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Abstract

A numerical model for the one-dimensional simulation of non-stationary free surface

and pressurized flows in open and closed channels with arbitrary cross-section will

be derived, discussed and applied.

This technique is an extension of the numerical model proposed by Casulli and

Zanolli [10] for open channel flows that uses a semi-implicit discretization in time and

a finite volume scheme for the discretization of the Continuity Equation: these choices

make the method computationally simple and conservative of the fluid volu-me both

locally and globally.

The present work will firstly deal with the elaboration of a semi-implicit nume-

rical scheme for flows in open channels with arbitrary cross-sections that conserves

both the volume and the momentum or the energy head of the fluid, in such a way

that its numerical solutions present the same characteristics as the physical solutions

of the problem considered [3].

The semi-implicit discretization [6] in time leads to a relatively simple and com-

putationally efficient scheme whose stability can be shown to be independent from

the wave celerity
√

gH.

The conservation properties allow dealing properly with problems presenting dis-

continuities in the solution, resulting for example from sharp bottom gradients and

hydraulic jumps [46]. The conservation of mass is particularly important when the

channel has a non rectangular cross-section.

The numerical method will be therefore extended to the simulation of closed

channel flows in case of free-surface, pressurized and transition flows [2].

The accuracy of the proposed method will be controlled by the use of appropriate

flux limiting functions in the discretization of the advective terms [52, 35], especially

in the case of large gradients of the physical quantities involved in the problem. In

the particular case of closed channel flows, a new flux limiter will be defined in order



to better represent the transitions between free-surface and pressurized flows.

The numerical solution, at every time step, will be determined by solving a mildly

non-linear system of equations that becomes linear in the particular case that the

channel has a rectangular cross-section.

Careful physical and mathematical considerations about the stability of the method

and the solvability of the system with respect to the implemented boun-dary condi-

tions will be also provided. The study of the existence and uniqueness of the solution

requires the solution of a constrained problem, where the constraint expresses that

the feasible solutions are physically meaningful and present a non-negative water

depth. From this analysis, it will follow an explicit (dependent only on known quan-

tities) and sufficient condition for the time step to ensure the non-negativity of the

water volume. This condition is valid in almost all the physical situations without

more restrictive assumptions than those necessary for a correct description of the

physical problem.

Two suitable solution procedures, the Newton Method and the conjugate gradient

method, will be introduced, adapted and studied for the mildly non linear system

arising in the solution of the numerical model.

Several applications will be presented in order to compare the numerical results

with those available from the literature or with analytical and experimental solutions.

They will illustrate the properties of the present method in terms of stability, accuracy

and efficiency.
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Introduction

The purpose of this doctoral thesis is the study of the numerical techniques for the

simulation of free surface and pressurized flows in open and closed channels with

arbitrary cross section. The aim of this research is to formulate a new numerical

method for hydraulic engineering problems that is capable of predicting subcritical

flows, mixed flows (subcritical and supercritical flows) as well as transitions from

supercritical to subcritical flows, with particular attention to the robustness and the

efficiency of the model and to the conservation of the physical quantities volume,

momentum and energy head. This introductive chapter will draw the context where

this research has been developed, it will briefly describe the techniques known in the

current literature an it will give an idea of the structure of the whole thesis.

Flows in hydrodynamics

The study of free-surface and pressurized water flows in channels has many intere-

sting applications, one of the most important being the modelling of the phenomena

in the area of natural water systems (rivers, estuaries) as well as in that of man-made

systems (canals, pipes).

For the development of major river engineering projects, such as flood prevention

and flood control, there is an increase need to be able to model and predict the

consequences of any possible phenomenon on the environment and in particular the

new hydraulic characteristics of the system.

Hydraulics has a long tradition of providing a scientific basis for engineering ap-

plications [29, 42]. Firstly, conceptual models were designed starting from empirical

relations obtained from field observations or model scale experiments.

Lately, mathematics started playing an important role not only to describe the

properties of these relations, but also to formulate analytical solutions of particular

model situations in order to capture the essential features of those phenomena.

Actually, the research and the applications in the field of computational fluid

hydraulics and fluid dynamics evolved with the advent of electronic computers.
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The first applications in computational hydraulics concerned programming ana-

lytical formulae rather than deriving generic numerical schemes and techniques based

on physical principles like conservation laws for mass and momentum. Later deve-

lopments extended the research and the applications in this field towards simulating

complicated flow phenomena in arbitrarily shaped geometries.

The literature

The basic equations expressing hydraulic principles were formulated in the 19th cen-

tury by Barre de Saint Venant and Valentin-Joseph Bousinnesque.

The original hydraulic model of the Saint Venant Equations [15] is written in

the form of a system of two partial differential equations and it is derived under the

assumption that the flow in one-dimensional, the cross-sectional velocity is uniform,

the streamline curvature is small and the pressure distribution is hydrostatic [60].

One dimensional flows do not actually exists in nature, but the equations remain

valid provided the flow is approximately one-dimensional: as pointed out by Stef-

fler and Jin [45], they are inappropriate to analyze free surface flow problems with

horizontal length scales close to flow depth.

In the current literature, several numerical techniques for solving the Saint Venant

Equations are known. These include the method of characteristics, explicit difference

methods, fully implicit methods, Godunov methods [27] and semi-implicit methods

[6].

In particular, the method of characteristics is very efficient in the treatment of

boundary conditions, but does not guarantee volume and momentum conservation.

The Godunov’s type methods (see, e.g., [52, 27, 19]) instead, require the solution

of local Riemann problems and, consequently, are very effective on simple channel

geometries with flat, horizontal bottom and rectangular cross section. For space

varying bottom profiles, however, the bottom slope appears as a source term that

may generate artificial flows [53] unless specific treatments of the geometrical source

terms are implemented [21]. Moreover, Godunov’s type methods [23] are explicit

in time and, accordingly, the allowed time step is restricted by a C.F.L. stability

condition, which relates the time step to the spatial discretization and the wave

speed. These kind of methods are in general based upon non-staggered grids and can

achieve higher that first-order accuracy. The Godunov’s type methods were originally
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developed for gas dynamic and only later extended to hydrodynamic on the basis of

the analogy between the equations for isentropic flow of a perfect gas with constant

specific heat and the shallow water equations [47, 52].

Alternatively, semi-implicit methods (see, e.g., [6, 7, 33]) can be unconditionally

stable and computationally efficient. These methods, however, when do not sati-

sfy momentum conservation, may produce incorrect results if applied to extreme

problems having a discontinuous solution. The semi-implicit method presented by

Stelling in [46] combines the efficiency of staggered grids with conservation properties

and can be applied to problems including rapidly varying flows. A semi-implicit

method that conserves the fluid volume when applied to channels with arbitrary

cross-sections was presented in [10].

Our contribution

The work presented in this thesis started from the analysis of the numerical model

proposed by Casulli and Zanolli [10] for open channel flows that uses a semi-implicit

discretization in time and a finite volume scheme for the discretization of the Con-

tinuity Equation. These choices make the method computationally simple and con-

servative of the fluid volume both locally and globally.

This thesis proposes a numerical scheme for flows in open and closed channel with

arbitrary cross-sections that conserves both the volume and the momentum or the

energy head of the fluid, in such a way that its numerical solutions present the same

characteristics as the physical solutions of the problem considered.

It is based upon the classical staggered grids and it combines the computational

efficiency of the explicit methods and the unconditional stability of the implicit ones

using a semi-implicit time integration.

The high resolution technique called the flux limiter method has been introduced

in order to improve the accuracy of the model especially in the case of large gradients

of the physical quantities involved in the problem. In the particular case of closed

channel flows, a new flux limiter has been defined in order to better represent the

transitions between free-surface and pressurized flows.

Different numerical simulations have been performed in order to compare the

numerical results with those available from the literature or with the analytical so-

lutions. The results illustrate the applicability of the model to correctly simulate
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hydraulic engineering problems such as wetting and drying phenomena [51]. In par-

ticular for the case of closed channel flows, some of the numerical results have been

also compared with the results obtained in the laboratory. For all the case tested

and even for particularly difficult physical situations such as the transitions between

free-surface and pressurized flows, the numerical results are definitely satisfying.

A precise theoretical analysis of the stability of the method and of the existence

and uniqueness of the numerical solution of the model have also been developed.

An explicit (dependent only on known quantities) and sufficient condition for

the time step ∆t to ensure the non-negativity of the water volume follows from this

analysis and it is valid almost in all the physical situations without more restrictive

assumptions than those necessary for a correct description of the physical problem.

A modified version of the Conjugate Gradient Method and one of the Newton

Method have been analyzed both from a theoretical and a computational point of

view to solve the mildly non linear system arising in the solution of the numerical

model.

Several applications included in this work illustrate the potential of the model

in simulating real problems and in being an useful engineering tool for the water

management.

Structure of the thesis

Chapter 1 of this thesis is devoted to the introduction of the one-dimensional Saint

Venant Equations, to their characterization through some of their properties and to

their derivation from the Navier-Stokes Equations.

Chapter 2 and 4 describe and formulate the numerical technique that approxi-

mates in one dimension water flows in open and closed channels with arbitrary cross-

sections, while Chapter 3 presents several open channel flow applications. Chapters

5, 6 and 7 analyze the non-linear system arising from the one-dimensional model

from the points of view of existence and uniqueness of its solution, non-negativity of

the water volume and solution algorithms.

Below, a description of the contents of each chapter is given.

Chapter 1 introduces the Saint Venant Equations and the main hypotheses used

to derive them from the three dimensional Navier Stokes Equations. First of all the

three dimensional shallow-water equations are derived under the assumption that the
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pressure is hydrostatically distributed and finally they are integrated along the cross

section to obtain the Saint Venant Equations.

Chapter 2 describes a new fully conservative semi-implicit finite volume method

for the Saint Venant Equations. The mass, the momentum and the energy head con-

serving equation are discretized on a space staggered grid and are coupled depending

on local flow conditions. A high resolution procedure is implemented to deal with

steep gradients like the ones that are found in dam break problems or in hydraulic

jumps problems. In addition, a new special flux limiter is described and implemented

to allow accurate flow simulations near hydraulic structures such as weirs, for both

critical and subcritical situations including the transition.

In Chapter 3, the simulation of various test cases illustrates the properties of the

proposed method in terms of stability, accuracy and efficiency. The numerical results

from the simulation of the unsteady dam break problem over a wet and dry bed in

a rectangular channel are given and compared with the analytical solutions. A dam

break problem in a triangular channel is also presented to show the applicability of

the present algorithm to a problem where precise volume conservation is essential

and not easily obtained by traditional linear schemes. Moreover, staedy flows over

a discontinuous bed profile are also modelled in order to show the robustness of the

proposed method and its ability in dealing with transitions from super to subcrit-

ical flows and vice-versa. Finally, two tests describing free fluid oscillations of a

planar and of a parabolic surface in an elliptical basin are simulated and prove the

correct treatment of the phenomena presenting flooding and drying and the correct

computation of the moving wet-dry interface over a sloping topography.

Chapter 4 presents the extension of the numerical model presented in Chapter 2 to

simulate pressurized flows in closed channels and pipes with arbitrary cross-section.

Flows in closed channels, such as rain storm sewers, often contain transitions from

free surface flows to pressurized flows, or vice versa. These phenomena usually require

two different sets of equations to model the two different flow regimes. Actually, a

few specifications for the geometry of the channel and for the discretization choices

can be sufficient to model closed channel flows using only the open channel flow

equations. The numerical results obtained solving the pressurization of a hori-zontal

pipe are presented and compared with the experimental data known from the lit-

erature. Moreover, the numerical scheme is also validated simulating a flow in a

horizontal and downwardly inclined pipe and comparing the numerical results with
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the experimental data obtained in the laboratory.

Chapter 5 describes a complete analysis of the midly non-linear system arising

from the particular discretization of the Saint Venant Equations presented in Chap-

ters 2 and 4. The problem of existence and uniqueness of the solution of this system

is investigated with respect to the boundary conditions imposed and it is solved

by introducing a few mathematical assumptions that can be justified by physical

argumentation.

In Chapter 6, an explicit and an implicit constraint on the time step are derived

to ensure the non-negativity of the water volume obtained by the algorithm proposed

in Chapters 2 and 4. The advantages of using the explicit constraint are discussed

and shown with an interesting numerical example.

Two solution algorithms for solving the midly non-linear system analyzed in

Chapter 5 are presented in Chapter 7: the Generalized Newton Method and a par-

ticular version of the Conjugate Gradient method. Their convergence is also proved

when the requirements for existence and uniqueness of the solution are satisfied and

a comparison of these two techniques is presented from the point of view of the

computational efficiency.

In the last Chapter, general conclusions on the theoretical results and on the

application of the numerical algorithm are formulated. The properties of the pro-

posed numerical model and its potential in dealing with engineering problems are

underlined. The chapter closes with recommendations for future research.



1
The Saint Venant Equations (SVE):

main assumptions and derivation

The Navier-Stokes Equations are a general model which can be used to model water

flows in many applications. However, when considering a specific problem such as

shallow-water flows in which the horizontal scale is much larger than the vertical one,

the Shallow Water Equations will suffice. The aim of this chapter is to present the

one-dimensional Saint Venant Equations and some of their properties starting from

their derivation from the Navier-Stokes Equations. First of all, the three dimensional

Shallow-Water Equations will be derived under the assumption that the pressure is

hydrostatically distributed. Finally, they will be integrated along the cross section to

obtain the Saint Venant Equations.

1.1 Basic hypothesis for the SVE

The equations of unsteady channel flow formalize the main concepts and hypotheses

used in the mathematical modelling of fluid-flow problems.

These equations consider only the most important flow influences, omitting those

which are of secondary importance depending on the purpose of modelling. In this

way, they provide a simple model for very complex phenomena.

A general fluid-flow problem involves the prediction of the distribution of different

quantities: the fluid pressure, the temperature, the density and the flow velocity.

With this intention, six fundamental equations are considered: the Continui-

ty Equation based on the law of conservation of mass, the Momentum Equations

along three orthogonal directions (derived from Newton’s second law of motion), the

Thermal Energy Equation obtained from the first law of thermodynamics and the
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equation of state, which is an empirical relation among fluid pressure, temperature

and density.

Channel flow problems do not require the last two equations and therefore can

be solved by the Continuity Equation and by the Momentum Equations assuming as

constant both density and temperature.

Throughout this thesis, channel flows are assumed to be strictly one-dimensional,

although truly one-dimensional flows do not exist in the real life.

The basic one-dimensional equations expressing hydraulic principles are called

the Saint Venant Equations [15] and were formulated in the 19th century by two

mathematicians, de Saint Venant and Bousinnesque.

These equations can be derived by averaging the three dimensional Reynolds

Equations over the cross-section of the channel as it will be presented in the following

sections.

The basic assumptions for the analytical derivation of the Saint Venant Equations

are the following:

• the flow is one-dimensional, i.e. the velocity is uniform over the cross-section

and the water level across the section is represented by a horizontal line

• the streamline curvature is small and the vertical accelerations are negligible,

so that the pressure can be taken as hydrostatic

• the effects of boundary friction and turbulence can be accounted for through

resistance laws analogous to those used for steady state flow

• the average channel bed slope is small so that the cosine of the angle it makes

with the horizontal may be replaced by unity.

These hypotheses do not impose any restriction on the shape of the cross-section of

the channel and on its variation along the channel axis, although the latter is limited

by the condition of small streamline curvature.

1.2 First step: the 3D Shallow Water Equations

The governing three dimensional primitive variable equations describing constant

density, free surface flow of an incompressible fluid are the well known Reynolds-



1.2. First step: the 3D Shallow Water Equations 3

Averaged Navier-Stokes Equations which express the conservation of mass and mo-

mentum. Such equations have the following form

ut + (uu)x + (uv)y + (uw)z = −px + (νux)x + (νuy)y + (νuz)z (1.2.1)

vt + (uv)x + (vv)y + (vw)z = −py + (νvx)x + (νvy)y + (νvz)z (1.2.2)

wt + (uw)x + (wv)y + (ww)z = −pz + (νwx)x + (νwy)y + (νwz)z − g (1.2.3)

ux + vy + wz = 0 (1.2.4)

where u(x, y, z, t), v(x, y, z, t) and w(x, y, z, t) are the velocity components in the

horizontal x, y and in the vertical z-directions. t is the time, p is the normalized

pressure, that is the pressure divided by the constant density, g is the gravitational

acceleration and ν is an eddy viscosity coefficient which is determined from a specific

turbulence model. The discussion about turbulence models is not in the aim of the

present work and the eddy viscosity coefficient is a given non-negative function of

space and time.

Moreover, assuming that the free surface can be expressed as a single valued

function z = η(x, y, t), the kinematics condition of the free surface is given by

ηt + usηx + vsηy = ws (1.2.5)

where η(x, y, t) denotes the water surface elevation measured from the undisturbed

water surface and us, vs and ws are the velocity components at the free surface.

Under the assumption that the bottom profile can be expressed as a single valued

function z = −h(x, y), a similar condition at the bottom boundary is

ubhx + vbhy + wb = 0 (1.2.6)

where h(x, y) is the water depth measured from the undisturbed water surface and

ub, vb and wb are the velocity components at the bottom. Condition (1.2.6) states

that the velocity component perpendicular to the solid boundaries must vanish.

Integration of the Continuity Equation (1.2.4) over the depth yields∫ η

−h
uxdz +

∫ η

−h
vydz +

∫ η

−h
wzdz

=
[∫ η

−h
udz

]
x
− usηx + ub(−h)x

+
[∫ η

−h
vdz

]
y
− vsηy + vb(−h)y + ws − wb = 0 (1.2.7)
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Thus, by using the conditions (1.2.5)-(1.2.6), the following conservative form of the

free surface equation is obtained

ηt + [
∫ η

−h
udz]x + [

∫ η

−h
vdz]y = 0 (1.2.8)

Equation (1.2.8) will replace (1.2.5) in the model formulation presented in the fol-

lowing.

In most geophysical flows, the characteristic horizontal length scale is much larger

than the characteristic vertical length scale and the characteristic vertical velocity is

small in comparison with the characteristic horizontal velocity [45].

These assumptions allow that the terms ∂w
∂x

and ∂w
∂y

are neglected, but more im-

portantly, that the convective and the viscous terms in the third momentum equation

can be neglected. Therefore, the following equation for pressure results

pz = −g (1.2.9)

This equation yields the following expression for the hydrostatic pressure

p(x, y, z, t) = pa(x, y, t) + g[η(x, y, t)− z] (1.2.10)

where pa(x, y, t) is the atmospheric pressure at the free surface which, without loss

of generality, will be assumed to be constant.

Substitution of (1.2.10) into the Navier Stokes Equations yields the following

three dimensional model equations

ut + (uu)x + (uv)y + (uw)z = −gηx + (νux)x + (νuy)y + (νuz)z (1.2.11)

vt + (uv)x + (vv)y + (vw)z = −gηy + (νvx)x + (νvy)y + (νvz)z (1.2.12)

ux + vy + wz = 0 (1.2.13)

ηt + [
∫ η

−h
udz]x + [

∫ η

−h
vdz]y = 0 (1.2.14)

Under the assumption that the free surface is almost flat horizontal, the tangential

stress boundary conditions prescribed by

ν(uz − uxηx − uyηy) = γT (ua − us) (1.2.15)

ν(vz − vxηx − vyηy) = γT (va − vs) (1.2.16)

are approximated as follows

νuz = γT (ua − us) (1.2.17)

νvz = γT (va − vs) (1.2.18)
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Similarly, the boundary conditions at the sediment-water interface are given by

ν(uz + uxhx + uyhy) = γBub (1.2.19)

ν(vz + vxhx + vyhy) = γBvb (1.2.20)

are approximated by

νuz = γBub (1.2.21)

νvz = γBvb (1.2.22)

With properly specified initial and boundary conditions, Equations (1.2.11)-(1.2.10)

form a three dimensional model used in shallow water flow simulations.

1.3 Second step: the laterally averaged Shallow

Water Equations

From the fully three dimensional equations, it is possible to derive a simplified 2D

model for narrow estuaries assuming that the circulation of interest takes place in

the vertical x− z plane.

This model is obtained by integrating laterally the Momentum Equations (1.2.11)

and (1.2.12). To this purpose, let y = l(x, z) and y = r(x, z) be single-valued

functions representing the left and the right walls, respectively, so that B(x, z) =

l(x, z)− r(x, z) denotes the width of the estuary. The condition of zero flux through

the side walls are derived by requiring that the velocity component perpendicular to

the walls must vanish. These conditions are given by

ullx + wllz = vl (1.3.1)

urrx + wrrz = vr (1.3.2)

Similarly, the tangential boundary conditions at the side walls are given by specifying

the lateral stresses as

ν(uxlx − uy + uzlz) = γlu (1.3.3)

−ν(uxrx − uy + uzrz) = γru (1.3.4)

The laterally averaged momentum can be derived by integrating Equation (1.2.11)

from the right y = r(x, z) to the left wall y = l(x, z). Specifically, if B(x, z) denotes
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the width of the estuary, B(x, z) = l(x, z) − r(x, z), the laterally averaged velocity

U2 and W2 and the laterally averaged free surface η2 are defined as U2 = 1
B

∫ l
r udy,

W2 = 1
B

∫ l
r wdy and η2 = 1

B

∫ l
r ηdy respectively.

