves

testing the query point against each triangle, carrying the containing triangle along with M, when detected (if

ever), otherwise reporting an outsideface message, if no such triangle has been found. Yet simpler, Operation

3 involves pumping out the contents of each cell storing a triangle, one by one - see report operation for CH2

in the appendix.

To handle Operation 1, two cases must be considered:

1. M lies inside a triangle (e.g., DFC in fig.9). We must replace R by, say, MCD, and insert the

triangles MDF and MFC into the next two right neighbors of the current cell. This is done by

rippling to the right (fig.9,10 - case 1).

2. M lies outside the convex hull, and thus will become a vertex of the new convex hull. The

algorithm is very similar to CH2. Instead of deleting non-convex-hull edges, however, we must

now insert new triangles into the array. Referring to fig.13, with AB being the edge currently

examined, and CA,B occurring in clockwise order around the convex hull, we can give the new

case analysis. See example in fig.10 - case 2.

1) Delete AB, add AM and MBA.

2) No action.

3) Delete AB, add MBA.

4) Add MA.

Remark: to read after the technical part for CH2 given in the appendix. Note that, instead of one possible

add in CH2 in the course of an insertion, we may now have a total of 3 add operations. Thus, to avoid having

19

CASE1

-

DFC FG FGC end empty

MCD

MDF
FG FGC end empty

MFC

Ripple.../...

Figure 9: Continued on next page.../...

requests overtaking one another, we should add a delay of two more systolic cycles between successive

requests, as compared to CH2. In consequence, a delay of 9 idle cycles between requests is certainly a safe

scheduling. This margin of safety is actually overly conservative, and there is ample room for optimization.

20

MDF MFC

FG

FGC end

iMCD MDF MFC FG

end

FGC empty

MCD MDF MFC FG FGC end

GA

first GAC

GM

first MAG GAC AB ABC

GAC MBA ABC

ABC BDC MEB BED

EF

first

ABC BDC MEB BED ME

EF

first

Figure 10: The triangulation array TRI in action.

21

5 Conclusions

The purpose of this work has been to present systolic designs for several geometric problems. Most of the

algorithms described in this paper involve two distinct types of tasks. One is concerned with the actual

computation of geometric functions, and is, in general, the easier to understand. The other involves initiating

and granting requests, which entails moving data around, i.e., adding new items into the array or filling holes

created by deletions. In general, the flow of data is irregular and not predetermined, since it is

contents-dependent. With the exception of priority queues and similar structures [GL,L], this constitutes a

major departure from most systolic arrays described in the literature, especially those for arithmetic

computations [KL.K,FK]. Instead, most of the known systolic structures have a fixed, predetermined data

flow, usually highly regular. One major difficulty with random motion is the absence of adequate tools for

proving the correctness of the algorithms, and in particular, describing the behavior of die data flow. There

certainly lie promising avenues of research.

In practice, most of the algorithms given here should undergo substantial revising before being

implemented, so as to take into account the opportunities for local optimization granted by the particular

applications for which the device is intended Also, the current state of VLSI technology certainly imposes

definite constraints which are bound to influence the overall design. For example, the pin/bandwidth

limitation of today's chips, rightly seen by many as the major bottleneck, can be partly overcome by clustering

several cells onto a single chip. Also, one highly desirable feature of a systolic array is that it is computation-

bounded and not I/O-bounded [Kl]. This amounts in practice to ensure that the cells do not spend most of

the time idle, waiting for inputs to come. As it is, it is doubtful that this could be the case with the algorithms

given here, since executing the microcode, alone, is most likely to take longer than completing any I/O

operation. At any rate, it is always possible to circumvent this difficulty by providing each cell with a small

random access memory (perhaps - 1-2K with present NMOS technology), and simulating a few tens of cells

sequentially with a single processor. This solution also has the advantage of making the handling of very large

inputs possible, without requiring an excessive number of chips, hence pardy overcoming the inter-chip

communication bottleneck. This may seem, of course, like an overt denial of the systolic philosophy,

however, the presence of many cells (~ 100) within the array will largely preserve the systolic nature of the

overall structure, as well as its benefits.