Thus, by using the boundary conditions (1.3.3)-(1.3.4), the lateral integration of

the left hand side of Equation (1.2.11) yields∫ l

r
[ut + (uu)x + (uv)y + (uw)z]dy (1.3.5)

= (
∫ l

r
udy)t + (

∫ l

r
uudy)x + (

∫ l

r
uwdy)z

−ul[ullx − vl + wllz] + ur[urrx − vr + wrrz]

= (BU2)t + (BU2U2)x + (BU2W2)z

+[
∫ l

r
(u− U2)

2dy]x + [
∫ l

r
(u− U2)(w −W2)dy]z (1.3.6)

Moreover, the lateral integral of the barotropic pressure gradient term in Equation

(1.2.11) yields ∫ l

r
ηxdy = [

∫ l

r
ηdy]x − ηllx + ηrrx (1.3.7)

= (Bη2)x − η2Bx − (ηl − η2)lx + (ηr − η2)rx

= (Bη2)x − (ηl − η2)lx + (ηr − η2)rx (1.3.8)

Finally, by using the boundary conditions (1.3.3)-(1.3.4), the lateral integration of

the viscous terms at the right hand side of Equation (1.2.11) yields∫ l

r
[(νux)x + (νuy)y + (νuz)z]dy (1.3.9)

= (
∫ l

r
νuxdy)x + (

∫ l

r
νuzdy)z

−ν(uxlx − uy + uzlz)|y=l + ν(uxrx − uy + uzrz)|y=r

=

[∫ l

r
ν(U2)xdy

]
x

+

[∫ l

r
ν(U2)zdy

]
z

+[
∫ l

r
ν(u− U2)xdy]x + [

∫ l

r
ν(u− U2)zdy]z − γlu

l − γru
r

= [ν2B(U2)x]x + [ν2B(U2)z]z − γU2

+[
∫ l

r
ν(u− U2)xdy]x + [

∫ l

r
ν(u− U2)zdy]z − γl(u

l − U2)− γr(u
r − U2) (1.3.10)

where ν2 = 1
B

∫ l
r νdy is the laterally averaged viscosity coefficient. Thus, after stan-

dard approximations on the local velocities with their laterally averaged quantity,
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the Momentum Equation (1.2.11) is approximated with

(BU2)t + (BU2U2)x + (BU2W2)z =

−gB(η2)x + (ν2B(U2)x)x + (ν2B(U2)z)z − γU2 (1.3.11)

where γ = γl + γr.

Similarly, the laterally integral of the incompressibility condition (1.2.13) yields∫ l

r
(ux + vy + wz)dy (1.3.12)

= (
∫ l

r
udy)x + (

∫ l

r
wdy)z

−(ulx − v + wlz)|y=l + (urx − v + wrz)|y=r

= (BU2)x + (BW2)z = 0 (1.3.13)

which represents the exact, laterally averaged incompressibility condition.

Finally, upon integration of the free surface Equation (1.2.13), one gets∫ l(x,η)

r(x,η)
[ηt + (

∫ η

−h
udz)x + (

∫ η

−h
vdz)y]dy (1.3.14)

= (
∫ l

r
Hdy)t + (

∫ l

r
dy
∫ η

−h
udz)x

−[HlzHt + (
∫ η

−h
udz)(lx + lzηx)−

∫ η

−h
vdz]|y=l

+[HrzHt + (
∫ η

−h
udz)(rx + rzηx)−

∫ η

−h
vdz]|y=r

= At + [
∫ η

−h
BU2dz]x = 0 (1.3.15)

where H = η + h is the total water depth and A(x, η) =
∫ l
r Hdy =

∫ η
−h dz

∫ l
r dy is the

cross section area.

In summary, then, the two-dimensional laterally averaged model is given by Equa-

tions (1.3.11), (1.3.13) and (1.3.15), that is

(BU2)t + (BU2U2)x + (BU2W2)z = −gBη2 + [ν2B(U2)x]x

+ [ν2B(U2)z]z − γU2 (1.3.16)

(BU2)x + (BW2)z = 0 (1.3.17)

At + [
∫ η

−h
BU2dz]x = 0 (1.3.18)

It is interesting to point out that when u, w and η are independent from y, Equa-

tions (1.3.16)-(1.3.18) can be derived from the 3D model Equations (1.2.11)-(1.2.10)
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without any approximation: this is the case when the flow variables coincide with

their laterally averaged values.

The boundary conditions at the free surface are specified by the prescribed wind

stress as

ν(U2)z = γT (ua − U s
2 ) (1.3.19)

and the boundary conditions at the sediment-water interface are given by specifying

the bottom stress as

ν(U2)z = γBU b
2 (1.3.20)

where γB is a non-negative friction coefficient. Typically, γB is taken to be γB = g|U2|
C2

[11]. With properly specified initial and boundary conditions, Equations (1.3.16)-

(1.3.18) form a 2Dxz model used to simulate shallow water flow in estuarine environ-

ment.

1.4 Last step: the 1D Saint Venant Equations

The one dimensional equations for unsteady flow in open channel can be derived by

integrating Equations (1.3.16)-(1.3.18) from the sea bed z = −h to the free surface

z = η.

Specifically, defining the cross sectional averaged velocity as U = 1
A

∫ η
−h dz

∫ l
r udy,

Equation (1.3.18) becomes

At + (AU)x = 0 (1.4.1)

Moreover, the vertical integration of Equation (1.3.16) and the application of the

boundary conditions (1.3.3)-(1.3.4) yield

(AU)t + (AUU)x = −gA(η)x + (νAUx)x + γT ua − γU (1.4.2)

were γ = γT + γB and ν = 1
A

∫ l
r dy

∫ η
−h νdz.

Often, in the current literature [11], Equation (1.4.2) is rewritten as

(AU)t + (AUU + gI1)x = gA(S0 − Sf ) + gI2 + (νAUx)x (1.4.3)

where S0 = (−h)x is the bed slope, Sf is the friction slope and

I1(x, H) =
∫ η

−h
(H − z)Bdz (1.4.4)



1.5. Hyperbolicity and the Saint Venant system 9

In particular, I2 represents the integral of a reaction force from hydrostatic pressure

acting on the boundary and I1 is a term linked to the hydrostatic forces over the

cross-section such that

(gI1)x = gAHx + gI2. (1.4.5)

Equation (1.4.1) is called Continuity Equation and expresses the conservation of the

fluid volume.

Equation (1.4.2) as well as (1.4.3) is called Momentum Equation. In particular,

studying Equation (1.4.3), one can see that it expresses the strict conservation of the

momentum Q = AU if and only if its right hand side is equal to zero. When the

right hand side is different from zero, momentum is no longer conserved and the free

terms act as momentum sources or momentum sinks.

Equations (1.4.1)-(1.4.2) are called the Saint Venant Equations. Regarding the

notation, η will be replaced by η in the following of this work.

1.5 Hyperbolicity and the Saint Venant system

In the first part of this Section, we present some definitions and elementary properties

of a particular class of equations, the hyperbolic conservation laws with source terms.

Actually, this kind of equations are particularly interesting in the development

of this work, because the Saint Venant Equations reduce to a hyperbolic system of

conservations laws in case the effects of the viscosity ν are neglected.

1.5.1 Hyperbolic systems

Conservation laws are systems of PDEs that can be written in the form

Wt + F(x,W)x = b(x,W) (1.5.1)

where W is the vector of the conserved quantities and F is a flux function. Assume

m the dimension of the system.

If b ≤ 0, system (1.5.1) is homogeneous, otherwise it is said to be a system of

conservation laws with source terms.

Actually, respect to our purposes, conservation laws of the form (1.5.1) can be

rewritten in a more useful way by applying the chain rule to the derivative of the
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flux function as follows

dF

dx
=

∂F

∂W

∂W

∂x
+

∂F

∂x
, (1.5.2)

Hence (1.5.1) becomes

Wt + JWx = b(x,W) (1.5.3)

where b(x,W) = b(x,W)− ∂F
∂x

is the new source term and matrix J = J(W) = ∂F
∂W

is said the Jacobian of the flux function F(W).

A system (1.5.3) is said to be hyperbolic at (x, t) if all the eigenvalues λi of matrix

J are real and if all its eigenvectors K(i) are linearly independent. Moreover, this

system is said to be strictly hyperbolic if all the eigenvalues λi are distinct.

1.5.2 Characteristic curves

The simplest PDE of hyperbolic type is the linear advection equation

wt + awx = 0 (1.5.4)

where a is a constant wave propagation speed.

From the study of this simple equation one can derive an important characteri-

zation extendable also to a more general hyperbolic system of PDE.

For each scalar equation such as (1.5.4) one can introduce the characteristic curve

x = x(t) as that curve in the (t, x) plane along which the PDE becomes an ODE.

Consider x = x(t) and regard w as a function of t, that is w = w(x(t), t). The

rate of change of w along x = x(t) is

dw

dt
=

∂w

∂t
+

∂x

∂t

∂w

∂x
(1.5.5)

If the characteristic curve x = x(t) satisfies the ODE

dx

dt
= a (1.5.6)

then the PDE (1.5.4) together with (1.5.5) and (1.5.6) gives

dw

dt
=

∂w

∂t
+ a

∂w

∂x
= 0 (1.5.7)

Therefore the rate of change of w along the characteristic curve x = x(t) satisfying

(1.5.6) is zero, that is w is constant along the curve x = x(t).
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The speed a in (1.5.6) is called characteristic speed and it is the slope of the curve

x = x(t) in the (t, x) plane.

In order to extend these properties to a hyperbolic system of PDEs, let consider

a hyperbolic system of the form (1.5.1) with a constant Jacobian matrix J.

Given λi its real eigenvalues and K(i) its linearly independent eigenvectors, it is

possible to verify that matrix J is diagonalisable, that means J can be expressed as

J = KΛK−1 (1.5.8)

in terms of the diagonal matrix

Λ = diag{λ1, ...λm}

and a constant matrix

K =
[
K(1), ...K(m)

]
.

Therefore, defining new variables W = KU and manipulating system (1.5.1), one

has

KUt + JKUx = b

K−1KUt + K−1JKUx = K−1b

Ut + ΛUx = b̃ (1.5.9)

that is called the canonical form of system (1.5.1).

The system is therefore decoupled in m linear advection equations and its cha-

racteristic speeds λi define m characteristic curves satisfying the m ODEs

dx

dt
= λi i = 1, ...m (1.5.10)

1.5.3 Hyperbolic form of the Saint Venant system

The Saint Venant Equations (1.4.1) and (1.4.3) for flows in channels with arbitrary

cross-sections take the form (1.5.1).

They constitute a system of two partial differential equations that can be written

in the matrix notation (1.5.1) where

W =

 A

AU

 , J =

 0 1

c2 − u2 2U

 , b =

 0

gA(S0 − Sf ) + gI2

 (1.5.11)
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and c is the wave celerity given by

c =

√
gA

B
.

Studying the characteristic polynomial of J, one can prove that system (1.5.1) is

hyperbolic. In fact, its eigenvalues

λ1 = U − c

λ2 = U + c

are real, distinct and correspond to the following right-eigenvectors respectively

r1 =

 1

u− c

 , r2 =

 1

u + c

 . (1.5.12)

Therefore, the Saint Venant system can be decomposed in two ODEs that hold along

the two characteristic curves given by

dx

dt
= λ1,2.

1.5.4 Flow classification and boundary conditions

Given the characteristic speeds, one can classify the flow according to an adimensional

parameter called the Froude number and defined as

Fr =
|U |
c

.

In the case Fr < 1, that means |U | < c, the two characteristic speeds have oppo-

site directions. Therefore, the information is transmitted along these curves both

upstream and downstream. This kind of flow is known as subcritical flow and occurs

when the gravitational forces are dominant over the inertial ones.

In the case Fr > 1, that means |U | > c, the two characteristic speeds have the

same direction of U . Therefore the information is only transmitted downstream.

This kind of flow is known as supercritical flow and it occurs when the inertial forces

are dominant over the gravitational ones.

Finally, in the case Fr = 1, that means |U | = c, one characteristic speed is vertical

and the other has the same direction of U . This kind of flow is known as critical
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flow and occurs when the inertial forces and the gravitational forces are perfectly

balanced.

Characteristic theory also suggests the initial and the boundary conditions re-

quired in order to have a well-posed problem.

A general rule to consider is the following: ”the number of boundary conditions

should be equal to the number of characteristic curves entering the domain.”

Consider the Saint Venant Equations and assume that U > 0. Therefore, λ2 > 0

and one variable has to be specified at the inflow for either supercritical or subcritical

flows.

Moreover, if the flow is supercritical at the inflow, thus λ1 > 0 and another

variable has to be specified at the inflow.

On the other hand, if the flow is subcritical at the outflow, thus λ1 < 0 and a

variable has to be specified at the outflow.

For t = 0, since both the characteristics always enter the domain, two independent

variables must be always specified. These values are the initial conditions for the

problem.

1.6 The resistance laws

The friction slope Sf is used to model the effects due to boundary friction and

turbulence and it is usually written in the following form

Sf =
Q |Q|
K2

(1.6.1)

where K is a quantity called the conveyance. One of the most widely used form for

the conveyance can be expressed by:

K =
Ak1

nMP k2
, (1.6.2)

where nM is a positive constant which represents the bed roughness [11],

P = B(x, 0) +
∫ H

0

√
(4 + (Bs)2)dη (1.6.3)

is the wetted perimeter, Bs is the channel width at the free surface and k1 and k2

are positive and real constants.

The friction slope Sf can be expressed using the Manning’s law with k1 = 5/3,

k2 = 5/3 and nM the Manning friction coefficient [11].
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With k1 = 3/2 and k2 = 1/2 one obtains the Chezy formula where C = 1/nM is

the Chezy friction coefficient [11].

These laws are empirical and where originally developed for use with steady state

flow [3, 1, 7].

More detailed information about these and other friction laws can be found in

[13, 30].

1.7 An energy head formulation for the Momen-

tum Equation

Equations (1.4.1)-(1.4.2) express the conservation of fluid volume and momentum.

Actually, in accordance with the concepts of classical hydraulics [11], in order to

provide a complete model for channel flows that deals properly with these phenomena,

the Momentum Equation and in particular its advection term should be formulated

in such a way to conserve both momentum and energy head.

Strelkoff [48] pointed out that the governing equations developed using the mo-

mentum principle is different from those derived based on the energy approach.

Considering the three dimensional flow equations, even though originally both

principles are established from Newton’s second law of motion, the Momentum Equa-

tion is a vectorial relationship in which only the component of the velocity along the

direction being considered affects the momentum balance.

On the other hand, the energy equation is a scalar relationship where all the three

components of the flow velocity are involved.

Moreover, the energy approach incorporates a term to account for internal losses

that it is completely different from the one which is included in the Momentum

Equation for external resistance. Chow [13] described that the friction slope in the

Momentum Equation stands for the resistance due to external boundary stresses,

whereas in the Energy Equation the dissipated energy gradient accounts for the

energy dissipation due to internal stresses working over a velocity gradient field.

For the one dimensional flow equations, the energy head conserving Equation is

given by

Ut +

(
U2

2
+ gη

)
x

+ γU = 0 (1.7.1)

that, for steady flows and for frictionless channels, expresses the precise constancy of
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the energy head function

E = η +
U2

2g
(1.7.2)

In the one dimensional context, the difference between momentum and energy ap-

proaches is reflected by the velocity distribution correction factors as well as by

certain terms.

Actually, the momentum (1.4.2) and the energy head conserving formulation

(1.7.1) are completely equivalent for continuous and sufficiently smooth solutions.

In fact, in case of gradually varied flow situations, the internal energy losses

appear to be identical with the losses due to external forces and also the difference

between the two velocity correction factors are very small and can be ignored [13].

This indicates that both principles can give an almost identical governing equation

for the solution of this type of flow problem.

Moreover, in uniform flows, the rate with which surface forces are doing work is

equal to the rate of energy dissipation. In such case, the frictional loss term have

identical values.

For the case of rapidly varied flows and at local discontinuities, however, the two

principles give flow equations which incorporate different correction factors for the

effects of the curvature of the streamlines. Local discontinuities can either be due to

discontinuities in the bathymetry or to the effects of bores generated in dam break

problems or near hydraulic jumps. Since such flows occur in a short reach of the

channel, the frictional losses due to external forces are insignificant.

In general, in order to connect Equation (1.7.1) or (1.4.2) at both sides of the

discontinuity, conservation of mass and momentum provide the internal boundary

conditions, although, in case of converging flows and steep bottom gradients, conser-

vation of energy head can be applied as well (see, for example, [12]).

According to some authors [52], energy head conservation should be used only

if solutions are smooth. For proper shocks speeds and locations, the momentum

balance has to be applied.

However, when the discontinuities are not due to shock formation but to the

bathymetry and the flow is converging, it is still possible to impose momentum

conservation throughout, but energy head conservation is a better assumption [12].

The reason to change the conservation principle depending on the physical con-

ditions can be also explained in terms of energy loss.
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In a sudden channel expansion the energy head losses are to be derived from the

application of the momentum principle and can be quantified as a function symmetric

in the Froude number Fr [11, 46].

This means that if dissipation of energy occurs near expansions then, like wise,

increase of energy is obtained near contractions.

This result is totally wrong from a realistic and physical point of view and suggests

the use of a combined approach, that is the application of the momentum principle

only in expansions and the energy head balance in sudden contractions [46].

Therefore, in the following chapters, both the energy head and the momentum

conserving formulation of the Momentum Equation will be modelled and used de-

pending on the local flow conditions.



2
A high resolution scheme for 1D

flows in open channels with arbitrary

cross-section

The aim of this chapter is to present a numerical scheme to simulate unsteady, one

dimensional flows in open channels with arbitrary cross-section. This scheme is fully

conservative of volume and switches between momentum and energy head conserva-

tion depending on local flow conditions. The derived finite volume method is semi-

implicit in time and based on a space staggered grid. A high resolution technique, the

flux limiter method, is implemented to control the accuracy of the proposed scheme.

Our purpose is to achieve the precision and the stability of the method with respect to

the regularity of the data. In addition, a new flux limiter is described and implemented

to allow accurate flow simulations near hydraulic structures such as weirs.

2.1 Introduction

The current literature describes several numerical techniques that are suitable for

solving Equations (1.4.1), (1.4.2) and (1.7.1). These include the method of charac-

teristics, explicit difference methods, fully implicit methods, Godunov methods [27]

and semi-implicit methods [6].

In particular, the method of characteristics is very efficient in the treatment of

boundary conditions, but does not guarantee volume and momentum conservation.

The Godunov’s type methods (see, e.g., [52]) instead, require the solution of local

Riemann problems and, consequently, are very effective on simple channel geometries

with flat, horizontal bottom and rectangular cross-section. For space varying bottom
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profiles, however, the bottom slope appears as a source term that may generate

artificial flows [53] unless specific treatments of the geometrical source terms are

implemented [21, 55]. Moreover, Godunov’s type methods are explicit in time and,

accordingly, the allowed time step is restricted by a C.F.L. stability condition, which

relates the time step to the spatial discretization and the wave speed. These kinds

of methods are in general based upon non-staggered grids and can achieve higher

that first-order accuracy. The Godunov’s type methods were originally developed for

gas dynamic and only later extended to hydrodynamic on the basis of the analogy

between the equations for isentropic flow of a perfect gas with constant specific heat

and the shallow water Equations [47, 52].

Alternatively, semi-implicit methods (see, e.g., [6, 7, 10, 3]) can be unconditio-

nally stable and computationally efficient. In particular, a semi-implicit method that

conserves the fluid volume when applied to channels with arbitrary cross-sections

was firstly introduced and presented in [10]. These methods, however, when do

not satisfy the physical conservation property of momentum, may produce incorrect

results if applied to extreme problems having a discontinuous solution. Actually,

the semi-implicit scheme proposed in [3] as well as that presented by Stelling in [46]

combine the efficiency of staggered grids with the conservation of both fluid volume

and momentum and can be applied to problems including rapidly varying flows.

In the present chapter a numerical technique to solve Equations (1.4.1), (1.4.2)

and (1.7.1) is derived and discussed.

This technique is first order accurate, fully conservative of volume, both locally

and globally, and switches between momentum and energy head conservation de-

pending on local flow conditions (see Reference [46] for details), satisfying a correct

momentum balance near large gradients.

Moreover, under a suitable constraint on the time interval, it ensures the non-

negativity of the water volume, so allowing a correct solution of problems presenting

flooding and drying.

A high-resolution method, the flux limiter method, is implemented to control the

accuracy of the proposed scheme: our purpose is to achieve the precision and the

stability of the method with respect to the regularity of the data.

In addition, a special flux limiter is formulated, described and implemented to

allow accurate flow simulations near hydraulic structures such as weirs.

Finally, a proper semi-implicit discretization leads to a scheme that is relatively
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simple and highly accurate, even if the C.F.L. condition is violated.

2.2 Time and space discretization

In order to obtain a computationally efficient numerical method that does not suffer

from stability problems, the time discretization is chosen to be semi-implicit, that

means that only some terms in the governing equations are discretized implicitly.

The determination of the specific form of the semi-implicit discretization follows

directly from the analysis of the hyperbolic system (1.4.1)-(1.4.2) and from the study

of the Courant, Friedrichs and Lewy (C.F.L.) stability condition [6, 40, 39]

∆t ≤ ∆x

max {λ1, λ1}
=

∆x

|U |+
√

gA
B

(2.2.1)

for explicit numerical methods. This restriction is sufficient, but not necessary and

thus it usually requires a much smaller time step than that permitted by accuracy

considerations.

On the other hand, a fully implicit discretization of the governing equations leads

to methods which are unconditionally stable, but that involve the simultaneous so-

lution of a large number of coupled non-linear equations. Moreover, from the ponit

of view of the accuracy, the time step cannot be taken arbitrarily large and therefore

these methods often become impractical.

In order to propose a compromise between the explicit and the implicit time

discretization, the semi-implicit one seems to be a valid answer.

For simplicity, the derivation of the specific form of the semi-implicit discretization

will be carried out assuming that the channel has a rectangular cross-section of

constant width B so that the cross-sectional area A is simply given by A = A(x, t) =

BH(x, t). Moreover, Equations (1.4.1)-(1.4.2) can be written out in a more extended

non conservative form as

ηt + Uηx + HUx = −Uhx (2.2.2)

Ut + UUx + gηx =
1

H
(νHUx)x +

(γT ua − γU)

H
(2.2.3)

These equations in matrix notation can be written in the form (1.5.3) where

W =

 η

U

 , J =

 H U

U g

 , b =

 −Uhx

1
H

(νHUx)x + (γT ua−γU)
H

 (2.2.4)
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When ν = 0 the system of Equations (1.5.3) is strictly hyperbolic and the correspon-

ding characteristic speeds are λ1,2 = U ±
√

gH, that clearly depend only on the fluid

velocity U and upon the celerity
√

gH. Note that when |U | <<
√

gH the flow is

strictly subcritical and the characteristic speeds λ1,2 have opposite directions. More

importantly, the dominant term
√

gH arises from the off diagonal terms g and H in

the matrix J. These are the coefficient of ηx in the Momentum Equation and of Ux in

the Continuity Equation. Therefore, these derivatives must be discretized implicitly

in order for the stability of the method to be independent of the celerity
√

gH.

Actually, in the schemes presented in the following, the θ-method will be used

instead of the implicit one, with θ in [1
2
, 1] for stability reasons. The remaining terms

will be discretized explicitly.

From the point of view of the space discretization, Equations (1.4.1) and (1.4.2)

are discretized in the spatial interval [0, L] on a space staggered grid whose nodes

are denoted by xi and xi+1/2. The discrete velocity Ui+1/2 (or the discharge Qi+1/2 =

Ai+1/2Ui+1/2) is defined at half integer nodes, while the discrete surface elevation ηi as

well af the total water depth Hi, assumed to be constant in the interval [xi−1/2, xi+1/2],

are defined at integer nodes. The grid intervals are denoted by ∆xi = xi+1/2− xi−1/2

and ∆xi+1/2 = ∆xi+1+∆xi

2
.

The time interval is taken to be ∆t.

2.3 Discretization of the Continuity Equation

The Continuity Equation (1.4.1) expresses the physical law of conservation of volume

and it is discretized by a finite volume method in space and by the θ-method in time

[10].

Directly from the specifications of the previous section, the discretization of the

Continuity Equation follows from the integration in space of (1.4.1)

At + Qx = 0 (2.3.1)

over the interval [xi−1/2, xi+1/2]∫ xi+1/2

xi−1/2

[At + Qx]dx =
∂

∂t

∫ xi+1/2

xi−1/2

Adx +
∂

∂x

∫ xi+1/2

xi−1/2

Qdx = 0 (2.3.2)

that leads to

∂

∂t
Vi(ηi) + [Q(xi+1/2)−Q(xi−1/2)] = 0 (2.3.3)
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and from the semi-implicit discretization in time

Vi(η
n+1
i ) = Vi(η

n
i )−∆t[Qn+θ

i+1/2 −Qn+θ
i−1/2], (2.3.4)

where the fluid volume Vi(ηi) =
∫ xi+1/2
xi−1/2

Adx is, in general, a non linear function of η

and Qn+θ = θQn+1 + (1− θ)Qn.

From the point of view of the time discretization, the discharge is defined as

Qn = AnUn.

Equation (2.3.4) obviously expresses a discrete conservation of fluid volume.

The particular attention given here to volume conservation is justified by the

importance of this conservation when the channel has a non-rectangular cross-section.

In this case, traditional numerical methods (and even the Godunov’s type methods)

apply a linearization technique to the non linear function V in Equation (2.3.4).

Specifically,

Vi(η
n+1
i ) ≈ Vi(η

n
i ) +

∂Vi(η
n
i )

∂η
(ηn+1

i − ηn
i ), (2.3.5)

where
∂Vi(η

n
i )

∂η
represents the surface area between xi−1/2 and xi+1/2.

Substitution of (2.3.5) into (2.3.4) yields

∂Vi(η
n
i )

∂η
(ηn+1

i − ηn
i ) + ∆t[Qn+θ

i+1/2 −Qn+θ
i−1/2] = 0, (2.3.6)

where the term
∂Vi(η

n
i )

∂η
(ηn+1

i − ηn
i ) is no longer the volume variation unless ∂Vi

∂η
is

a constant. This is the case, e.g., for channels with rectangular cross-section. In

general, however, the linearized Equation (2.3.6) or similar linearizations will not

guarantee volume conservation and an artificial loss or creation of mass may result.

In Chapter 3, a wet bed dam break in an open channel with triangular cross

section is presented.

2.3.1 Definition of η and −h at i + 1/2

From the point of view of the spatial discretization, the discharge is defined as

Qi+1/2 = Ai+1/2Ui+1/2.

Therefore, remembering the definition of the cross-sectional area A as A =

A(x, η(x, t)), the variable η and the bottom −h, are initially defined at integers

nodes, it is necessary to define explicitly their value at the half integer node i + 1/2.
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To do this, the following upwind rule based on the sign of the discharge Qi+1/2 is

used for the definition of η

ηi+1/2 =

 ηi if Qi+1/2 ≥ 0

ηi+1 if Qi+1/2 < 0
(2.3.7)

while the value of the bottom −hi+1/2 is given by

− hi+1/2 = min(−hi,−hi+1). (2.3.8)

except for the case we can analytically express it as −hi+1/2 = −h(xi+1/2).

Definition (2.3.8) can be justified as follows.

Assume that in the middle of a channel there is a sill 1m height and with vertical

walls, that is the slopes of the sill are abrupt within one grid cell (see, e.g., the

bottom of the channel in the example presented in Section 3.3). Assume that the

bottom is discretized in such a way only one point of the sill’s crest is detected, that

is −hi−1 = 0m, −hi = 1m and −hi+1 = 0m.

Using Equation (2.3.8), the bottom at i± 1/2 is given by

−hi−1/2 = −hi+1/2 = 1m

and thus a crest has appeared in the bottom profile, giving the correct description of

the channel’s geometry.

The introduction of a different choice for the definition of the bottom at i± 1/2

could lead to incorrect results.

For example, applying an average, the bottom at i±1/2 is given by the following

expressions

−hi−1/2 =
(−hi + hi−1)

∆x
(xi−1/2 − xi−1)− hi−1

−hi+1/2 =
(−hi+1 + hi)

∆x
(xi+1/2 − xi+1)− hi

that describe the numerical bottom profile as smooth between −hi−1 and −hi and

between −hi and −hi+1.

Alternatively, introducing an upwind rule based on the sign of the discharge

− hi+1/2 =

 −hi if Qi+1/2 ≥ 0

−hi+1 if Qi+1/2 < 0
, (2.3.9)

the bottom profile displays a sill with a crest whose length varies between one point

and the space interval ∆xi, depending on the value of the discharge field.
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2.4 Discretization of the Momentum Equation

In order to formulate a correct scheme for the Momentum Equation, not only nume-

rical guidelines have to be considered, but also the physical considerations presented

in Section 1.7.

In fact, near local discontinuities in the solution, following from, for example,

sharp bottom gradients or hydraulic jumps, the order of accuracy concept is mea-

ningless. Conservation properties are more important aspects in such situations.

An energy head and a momentum conservative approximation of the Momentum

Equation are presented in the following subsections.

A switch between the two forms is formulated in such a way that energy head

can be chosen for converging flows (such as strong contractions) and the momentum

for diverging flows.

2.4.1 First formulation: conservation of the momentum

Equation (1.4.2)

Qt + (UQ)x + gAηx + γU = 0 (2.4.1)

is discretized with a conservative method in order to obtain a physically correct

solution also under extreme circumstances.

The formulation presented in this section is called Q-formulation, meaning that

it will be solved in the variable Q.

Specifically, this scheme is given by centred finite differences for the integration in

space of water surface elevation and the semi-implicit method for the time integration

(see, e.g., [6, 7, 8, 10]).

Based on the discussion of Section 2.2, the gradient of the free surface elevation

will be discretized with the θ-method, while the convective term will be discretized

explicitly. For stability, the friction term will be discretized implicitly, but the friction

coefficient γ will be evaluated explicitly so that the resulting algebraic system to be

solved will be linear.

Finally, the resulting discretization of the Momentum Equation is the following:

Qn+1
i+1/2 −Qn

i+1/2

∆t
+

(UQ)n
i+1 − (UQ)n

i

∆x
+ gAn

i+1/2

ηn+θ
i+1 − ηn+θ

i

∆x
+

γn
i+1/2

An
i+1/2

Qn+1
i+1/2 = 0 (2.4.2)
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that is

(1 +
γn

i+1/2

An
i+1/2

∆t)Qn+1
i+1/2 + gAn

i+1/2θ
∆t

∆xi+1/2

(ηn+1
i+1 − ηn+1

i ) = F n
i+1/2 (2.4.3)

where

F n
i+1/2 = Qn

i+1/2 −∆t
[(UQ)n

i+1 − (UQ)n
i ]

∆xi+1/2

− gAn
i+1/2(1− θ)∆t

(ηn
i+1 − ηn

i )

∆xi+1/2

(2.4.4)

is a finite difference operator including the explicit discretizations of the advective

and the free surface slope terms.

Regarding the time discretization, one can note that the θ-method has been used

for the free surface slope term, the friction has been taken implicitly, while the other

terms have been discretized explicitly.

Moreover, the cross-sectional area that multiplies the free surface slope term can

be defined at the half integer node i + 1/2 as An
i+1/2 = A(xi+1/2,

ηn
i+1+ηn

i

2
).

Here, it is worth noting that in case of a frictionless channel with rectangular

cross-section and flat bottom one has A(x, η) = BH = B(h + η), where B is the

channel width and −h = constant is the channel depth when η = 0.

In this case, Equation (2.4.2) can be regarded as being the semi-implicit time

discretization of

dQi+1/2

dt
+

(UQ)i+1 − (UQ)i

∆xi+1/2

= −gB
(Hi+1 + Hi)

2

(Hi+1 −Hi)

∆xi+1/2

(2.4.5)

or, equivalently,

dQi+1/2

dt
+

(UQ)i+1 − (UQ)i

∆xi+1/2

= −gB

2

(H2
i+1 −H2

i )

∆xi+1/2

. (2.4.6)

Interestingly enough, even though the given Momentum Equation (1.4.2) is not writ-

ten in conservative form, the resulting Equation (2.4.6) represents the precise mo-

mentum conservation because it is written in flux form (see, e.g., [46] for further

details).

We shall then assume that the more general Equation (2.4.3) is conservative also

in the more general case of channels with arbitrary cross-section and with varying

bottom slope.
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The advective term

The value of UQ at the integer node i, as required by F , may be computed using the

following upwind rule based on the sign of the discharge average:

(UQ)n
i =

Qn
i+1/2 + Qn

i−1/2

2

 Un
i−1/2 if

Qn
i+1/2

+Qn
i−1/2

2
≥ 0

Un
i+1/2 if

Qn
i+1/2

+Qn
i−1/2

2
< 0

(2.4.7)

2.4.2 Second formulation: conservation of the energy head

In order to obtain an energy head conserving scheme expressed in the variable Q, it

is convenient to add Equation (1.4.1) multiplied by U to Equation (1.7.1) multiplied

by A to obtain

Qt + UQx +
1

2
A(U2)x + gAηx + γU = 0. (2.4.8)

The discretization in space and time of the reformulated energy head principle (2.4.8)

is given by centred finite differences for the integration in space of water surface

elevation and by the semi-implicit method presented in the previous Subsection for

the time integration:

Qn+1
i+1/2 −Qn

i+1/2

∆t
+ Un

i+1/2

Qn
i+1 −Qn

i

∆xi+1/2

+ An
i+1/2

(U2)n
i+1 − (U2)n

i

2∆xi+1/2

+

gAn
i+1/2

ηn+θ
i+1 − ηn+θ

i

∆xi+1/2

+
γn

i+1/2

An
i+1/2

Qn+1
i+1/2 = 0 (2.4.9)

that can be written as Equation (2.4.3) with F n
i+1/2 defined as follows

F n
i+1/2 = Qn

i+1/2 −∆tUn
i+1/2

Qn
i+1 −Qn

i

∆xi+1/2

−∆tAn
i+1/2

(U2)n
i+1 − (U2)n

i

2∆xi+1/2

− gAn
i+1/2(1− θ)∆t

(ηn
i+1 − ηn

i )

∆xi+1/2

(2.4.10)

The advective term

The values of U and Q at the integer node i, as required by F , are computed using

the following upwind rule based on the sign of the discharge average:

Ui, Qi =

 Ui−1/2, Qi−1/2 if
Qi+1/2+Qi−1/2

2
≥ 0

Ui+1/2, Qi+1/2 if
Qi+1/2+Qi−1/2

2
< 0

(2.4.11)

while the cross-sectional area Ai+1/2 that multiplies the ∂U2

∂x
term is defined as ex-

plained in Section 2.3.1.
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2.5 Switching the conservation

Two possible approaches to the implementation of the switch between momentum

and energy head conservation are proposed in this section.

Both of them are such that only a small part of scheme (2.4.2) has to be differently

defined to obtain scheme (2.4.9) and therefore the implementation of the switch does

not cause problems from the points of view of the computational cost and efficiency

of the model.

In the first approach, the switch consists in the choice of the discretization of the

advective term and assumes the following form

use


Un

i+1/2

Qn
i+1−Qn

i

∆xi+1/2
+ An

i+1/2

(U2)n
i+1−(U2)n

i

∆xi+1/2
if

ui+1/2−ui−1/2

∆x
> ε > 0

(UQ)n
i+1−(UQ)n

i

∆xi+1/2
otherwise

(2.5.1)

In the second approach, valid only for steady state flows, formulation (2.4.2)

switches to formulation (2.4.9) changing the definition of the cross-sectional area

Ai+1/2 that multiplies the free surface slope term.

In particular, consider the following expression

Ai+1/2 =
2Ai+1Ai

Ai+1 + Ai

= 2(
1

Ai+1

+
1

Ai

)−1 (2.5.2)

Dividing Equation (2.4.2) by the factor (2.5.2), one has

1

2
(
Qi+1

Ai+1

+
Qi

Ai

)
Ui+1 − Ui

∆x
+ g

ηi+1 − ηi

∆x
= 0 (2.5.3)

or equivalently, observing that Q is constant everywhere,

1

2

U2
i+1 − U2

i

∆x
+ g

ηi+1 − ηi

∆x
= 0 (2.5.4)

that is consistent with the Energy Head conserving Equation (1.7.1).

Thus, the switch of the second approach is the following

use Ai+1/2 =


2Ai+1Ai

Ai+1+Ai
if

ui+1/2−ui−1/2

∆x
≥ ε > 0

Ai+Ai+1

2
otherwise

(2.5.5)

For its simplicity, one can decide to use switch (2.5.5) during the whole computa-

tion of steady state phenomena and therefore also in the transitions where, although

not completely correct, it is still consistent.
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2.6 The semi-implicit finite volume method for

the SVE

The semi-implicit method obtained in this work for the discretization of the Saint

Venant system takes the following form

Vi(η
n+1
i ) = Vi(η

n
i )−∆t[Qn+θ

i+1/2 −Qn+θ
i−1/2], (2.6.1)

(1 +
γn

i+1/2

An
i+1/2

∆t)Qn+1
i+1/2 + gAn

i+1/2θ
∆t

∆xi+1/2

(ηn+1
i+1 − ηn+1

i ) = F n
i+1/2 (2.6.2)

Observe that the discretization of the Momentum Equation given by (2.6.2) expresses

both the discrete conservation of the energy head and of the momentum depending

on the definition of the explicit operator F .

2.7 Order of accuracy and consistency

The numerical method (2.6.1)-(2.6.2) is first order accurate.

Its order of accuracy can be verified through the analysis of the consistency of the

method that requires that the original equations can be recovered from the algebraic

ones: obviously this is a minimum requirement for any discretization.

Consider negative flow directions (U < 0, Q < 0) and a Taylor expansion of the

individual terms in Equations (2.6.1)-(2.6.2)

V n+1
i+1 = V n

i + ∆t

(
∂V

∂t

)n

i

+ O(∆t2) (2.7.1)

Qn+θ
i+1/2 = Qn

i+1/2 + θ∆t

(
∂Q

∂t

)n

i

+ O(∆t2) (2.7.2)

Qn
i+3/2 = Qn

i+1/2 + ∆x

(
∂Q

∂x

)n

i+1/2

+ O(∆x2) (2.7.3)

Qn
i+1/2 = Qn

i +
∆x

2

(
∂Q

∂x

)n

i

+ (
∆x

2
)2 1

2

(
∂Q

∂x

)n

i

+ O(∆x3) (2.7.4)

Qn
i−1/2 = Qn

i −
∆x

2

(
∂Q

∂x

)n

i

+ (
∆x

2
)2 1

2

(
∂Q

∂x

)n

i

+ O(∆x3) (2.7.5)

ηn+θ
i+1 = ηn+θ

i+1/2 +
∆x

2

(
∂η

∂x

)n+θ

i+1/2

+ (
∆x

2
)2 1

2

(
∂η

∂x

)n+θ

i+1/2

+ O(∆x3) (2.7.6)

ηn+θ
i = ηn+θ

i+1/2 −
∆x

2

(
∂η

∂x

)n+θ

i+1/2

+ (
∆x

2
)2 1

2

(
∂η

∂x

)n+θ

i+1/2

+ O(∆x3) (2.7.7)
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that yields (
∂V

∂t

)n

i

+ O(∆t2) + ∆x

(
∂Q

∂x

)n+θ

i+1/2

+ O(∆x3) = 0 (2.7.8)

(
∂Q

∂t

)n

i+1/2

+ O(∆t2) +

(
∂Q

∂x

)n

i+1/2

+ O(∆x2)

+ gA

(
∂η

∂x

)n+θ

i+1/2

+ O(∆x3)− γU = 0 (2.7.9)

Therefore, the semi-implicit numerical method (2.6.1)-(2.6.2) is first order both in

space and in time. From the same expression it follows that this scheme is also

consistence with the physical laws that it discretizes.

2.8 Stability of the method

The stability analysis of the semi-implicit method (2.6.1)-(2.6.2) will be carried out by

using the von Neumann method under the assumption that our differential equations

(1.4.1)-(1.4.2) are linear (A = BH), fully implicit in time and defined on an infinite

spatial domain, or with periodic boundary conditions on a finite domain.