At the implementation level, we urge to stay away from floating-point representations, whenever possible,

because of die inevitable complications which they entail. Note that in all the algorithms given above, only

fixed-point additions, subtractions, and multiplications arc needed, with the exception of the intersection

22

algorithms, which involve the solution of linear equations. In this case, division is needed, yet can be avoided,

if rational numbers are kept as pairs of fixed-point numbers, as is common practice in linear programming.

We should also observe that the arithmetic computations involved in the algorithms are in general very simple

and limited, most of them consisting of simple fixed-point inner products.

Future work in the area of systolic algorithms includes, of course, their actual implementation and

evaluation. Also, any attempt at classifying the problems that lend themselves to systolic implementations

appears very worthwhile. Finally, we must once again emphasize the current need for an original description

language for systolic systems, as well as new tools for studying the behavior and proving the correctness of the

underlying algorithms.

Acknowledgments

I wish to diank H.T. Kung and the PSC (Programmable Systolic Chip) Group at CMU for their advice and

support.

23

1 . The input cell

As illustrated in fig.ll. the input cell has 5 variables attached to i t

• y
out

out

Figure 11: The input cell for CHI.

1. Variables y i n and y Q u t indicate the kind of operations to be performed. y i n and y Q u t can take on the

values: insert, delete, inclusion (Operation 3), report or rep/old (Operation 2). The purpose of this

last distinction is for the consistency of the generic cell. Indeed, there must be two kinds of report

signals. One (report) to handle the general case, the other (repfold) to give the additional signal

that the cell receiving it is the left end of the folding strip, and therefore should pass along its own

contents to its right-hand side neighbor at the next systolic cycle.

2. x i n can hold cither the coordinates of a point to insert, delete, or test for inclusion, or have an

arbitrary value when y i n = report x Q u t serves die same function: however, when y i n = inclusion,

x Q u l must hold both the query point M and the point R, for future setting of the triplet T. For

simplicity, we will represent x Q u t as (M,R,0). Similarly, when y i n = report, we have xout<— (R,0,0).

3. R is a register with the coordinates of a point. When this point is deleted from the structure, R is

marked as 6 to signify that die cell is vacant.

e is a symbol used systematically to denote an arbitrary value without significance to the computation. To

shorten the description of the algorithms, we assume, throughout the paper, that all the output variables

(x n n t , y n u t) not cxplicidy set to any value in the algorithm are actually set to e.

Appendix

I. The Algorithm for CH1

24

The Algorithm

if y. = insert

then if R = e

then "vacancy" R*— x^

else y0Ur
in5err

>
x

o*S-
x

m

ify. -delete

then if R = x. n

then R*-e

dse y^delete; x H I

if y. = inclusion
in

t h e n

 yM^^ysiom x o u t <-(x i n ,R,0)

\fym = report
t h e n

 youi*-repfold; xQ U t<-(R,0,0)

2. The generic cell

The generic cell is similar to the input cell, with a few addendas. In particular, it requires two more registers

T and C, along with R. As explained above, as points pass over a generic cell in the report mode, the cell

maintains a triplet of points to know its own status with respect to the convex hull of the passing points, hence

the role of register T. T is a pair of points (G,H), so that the triplet is actually (R,G,H). When y i n = report or

repfold, it is clear that y should be set to report However, in the latter case, the cell must know that it must

send its contents at the next systolic cycle. For this reason, y^ = repfold causes the cell to set its one-bit flag C

to 1, in order to remember to do so. Thus, at the next cycle, the cell will send the contents of its register R to

its right-hand side neighbor, along with a repfold signal. Note, however, that only occupied cells do fold over.

When a cell determines that eitiicr the point it is currently storing, or the point passing by lies inside the

convex hull, it sets some appropriate flag to avoid further computation. More precisely, in inclusion, report, or

repfold mode, y is set to thruinclusion in the first case and thrureport in the two others, so as to notice

forthcoming cells to abstain from any unnecessary work. Similarly, if this happens with respect to a cell which

has not started moving, T is set to nonconv.

25

The Algorithm

Vy^-insert

then if R = e

then "vacancy"

eke y Q u t < - insert

if v. = delete
- m

then if R = x.

then

then ~R*-e

else y^*-delete

X

o u t * ~
x

i n

i f R = e
then "empty cell - pass along"

^out^^in

out in
stop

if y. = inclusion
m

then Letx. n =(M,A,B)

P = [F(A,M.B) = F(R,M,B)]

Q = [F(B,M,A)=F(R,M,A)]

ifPAQ

then

y^*-inclusion

if-<PAQ

then

X

o u t * ~
X

i n

i fPA^Q

then

y inclusion

else

y t<— inclusion

x o u l . - (M,B,R)

y +—thruinclusion
J

 out
x

out*~~ (Mjnside)

if v. = thruinclusion
" in

then

^out
4

"" ̂ in

X

o u t
4 — X

i n

if (y i n = repori)V(y.m = repfold)

V(y. -thrureport)

Letx i n = (M A B)

if (A,B)=(nonconvfi)

then "y.m = repfolcT

yQUi*-thrureport

x ^ M M A O)

if (y.it*lhrureport)A(A*nonconv)

then

begin

Let P = [F(A.M,B) = F(R,M,B)1
Q = [F(B,M,A) = F(R,M,A)]

ifPAQ

then

i f - I P A Q

then

'out
X

out^~~
 X

i n

ifPA-.Q

then

ymr-
re

P
ort

X o u - (M A R)

else

end

yaat'-
re

P
ort

x

o u t ^ <
M

'
B

>
R

>

y(mt*-thrureport

x o u t + - (M,0 ,0)

i f T = «

then

T^-(M.O)

ifT=(G,0)

then

T.- (G,M)

i fT=(G,H)

then

LctV = [F(G,R,H) = F(M,R,H)J

W = [F(H,R,G)=F(M,R,G)]

begin

if-.VAW

then TV-(G.M)

if VA-^W
then T—(H,M)

if-^VA-.W

26

then T<— nonconv

end

if y. — thrureport

then

v o u t<-thrureport

x o u r (M , 0 , 0)

if'y t o = repfold

then C*-l

if C = l

then "Bv convention, y. should be e."
* in

C . - 0

if (T = nonconv)

then

T<—(nonconv,Q)

ymr-
re

pf°
ld

Note that in repfold or report mode, the first two generic cells, and in inclusion mode, the first generic cell,

do not receive a full triplet (M,A,B) as x^, therefore the first two generic cells do not have to execute the part

of code for checking local convexity.

3. The output cell

The output cell is basically a simplified version of the generic cell. In particular, x Q u t does not need to be a

triplet when the cell is in report or inclusion mode. We still give the algorithm for the sake of completeness.

The Algorithm

if y i n = insert

then

if R = e

then R<-x ;

in
else vA overflow

" out '

if y. = delete

then

if R=x .
, m

then

else

y Qut<— nodeletion

X out*~ X in

if y = inclusion

then

Let x j n = (M , A , B)

P = [F(A,M,B) = F(R,M,B)]

Q = [F(B;M,A) = F(R,M,A)]

x

o u t < ~
M

if R = e

then y outside J

 out

stop

if-nPA-iQ

then youi+—inside

27

else v outside
- out

if v. = thruinclusion
* in

then
y inside
'out
x x.

out in

if (y i n = report)v(y[n = repfold)

V (y . n = thrureport)

then

Le tx i n = (iM,A,B)

if (A,B)=(nonconv,Q)

then

if (y^thrureport) A(A*nonconv)

then

begin

if y = thrureport

then

if y i n = repfold

then

C—1

if C = l then

C ^ O

if (T*nonconv)A(T*e)

then

y (M <r-hulhertex

else

X

o u t ^
R

y 0 U t ^
€

Let P = [F(A.M,B)=F(R,M,B)]