Consider θ = 1. Hence, the difference Equations (2.6.1)-(2.6.2) reduce to

ηn+1
i = ηn

i −
∆t

∆x
[Qn+1

i+1/2 −Qn+1
i−1/2], (2.8.1)

(1 +
γ

H
∆t)Qn+1

i+1/2 + gBH
∆t

∆x
(ηn+1

i+1 − ηn+1
i ) = F n

i+1/2 (2.8.2)

where the operator F has been assumed to be linear, all the coefficients H, γ and

B have been assumed to be constants and in particular B = 1. Now, expressing the

two equations in U form, one has

ηn+1
i = ηn

i −
∆t

∆x
H[Un+1

i+1/2 − Un+1
i−1/2], (2.8.3)

(H + γ∆t)Un+1
i+1/2 + gH

∆t

∆x
(ηn+1

i+1 − ηn+1
i ) = HF n

i+1/2 (2.8.4)

Now, by changing variables U and η with U =
√

(H + γ∆t)U and η = η
√

g, Equa-

tions (2.6.1)-(2.6.2) become

ηn+1
i = ηn

i − C∗[U
n+1
i+1/2 − U

n+1
i−1/2], (2.8.5)
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U
n+1

i+1/2 + C∗(ηn+1
i+1 − ηn+1

i ) =
HF n

i+1/2√
(H + γ∆t)

(2.8.6)

where C∗ =
√

g∆tH√
(H+γ∆t)∆x

.

In order to analyze the stability of Equations (2.8.5)-(2.8.6) with the von Neu-

mann method, a Fourier mode is introduced for each field variable U and η and the

stability analysis is carried out on the corresponding amplitude functions. Specifi-

cally, U
n

i+1/2 and ηn
i are replaced in (2.8.5)-(2.8.6) by ÛneI(i+1/2)α and η̂neIiα respec-

tively, where Ûn and η̂n are the amplitude functions of U and η at the time level tn,

I =
√
−1 and α is the phase angle. Thus, after substituting these expressions and

dividing by eI(i+1/2)α, Equations (2.8.5)-(2.8.6) become

η̂n+1
i = η̂n

i − C∗Ûn+1[eIα/2 − e−Iα/2], (2.8.7)

Ûn+1 + C∗η̂n+1[eIα/2 − e−Iα/2] =
Hf√

(H + γ∆t)
Ûn (2.8.8)

where f is the amplification factor of the linearized operator F . Since eIα/2−e−Iα/2 =

2Isin(α/2), by setting p = 2C∗sin(α/2), Equations (2.8.7)-(2.8.8) in matrix notation

become

PŴ
n+1

= QŴ
n

(2.8.9)

where

Ŵ =

 Ûn

η̂n

 , P =

 1 Ip

Ip 1

 , Q =

 Hf√
(H+γ∆t)

0

1 0

 (2.8.10)

Thus, the amplification matrix of the method is G = P−1Q and a necessary and

sufficient condition for stability is that ‖G‖2 ≤ 1 identically for every α. But,

since ‖G‖2 ≤ ‖P‖−1
2 ‖Q‖2, we are seeking the conditions for which ‖P‖−1

2 ≤ 1 and

‖Q‖2 ≤ 1. Note now, that the two matrices P and Q and hence also P−1, are

normal matrices; that is, they commute with their respective hermitian conjugate.

Thus, the norms of P−1 and of Q are equal to their respective spectral radius. But,

the eigenvalues of P are

λP = 1± I |p|
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and thus the spectral radius of P−1 is always no greater than unity. Next, the

eigenvalues of Q are

λQ = 1 λQ =
Hf

(h + γ∆t)

Hence, in order for spectral radius of Q not to exceed unity, it is sufficient that

|f | ≤ 1

identically for every α. Thus the stability of the semi-implicit method (2.6.1)-(2.6.2)

depends only on the choice of the difference operator F used to discretize the con-

vective and the viscous terms.

For example, using an explicit upwind discretization, the stability restriction on

the time step is given by

∆t ≤ ∆x2

|U |∆x + 2ν
(2.8.11)

If instead, an Eulerian-Lagrangian discretization is used, then the stability restriction

on the time step reduces to

∆t ≤ ∆x2

2ν
(2.8.12)

2.9 Numerical accuracy and high-resolution

The numerical method proposed in this work is only first order accurate. In general,

all first order schemes suffer from numerical dissipation and all second order schemes

suffer from artificial dispersion, which creates oscillations around discontinuities.

In order to improve the accuracy of the method without running into stability

problems but leading it to satisfy the TVD property [53, 59], we introduce a particular

class of high-resolution methods.

A high-resolution method can be characterized with the following properties [25]:

• it provides at least second order of accuracy in smooth areas of the flow.

• it produces numerical solutions (relatively) free from spurious oscillations

• in the case of discontinuities, the number of grid points in the transition zone

containing the shock wave is smaller in comparison with that of first-order

monotone methods
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The motivation for the development of high-resolution methods emerges from our

effort to circumvent Godunovs theorem [23] that states: There are no monotone,

linear schemes for the linear advection equation of second or higher order of accuracy .

In other words, second-order accuracy and monotonicity are contradictory re-

quirements. The key to circumvent Godunovs theorem lies on the assumption made

in the theorem that the schemes are linear. Therefore, if we want to design a method

which provides at least second order of accuracy and at the same time avoids spurious

oscillations near large gradients, then we need to develop non-linear methods.

Limiters are the general non-linear mechanism that distinguishes modern me-

thods from classical linear schemes. These are sometimes referred to as flux limiters

or slope limiters, but their role is similar: they act as a non-linear switch between

more than one linear methods and choice the numerical method to be used depending

on the behaviour of the local solution.

Limiters result in non-linear methods even for linear equations in order to achieve

second-order accuracy simultaneously with monotonicity.

We present the flux limiter approach [16, 4, 5, 41, 50, 52] in terms of a simple

conservation law

wt + f(w)x = 0 (2.9.1)

f(w) = aw (2.9.2)

as solved by

wn+1
i = wn

i +
∆t

∆x
(fi+1/2 − fi−1/2) (2.9.3)

Given a high order flux fHI
i+1/2 associated with a scheme of accuracy greater than

or equal to two and a low order flux fLO
i+1/2 associated with a monotone first order

scheme, one can define a high order flux f ∗i+1/2 as

f ∗i+1/2 = fLO
i+1/2 + Ψi+1/2[f

HI
i+1/2 − fLO

i+1/2] (2.9.4)

where Ψi+1/2 is a flux limiter function that usually depends on a ratio r measuring

the regularity of the data at xi+1/2: r ≈ 1 denotes smooth data, while r far from 1

denotes non-regular data.

Definition (2.9.4) produces a high order resolution flux that switches between a

second order approximation when the data are sufficiently smooth and a first order

approximation near a discontinuity.



32 2. A 1D scheme for open channel flows with arbitrary cross-section

There are various choices for the flux limiter function and for example:

Minmod [52] is given by

Ψ(r) =


0 r ≤ 0

r 0 ≤ r ≤ 1

1 r ≥ 1

(2.9.5)

Vanleer is given by

Ψ(r) =

 0 r ≤ 0
2r

1+r
r > 0

(2.9.6)

and Superbee is given by

Ψ(r) =



0 r ≤ 0

2r 0 ≤ r ≤ 1
2

1 1
2
≤ r ≤ 1

r 1 ≤ r ≤ 2

2 r ≥ 2

(2.9.7)

2.9.1 Flux limiters in the present model

The value of (UQ)i, as required by F as well as the value of ηi+1/2 involved in the

definition of the momentum Qi+1/2 have been chosen with upwind rules, (2.4.7) and

(2.3.7) respectively.

With this choice, the resulting numerical scheme is only first order accurate. In

order to improve the accuracy without running into stability problems but leading it

to satisfy the TVD property [53], the flux limiter method presented in the previous

section has been used.

As pointed out, this high order resolution method switches between a second order

approximation when the data are sufficiently smooth and a first order appro-ximation

near a discontinuity.

In our implementation of the data reconstruction step, this technique adds to the

first order numerical flux a correction term limited by a flux limiter function Ψ that

depends on the regularity of the data r.

Assuming positive flow direction, the velocity U in the approximation of the

advective term (2.4.7) becomes

U(x) = Ui−1/2 +
(x− xi−1/2)

∆x
Ψ(rU(x))(Ui−1/2 − Ui−3/2) x ∈ [xi−1, xi] (2.9.8)



2.9. Numerical accuracy and high-resolution 33

where

rU
i =

Ui+1/2 − Ui−1/2

Ui−1/2 − Ui−3/2

(2.9.9)

Moreover, the water surface elevation η involved in the definition of Qi+1/2 is now

given by

η(x) = ηi +
(x− xi)

∆x
Ψ(r(x))(ηi − ηi−1) x ∈ [xi−1/2, xi+1/2] (2.9.10)

where

rη
i+1/2 =

ηi+1 − ηi

ηi − ηi−1

(2.9.11)

The flux limiting function Ψ can be chosen in several ways (see, e.g., [35, 34] for

details).

2.9.2 A special flux limiter

A special flux limiter function has been defined to be used in the extrapolation of

the value ηi+1/2 in the advective term in case of critical flow and it is defined, for

positive flow direction, by the following relation

Ψi+1/2 = Ψ(xi+1/2) = min(0, max(
−ηi/3

ηi+1 − ηi

, 1)) (2.9.12)

One can show that

0 ≤ Ψi+1/2 ≤ 1

that means that a data reconstruction using the flux limiter function Ψ defined in

(2.9.12) is consistent, because it is a Total Variation Non Increasing (TVNI) scheme,

as stated in the Harten’s Theorem [25].

In particular, the reconstruction of η in the node i + 1/2 assumes the following

form

η(x) = ηi +
(x− xi)

∆x
Ψ(x)(ηi+1 − ηi) x ∈ [xi−1/2, xi+1/2] (2.9.13)

and can be written in a more compact notation as follows

ηi+1/2 = min(ηi, max(
2

3
ηi, ηi+1)). (2.9.14)

The derivation of this special flux limiter follows from the analysis of the specific

energy head function [11] in case of a constant discharge

E = H +
U2

2g
. (2.9.15)
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This function assumes its minimum respect to H in the case of critical flows, that is

if Fr = 1 (U =
√

gH), and its minimum value is

E =
3

2
(

Q2

gA2
)

1
3 (2.9.16)

where Hcr = (U2

g
)

1
3 is called critical depth.

Thus, in case of critical flow, one has H = 2
3
E (see, e.g., [11]).

Equation (2.9.14) is finally obtained assuming that the squared velocity is ne-

gligible with respect to H and introducing a min-max rule to ensure consistency.

The implementation of this flux limiter improves the accuracy of the method

and helps in facing the problems arising in case of low resolution of the grid. An

application of this flux limiter can be found in Section 3.3.



3
Numerical results in open channels

The aim of this chapter is to show the properties of the proposed method in terms

of stability, accuracy and efficiency in the simulation of various test cases. A few

computational examples are given on the classical frictionless dam break problem for

rectangular and non-rectangular channels and on wet and dry channel’s bed. The

numerical results obtained in rectangular channels are compared with the analytical

solutions, while those in a triangular channel are presented to show the applicability

of the present algorithm to a problem where precise volume conservation is essential

and not easily obtained by traditional linear schemes. Steady state problems over a

discontinuous bed profile in a rectangular frictionless channel are also modelled. In

particular, a steady state problem including a hydraulic jump is exemplified to show

the ability of the proposed flux limiter (see Section 2.9.2) in providing a physically

correct solution even in case of a low resolution grid. Continuous transitions from

subcritical to supercritical flow and vice versa are simulated as an interesting proof of

the robustness of the proposed scheme. Two free fluid oscillations in parabolic basins

are modelled in order to check the ability of the scheme to compute a moving wet-dry

interface over a sloping topography.

3.1 Dam Break problems

The test problems presented in this section belong to the class of the well known

frictionless dam break problem introduced by Stoker in 1957 [47].

They consist in the simulation of the phenomenon following the instantaneous

removal of a vertical wall separating the water in the middle of a channel.

This kind of events are fortunately rare, but when they occur the consequences are

disastrous. The mathematical modelling plays a very important role in understand-
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ing the evolution of the breaking process, when it happens, and the whole physical

phenomena involved.

Volume and momentum conservation are always applied in order to obtain a

physically correct numerical solution. Moreover, the flux limiter method is also im-

plemented to gain in accuracy.

For all the test cases, the domain length is L = 1m, the bottom is flat, the vertical

wall is situated at L/2 and the boundaries are closed.

The water is initially at rest

u(x, 0) = 0 (3.1.1)

and the water depth is constant on the downstream as well as on the upstream side

of the dam

η(x, 0) =

 ηl if 0 ≤ x ≤ L
2

ηr if L
2

< x ≤ L.
(3.1.2)

For the first problem the channel is rectangular, the upstream depth ηl is 1m and

the downstream depth ηr is 0m.

The other physical and computational parameters are the friction coefficient

γ = 0, the gravitational acceleration g = 1m/s2, the grid size ∆x = 0.005m, the

parameter θ = 1 and the time step ∆t = 10−3s.

In this example η(x, t) also represents the total water depth which is initially zero

for 1
2
≤ x ≤ 1.

The main task of this test is to correctly simulate the flooding of the second half

part of the domain that is dry at time t = 0. In particular, the accuracy and reliability

in the approximation of the wave arrival time is very important to understand how

the process will evolve and to give a contribute to the risk analysis for civil protection

[31].

Figures 3.1 and 3.2 show the numerical results and the analytical solution (plotted

with a dotted line) at time T = 0.15s for the water surface elevation and for the

velocity. These results compare favourably well with those obtained from high-order

Godunov’s type methods (see, e.g., [53, 18]).

The second test problem is a dam break problem in a rectangular channel: both

the velocity and the water surface present a large gradient as in the previous test.

The upstream depth ηl is 1m, the downstream depth ηr is 0.1m and the compu-

tational parameters are set as in the first example except for θ = 0.5.
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Figure 3.1: Dam break over a dry bed in a rectangular channel: the water elevation
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Figure 3.2: Dam break over a dry bed in a rectangular channel: the velocity
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Figures 3.3 and 3.4 show the numerical results and the exact solution obtained for

water level and velocity profiles after T = 0.3s. The comparison is very satisfactory.
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Figure 3.3: Dam break over a wet bed in a rectangular channel: the water elevation

In the third test problem the channel has triangular cross section of area A = 10η2.

The initial conditions are the same as in (3.1.1) and (3.1.2) with the downstream

depth ηl equal to 1m and the upstream depth ηr equal to 0.1m.

The computational parameters are set as in the first example except for θ = 0.5.

The results obtained at time T = 0.3s are plotted in Figure 3.5.

This example shows the applicability of the present algorithm to a dam break

problem where precise volume conservation is essential and not easily obtained by

traditional linear schemes.

3.2 Subcritical and transcritical flow over a hump

The tests presented in this section simulate steady state problems over a disconti-

nuous bed profile in a rectangular frictionless channel.
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Figure 3.4: Dam break over a wet bed in a rectangular channel: the velocity
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Figure 3.5: Dam break over a wet bed in a triangular channel
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The domain length is L = 50m and in the middle of the channel there is a sill

with a crest of 0.4m height and 8m long with vertical walls. Specifically, the bottom

profile is given by

h(x) =

 0.4m if 16m < x < 24m

0m if otherwise
(3.2.1)

According to the boundary and initial conditions, the flow may be subcritical, tran-

scritical with a steady shock, or supercritical.

As boundary conditions, the discharge and the water depth are imposed, respec-

tively, at the inflow and at the outflow.

A constant water level equal to the level imposed downstream and a discharge

equal to zero are chosen as initial conditions.

γ = 0 and g = 9.81m/s2, while the discretization parameters are set to ∆x =

0.25m, θ = 1 and ∆t = 10−2s. In particular, the numerical representation of the

bottom profile is such that it changes between zero and 0.4 within one grid cell just

next to the sill in the middle of the channel.

In the first problem a discharge of 2.42m3/s and a water depth of 2m are imposed

at the two open boundaries.

The flow is subcritical and the results obtained for the water level, the velocity

and the discharge are plotted in Figures 3.6 and 3.7.

In the second problem the upstream discharge is 1.53m3/s and the downstream

water depth is 0.5m.

The discretization parameters are the same as for the subcritical problem.

The flow is transcritical without shock: Figures 3.8 and 3.9 show the numerical

results for the water level, the velocity and the discharge.

3.3 Transitions from super to subcritical flows

The first test presented in this section simulates a steady state problem including a

hydraulic jump over a non-flat bed profile in a rectangular frictionless channel.

A hydraulic jump consists in the transition from a supercritical flow to a subcri-

tical flow, it is extremely turbulent, it is characterized by strong energy dissipation

and it necessitates proper local conservation properties to be correctly represented.

In the analysis of supercritical flows, the main aspect to be investigated is the

location of the hydraulic jump.
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Figure 3.6: Subcritical flow over a sill: water elevation

On the other hand, in case of subcritical flows, a precise estimation of the energy

head loss due to the hydraulic jump is essential to have the correct upwind water

level and the correct discharge over the sill once the downstream water level is fixed.

The numerical test presented in this section shows the ability of the numerical

method and of the flux limiter function provided by (2.9.14) in fulfilling these re-

quirements, even in the case of a low resolution grid.

Moreover, Energy head Conservation is used in contractions and Momentum Con-

servation elsewhere.

The physical properties of the channel are the following: its length is L = 100m

and a sill with a crest of 1m height and 10m long and vertical walls is situated in

the middle.

Moreover, there are two open boundaries, the inflow and the outflow, where a

discharge of 1m3/s and a water depth of 1m, respectively, are imposed [46].

The discretization parameters are θ = 1 and ∆t = 10−3s, while γ = 0 and

g = 9.81m/s2.

Figure 3.10 shows a comparison between the numerical solutions obtained for 100
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Figure 3.7: Subcritical flow over a sill: velocity and discharge

grid points (∆x = 1m) using the flux limiter (2.9.12) only over the sill (Solution 1 )

and the numerical solutions obtained for 20 grid points (∆x = 5m) with (Solution

2 ) and without (Solution 3 ) the help of the flux limiter.

The numerical Solutions 1 and 2 are coincident in almost all the nodes in common

(and in particular at the upstream end) although the second grid is five times coarser

than the first.

Moreover, on equal grid size, the numerical solution obtained using the limiter

(Solution 2 ) shows an upstream water level that is consistent with that of Solution 1

and higher than that obtained without the limiter (Solution 3 ): the reduction of the

resolution of the grid causes the upstream water level to decrease in the numerical

solution of the first order model.

The quality of the results can also be appreciated from the approximation of

the energy line plotted in Figure 3.10: as one can see, it is constant everywhere,

except near the hydraulic jump where the energy head drops as is to be expected by

considerations based on open channel hydraulics [11].

The second test presented in this section is an interesting proof of the robust-
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Figure 3.8: Transcritical flow over a sill: water elevation

ness of the proposed scheme in simulating continuous transitions from subcritical to

supercritical flow and vice versa.

These transitions are obtained imposing as downstream boundary condition a

water level following the hydrograph depicted in Figure 3.11 and described by the

equation

η(L, t) = 0.8sin(0.01t) + 1 (3.3.1)

The physical domain considered is the same as that of the previous test.

Figure 3.12 shows the numerical results obtained for the upstream water level

during two complete oscillations of the downstream boundary condition (3.3.1).

As expected, in the range for η(L, ·) corresponding to imperfect weirs, any small

change of its value affects the upstream flow condition, because the wave celerity is

larger than the flow velocity. Note that in Figure 3.12 the oscillations of η at the bor-

der of each smooth peak are qualitatively correct and not due to numerical reasons,
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Figure 3.9: Transcritical flow over a sill: velocity and discharge

because they represent the settlement of the η-values caused by the perturbation of

the downstream water level.

On the other hand, in the range for η(L, ·) corresponding to perfect weirs, a

downstream disturbance does not travel upstream and identical upstream depth es-

timations are produced.

3.4 Wetting, drying and moving boundaries

The non-linear Shallow Water Equations with topography cannot in general be solved

exactly. Therefore, it is not possible to validate a numerical method in all cases, and

the problems where an exact solution is known are important test cases.

In 1981 Thacker [51] described analytically the solution to the Shallow Water

Equations for two particular test cases of two dimensional motion: the oscillations

of a planar surface and of a parabolic surface in an elliptical basin for a frictionless

fluid.

These are important and severe test cases because they present a moving wet-dry
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Figure 3.10: High and low resolution grids: effect of the flux limiter

front in the domain and because the absence of bottom friction can cause a loss of

stability of the numerical solution.

3.5 Oscillations with planar surface

Consider the shallow basin given by the elliptical paraboloid of equation

h(x, y) = h0(1−
x2

l2
− y2

L2
), (3.5.1)

where h0 represents the maximal depth and l and L are parameters for the curvature

of the basin.

For this problem, assume that the initial water surface elevation is planar, that

the velocities in the x and y directions are constant in space and that the earth’s

rotation is neglected.