Q = [F(B,M,A) = F(R,M,A)]

if R = e

then

y^^-hulhertex

out
stop

i fHPA^Q

then

else

y'„.<—hullvertex
0 1 , 1

 \ *
x

o u t ^
M

end

if R-e

then

if T = e

then T^-(M.O)

if T=(G,0)

then T W G , M)

if T=(G,H)

then LetV = (F(G,R,H) = F(M,R,H)]

W = [F(H,R,G) = F(M,R,G)]

begin

if - > V A W

then T M G , M)

ifVA^W

then T*-(H,M)

i f ^ V A ^ W

then T*—nonconv

end

28

I I . The Algorithm for CH2

For reasons which will become apparent later on, the frequency of operations initiated on die input cell

must follow the rules below:

1. After starting an operation on the input cell, wait for at least 7 idle cycles before initiating another

request.

2. No operation can be initiated before Operation 2 is completely finished. A special symbol end will

acknowledge that fact

There is nothing magic about these figures. It is sufficient that a general relation, discussed later on, be

satisfied, and actually, for the sake of simplicity, our rules have been made overly conservative. Because of its

generality, we begin with a description of the generic cell.

1. The generic cell

As shown in fig.12, the generic cell can be described with 6 basic variables and 3 registers R,F,C, the former

storing one edge (A.B) of the convex hull. Testing the inclusion of a point x.m = M in the convex hull involves

having y^ set to ihruinclusion if non-inclusion has already been determined, or inclusion otherwise, in which

case, computing G(M,A,B) allows us to iterate on to the next cell. The variables z i n , z Q u t serve a double

purpose. On the one hand if z^ is a pair (A,B), the cell is vacant (R = e) and must be filled (R<—z^). On the

other hand, once a report (Operation 2) has been initiated on the input cell, the contents of each non-vacant

cell will get to travel towards the input cell to be eventually output To distinguish between these two kinds of

leftward motion, one bit (report) is tagged to z^, i.e„ z^=(report,A,B), so that the cell knows that it must only

pass this value along (z^*—(report,A,B)). Of course if y. = report, z o u t is set to (report,R).

out

X.
in

R,C,F R,C,F

in

^out

out

Figure 12: The generic cell for CH2.

29

The last case to examine (Operation 1) is by far the most delicate. To decide the status of a point M in the

convex hull Lemma 2 shows that 4 possible situations should be considered. M traveling along the array from

the input to the output cell, let R=(A,B) be the edge stored at die cell currently visited, and let die variable u

be set to in if the edge (C,A) of the previous (non-empty) cell satisfies G(M,C,A)<0, or out otherwise.

Similarly, let v be G(MA,B). Lemma 2 shows that the following actions should be taken.

1. u = in v > 0 (fig.13.1). Delete R to replace its contents by (AM).

2. u = m, v < 0 (fig. 13.2). No action.

3. u = out, v > 0 (fig.13.3). Delete R.

4. u = out, v < 0 (fig.13.4). Insert (M,A) before R. Send R to next cell

1) 2)

3) 4)

Figure 13: Establishing die status of a new point

30

Note that if all 4 cases should arise, they would occur with the order 2 2,1,3,....3,4,2 2 (up to circular

permutation). Since we wish to pipeline the updates, it is very important that as an insert-M operation travels

left-to-right, the insert signal, at any time, leaves behind the exact clockwise description of die boundary as it

should be after inserting M. For this reason, we must ensure diat if die 4 cases should arise, diey do so in the

order

2,...,2,1>,3,**«,3,4,2,...,2

This problem comes from die fact that the variable u cannot be computed for the first cell, since it involves

knowledge of the last occupied cell in the array. To overcome this difficulty, we adopt a slightly different

representation of a convex polygon, which involves partitioning the boundary into two chains of consecutive

edges. One, the upper chain, consists of the upper edges of the polygon, i.e„ edges with increasing X-

coordinates in clockwise order, the other, the lower chain, consists of the lower edges, defined as the edges

pointing to the left (fig.14).

Figure 14: The partition of a convex polygon.

We now require that from left to right, the array CH2 should store first the edges of the upper chain, then

the edges of the lower chain, both in clockwise order. Of course, we must assume the presence of a flag

register F in each cell, which takes on the value firstup (resp. firsilow), if the cell is currently storing the first

edge of the upper (resp. lower) chain. Otherwise, F is set to e. The flag plays the role of u for the two edges in

the array whose neighbors, in counterclockwise order, arc conceptually two infinite vertical rays.

Situations 1 and 2 are straightforward to handle, unlike Situation 3 which creates "holes" in the array, and

31

situation 4 which adds one extra edge. In the latter case, the edge R and the flag F will bounce tiieir contents

on to the next cell, which will store them in its registers, and send the former contents of tfiese registers to its

neighbor. This process will iterate until the last cell (R = end) has been reached, dius adding one to the overall

cell occupancy. While a cell is busy sending its contents to its neighbor, it must hold up the insert request to

forward it at the next step. To do so, it uses die third register C. To handle Situation 3, i.e., to fill holes, we

require that at the end of the computation, each cell checks whether it is vacant (R = e), in which case it issues

a hole signal to its right-hand neighbor (y hole), provided that y Q U t has not already been set to another

value (e.g. a query/update signal). Upon receiving a hole signal (y i n = //o/<?), the cell must empty its register T

onto its left-hand neighbor (zout<—R). One major difficulty is that, with a naive implementation, a right-

moving query/update may miss some left-moving edges. To circumvent diis pitfall, we reserve the odd

systolic cycles for all leftward transfers, and the even cycles for the remaining computations.

The Algorithm

We assume that, during even cycles, all I/O variables not explicitly assigned to any value are set to e - note

that allowing this to happen during odd cycles would have disastrous effects.

Odd systolic cycles

if(y i n = / ! 0 / e)A(z o u t =e)

then

R<-F<-e

Even systolic cycles

ifz i n *e

then

if z[n=(report,A,E)

then z__+— z:.

else
out

(R,F> in

i f O e

then

youi<-insert

x o u t * - C

if y. = insert
* in

then

begin

if(R = e)v(R = emi)

then

y o u t<-mserr

else

X o u t 4 - X i n

32

Let x.n = (M.u.w),R=(A,B),

and v = G(M,A,B)

if F=firstup

then

ifM 1 <A 1

then u«— out

else u*— in

MV-firstlow

then

then u<— out

else u<— in

end

if y = add
J in then

X

OUt*~^
(RJO- X ,

in

if y. = report

then

if(R*€)A(R#emO

then

zQui+-(report,R)

y0ut+-
re

p°
rt

if(u = / A7)A(v>0)

then

"AM is on convex hull"

R - (A , M)

yout*~ insert

if (u = //i)A(v<0)

then

X

o u t < ~
(M

'
/ , 2

'
6)

if(u = ow/)A(v>0)

then

"Delete R , F
f

if (w = firstup)v(F = firstup)

then

^^(^outfirstup)

if (w = y?rs//ow)V(F= firstlow)

then

if y. = inclusion
in

then
begin

if(R = €)v(R = e/uf)

then

else

y inclusion
'out
X # « — X.

out in

LetR = (A,B)

if°G(M,A,BK0

then

else

end

y inclusion J out
y thruinclusion J out

R4-F«-e

x^t -iMiOUtjirstlow)

if y. = thruinclusion
in

then
y thruinclusion
J out
X out"~ X in

if(R = 6) A (y o u t = e)

then

y^hole

If (u = out) A(\ <0)

then

"MA and AB are

on convex hull"

X o u t ^ R

RMM,A)