Therefore, if the basin (3.5.1) is a canal with parabolic cross-section (l >> L),

Thacker [51] provides the following solution for the two dimensional Shallow Water
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Figure 3.11: Downstream boundary condition on the water level

Equations: 
u(x, t) = −Θωsinωt

v(x, t) = 0

η(x, t) = 2Θh0

l
cosωt(x

l
− Θ

2l
cosωt)

(3.5.2)

where

ω =

√
2gh0

l2
(3.5.3)

is the frequency and Θ is the amplitude of the motion.

The shorelines for this solution are determined by the condition H = 0 and are

given by

x = Θcosωt± l. (3.5.4)

As one can note from Equations (3.5.2), the water surface elevation remains planar

and its inclination varies during the evolution of the phenomenon.

To test the one-dimensional numerical model presented in [3] on this problem,
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Figure 3.12: Varying downstream boundary condition: Upstream water level

the bathymetry of the canal is assumed to be

h(x) = h0(1−
x2

l2
), (3.5.5)

while its cross-section at the point x is described by the following function

A(x, η) = h(x)− h0
η2

L2
. (3.5.6)

The initial conditions consist in an initial zero velocity

u(x, 0) = 0 (3.5.7)

and in a planar water surface elevation presenting an inclination related to Θ

η(x, 0) = 2Θ
h0

l
(
x

l
− Θ

2l
). (3.5.8)

With this configuration, the numerical solution approximates the analytical one

(3.5.2) favourably well.
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g = 9.81m/s2, the physical parameters are h0 = 1m, l = 50m and L = 4m,

and the computational ones are N = 625, ∆x = 0.2m, ∆t = 2.e − 02s, θ = 1 and

Θ = 2.m.

From these data it follows that the frequency of the motion is ω = 0.0886rad/s

and the period of the motion is T = 2π
ω

= 70.925s. The percentage of wetting and

drying is around 5%.

The numerical simulation covers two complete oscillations.

In Figure 3.13 one can observe a good agreement between the numerical and the

analytical velocity u at the center of the basin, plotted in function of time for the

first two periods.
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Figure 3.13: Numerical and analytical velocities at the center of the basin for the

oscillations of a planar surface

Moreover, the numerical velocity is constant in space and, after two periods, the

difference from the theoretical value is of the order of a millimeter per second, as the

velocity is −0.2m/s−1.

The numerical water surface elevation remains planar during the evolution of the

oscillations and compares favourably well with the analytical value given by (3.5.2),
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even for frequency and amplitude.

The results depicted in Figure 3.14 represent the water surface drawn every 10.13s,

while the dashed line shows its initial position.
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Figure 3.14: Oscillations of a planar surface in a parabolic basin

Finally, the numerical shorelines appear to differ slightly from those given by

(3.5.4), being situated from zero to tree spatial intervals far from the theoretical

values with a maximum error of 0.52m.

Figure 3.15 shows the comparison between the numerical and the analytical left

shoreline for the first two periods.

3.6 Oscillations with parabolic surface

For this problem, consider a canal with a parabolic cross-section of bathymetry given

by (3.5.5).

Assume that the initial water surface elevation is parabolic, that the initial ve-

locities in the x and y directions are zero and that the earth’s rotation is neglected.
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Figure 3.15: Numerical and analytical left shoreline

Although it is not possible to derive the analytical solution for this problem [51],

the behaviour of the water surface elevation during the evolution of the oscillations

is known: it remains parabolic and its extreme states are the initial water surface

elevation and a parabolic surface of opposite concavity. Moreover, the frequency of

the oscillations seems to depend on the amplitude of the motion [51].

Therefore, testing the one-dimensional numerical model presented in [3] on this

problem can be evaluated only qualitatively.

The initial conditions consist in an initial zero velocity

u(x, 0) = 0 (3.6.1)

and in the following parabolic water surface elevation

η(x, 0) = Θ(1− 2x2

l2
). (3.6.2)

The physical and computational parameters are g = 9.81m/s2, N = 1500, ∆x =

0.2m, ∆t = 1.e− 01s, θ = 1, h0 = 0.01m, l = 65m, L = 2m and Θ = 0.1m.

The numerical simulation covers two complete oscillations.
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Figure 3.16 shows the numerical results for the water surface elevation every 50s,

while the dashed line shows its initial position.

The results depicted in Figure 3.17 represent the sinusoidal behaviour of the

numerical left shoreline in function of time.
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Figure 3.16: Oscillations of a parabolic surface in a parabolic basin
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4
Extension to closed channel flows

The aim of this chapter is to present the extension of the numerical scheme for one

dimensional open channel flows described in Chapter 2, to one dimensional closed

channel flows. Flows in closed channels, such as rain storm sewers, often contain

transitions from free surface flows to pressurized flows, or vice versa. These phe-

nomena usually require two different sets of equations to model the two different flow

regimes. Actually, a few specifications for the geometry of the channel and for the dis-

cretization choices can be sufficient to model closed channel flows using only the open

channel flow equations. The numerical results obtained solving the pressurization of

a horizontal pipe are presented and compared with the experimental data known from

the literature. Moreover, the numerical scheme is also validated simulating a flow in

a horizontal and downwardly inclined pipe and comparing the numerical results with

the experimental data obtained in the laboratory.

4.1 Flows in closed channels

The transition from free surface to pressurized flow or vice versa is a phenomenon

often occurring in closed channels.

This situation may happen for example in storm sewers systems during heavy

storm events or even in a closed channel with initially free surface flow as a result of

the start-up of machinery (turbines, pumps, gates).

Because of the wide range of practical problems involving closed channel flows,

numerical methods are needed to predict the water profile, pressure and discharge

during pipes pressurization and depressurization.

The one-dimensional equations for free surface as well as pressurized flows in

closed channels are essentially the Saint Venant Equations and two types of algo-
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rithms broadly used in the literature to solve them numerically are the Saint Venant

Equations (1.4.1)-(1.4.3).

Explicit algorithms are such that the time step is limited to the Courant condition.

This limitation cannot be fulfilled for pressurized flows due to the infinite propagation

velocities. In fact, assuming the incompressibility of water, the wave celerity is infinite

in pressurized sections and the same explicit algorithm used for the free surface flow

part of the domain cannot be used to solve the pressurized parts.

To avoid this inconvenience, almost all existing models use the Preissmann slot

technique [30, 20, 44], that is an approximation of the real, closed section with an

open section displaying a very small top width, called Preissmann slot.

In case of free surface flows the slot has no effects and the open channel flow

equations apply as usual.

Moreover, in case of pressurized flows, the small slot allows a finite value of the

wave celerity and the use of the free surface flow model everywhere in the computa-

tional domain.

A delicate issue is the choice of the slot width ε. In fact, if ε is too small, the use of

the Preissmann approximation can produce a large wave celerity and a corresponding

strict time step limitation, while, if ε is too large, inaccuracies may results [43].

On the other hand, unconditionally stable methods like fully implicit methods

[7, 54] are able to simulate the transition from free surface to pressurized flow in

channels with closed sections without any approximation of the section geometry.

In fact, assuming the incompressibility of water, they can manage instantaneous

transmission of pressure and velocity changes arising in the pressurized part of the

channel.

Therefore, using a fully implicit discretization in time, the numerical scheme

presented in Chapter 2 can be used to simulate free surface as well as pressurized

flows [2].

4.2 Geometrical and physical specifications

The water depth H and the cross-sectional area A are related with the variable η.

In case of free surface flows in a closed channel as well as for open channel flows,

the quantities η, H and A have the usual definitions.

In case of pressurized flows, η plays the role of the pressure head, the water height
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H is the maximum height reachable Htop = ηtop + h and the wetted area A is the

area of the whole cross section Atop.

Therefore, the total water depth H in a closed channel can be expressed as follows

H =

 η + h if η ≤ ηtop

Htop if η > ηtop

(4.2.1)

Moreover, the cross-sectional area A in a closed channel is a piecewise derivable

non decreasing functions of η and it is defined depending on the channel geometry.

For a rectangular closed channel with constant width B one has A = BH, while

for the special case of a circular channel with diameter D it holds

A =


D2

4

[
arccos(1− 2H

D
)− (1− 2H

D
)
√

1− (1− 2H
D

)2
]

if η ≤ ηtop

π(D/2)2 if η > ηtop

(4.2.2)

4.3 Numerical results in closed channels

The numerical results obtained solving the pressurization of a horizontal pipe are pre-

sented and compared with the experimental data known from the literature. More-

over, the numerical scheme is also validated simulating a flow in a horizontal and

downwardly inclined pipe and comparing the numerical results with the experimen-

tal data obtained in the laboratory.

4.3.1 Pressurization in a horizontal pipe

This test [20, 36] reproduces a free surface and pressurized flow in a horizontal, rough,

rectangular, closed channel of length L = 10m, width B = 0.51m, height Htop =

0.148m and cf = g
n2

M

R
1/3
H

, where nM = 0.12 is the Manning’s roughness coefficient [11].

The upstream boundary condition is the hydrograph for the pressure head de-

scribed in Figure 4.1, while the downstream boundary condition is a fixed water level,

HN+1 = 0.128m.

Initially the following free surface flow conditions with still water are present:

U(x, 0) = 0m/s, η(x, 0) = top(x) = 0.128 (4.3.1)

Then a wave, coming from the outside left side, causes the closed channel to pressu-

rize starting from upstream. The interface separating pressurized from free surface

flow moves from upstream to downstream as a front wave.
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Figure 4.1: Water height at the upstream boundary against time.

The physical and computational parameters are g = 9.81m/s2, ∆x = 0.1m, θ = 1.

and ∆t = 5. 10−3s.

Figure 4.2 shows the behaviour of the numerical instantaneous pressure head η

against time at x = 3.5m compared with the experimental data obtained by Wiggert

[56, 57]. As one can see from the Figure below, the experimental and the numerical

data agree fairly well.

4.3.2 Hydraulic jump in a circular pipe

These experiments have been carried out by the University of Delft and Delft Hy-

draulics in collaboration with the majority water boards in the Netherlands [14].

The aim of these experiments is the investigation about the air-water phenomena

in wastewater pressure mains with respect to transportation and dynamic hydraulic

behaviour. Free gas in pressurized pipelines can in fact significantly reduce the flow

capacity and may cause undesirable efficiency loss.
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Figure 4.2: η at x = 3.5 against the time.

These experiments have been conducted in a dedicated facility for research on gas

pockets that are located at the transition from horizontal to inclined pipes.

The test section of the pipe consists of three parts: a horizontal pipe of length

L1 = 2m, a downward inclined pipe (α = 10◦) of length L2 = 4m and a horizontal

pipe of length L3 = 2m. The pipes have an inner diameter of 220mm and are made

of transparent material (Perspex with equivalent sand roughness height of ks = 0).

Injecting air into the water and preserving a constant water discharge at the inlet

of the pipe and a constant pressure head downstream, an air pocket appears in the

inclined part of the pipe and the obtained configuration presents similarities with

hydraulic jumps in open channels.

The numerical results of the present model for the pressure head at the steady

state of the phenomenon are compared with the experimental data. They are given

as measurements of the water depth at specific nodes located along the air pocket at

a distance of about 30cm one to the other. The hydraulic jump is located after at

most 30cm from the last measurement. In the fully pressurized part of the pipe, the

pressure head is constant and its value corresponds to that of the boundary condition

imposed downstream.
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Table 4.1 summarizes the boundary conditions imposed on the scheme in per-

forming different tests.

Test 1 2 3 4

water flow rate upstream (l/s) 30 36 40 45

pressure head downstream (m.w.c.) 0.554 0.583 0.634 0.69

Table 4.1: Boundary Conditions

The physical and computational parameters are g = 9.81m/s2, ∆x = 0.06m,

θ = 1. and ∆t = 10−2s.

Figures 4.3, 4.4, 4.5, 4.6 show a good agreement between the measured and the

predicted data. Moreover, the pressure head η is constant everywhere in the pressur-

ized part of the pipe and its value corresponds to that of the downstream boundary

condition.
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Figure 4.3: Hydraulic Jump in a circular pipe: Test 1.
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Figure 4.4: Hydraulic Jump in a circular pipe: Test 2.
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Figure 4.5: Hydraulic Jump in a circular pipe: Test 3.
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Figure 4.6: Hydraulic Jump in a circular pipe: Test 4.



5
Existence and uniqueness of the

numerical solution

The aim of this chapter is to prove the existence and uniqueness of the numerical so-

lution of the scheme presented in Chapter 2 and 4 by introducing a few mathematical

assumptions that can be justified by physical argumentations.

5.1 The solution algorithm

At each time step Equations (2.3.4) and (2.4.3) for i = 1, ...N form a system of

non-linear equations with unknowns Qn+1
i+1/2 and ηn+1

i over the entire computational

mesh.

This system can be reduced for computational convenience to a smaller one in

which ηn+1
i i = 1, ...N are the only unknowns.

Specifically, the expressions for Qn+1
i±1/2 can be substituted from (2.4.3) into (2.3.4)

to obtain

Vi(η
n+1
i ) + pn

i−1/2η
n+1
i−1 + dn

i η
n+1
i + pn

i+1/2η
n+1
i+1 = fn

i (5.1.1)

that, for i = 1, ...N , constitute the solution system.

The coefficients pn
i±1/2 on the sub- and superdiagonal of system (5.1.1) are given

by

pn
i±1/2 = −

g(θ∆t)2An
i±1/2

∆xi±1/2(1 +
γn

i±1/2

An
i±1/2

∆t)
i = 1, ...N

while the coefficients dn
i on the main diagonal and the known terms fn

i are defined

as

dn
i = −pn

i+1/2 − pn
i−1/2
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and

fn
i = Vi(η

n
i )− (1− θ)∆t[Qn

i+1/2 −Qn
i−1/2]

− θ∆t[
F n

i+1/2

(1 +
γn

i+1/2

An
i+1/2

∆t)
−

F n
i−1/2

(1 +
γn

i−1/2

An
i−1/2

∆t)
] (5.1.2)

for i = 2, ...N − 1.

The applied boundary conditions complete the definition of the solution system,

specifying the elements of the main diagonal and of the known terms on the first and

on the N -th rows.

For every time step n, system (5.1.1) can be written in a more compact matrix

notation as follows

V(η) + Mη = f, (5.1.3)

where η=(η1, η2, ..., ηN)T is the vector of the unknowns representing the water level

for free surface flows and the pressure head for pressurized flows,

V(η) =


V1(η1)

V2(η2)

...

VN(ηN)

 , M =



d1 p 3
2

. . . 0

p 3
2

. . . . . .
...

...
. . . . . . pN− 1

2

0 ... pN− 1
2

dN

 , f =


f1

f2

...

fN

 .

(5.1.4)

Once system (5.1.3) has been solved and the solution for ηn+1 has been determined,

Qn+1 can be easily computed by substituting ηn+1 in (2.4.3).

System (5.1.3) is mildly non linear.

The coefficient matrix M is symmetric and tridiagonal. Moreover, one can as-

sume, without loss of generality, that the elements on the main diagonal are positive

and those on the sub- and superdiagonal are negative.

In fact, in the case it exists an i such that pi+1/2 = 0, it follows that Ai+1/2 =
A

i
+A

i+1

2
= 0 and therefore both the i-th and the (i + 1)-th cell of the spatial domain

are empty at time tn.

Moreover, writing Equation (5.1.1) for i = i and for i = i + 1

Vi(η
n+1
i

) + pn
i−1/2η

n+1
i−1

+ dn
i η

n+1
i

= fn
i (5.1.5)

Vi+1(η
n+1
i+1

) + dn
i+1η

n+1
i+1

+ pn
i+3/2η

n+1
i+2

= fn
i+1 (5.1.6)
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one can observe that they are no longer related to each other and therefore system

(5.1.3) breaks into two independent systems, specifically Equation (5.1.1) for i = 1, ...i

and Equation (5.1.1) for i = i + 1, ...N .

The same procedure can be repeated for every i such that Ai+1/2 = 0 and a set

of independent systems can be obtained.

These new systems are such that the coefficients pi+1/2 on their diagonals are all

negative and all of them can be linked to one of the couples of boundary conditions

that will be introduced in the following sections.

Regarding the non-linear part, V is a diagonal function and, representing water

volumes, it is also non-decreasing.

About its regularity, one can assume that V is Lipschitz continuous and thus, for

every r and s in <, it holds

| Vi(r)− Vi(s) |≤ Li | r − s | i = 1, ...N

where Li is the Lipschitz constant of Vi. Observe that Li is positive because the case

Li = 0 corresponds to Vi ≡ constant.

The diagonal matrix L such that its main diagonal contains the Lipschitz con-

stants of the components of V, that is L = diag(L1,L2, ...LN), will be useful in the

following.

The hypothesis of Lipschitz continuity on V is realistic and consistent with the

applications, because, representing Vi the water volume in the cell i, it means that

the surface area is always bounded for every η and thus the flow is assumed to be

confined within the channel banks.

In the following sections, each component Vi i = 1, ...N of function V will be

properly defined on < for open and closed channels.

Actually, observe that a function volume does not have sense for a negative water

depth and thus, from the physical point of view, any definition for Vi corresponding

to ηi in the range [−∞,−hi] will be allowed and meaningless at the same time.

Moreover, the physics of the problem is only interested in ηi ≥ −hi, but the

mathematics involved in the proofs of existence and uniqueness of the solution of

system (5.1.3) and in the construction of the constraint on ∆t for the non-negativity

of the water volume, requires the definition of each function Vi on < with particular

properties.
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5.2 Boundary conditions

The Saint Venant Equations are a hyperbolic system of two partial differential equa-

tions such that the existence and uniqueness of their solution is guaranteed if the

boundary data satisfy proper conditions.

From the theory of characteristics (see, e.g., [47]) it is known that, in order to

have a well-posed problem, boundary conditions should be imposed. Moreover, since

the object of our interest is the study of subcritical flows, the boundary conditions

have to be assigned one for each boundary of the domain.

From the numerical point of view, one can observe that this choice closes system

(5.1.3), in the sense that its number of the equations becomes equal to its number of

the unknowns.

One can explicitly show that, studying Equations (2.3.4)-(2.4.3) for i = 1

V1(η
n+1
1 ) = V1(η

n
1 )−∆t[Qn+θ

3/2 −Qn+θ
1/2 ] (5.2.1)

(1 +
γn

3/2

An
3/2

∆t)Qn+1
3/2 + gAn

3/2θ∆t
(ηn+1

2 − ηn+1
1 )

∆x3/2

= F n
3/2 (5.2.2)

and for i = N

VN(ηn+1
N ) = VN(ηn

N)−∆t[Qn+θ
N+1/2 −Qn+θ

N−1/2] (5.2.3)

(1 +
γn

N+1/2

An
N+1/2

∆t)Qn+1
N+1/2 + gAn

N+1/2θ∆t
(ηn+1

N+1 − ηn+1
N )

∆xN+1/2

= F n
N+1/2, (5.2.4)

both the two couples of Equations (5.2.1)-(5.2.2) and (5.2.3)-(5.2.4) require Q or η

as boundary condition and, specifically, Q1/2 or η0 and QN+1/2 or ηN+1 respectively.

In general, in the following, we will talk about Q-type boundary conditions and

η-type boundary conditions.

Depending on the chosen type of boundary conditions, the location of the first

and of the last node of the spatial grid can change together with the form and the

properties of the non-linear system that at each time step Equations (2.3.4)-(2.4.3)

form.

In particular, the next two subsections will present the form of the first and of

the last row of system (5.1.3) after the application of the boundary conditions.
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5.2.1 Q-type boundary conditions

The application of a Q-type boundary condition at the inflow leads the first node

being considered to be x1/2 and the first row of system (5.1.1) to assume the following

form:

V1(η
n+1
1 )− pn

3/2η
n+1
1 + pn

3/2η
n+1
2 = fn

1 , (5.2.5)

where

fn
1 = V1(η

n
1 )−∆tθ

F n
3/2

(1 +
γn
3/2

An
3/2

∆t)
+ ∆tQn+θ

1/2 −∆t(1− θ)Qn
3/2.

Regarding the outflow, using a Q-type boundary condition leads the last node being

considered to be xn+1/2 and the last row of system (5.1.1) to become

VN(ηn+1
N ) + pn

N−1/2η
n+1
N−1 − pn

N−1/2η
n+1
N = fn

N , (5.2.6)

where

fn
N = VN(ηn

N) + ∆tθ
F n

N−1/2

(1 +
γn

N−1/2

An
N−1/2

∆t)
−∆tQn+θ

N+1/2 + ∆t(1− θ)Qn
N−1/2

One can observe that the main diagonal coefficients of Equations (5.2.5) and (5.2.6)

are equal to the opposite of the super- and subdiagonal coefficient of the same equa-

tion respectively.