C-(M,m,e)

if (w = j?rs/w/?)v(w = firstlow)

then

F<—w

33

2. The input and output cells

We need not give die details of the algoridims for diese cells, since they are merely simplified versions of

the generic cell. Before computation starts, we assume die presence of R = end in die input cell For diis cell,

the odd cycles will be idle, and except for a special treatment for the first three points entering the array, most

of the behavior of this cell is identical to that of the generic cell. As for the output cell, its most notable feature

is to detect and report possible overflows, as well as outputting an inclusion message if y j n = inclusion, and a

non-inclusion message if y^thruinclusioru

3. Correctness of the algorithm for CH2

To begin with, we should note that along with an insert-M request, two flags (u and w) should be tagged to

M. The variable u is, as shown above, the status in or out of M with respect to the previous cell, and w is a flag

set to firstup (resp. firstlow) if the next edge created, MA. happens to be the first of the upper (resp. lower)

chain. This information is needed when the first edges are deleted by repeated occurrences of Situation 3, and

w is thus the only way to acknowledge the first new edge that it is indeed the first edge of a chain. It is

important to realize that filling holes with a rightward modon of edges is meant only to improve the

performance of the array, i.e., put the limitation on the size of the convex hull rather than on the number of

operations which can be performed. For this reason, we may first show the correctness of the algorithm when

all the instructions related to that hole-filling job are dropped. This involves ignoring odd cycles as well as the

last if-statement of the main algorithm. The only point remaining to be checked is that y Q U t is always set only

once.

In order to do so, we may start with a few helpful observations. Let us call an even phase the conjunction of

an even followed by an odd cycle. The rules on operations rate specified above impose a delay of at most 4

even phases between two consecutive operations. However, an insert operation may entail the loss of one

phase, caused by the possible (unique) setting of C, thus reducing the above delay to 3. On the contrary, a cell

may issue a hole signal (y^f-hole) possibly at every even phase, and similarly a cell is in a position to

respond to a hole message at every odd phase (zo u l*—(R,F)). From these facts, we derive in particular that

whenever O e , we also have y i n = e, form which it is easy to see that there is never any conflict in setting y ^ .

Now including the hole-filling instructions, we only have to show that there is no conflict in setting the

register R. More precisely, we must prove that whenever z i n =(A,B,F)*e, we have R = e. This comes from the

fact diat z i n =(A,B,F) if and only if, at the previous odd cycle, y Q u l had the value hole. This, in turn, implies

that at the end of the previous even cycle, we had R = e. Since, in addition, R can only be set to e (if it is ever)

at odd cycles, our proof is complete.

The last item to verify is what precisely motivated the distinction between odd and even cycles: the

34

assurance that all right-moving queries or updates encounter all the edges of die array. If z. =(A,B,F)*c, the

first action taken by the cell at an even cycle is to set (R,F) to z^, so that a inclusion or insert operation at that

cycle will effectively deal widi the just-left-moved edge. On the other hand, since die edge leaves the cell only

under a y. = hole situation, the cell will not have to handle any query/update at the next even cycle, so it may

leave the cell without missing any matching, which proves our claim. Our final investigation concerns the

storage efficiency of the array. We have claimed that no overflow will ever occur, as long as the number of

vertices in die convex hull, at any time, does not exceed N/2 . We must now support this claim.

The above assumption clearly implies that no more than N/2 cells are occupied (R*e) at any time, since

inserting a vertex involves, first, deleting old edges, then adding the new ones. Trouble may arise, however, if

edges tend to cluster towards the output cell. To dispel that worry, we introduce die concept of leading front,

defined as the rightmost cluster of occupied cells, i.e., the rightmost group of cells without R = e. A leading

front can be characterized by the position H of the first cell, measured as its distance to the input cell, along

with the length L of the cell. To prove the absence of leading fronts near die output cell, hence the absence of

overflow, it clearly suffices to establish the following result

Lemma 3: H + 2 L < N

Proof: To look at the evolution of a leading front suppose that the front (H,L-1) just had one -

cell added to it as the result of an insertion, yielding a front (H,L). From the rules, it follows that

during the next 7 cycles, no more cell can be added to the front. However, a hole signal will

necessarily be transmitted to the leftmost cell of the front during the first two even cycles,

therefore this cell will be detached from the front by the second odd cycle, at the latest For the

same reason, a hole signal will reach the new leftmost cell of the front by the 4th even cycle at the

latest therefore this cell will also detach itself before the 7 cycles are elapsed, thus leaving a front