5.2.2 η-type boundary conditions

Applying a η-type boundary condition at the inflow, x1 is the first node of the spatial

grid and the first equation of system (5.1.1) assumes the following form

V1(η
n+1
1 )− (pn

1/2 + pn
3/2)η

n+1
1 + pn

3/2η
n+1
2 = fn

1 , (5.2.7)

where

fn
1 = V1(η

n
1 )−∆tθ[

F n
3/2

(1 +
γn
3/2

An
3/2

∆t)
−

F n
1/2

(1 +
γn
1/2

An
1/2

∆t)
]−∆t(1− θ)[Qn

3/2 −Qn
1/2]

+
g(θ∆t)2An

1/2

∆x1/2(1 +
γn
1/2

An
1/2

∆t)
ηn+1

0 (5.2.8)
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On the other hand, using a η-type boundary condition at the outflow, xN+1 is the

last node of the spatial grid and the N -th equation of system (5.1.1) becomes

VN(ηn+1
N ) + pn

N−1/2η
n+1
N−1 − (pn

N−1/2 + pn
N+1/2)η

n+1
N = fn

N (5.2.9)

where, extending notation (5.1.2) to the node N ,

fn
N = VN(ηn

N)−∆tθ[
F n

N+1/2

(1 +
γn

N+1/2

An
N+1/2

∆t)
−

F n
N−1/2

(1 +
γn

N−1/2

An
N−1/2

∆t)
]

− ∆t(1− θ)[Qn
N+1/2 −Qn

N−1/2] +
g(θ∆t)2An

N+1/2

∆xN+1/2(1 +
γn

N+1/2

An
N+1/2

∆t)
ηn+1

N+1 (5.2.10)

One can observe that the main diagonal coefficients of Equations (5.2.5) and (5.2.6)

are greater than the opposite of the super- and subdiagonal coefficient of the same

equation respectively.

5.3 Existence and uniqueness of the solution of

system (5.1.3) with at least a η-type boundary

condition

The aim of this section is to prove the existence and uniqueness of the solution of

system (5.1.3), assuming that at least one of the boundary conditions is of the η-type.

Under this hypothesis, let characterize system (5.1.3) by setting the assumptions

for the proof of the final result.

As previously mentioned, matrix M is tridiagonal, symmetric, with positive ele-

ments on the main diagonal and negative ones on the sub- and superdiagonal. There-

fore, it is said to be irreducible, because

Definition 5.3.1 A tridiagonal matrix M ∈ L(<N) is irreducible whenever the en-

tries of the super- and subdiagonal are non-zero.

Moreover, M is also diagonally dominant, in the sense that

Definition 5.3.2 A matrix M = (mi,j) in L(<N) is diagonally dominant if and only

if it holds

|mii| ≥
n∑

j=1,j 6=i

|mij| , i = 1, ...N (5.3.1)
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with strict inequality valid for at least one value of i.

The previous definition is in fact satisfied, because the application of at least one

η-type boundary condition at the boundaries assures inequality (5.3.1) to be strict

for at least one row (where the η-type boundary condition is applied).

Therefore, by the following theorem [32], the linear part of system (5.1.1) is also

positive definite and thus non-singular.

Theorem 5.3.3 If matrix M ∈ L(<N) is symmetric, irreducible, diagonally domi-

nant and has positive diagonal elements, then M is positive definite. The determinant

of a positive definite matrix is always positive, so a positive definite matrix is always

non-singular.

Regarding the non-linear part of system (5.1.1), function V represents the water

volume in the cells of the channel and therefore, for its physical meaning, it is an

isotone function, where

Definition 5.3.4 A mapping P : <N → <N is said to be isotone (non-decreasing) if

P(x) ≤ P(y) (5.3.2)

whenever x ≤ y, x,y ∈ <N . P is strictly isotone (or increasing) if strict inequality

holds in (5.3.2) whenever x 6= y.

In Definition 5.3.4 and in the following of this work, the comparison of two vectors

of <N will be done element by element. This one may do by means of the natural or

component-wise partial ordering on <N defined by

x,y ∈ <N , x ≤ y if and only if xi ≤ yi, i = 1, ...N

No stronger assumptions are required on V and thus one of the possible ways to

define its components Vi i = 1, ...N is the following

Vi(ηi) =


0 if ηi ≤ −hi

Vi(ηi) if − hi ≤ ηi ≤ topi

Vi(topi) if ηi ≥ topi

(5.3.3)

where topi is the maximum value allowed for ηi in the cell i and corresponds to +∞
only in the case of an open channel.
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Observe that the definition of each function volume Vi is univocal only for ηi ≥
−hi. In this interval, Vi is isotone for closed channels and strictly isotone for open

ones.

Moreover, for ηi in the range [−∞,−hi], any expression is mathematically admis-

sible, but, as already said, physically meaningless at the same time.

In particular for a closed channel, the function volume Vi is isotone on < regardless

its expression in [−∞,−hi].

On the other hand, when the channel is open, the monotonic behaviour of Vi

on < depends on the properties of its definition in this interval and Vi results to

be strictly isotone if and only if it is strictly isotone also in [−∞,−hi] (see, e.g.,

Equation (5.4.1)).

Finally, collecting all these hypotheses, let introduce the following theorem [32]

that helps in proving the final result.

Theorem 5.3.5 Let M ∈ L(<N) be symmetric, positive definite and suppose that

V is continuous, diagonal and isotone on <n.

Then mapping P : <N → <N defined by P(x) = Mx+V(x) is a homeomorphism

of <N onto <N .

Here, by homeomorphism we mean that

Definition 5.3.6 A mapping P : D ⊂ <N → <N is a homeomorphism of D onto

P(D) if P is one-to-one on D and P and P−1 are continuous on D and P(D)

respectively.

and by one-to-one the following definition holds

Definition 5.3.7 A mapping P : D ⊂ <N → <N is one-to-one on U ⊂ D if

P(x) 6= P(y) whenever x,y ∈ U, x 6= y.

Observe that the mapping P of Theorem 5.3.5 is a homeomorphism of <N onto itself

and therefore its domain D and codomain P(D) are both <N .

Finally, let remark that, when at least one boundary condition is of the η-type

and the channel is either open or closed, system (5.1.3) satisfies all the assumptions

on the domain and on the properties of the mapping P of Theorem 5.3.5.

Therefore, the following corollary can be applied to prove the existence and

uniqueness of its numerical solution.
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Corollary 5.3.8 Under the same hypotheses of Theorem 5.3.5 and for any f ∈ <N ,

system (5.1.3) given by V(η) + Mη = f has a unique solution.

Actually, the existence and uniqueness of the numerical solution do not ensure the

physical meaning and therefore the computed η could result less that the channel

bottom in some of the cells of the spatial domain.

Chapter 6 will provide a constraint on the time step ∆t in order to ensure the

physicality of the solution and therefore the non-negativity of the water volume.

5.4 Existence and uniqueness of the solution of

system (5.1.3) with two Q-type boundary con-

ditions for open channel flows

The aim of this section is to prove, when possible, the existence and uniqueness of

the solution of system (5.1.3), assuming that both the boundary conditions are of

the Q-type.

Let first suppose that function V is isotone and therefore consider the case of a

closed channel, because the volume of any open channel can be defined as strictly

isotone.

Under this set of hypotheses, the existence and uniqueness of the solution of

system (5.1.3) cannot be usually proved.

Actually, this is physically correct, because the solution of a flow in a closed

and fully pressurized channel is not unique. In fact, given η a numerical solution

of (2.3.4)-(2.4.3), it can be proved directly from these two Equations that infinitely

many other solutions can be obtained adding any constant K ∈ <N to η.

Therefore, the existence and uniqueness of the solution of (5.1.3) will be studied

here assuming that the channel is open. Morever, from the mathematical point of

view, such a system could also be impossible to solve. Actually, in the following we

will assume that it exists at least one solution.

Let first of all characterize system (5.1.3) by setting the hypotheses for the proof

of the final result.

Matrix M is tridiagonal, irreducible and symmetric, with positive elements on

the main diagonal and negative ones on the sub- and superdiagonal.
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It is not diagonally dominant, because inequality (5.3.1) is actually an equality

for every i = 1, ...N and therefore M is singular and positive semi-definite.

On the other hand, the non-linear part V of system (5.1.3) is required to be

a strictly isotone function, that can be realized only in the case of open channels

defining its components Vi i = 1, ...N in the following way

Vi(ηi) =

 −Vi(−ηi − 2hi) if ηi ≤ −hi

Vi(ηi) if ηi ≥ −hi

(5.4.1)

Actually, this requirement on function V is not strong enough to prove, together

with the other assumptions, the final result.

The following property is therefore introduced. Let be x and y ∈ <N . Thus,

there exist a positive constant c in < independent on x and y such that it holds

| Vi(xi)− Vi(yi) |≥ c | xi − yi | i = 1, ...N (5.4.2)

Property (5.4.2) states that the absolute value of the Vi’s incremental ratio has c as

lower bound.

Moreover, assuming that the derivative of Vi exists on <, the previous condition

consists in requiring that Vi does not have horizontal asymptotes or, in other words,

that the surface area Ai = ∂Vi

∂ηi
is such that Ai ≥ c for every ηi > −hi.

In fact, applying the Mean-Value Theorem [32] to Vi on [xi, yi], there exists ξi ∈
(xi, yi) such that

Vi(xi)− Vi(yi) = Ai(ξi)(xi − yi). (5.4.3)

Ai(ξi) ≥ c > 0 follows directly from the comparison between Equations (5.4.2) and

(5.4.3).

On the other hand, for a Lipschitz and not differentiable function Vi, it is known

that there exist a constant Si dependent on xi and yi, 0 ≤ Si(xi, yi) ≤ Li, such that

Vi(xi)− Vi(yi) = Si(xi − yi). (5.4.4)

By the strict isotonicity of Vi it results that Si(xi, yi) > 0 for every xi 6= yi.

Therefore, the previous considerations on the surface area Ai can be referred to

the constant Si, requiring that the latter has a lower bound c ∈ <, c > 0 such that

Si ≥ c > 0.

Let now introduce the following theorem [32], that will be used in the proof of

the final result.
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Theorem 5.4.1 Assume that Φ : <N → < is strongly convex and continuously

differentiable on <N . Then the mapping P : <N → <N defined by P(x) = ∇Φ(x),x ∈
<N , is a homeomorphism from <N onto <N .

Here, by strongly convex we mean that there exist c ∈ <, c > 0 such that

[∇Φ(x)−∇Φ(y)]T (x− y) ≥ c‖x− y‖2∀x,y ∈ RN .

A consequence of the above theorem is the following variation of Theorem 5.3.5.

Theorem 5.4.2 Let M ∈ L(<N) be symmetric, positive semi-definite. Suppose that

the function V is a Lipschitz continuous function, diagonal, strictly isotone and such

that it satisfies (5.4.2).

Then mapping P : <N → <N defined by P(x) = Mx+V(x) is a homeomorphism

of <N onto <N .

Proof. Define

Φ(x) =
1

2
xTMx +

N∑
i=1

∫ xi

0
Vi(ξ)dξ. (5.4.5)

Φ is continuously differentiable on <N by definition and ∇Φ(x) = P(x)T .

Thus, given x,y ∈ <N , it holds

[∇Φ(x)−∇Φ(y)]T (x− y) = (x− y)TM(x− y) + (V(x)−V(y))T (x− y)

and because matrix M is positive semi-definite

[∇Φ(x)−∇Φ(y)]T (x− y) ≥ (V(x)−V(y))T (x− y).

Now, introducing the property (5.4.4) for Lipschitz and strictly isotone functions,

one has

(V(x)−V(y))T (x− y) =
N∑

i=1

(Vi(xi)− Vi(yi))(xi − yi)

=
N∑

i=1

Si(xi, yi)(xi − yi)
2

=
N∑

i=1,xi 6=yi

Si(xi, yi)(xi − yi)
2

≥ mini=1,...N,xi 6=yi
Si(xi, yi)‖x− y‖2. (5.4.6)
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Therefore

(V(x)−V(y))T (x− y) ≥ c‖x− y‖2

where c is the constant defined in Equation (5.4.2) such that Si(s, r) ≥ c > 0 ∀s, r ∈
<, s 6= r.

The relation

[∇Φ(x)−∇Φ(y)]T (x− y) ≥ (V(x)−V(y))T (x− y) ≥ c‖x− y‖2

means that Φ is strongly convex.

Therefore, the application of Theorem 5.4.1 proves the theorem.

Finally, let remark that, when the two boundary conditions are of the Q-type

and the channel is open with the characteristic that the surface area has a lower

bound greater than zero for every non zero water depth, system (5.1.3) satisfies all

the assumptions on the domain and on the properties of the mapping P of Theorem

5.4.2.

Therefore, the following corollary can be applied to prove the existence and

uniqueness of its numerical solution.

Corollary 5.4.3 Under the same hypotheses of Theorem 5.4.2 and for any f ∈ <N ,

system (5.1.3) given by V(η) + Mη = f has a unique solution.

Observe that the existence and uniqueness of the numerical solution do not ensure

the physical meaning and therefore the computed η could result less that the channel

bottom in some of the cells of the spatial domain.

Chapter 6 will provide a constraint on the time step ∆t in order to ensure the

physicality of the solution and therefore the non-negativity of the water volume.
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Non-negativity of the water volume

The aim of this chapter is to formulate an explicit and an implicit constraint on the

time step ∆t to ensures the non-negativity of the numerical water volume obtained by

the algorithm proposed in Chapter 2 and and 4. The advantages of using the explicit

constraint are discussed and shown with an interesting numerical example.

6.1 Introduction

Existence and uniqueness do not ensure that the numerical solution is physically

meaningful.

It could happen in fact, that somewhere the computed numerical water surface or

pressure head results less than the bottom of the channel and thus the water volume

in those cells is negative.

Non-negativity is a very important physical property that the solution of a numer-

ical scheme for Equations (1.4.1)-(1.4.3) should have, first of all because it ensures a

correct treatment of the phenomena of flooding and drying and a physical meaningful

solution.

Consider everything is known at the time tn, ηn ≥ −h and assume we want to

compute the new numerical solution ηn+1 solving system (5.1.3) under the assum-

ptions that assure existence and uniqueness of its solutions.

6.2 An implicit constraint on ∆t

From Equation (2.3.4) one can easily derive a condition on the time step ∆t to ensure

non-negativity of the water volume, that is:

[Qn+θ
i+1/2 −Qn+θ

i−1/2]∆t ≤ Vi(η
n
i ) ∀i. (6.2.1)
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This constraint is algebraically very easy to be calculated, both in the case of a

rectangular and of a non-rectangular channel, but it is only useful as a posteriori

check, because it is implicit in time in the sense that it involves quantities not yet

computed.

Only at the steady state of a phenomenon, inequality (6.2.1) could be considered

almost explicit and sufficiently correct substituting the time level n + θ with n.

6.3 An explicit constraint on ∆t

The analysis of the solution system (5.1.3) from a different point of view can lead to

an explicit condition on the time step ∆t to ensure the non-negativity of the water

volume when the existence and uniqueness of its solution can be proved.

In this section, a few mathematical properties of system (5.1.3) will be pointed

out in order to introduce this a-priori check on ∆t.

First of all, let recall the following definition [32].

Definition 6.3.1 A mapping P : <N → <N is inverse isotone if P(x) ≤ P(y) for

any x,y ∈ <N implies that x ≤ y.

In particular, it is possible to prove that function P(x) = V(x) + Mx is an inverse

isotone function both in the case that M is a positive-definite matrix and V is a

diagonal, continuous and isotone function (hypotheses of Section 5.3) and in the case

that M is a semi-positive definite matrix and V is a diagonal, continuous and strictly

isotone function (hypotheses of Section 5.4).

Once these results are proved, we can conclude that if the check F (ηn+1) ≥ F (−h)

is satisfied, the solution we will get at the new time tn+1 will be greater than −h,

and therefore will be physically meaningful.

Let now proceed with the proof of the inverse isotonicity of function P(x) =

V(x) + Mx in the two cases mentioned above.

Under the assumptions of Theorem 5.3.5 in Section 5.3, matrix M is an M -matrix,

that is

Definition 6.3.2 A matrix M ∈ L(<N) is an M-matrix if M is invertible, M−1 ≥ 0

and mi,j ≤ 0 for all i, j = 1, ...N , i 6= j.

and that can be proved by the following result [32].
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Theorem 6.3.3 Let M ∈ L(<N) be irreducible and diagonally dominant and assume

mi,j ≤ 0, i 6= j, and that mi,i > 0, i = 1, ...N . Then M is an M-matrix.

Now, the inverse isotonicity of P is given by the following theorem [32].

Theorem 6.3.4 Let M ∈ L(<N) be an M-matrix and suppose that V : <N → <N is

continuous, diagonal and isotone. Then mapping P : <N → <N defined by P(x) =

Mx + V(x) is inverse isotone.

On the other hand, under the same hypotheses of Theorem 5.4.2 in Section 5.4, the

strict isotonicity of P can be proved.

To do this, let first recall the following result [32].

Theorem 6.3.5 Let A1 ∈ L(<N) be an M-matrix with diagonal part D1 and off-

diagonal part −B1 = A1 −D1. If D2 ∈ L(<N) is any non-negative diagonal matrix

and B2 ∈ L(<N) any non-negative matrix with zero diagonal satisfying B2 ≤ B1,

then A = D1 + D2 − (B1 −B2) is an M-matrix and A−1 ≤ A−1
1 .

Finally, the strict isotonicity of P can be proved by the following theorem.

Theorem 6.3.6 Let M ∈ L(<N) be a tridiagonal, irreducible matrix such that

m1,1 = −m1,2

mi,i = −mi,i−1 −mi,i+1 i = 2, ...N − 1

mN,N = −mN,N−1

(6.3.1)

Suppose that V : <N → <N is Lipschitz continuous, diagonal, strictly isotone and

it satisfies (5.4.2). Then mapping P : <N → <N defined by P(x) = Mx + V(x) is

inverse isotone.

Proof. Suppose that P(x) ≤ P(y) for some x,y ∈ <N for which x ≤ y does not

hold. Set N = {1 ≤ j ≤ n | xj > yj}. Consider j ∈ N. Then

0 ≤ Pj(y)− Pj(x) = Vj(yj)− Vj(xj) +
j+1∑

k=j−1

mj,k(yk − xk) (6.3.2)

and by strict isotonicity and Lipschitz continuity of Vj one obtains

0 ≤ Pj(y)− Pj(x) = Sj(xj, yj)(yj − xj) +
j+1∑

k=j−1

mj,k(yk − xk)
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= Sj(xj, yj)(yj − xj) +
j+1∑

k∈N,k=j−1

mj,k(yk − xk)

+
j+1∑

k/∈N,k=j−1

mj,k(yk − xk) (6.3.3)

where Sj(xj, yj) is the same constant is the same constant introduced in (5.4.4).

Regarding Equation (6.3.3), one can observe that, for every k /∈ N, yk − xk > 0

and mj,k < 0. Thus

0 ≤ Pj(y)− Pj(x) ≤ (mj,j + Sj(xj, yj))(yj − xj) +
∑

k∈N,k=j±1

mj,k(yk − xk) (6.3.4)

Let now observe that matrix G = M + S is an M -matrix, because it satisfies the

assumptions o Theorem 6.3.3.

Therefore, by Theorem 6.3.5 it follows that the submatrix A = (gj,k | j, k ∈ N)

is also an M -matrix and therefore has the property that, given x ∈ <N , Ax ≥ 0

implies that x ≥ 0.

Finally, rewriting Equation (6.3.4) as follows

0 ≤ Pj(y)− Pj(x) ≤ (A(y− x))j (6.3.5)

one can show that yj ≥ xj for all j ∈ N, that is a contradiction. This proves that P

is inverse isotone.

Restarting from Definition 6.3.1, we will explicitly show that it establishes itself a

criterion for the non-negativity of the water volume.

In fact, setting x equal to the channel bottom −h and y equal to the solution η

we will get at time tn+1, the check for the non-negativity of the water volume assumes

the following form

P(η) ≥ P(−h) ⇒ η ≥ −h (6.3.6)

In case the comparison between P(−h) and P(η) could be done explicitly at time tn

and would be expressed in function of the time step ∆t, we would know a priori the

range for ∆t that ensures η ≥ −h.

Observe that, being −h a known quantity and not a part of the solution, P(−h)

can be explicitly written as

Pj(−h) = (V(−h) + M(−h))j
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= pn
j−1/2(−hj−1) + dn

j (−hj) + pn
j+1/2(−hj+1)

=
g(θ∆t)2An

j−1/2

∆xj−1/2(1 +
γn

j−1/2

An
j−1/2

∆t)
hj−1

− (
g(θ∆t)2An

j−1/2

∆xj−1/2(1 +
γn

j−1/2

An
j−1/2

∆t)
+

g(θ∆t)2An
j+1/2

∆xj+1/2(1 +
γn

j+1/2

An
j+1/2

∆t)
)hj

+
g(θ∆t)2An

j+1/2

∆xj+1/2(1 +
γn

j+1/2

An
j+1/2

∆t)
hj+1 (6.3.7)

for j = 2, ...N − 1, while for j = 1 and j = N its definition depends on the boundary

condition applied on the first and on last cell respectively.

In particular, assuming that a Q-type boundary condition is imposed at j = 1,

P1(−h) = (V(−h) + M(−h))1 = −pn
3/2(−h1) + pn

3/2(−h2)

= −
g(θ∆t)2An

3/2

∆x3/2(1 +
γn
3/2

An
3/2

∆t)
h1 +

g(θ∆t)2An
3/2

∆x3/2(1 +
γn
3/2

An
3/2

∆t)
h2 (6.3.8)

while, in the case a η-type boundary condition is chosen for the first cell, one has

P1(−h) = −(pn
1/2 + pn

3/2)(−h1) + pn
3/2(−h2)

= −(
g(θ∆t)2An

1/2

∆x1/2(1 +
γn
1/2

An
1/2

∆t)
+

g(θ∆t)2An
3/2

∆x3/2(1 +
γn
3/2

An
3/2

∆t)
)h1

+
g(θ∆t)2An

3/2

∆x3/2(1 +
γn
3/2

An
3/2

∆t)
h2 (6.3.9)

With the same procedure one can find the expression for PN(−h) depending on the

boundary condition given on the cell N .

On the other hand, let consider η as the solution of system (5.1.3).

Therefore, P(η) is equal to the known term f of the system and can be expressed

by Equation (5.1.2) in terms of known quantities. Specifically

Pj(η) = Vj(η
n
j )− (1− θ)∆t[Qn

j+1/2 −Qn
j−1/2]

− θ∆t

(1 +
γn

j+1/2

An
j+1/2

∆t)
[Qn

j+1/2 −∆t
[(UQ)n

j+1 − (UQ)n
j ]

∆xj+1/2

− gAn
j+1/2(1− θ)∆t

(ηn
j+1 − ηn

j )

∆xj+1/2

]
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+
θ∆t

(1 +
γn

j−1/2

An
j−1/2

∆t)
[Qn

j−1/2 −∆t
[(UQ)n

j − (UQ)n
j−1]

∆xj−1/2

− gAn
j−1/2(1− θ)∆t

(ηn
j − ηn

j−1)

∆xj−1/2

] (6.3.10)

for j = 2, ...N − 1, while for j = 1 and j = N its definition depends on the boundary

condition applied on the first and on last cell respectively.

In particular, assuming that a Q-type boundary condition is imposed at j = 1,

P1(η) = V1(η
n
1 )−∆t(1− θ)Qn

3/2 + ∆tQn+θ
1/2

− θ∆t

(1 +
γn
3/2

An
3/2

∆t)
[Qn

3/2 −∆t
[(UQ)n

2 − (UQ)n
1 ]

∆x3/2

− gAn
3/2(1− θ)∆t

(ηn
2 − ηn

1 )

∆x3/2

]

(6.3.11)

while, in the case a η-type boundary condition is chosen for the first cell, one has

P1(η) = V1(η
n
1 )− (1− θ)∆t[Qn

3/2 −Qn
1/2]

− θ∆t

(1 +
γn
3/2

An
3/2

∆t)
[Qn

3/2 −∆t
[(UQ)n

2 − (UQ)n
1 ]

∆x3/2

− gAn
3/2(1− θ)∆t

(ηn
2 − ηn

1 )

∆x3/2

]

+
θ∆t

(1 +
γn
1/2

An
1/2

∆t)
[Qn

1/2 −∆t
[(UQ)n

1 − (UQ)n
0 ]

∆x1/2

− gAn
1/2(1− θ)∆t

(ηn
1 − ηn

0 )

∆x1/2

]

+
(gAn

1/2θ∆t)2

(1 +
γn
1/2

An
1/2

∆t)∆x1/2

ηn+1
0 (6.3.12)

With the same procedure one can find the expression for PN(η) depending on the

boundary condition given on the cell N .

Finally, we are able to explicitly express the relation P(η) ≥ P(−h) and to

translate it into a constraint on the time step ∆t as follows.

To simplify the calculations, consider a frictionless fluid (γ = 0).

Therefore, from Equations (6.3.7) and (6.3.10), Pj(η) ≥ Pj(−h) can be written

as

a1(∆t)2 + a2∆t + a3 ≥ 0 (6.3.13)

where the coefficients a1, a2 and a3 are defined as follows

a1 = θ
[(UQ)n

j+1 − (UQ)n
j ]

∆xj+1/2

− θ
[(UQ)n

j − (UQ)n
j−1]

∆xj−1/2
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+ gθ(1− θ)[An
j+1/2

(ηn
j+1 − ηn

j )

∆xj+1/2

− An
j−1/2

(ηn
j − ηn

j−1)

∆xj−1/2

]

− gθ2[An
j+1/2

(hj+1 − hj)

∆xj+1/2

− An
j−1/2

(hj − hj−1)

∆xj−1/2

]

a2 = Qn
j−1/2 −Qn

j+1/2

a3 = Vj(η
n
j ) (6.3.14)

for j = 2, ...N − 1.

Observe that two of the coefficients have a clear physical meaning.

Specifically, a3 is the water volume in the cell j and a2 is the difference between

the water discharge going into and out of the cell j at time tn.

Moreover, the coefficient a1 contains the discretization of the advective terms and

the variation of the variable η and of the bottom −h in the cells j − 1, j and j + 1.

For j = 1 and j = N , the coefficients of the constraint (6.3.13) depend on the

boundary conditions.

If Q1/2 is chosen as boundary condition for the first cell, the coefficients a1, a2

and a3 assume the following form

a1 = θ
[(UQ)n

2 − (UQ)n
1 ]

∆x3/2

+ gθ(1− θ)An
3/2

(ηn
2 − ηn

1 )

∆x3/2

− gθ2An
3/2

(h2 − h1)

∆x3/2

a2 = Qn+θ
1/2 −Qn

3/2

a3 = V1(η
n
1 ) (6.3.15)

On the other hand, if η0 is imposed, one has

a1 = θ
[(UQ)n

2 − (UQ)n
1 ]

∆x3/2

− θ
[(UQ)n

1 − (UQ)n
0 ]

∆x1/2

+ gθ(1− θ)[An
3/2

(ηn
2 − ηn

1 )

∆x3/2

− An
1/2

(ηn
1 − ηn

0 )

∆x1/2

]

− gθ2An
3/2

(h2 − h1)

∆x3/2

+ gθ2An
1/2

h1

∆x1/2

+ gθ2An
1/2

ηn+1
0

∆x1/2

a2 = Qn
1/2 −Qn

3/2

a3 = V1(η
n
1 ) (6.3.16)

With the same procedure, one can determine the precise form of the constraint

(6.3.13) for j = N , depending on the boundary condition chosen for the last cell.

Depending on the sign of the coefficients a1, a2 and a3 we can determine the

solution of inequality (6.3.13), that is the values of the time step ∆t such that the

water volume at the new time tn+1 is non-negative.
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The results of this study are summarized in Table 6.1, with the rule that

sign(a) =


+1 if a > 0

0 if a = 0

−1 if a < 0

(6.3.17)

sign(a1) sign(a2) sign(a3) Results

0 0 0 ∀∆t

0 +1 0 ∀∆t

0 -1 0 ∆t = 0

0 0 +1 ∀∆t

0 +1 +1 ∀∆t

0 -1 +1 ∆t ∈ [0, a3/ |a2|]
+1 0 0 ∀∆t

+1 +1 0 ∀∆t

+1 -1 0 ∆t = 0

+1 0 +1 ∀∆t

+1 +1 +1 ∀∆t

+1 -1 +1 ∆t ∈ [0,
|a2|−

√
a2
2−4a1a3

2a1
]

-1 0 0 ∆t = 0

-1 +1 0 ∆t ∈ [0, a2/ |a1|]
-1 -1 0 ∆t = 0

-1 0 +1 ∆t ∈ [0,
√

a3/ |a1|]

-1 +1 +1 ∆t ∈ [0,
a2+
√

a2
2+4|a1|a3

2|a1| ]

-1 -1 +1 ∆t ∈ [0,
−|a2|+

√
a2
2+4|a1|a3

2|a1| ]

Table 6.1: Range for ∆t

One can note that, for every possible combination of the signs of a1, a2 and a3 and

for every cell Ij, there exists a local range [0, ∆tj] for ∆t, such that the corresponding

water volume in that cell and at the new time tn+1 is non-negative.

Moreover, in the case at time tn the cell j is empty (a3 = 0) and the water

discharge going out of it is bigger than that going into it (a2 < 0), it is physical that

the only ∆t allowed is ∆t = 0, that means that the computation cannot go further.
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Finally, in order to ensure at the same time the non-negativity of the water volume

in each cell j = 1, ...N , the time step ∆t has to be such that

0 ≤ ∆t ≤ min∆ti (6.3.18)

∆t = min∆ti will be called ∆tmin.

Observe that ∆tmin is positive both in the case the channel is completely wet and

in the case for every dry cell Ij at time tn (a3 = 0) the water discharge going out of

it is less than that going into it (a2 > 0).

On the other hand, ∆tmin is zero only in the particular case at least one of the

∆tj is zero, that corresponds to the draining (a2 < 0) of an empty cell Ij (a3 = 0).

6.4 A test on the non-negativity of the water vo-

lume

The aim of this section is to prove the advantages of satisfying the constraint (6.3.13)

in the solution algorithm (1.4.1)-(1.4.3) in order ensure the non-negativity of the

water volume.

The proposed example is a hydraulic jump test problem in a 10m long rectangular

channel. In the middle of the channel, there is a sill with a crest of 1m height and

with vertical walls, that is the slopes of the sill are abrupt within one grid cell.

There are two open boundaries, the inflow and the outflow, where a discharge of

1m3/s and a water depth of 1m, respectively, are imposed.

The discretization parameters are γ = 0, g = 9.81m/s2, ∆x = 0.08m and θ = 1.

The time step ∆t = 10−1s is given as a data of the problem and the duration of the

test is T = 1s.

Checking the constraints (6.2.1) and (6.3.13), one can observe that whenever the

former fails, it fails also the latter, but not vice versa.

Moreover, if there are M cells, M < N , such that ∆t does not satisfy the con-

straint (6.2.1) or (6.3.13), one cannot conclude that the resulting water volume is

negative, because the conditions (6.2.1) and (6.3.13) are sufficient, but not necessary

to the non-negativity of the water volume.

Furthermore, if the water volume is negative in the cell j, ∆t does not satisfy the

constraints (6.2.1) and (6.3.13) corresponding to the j-th cell.
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Comparing the numerical results obtained using a constant ∆t = 10−1s along the

computation (method 1) and computing ∆t with the a priori check (6.3.13) (method

3), one can appreciate the behaviour of the second choice.

In fact, the first method leads to a numerical solution that presents a negative

water volume in several cells. This let understand that the time step chosen is not

appropriate for this test and should be smaller than 10−1s.

This problem could be faced using the a posteriori constraint (6.2.1), that at each

time tn checks if the ∆t proposed is valid or not.

Actually, when ∆t turns out to be too large, the control (6.2.1) is not able to give

indications regarding the correct time step to be used.

Therefore, the only information available is that the new time step has to be less

than the old one, but it may happen that the new ∆t, again, does not satisfy the

constraint (6.2.1) or that it is far from the optimal value it should have.

On the other hand, the a priori constraint (6.3.13) allows to find the maximum

time step ∆tmin that guarantees the non-negativity of the water volume at time tn+1

and to decide whether or no the ∆t proposed for the test problem is acceptable.

Moreover, in case ∆t < ∆tmin and ∆tmin has a reasonable value (less than +∞),

∆t can be replaced by the ∆tmin in order to optimize the performance of the algo-

rithm.

Figure 6.1 shows the comparison between the numerical solutions obtained at

T = 3s satisfying (Solution 3) or no (Solution 1) the constraint (6.3.13) on ∆t.

Moreover, the solution algorithm without any check on the time step (method 1)

causes an overflow of the numerical solution in case the computation goes further in

time than T = 3s.

Figure 6.2 shows the water surface elevation with respect to the time in one of

the nodes presenting a negative water depth and before the overflow appears.
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Figure 6.1: Numerical η obtained satisfying or no the explicit constraint on ∆t

-140

-120

-100

-80

-60

-40

-20

0

20

0 0.5 1 1.5 2 2.5 3 3.5

z
(
m
)

T(s)

Water level  ________

Bottom level _ _ _ _ _

 

Figure 6.2: The water surface elevation at x = 5.84m with respect to the time
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7
Two Solution Algorithms

The aim of this chapter is to provide two solution algorithms [24] to solve system

(5.1.1) and to prove their convergence in case of existence and uniqueness of the

solution. A comparison of these two techniques is presented from the point of view

of the computational efficiency.

7.1 Generalized Newton method (GNM)

The generalized Newton method (see, e.g., [9, 10]) is an iterative method applicable

both to linear and to non-linear systems.

It is not direct, it needs an initial guess and the number of steps it takes varies

with the accuracy one requests for the answer.

In particular, given a starting vector η0, the k-th iteration of the generalized

Newton method for system (5.1.3) is defined by

ηk+1 = ηk − ω[M + V′(ηk)]−1[Mηk + V(ηk)− f] (7.1.1)

where

V′(η) = diag(V1
′(η1), ...VN

′(ηN)). (7.1.2)

It is important to point out that the applicability of the Newton method is ensured

if 0 < ω < 2 and V ′
i (ηi) is defined and continuous for each i, that is a very strong

condition in practical applications. Moreover, the convergence of (7.1.1) can only be

assured if η0 is sufficiently close to the solution of (5.1.1).

For these reasons, it is possible to modify the generalized Newton method in order

to obtain a method which works also when V(η) is only Lipschitz continuous and

not differentiable.
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Under this hypothesis, let modify iteration (7.1.1) substituting V′ with L to

obtain

ηk+1 = ηk − ω[M + L]−1[Mηk + V(ηk)− f] (7.1.3)

7.1.1 Convergence of the modified GNM

The aim of this section is to prove the convergence of the modified version of the

generalized Newton method in solving system (5.1.3), assuming that existence and

uniqueness of its solution can be proved.

Let consider the first case analyzed in Section 5.3, that is function V is isotone

and at least a η-type boundary condition is imposed on system (5.1.3).

Therefore, the result of convergence follows directly from the following theorem

[10].

Theorem 7.1.1 Let M be a symmetric, tridiagonal and positive definite M-matrix.

Let V(η) be a vector function whose components Vi depend only on the variable ηi

and are isotone and Lipschitz continuous. Let 0 < ω < 2. Then, the vector function

G(η) = η − ω[M + L]−1[Mηk + V(ηk)− f] (7.1.4)

is a contraction, i.e. for every two vectors x and y, one has

‖ G(x)−G(y) ‖≤ C ‖ x− y ‖ (7.1.5)

where 0 ≤ C < 1 is a constant independent from x and y.

In case two Q-type boundary conditions are imposed and function V is strictly isotone

(see Section 5.4), the convergence of the modified version of the generalized Newton

method can be proved by the following theorem.

Theorem 7.1.2 Let M be a symmetric, tridiagonal and positive semi-definite ma-

trix. Let V(η) be a vector function whose components Vi depend only on the variable

ηi and are strictly isotone and Lipschitz continuous. Let 0 < ω < 2. Then, the vector

function

G(η) = η − ω[M + L]−1[Mηk + V(ηk)− f] (7.1.6)

is a contraction, i.e. for every two vectors x and y, one has

‖ G(x)−G(y) ‖≤ C ‖ x− y ‖ (7.1.7)

where 0 ≤ C < 1 is a constant independent from x and y.
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Proof. The hypotheses of V diagonal and Lipschitz continuous assure that, for each

i = 1, ...N and for any given xi and yi in <, there exist a constant Si dependent on

xi and yi, such that 0 ≤ Si(xi, yi) ≤ Li and

Vi(xi)− Vi(yi) = Si(xi − yi). (7.1.8)

Moreover, by the strict isotonicity of V, one can observe that Si(xi, yi) > 0 for every

xi, yi ∈ <, xi 6= yi.

Thus, if S denotes the diagonal matrix whose elements are Si, the difference

G(x)−G(y) can be written as:

G(x)− G(y) = (x− y)− (M + L)−1[M(x− y) + V(x)−V(y)]

= [I− (M + L)−1(M + S)](x− y) (7.1.9)

Now, in order to prove that G(x) is a contraction, it is sufficient to prove that the

spectral radius of the matrix N = [I− (M+L)−1(M+S)] is smaller than a constant

which is less than one. For this purpose, since

det(N− λI) = det[(1− λ)I− (M + L)−1(M + S)]

= det[(M + L)−1]det[(1− λ)(M + L)− (M + S)] (7.1.10)

and the matrix (M + L)−1 is non-singular for Theorem 5.3.3, the eigenvalues of N

are the solutions of the following equation

det[(1− λ)(M + L)− (M + S)] = det[−λM− S + (1− λ)L] = 0.

Note first that since N is a symmetric matrix, it only has real eigenvalues [32].

Additionally, for λ < 0, the matrix (1 − λ)(M + L) − (M + S) is non-singular,

because it is tridiagonal, diagonally dominant, with positive elements on the main

diagonal and negative elsewhere. Thus, the eigenvalues of N are all non-negative.

Furthermore, by denoting with σ the minimum eigenvalue of M, one has σ ≥ 0.

Moreover, by definition of eigenvalues, det(M − σI) = det(λM − λσI) = 0 and,

if λ > 0, for any matrix ε = diag(ε1, ..., εN) with εi > 0 for i = 1, ...N , one has

det(λM− λσI + ε) 6= 0.

Thus, if the matrix −λM − S + (1 − λ)L is of the same sort of the matrix

−λM + λσI− ε, that is if

Si − (1− λ)Li + λσ = εi > 0, (7.1.11)
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then it is non-singular.

Then, the eigenvalue λ of N must satisfy the following inequality

Si − (1− λ)Li + λσ ≤ 0, (7.1.12)

that is

0 ≤ λ ≤ maxi=1,...N(
Li − Si

Li + σ
). (7.1.13)

Because M is singular, that is σ = 0, then

0 ≤ λ ≤ maxi=1,...N(
Li − Si

Li + σ
) = maxi=1,...N(1− Si

Li

) = 1−mini=1,...N(
Si

Li

) < 1

that proves the theorem.

From the above theorems 7.1.2 and 7.1.1 we have immediately the following corollary

that proves the final result.

Corollary 7.1.3 Under the same hypotheses of Theorem 7.1.1 or Theorem 7.1.2,

the iterative scheme (7.1.3) converges to the solution of the mildly non-linear system

(5.1.3).

7.2 Conjugate gradient method (CGM)

The conjugate gradient method is a solution procedure widely used in the literature

in finding an unconstrained minimum of a function Φ in N variables.

The general form of the conjugate gradient method is the following

dk :=

 −gk for k = 1

−gk + βkdk−1 for k > 1
(7.2.1)

xk+1 = xk + αkdk (7.2.2)

where gk denotes the gradient ∇Φ(xk), αk is a step-length obtained by means of

a one-dimensional search and βk is a scalar chosen so that dk becomes the k-th

conjugate direction when the function Φ is quadratic and the search of αk is exact.
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Some well-known formulas for βk are called the Fletcher-Reeves (FR), Polak-

Ribiere (PR), Hestenes-Stiefel (HS) and Conjugate Descent Method formulas (see,

e.g., [17, 37]) and are given by

βFR
k = ‖gk‖

2 /
∥∥∥gk−1

∥∥∥2
, (7.2.3)

βPR
k = gT

k (gk − gk−1)/
∥∥∥gk−1

∥∥∥2
, (7.2.4)

βHS
k = gT

k (gk − gk−1)/[d
T
k−1(gk − gk−1)], (7.2.5)

βCD
k = −‖gk‖

2 /(dT
k−1gk−1), (7.2.6)

where ‖·‖ is the Euclidean norm.

In order to use this method in solving system (5.1.3), the latter has to be refor-

mulated as an unconstrained minimization problem of the form

minx∈<N Φ(x) (7.2.7)

and the equivalence between the minimization problem (7.2.7) and the non-linear

system (5.1.3) has to be shown.

To do this, let first of all define the function Φ corresponding to system (5.1.3)

as in Equation (5.4.5) and let specify its mildly non-linear part as

P(η) =
N∑

j=1

Pj(ηj) =
N∑

j=1

(
∫ ηj

0
Vj(ξ)dξ) (7.2.8)

such that 5P(η) = V (η).

The following result proves the equivalence between the minimization problem

(7.2.7) and the non-linear system (5.1.3) by showing the identity between the sets of

the solution of these two problems.