(H+2,L) in the worst case, which completes the proof. •

It is easy to generalize the rules specified above, which may be useful for tuning the algorithms according to

the average distribution of requests. Let A be the number of cells in the systolic array, and let a be the ratio

speed of head/speed of tail. If we wish to allow up to N convex hull vertices in the array, at any time, we must

have the relation aA<A-N, hence a< l -N/A, satisfied. On the other hand, if a (rcsp. b) is the delay jneasured

in number of phases, imposed between consecutive insert (resp. inclusion) operations, the following relation

must hold.

l / a < a (l - (l / a + l / b))

that is,

1/a < (l -N/A)(l - (l / a+ l /b)) .

35

III. The Algorithm for 1NT2

Wc give only the algorithm for the insert operation, the others being handled in a way stricdy similar to

C H I When the line L delimidng the half-plane H to be inserted intersects the current polygon I, the

intersection consists (in general) of a segment VW, which must be added to the array. To do so, it suffices to

tag the first intersection point encountered, V or W, along with the half-plane H, as it travels left-to-right, in

order to insert VW into the array as soon as die other end-point can be computed (case 1 or 4). As usual, note

the presence of die register C to buffer out the delay caused by an insertion. See fig.15.

3) 4)

Figure 15: The various cases for INT2.

36

The Algorithm

if y. = insert case 2
in

t h c n

 W ^ i n
if(R = e)V(R = « i d)

 x

o u t ^
x

i n

then

y insert case 3
out •

X

o u t -
x

i n R " -
£

C l s e y o u t ^ ^ i n

LctR=(A,B) ,x i n =(H,u) xQut^x. m

Switch to appropriate case (fig.15).

case 4

case 1 if u*e

R<-(A,D) then

if u#e y^i-add
then x o u t * - ^

D

'
B

>

y^add R«-0O>)
x

o u t ^ <
D

'
u

> C - (H , e)

C—(H,e) else

else R«-(D,B)

y m t ^
i n s e r t

 y a a t ^
i n s e r t

X ^ m ^ d) x

o u t ^ <
H

-
D

)

37

Bibliography

[BO] Bendey, J.L., Ottmann,T.

Algorithms for reporting and counting geometric intersections, IEEE Trans. Comp. C-28,9,

Sept 1979.

[BSW] Bentley, J.L., Stanat, D.F. and Williams, Jr., E.H.

The complexity of near-neighbor searching, Info. Proc. Lett. 6,6, Dec. 1977.

[BWY] Bentley, J.L., Weide, B.W. and Yao, A.C.

Optimal expected-time algorithms for closest-point problems, Proc. 16th Allertown Conf. on

Communication, Control and Computing, 1978.

[BW] Bendey, J.L., Wood, D.

An optimal worst-case algorithm for reporting intersections of rectangles, Rep. CMU-CS-79-122,

May 1979.

[B] Brown, K.Q.

Geometric transforms for fast geometric algorithms, PhD thesis, Carnegie-Mellon Univ., 1979.

[C] Clark, J.

A VLSI geometry processor for graphics, Lambda Magazine, Vol.1, No.2,1980.

[D] Dohi, Y., Fisher, A., Kung, H.T. and Monier, L.

Personal communication, PSC Group, Carnegie-Mellon University, February 1982.

[E] Edelsbrunner, H.

A time- and space- optimal solution for the planar all-intersecting-rectangles problem, Tech.

Report, Tcchnische Universitat Graz, April 1980.