Theorem 7.2.1 Each solution η of the minimization problem (7.2.7) satisfies sy-

stem (5.1.3) and vice versa

Proof. Let consider η a solution of the minimization problem (7.2.7). Therefore

5Φ(η) = V(η) + Mη − f = 0.
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that proves that η is also a solution of system (5.1.3).

Let be η is a solution of system (5.1.3). The aim of the second part of this theorem

is to prove that inequality

Φ(η) ≤ Φ(η + e) (7.2.9)

holds, where e ∈ <N is an error term from the exact solution η.

One can rewrite the second member of the previous inequality as

Φ(η + e) = P (η + e) +
1

2
(η + e)TM(η + e)− (η + e)T f

that is, being M a symmetric matrix,

Φ(η + e) = P (η + e) + [
1

2
ηTMη − ηT f] + eTMη + [

1

2
eTMe− eT f]

or equivalently

Φ(η + e) = P (η + e) + [Φ(η)− P (η)] + eTMη + [
1

2
eTMe− eT f].

Because η is the solution of system (5.1.3), it follows

Φ(η + e)− Φ(η) = P(η + e)−P(η)− eTV(η) +
1

2
eTMe.

One can observe that each

Pj : R → R

is a convex function for every j = 1, ...N , because it is a differentiable function on R

and its first derivative is monotone non decreasing. Therefore, function P is a convex

function too and the following inequality holds

P(η + e)−P(η) ≥ 5P(η)T (η + e− η) = V(η)T e (7.2.10)

and therefore

Φ(η + e)− Φ(η) ≥ 1

2
eTMe (7.2.11)

Observing that M is positive semi-definite, one can conclude that eTMe is non-

negative for every error-term e. This finishes our proof.
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7.2.1 Convergence of the CGM

The aim of this section is to prove the convergence of the conjugate gradient method

in solving system (5.1.3), assuming that existence and uniqueness of its solution can

be proved.

The global convergence of the conjugate gradient method with βk defined by

Equations (7.2.3), (7.2.4), (7.2.5) and (7.2.6) or others has been investigated by

many authors (see, e.g., [22, 26, 28, 38, 61]) and the choice of the step-length αk has

always been addressed as a fundamental for the global convergence.

Different techniques have been proposed for the computation of αk (see, e.g.,

[22, 38, 58]), among which one can find the classical exact line search defined by

αk := argminα≥0Φ(xk + αdk).

Now consider the following assumptions

Assumption 7.2.2 The function Φ is LC1 in a neighbourhood N of the level set

D := {x ∈ <n |Φ(x) ≤ Φ(x1)} and D is bounded. Here, by LC1 we mean that the

gradient ∇Φ(x) is Lipschitz continuous with modulus µ, i.e., there exists µ > 0 such

that ‖Φ(xk+1)− Φ(xk)‖ ≤ µ ‖xk+1 − xk‖ for any xk+1,xk ∈ N.

Assumption 7.2.3 The function Φ is LC1 and strongly convex on N.

and note that Assumption 7.2.2 implies Assumption 7.2.3, since a strongly convex

function has bounded level sets [32].

Let now consider the first case analyzed in Section 5.3, that is function V is

isotone and at least a η-type boundary condition is imposed on system (5.1.3).

Under these assumptions Φ defined by (5.4.5) is clearly strongly convex, because

[∇Φ(x)−∇Φ(y)]T (x− y) ≥ (x− y)TM(x− y) ≥ c‖x− y‖2 (7.2.12)

where c > 0 is the minimum of the eigenvalues of M.

Moreover, also in the case two Q-type boundary conditions are imposed on sy-

stem (5.1.3) and function V is strictly isotone (see Section 5.4), function Φ defined

by (5.4.5) is strongly convex, as already proved in the proof of Theorem 5.4.2 .

Let remember the result presented in [49].
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Theorem 7.2.4 Let {Ak}k be a sequence of positive definite matrices and assume

that there exist νmin > 0 and νmax > 0 such that ∀d ∈ <N

νmind
Td ≤ dTAkd ≤ νmaxd

Td. (7.2.13)

Define the step-length formula as follows

αk =
−δgT

k dk

dT
k Akdk

(7.2.14)

where δ ∈ (0, νmin

µ
).

A unified formula for αk like (7.2.14) can ensure global convergence for many cases,

which include: 1. The FR method and the HS method applied to a strongly convex

LC1 objective function (Assumption 7.2.3); 2. The PR method and the CD method

applied to a general LC1 objective function (Assumption 7.2.2).

Observe that, in order to apply Theorem (7.2.4) to our system (5.1.3), one has to

define the sequence {Ak}k of positive definite matrices involved in the computation

(7.2.14) of the step-length αk.

Our choice is Ak = A ∀k, where A = M + L.

From the above results and considerations we have the following Corollary.

Corollary 7.2.5 Consider the minimization problem (7.2.7) with objective function

Φ defined by (5.4.5) and assume existence and uniqueness of its solution. Thus, the

solution algorithm (7.2.1)-(7.2.2) with the step-length formula defined by (7.2.14)

with Ak = M + L ∀k converges globally.

7.3 Computational efficiency

This section proposes a comparison of the two algorithms previously presented, in

terms of their computational efficiency in solving system (5.1.1).

The operations that mainly contribute to the computational cost of the modified

version of the Generalized Newton Method (GNM) are the matrix-vector product

Mη and the evaluation of the non-linear function V(η). Therefore, the complexity

of the algorithm is of order O(N)+
∑N

i=1 O(Vi), that becomes O(N) in the particular

case of a linear function V.
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Regarding the Conjugate Gradient Method (CGM), the order of complexity de-

pends on the following operations: the computation of the step-length αk and the

computation of the search direction dk.

The computation of the step-length αk in case V is non-linear and Φ is non-

quadratic can be done by formula (7.2.14) with Ak = M+L for all k. The complexity

of this formula depends on two factors: the evaluation of ∇Φ(xk) = gk = V(xk) −
Mxk− f, that costs O(N)+

∑N
i=1 O(Vi) and the matrix-vector product Adk, that has

complexity of order the number of non-zero entries of matrix A, that is O(N).

The computation of the search direction dk is given by (7.2.1), where βk can be

computed following different formulas. For example, the FR formula has complexity

O(N) +
∑N

i=1 O(Vi), because depends on the evaluation of ∇Φ(xk).

Therefore, the complexity of the Conjugate Gradient Method is given by O(N)+∑N
i=1 O(Vi), that becomes O(N) in the particular case of a linear function V.

From the point of view of the convergence rate, it is known that in case (5.1.1)

is linear, the Newton Method converges with order 2, while the Conjugate Gradient

Method converges in at least N steps.

Table 7.1 illustrates the performance of the two methods solving the system arising

from the Hydraulic Jump test in a rectangular channel presented in [3]. In this test

∆t = 10−2 and θ = 1, while the duration of the simulation is Tf = 2s. In this period

of time the solution does not reach its steady state.

Conjugate Gradient Method Generalized Newton Method

∆x N CPU time(sec) No.It CPU time(sec) No.It

0,5 200 0,04 2 0,07 14

0,1 1000 0,16 2 0,5 17

0,05 2000 0,44 3 1,3 26

0,02 5000 3,13 10 9,9 81

0,01 10000 21,7 38 59,9 245

Table 7.1: Performance of the CGM and the GNM for the Hydraulic Jump Test

Table 7.2 illustrates the performance of the two methods solving the system arising

from the Dam Break Test test over a wet bed in a semicircular channel. In this test

∆t = 10−3 and θ = 0.5, while Tf = 0.3s.

Fixed the time step, for each grid size the measures of performance are given by



94 7. Two Solution Algorithms

Conjugate Gradient Method Generalized Newton Method

∆x N CPU time(sec) No.It CPU time(sec) No.It

0,02 50 0,06 13 0,1 24

0,01 100 0,12 13 0,15 25

0,005 200 0,25 13 0,33 28

0,002 500 0,57 13 0,9 29

0,00167 600 0,7 13 1,1 29

Table 7.2: Performance of the CGM and the GNM for the Dam Break Test (Semi-

circular channel)

the mean number of iterations (rounded to the nearest integer) for each time step

and the total CPU taken by the algorithms.

The tolerance used to test the convergence is tol = 10−7.

Analysing Tables 7.1, one can observe that the Conjugate Gradient Method is

faster than the Generalized Newton Method solving this linear problem.

In the Hydraulic Jump test in fact, the reduction of the size of the spatial grid

causes an increase of the number of iterations and of the CPU time that is more

conspicuous for the Generalized Newton Method than for the Conjugate Gradient

Method. This behaviour can be brought back to the rate of convergence of the two

algorithms.

On the other hand, one can note that the gap between the two algorithms becomes

thinner for a non-linear problem.

In fact, considering the Dam Break Test in a Semicircular channel, the results

listed in Table 7.2 show that the Conjugate Gradient Method is still preferable to

the Generalized Newton Method both for the CPU time and for the number of

iterations, but the differences between the data of the two methods are smaller than

those obtained in Table 7.1 for a linear problem.



Conclusions and recommendations

The aim of this final chapter is to formulate general conclusions on the numerical

scheme presented in this thesis emphasising its specific properties and its potential

for dealing with hydraulic engineering problems. The chapter closes with recommen-

dations for future work.

Conclusions

In the present thesis, a semi-implicit numerical model for the one-dimensional sim-

ulation of non-stationary free surface in open channels with arbitrary cross-section

has been derived, discussed and applied.

The semi-implicit discretization (see, e.g., [6]) leads to a relatively simple (explicit

part) and computationally efficient (fully implicit part) scheme whose stability can

be shown to be independent from the wave celerity
√

gH.

The conservation properties allow dealing properly with problems presenting dis-

continuities in the solution, resulting for example from sharp bottom gradients and

hydraulic jumps. The conservation of mass is particularly important when the chan-

nel has a non rectangular cross-section. The possibility to switch between momentum

and energy head conservation depending on local flow conditions leads the numerical

solutions to present the same characteristics as the physical ones.

The accuracy of the proposed method is controlled by the use of appropriate flux

limiting functions in the discretization of the advective terms [35], especially in the

case of large gradients of the physical quantities involved in the problem (i.e. the

water level).

The fully implicit version of the method has been easily extended to solve the

closed channel flow equations: assuming the incompressibility of water, implicit

schemes are able to manage instantaneous transmission of pressure and velocity

changes arising in the pressurized part of the channel. Therefore they can simu-

late the transition from free surface to pressurized flow in channels with arbitrarily

shaped closed sections without any approximation of the section geometry and thus
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preserving precise volume conservation.

The method allows the simulation of hydraulic engineering situations such as

subcritical flows, mixed flows (subcritical and supercritical) as well as transitions

from supercritical to subcritical flows such as hydraulic jumps. Wetting and drying

phenomena are correctly treated without the use of specific procedures.

Careful physical and mathematical considerations about the stability of the method

and the solvability of the related mildly non-linear system with respect to the im-

plemented boundary conditions have been also provided together with suitable so-

lution procedures. An explicit and sufficient condition on the time step for the

non-negativity of the water volume has been formulated and it is valid under not

more restrictive assumptions than those necessary for a correct description of the

physical problem.

Recommendations for further research

Future work on the topic could address the extension of the model to sewer networks

and to 2 and 3 dimensions on structured and unstructured grids.

Also the analytical results of existence and uniqueness of the numerical solutions

should be extended to those cases.

Conservation properties deserve intense studying at the junctions between more

channels of the same network and in case the grid is unstructured.

It could be also possible to extend the method in order to include the air-

phenomena occurring in closed pipes as described in the tests presented in Chap-

ter 4: this could be done, for example, by designing a isopycnal type method or a

multiphase gas-liquid flow method.

Further research could be devoted to a more detailed study of the explicit con-

straint for the non-negativity of the water volume.

Much effort must still be put into research about solution algorithms and in

particular about the Conjugate Gradient Method for mildly non-linear systems: in-

teresting results could consider computational efficiency estimation and convergence

properties.

Finally, more experimental tests are also recommended.
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plication aux crues des rivières at à l’introdution des marées dans leur lit. Acad.

Sci. Comptes Rendus Paris, 73:147–154, 1871.

[16] JP. Boris DL. Book and K. Hain. Flux corrected transport ii: Generalization of

the method. Journal of Computational Physics, 18:248–283, 1975.

[17] R. Fletcher. Practical methods of optimization. John Wiley, New York, 1980.

[18] P. Garcia-navarro. Dam Break Flow Simulation. University of Zaragoza, Spain,

1999.

[19] P. Garcia-Navarro and F. Alcrudo. A high-resolution godunov-type scheme in

finite volumes for the 2-d shallow water equations. Int. J. Num. Meth. in Fluids,

16:489–505, 1991.

[20] P. Garcia-Navarro and A. Priestley. An implicit method for water flow mo-delling

in channels and pipes. Journal of Hydraulic Research, 32:721–742, 1994.

[21] P. Garcia-Navarro and ME. Vazquez-Cendon. On numerical treatment of the

source terms in the shallow water equations. Computers & Fluids, 29:951–979,

2000.

[22] LC. Gilbert and J. Nocedal. Global convergence properties of conjugate gradient

methods for optimization. SIAM Journal on optimization, 2:21–42, 1992.



Bibliography 99

[23] SK. Godunov. A difference scheme for numerical computation of discontinuous

solution of hydro dynamic equations. Math. Sbornik, 47:271–306, 1959.

[24] GH. Golub and CF. Van Loan. Matrix Computations. Baltimore: John Hopkins,

1989.

[25] A. Harten. High resolution schemes for hyperbolic conservation laws. J. Comput.

Phys, 49:357393, 1983.

[26] MR. Hestenes and E. Stiefel. Method of conjugate gradient for solving linear

systems. J. Res. Nat. Bur. Stand., 49:409–436, 1952.

[27] C. Hirsh. Numerical Computation of Internal and External Flows. Volume 2:

Computational Methods for Inviscid and Viscous Flows. John Wiley & Sons

Ltd, 1990.

[28] Y. Hu and C. Storey. Global convergence result for conjugate gradient methods.

Journal of Optimization Theory and Applications, 71:399–405, 1991.

[29] AT. Ippen. Estuary and Coastline Hydrodynamics. McGraw-Hill, 1966.

[30] F.M. Holly J.A. Cunge and A. Verwey. Practical Aspects of computational river

hydraulics. Pitman Publishing, 1980.

[31] MH. Chaudhry JA. Roberson, JJ. Cassidy. Hydraulic Engineering. Houghton

Mifflin Company, Boston, 1988.

[32] WC. Rheimboldt JM. Ortega. Iterative Solution of Non-Linear Equation in

several variables. Academics Press: New York, 1970.

[33] JJ. Leendertse. Aspects of a computational method for long period water-wave

propagation. Memorandum RM-5294-PR., The RAND Corp., Santa Monica,

California, 1967.

[34] RJ. LeVeque. Numerical methods for conservation laws. Birkhaeuser,

Basel/Boston/Berlin, 1992.

[35] RJ. LeVeque. Finite Volume Methods for hyperbolic Problems. Cambridge Uni-

versity Press, 2002.



100 Bibliography

[36] A. Maffio MJ. Baines and A. Di Filippo. Unsteady 1d flows with steep waves

in plant channels: The use of roe’s upwind tvd difference scheme. Advances in

water resources, 15:89–94, 1992.

[37] W. Murray PE. Gill and MH. Wright. Practical optimization. Academic Press,

New York, 1981.

[38] MJD. Powell. Convergence properties of algorithms for nonlinear optimization.

SIAM Review, 28:487–500, 1986.

[39] KO. Friedrichs nd H. Lewy R. Courant. Ueber die partiellen differenz-

engleichungen der matematisches physik. Math.Ann., 100:32–74, 1928.

[40] KO. Friedrichs nd H. Lewy R. Courant. On the partial differential equations of

mathematical physics. IBM Journal, 11:215–234, 1967.

[41] PL. Roe. Some contributions to the modelling of discontinuous flows. Proceed-

ings of the SIAM/AMS Seminar, San Diego, 1997.

[42] H. Rouse. Engineering Hydraulics. John Wiley, New York, 1950.

[43] PG. Samuels and CP. Skeels. Stability limits for preissmann’s scheme. Journal

of Hydraulic Engineering, 116:997–1012, 1990.

[44] A. Sjoberg. Calculation of Unsteady Flows in Regulated Rivers and Storm Sewer

Systems. Chalmers Univ. of Technology, Goteborg, Sweden, 1976.

[45] PM. Steffler and YC. Jin. Depth averaged and moment equations for mode-

rately shallow free surface flow. Journal of Hydraulic Research, IAHR, 31:5–18,

1993.

[46] GS. Stelling and SPA. Duinmeijer. A staggered conservative scheme for every

froude number in rapidly varied shallow water flows. International Journal for

Numerical Methods in Fluids, 43:1329–1354, 2003.

[47] J.J. Stoker. Water waves. The mathematical theory with applications. Inter-

science publisher, 1957.

[48] T. Strelkoff. One-dimensional equations for open-channel flow. J. Hydr. Div.,

ASCE, 953:861–876, 1969.



Bibliography 101

[49] J. Sun and J. Zhang. Global convergence of conjugate gradient methods without

line search. Annals of operations research, 103:161–173, 2001.

[50] PK. Sweby. High resolution schemes using flux limiters for hyperbolic conserva-

tion laws. SIAM Journal Numer. Anal., 21:995–1011, 1984.

[51] C. Thacker. Some exact solutions to the nonlinear shallow-water wave equations.

Journal of Fluid Mechanics, 107:499–508, 1981.

[52] EF. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics.

Springer, 1997.

[53] EF. Toro. Shock capturing Methods for free surface shallow flows. John Wiley

& Sons Ltd, 2001.

[54] T. Tucciarelli. A new algorithm for a robust solution of the fully dynamic saint

venant equations. Journal of Hydraulic Research, IAHR, 3:239–243, 2003.

[55] ME. Vasquez-Cendon. Improved treatment of source terms in upwind schemes

for the shallow water equations in channels with irregular geometry. Journal of

Computational Physics, 148:497–526, 1999.

[56] D.C. Wiggert. Transient flow in free-surface, pressurized systems. Journal of

hydraulic division, 98:11–27, 1972.

[57] D.C. Wiggert and M.J. Sundquist. Fixed grid characteristics for pipeline tran-

sients. Journal of hydraulic division, 103:1403–1415, 1978.

[58] P. Wolfe. Convergence conditions for ascent methods. SIAM Review, 11:226–235,

1969.

[59] HC. Yee. Construction of explicit and implicit symmetric tvd schemes and their

applications. Journal of Computational Physics, 68:151–179, 1987.

[60] BC. Yen. Open channel flow equations revisited. Journal of Engineering Me-

chanics Division, ASCEE, 99:979–1009, 1973.

[61] G. Zoutendijk. Nonlinear programming, computational methods. Integer and

Nonlinear Programming, pages 37–87, 1970.


	List of main symbols
	Introduction
	The Saint Venant Equations (SVE): main assumptions and derivation
	Basic hypothesis for the SVE 
	First step: the 3D Shallow Water Equations
	Second step: the laterally averaged Shallow Water Equations
	Last step: the 1D Saint Venant Equations
	Hyperbolicity and the Saint Venant system
	Hyperbolic systems
	Characteristic curves
	Hyperbolic form of the Saint Venant system
	Flow classification and boundary conditions

	The resistance laws
	An energy head formulation for the Momentum Equation

	A 1D scheme for open channel flows with arbitrary cross-section
	Introduction
	Time and space discretization
	Discretization of the Continuity Equation
	Definition of  and -h at i+1/2

	Discretization of the Momentum Equation
	First formulation: conservation of the momentum
	Second formulation: conservation of the energy head

	Switching the conservation
	The semi-implicit finite volume method for the SVE
	Order of accuracy and consistency
	Stability of the method
	Numerical accuracy and high-resolution
	Flux limiters in the present model
	A special flux limiter


	Numerical results in open channels
	Dam Break problems
	Subcritical and transcritical flow over a hump
	Transitions from super to subcritical flows
	Wetting, drying and moving boundaries
	Oscillations with planar surface
	Oscillations with parabolic surface

	Extension to closed channel flows
	Flows in closed channels
	Geometrical and physical specifications
	Numerical results in closed channels
	Pressurization in a horizontal pipe
	Hydraulic jump in a circular pipe


	Existence and uniqueness of the numerical solution
	The solution algorithm
	Boundary conditions
	Q-type boundary conditions
	-type boundary conditions

	Existence and uniqueness with at least a -type boundary condition
	Existence and uniqueness with two Q-type BCs for open channels

	Non-negativity of the water volume
	Introduction
	An implicit constraint on t
	An explicit constraint on t
	A test on the non-negativity of the water vo-lume

	Two Solution Algorithms
	Generalized Newton method (GNM)
	Convergence of the modified GNM

	Conjugate gradient method (CGM)
	Convergence of the CGM

	Computational efficiency

	Conclusions and recommendations
	Bibliography