[FK] Foster, M.J., Kung, H.T.

The design of special-purpose VLSI chips, Computer Magazine, 13 (1), Jan. 1980.

[GJ] Garey, M.R.. Johnson, D.S., Prcparata, F.P. and Tarjan, R.E.

Triangulating a simple polygon, Info. Proc. Lett., Vol 7(4), June 1978.

[GL] Guibas, L.J., Liang, S.M.

Systolic stacks, queues, and counters, Conf. Adv. Res. VLSI, MIT, Cambridge, Jan. 1982.

38

[GKT] Guibas, L.J., Kung, H.T. and Thompson, C.D.

Direct VLSI implementation of combinatorial algorithms, Proc. Caltech Conf. on VLSI, Jan.

1979.

[J] Jarvis, R.A.

On the identification of the convex hull of a finite set of points in the plane. Info. Proc. Lett 2,

1973.

[K] Kung, H.T.

Let's design algorithms for VLSI systems. Proc. Caltech Conf. on VLSI, Jan. 1979.

[Kl] Kung, H.T.

Why systolic architectures?, Tech. Report, CMU-CS-81-148, Carnegie-Mellon Univ., Nov. 1981.

Also in Computer Magazine, Jan. 1982.

[KL] Kung, H.T., Leiserson, C.E.

Systolic arrays for VLSI, Sparse Matrix Proceedings 1978, Society for Industrial and Applied

Mathematics, 1978.

[L] Leiserson, C.E

Systolic priority queues, Proc. Caltech Conf. on VLSI, Jan. 1979.

[LE] Lee, D.T.

On finding the convex hull of a simple polygon, Tech. Report # 80-03-FC-01, Dept. of EE&CS,

Northwestern Univ., 1980.

[LT] Lipton, R.J., Tarjan, R.E.

Applications of a planar separator theorem, SIAM J. Comp., 9 (3), 1980.

[M] McCreight, E.M.

Efficient algorithms for enumerating intersecting intervals and rectangles, Tech. Report Xerox

PARC, CSL-80-9, June 1980.

[MC] Mead, C , Conway, L.

Introduction to VLSI systems, Addison-Wesley, 1980.

[NS] Newman, W.M., Sproull, R.F.

Principles of interactive computer graphics, McGraw-Hill, 1973.

[NP] Nicvcrgelt, J., Prcparata, F.P.

Plane-sweeping algorithms for intersecting geometric figures, Tech. Report., Institut filer

Informatik, ETH, Zurich.

39

[OV] Overmars, M.H., Van Lecuwen, J.

Dynamically maintaining configurations in the plane, Proc. 12th Annual SIGACT Symp., Los

Angeles, May 1980.

[PI] Preparata, F.P.

An optimal real-time algorithm for planar convex hulls, Comm. ACM, 22,7, July 1979.

[P2] Preparata, F.P.

A new approach to planar point location, SIAM J. Comput., Vol. 10 (3), Aug. 1981.

[PxM] Preparata, F.P., Muller, D.E.

Finding the intersection of a set of N half spaces in time 0(Nlog N), Theoretical Computer

Science, 8,1, Feb. 1979.

[SA] Savage, C.

A systolic data structure chip for connectivity problems, CMU Conf. on VLSI Systems and

Computations, Pittsburgh, Oct 1981.

[SB] Saxe, J.B., Bendey, J.L.

Transforming static data structures to dynamic structures, Proc. 20th Annual IEEE Symp. on

Foundations of Computer Science, Puerto Rico, Oct 1979.

[S] Shamos, M.I.

Computational geometry, PhD thesis, Yale University, 1978.

[SH] Shamos, M.I., Hoey, D.

Geometric intersection problems, Proc. 17th Annual Annual IEEE Symp. on Foundations of

Computer Science, 1976.

[VU] Vuillemin, J.

A combinatorial limit to the computing power of VLSI circuits, Proc. 21st Annual Symp. on

Foundations of Computer Science, Syracuse, Oct. 1980.

