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Abstract

Background: Hepatitis C virus (HCV) is a major cause of chronic liver disease by infecting over

170 million people worldwide. Recent studies have shown that microRNAs (miRNAs), a class of

small non-coding regulatory RNAs, are involved in the regulation of HCV infection, but their

functions have not been systematically studied. We propose an integrative strategy for identifying

the miRNA-mRNA regulatory modules that are associated with HCV infection. This strategy

combines paired expression profiles of miRNAs and mRNAs and computational target predictions.

A miRNA-mRNA regulatory module consists of a set of miRNAs and their targets, in which the

miRNAs are predicted to coordinately regulate the level of the target mRNA.

Results: We simultaneously profiled the expression of cellular miRNAs and mRNAs across 30

HCV positive or negative human liver biopsy samples using microarray technology. We

constructed a miRNA-mRNA regulatory network, and using a graph theoretical approach,

identified 38 miRNA-mRNA regulatory modules in the network that were associated with HCV

infection. We evaluated the direct miRNA regulation of the mRNA levels of targets in regulatory

modules using previously published miRNA transfection data. We analyzed the functional roles of

individual modules at the systems level by integrating a large-scale protein interaction network. We

found that various biological processes, including some HCV infection related canonical pathways,

were regulated at the miRNA level during HCV infection.

Conclusion: Our regulatory modules provide a framework for future experimental analyses. This

report demonstrates the utility of our approach to obtain new insights into post-transcriptional

gene regulation at the miRNA level in complex human diseases.

Background
The hepatitis C virus (HCV) belongs to the Flaviviridae
family and encodes a small enveloped, positive-stranded
RNA genome of 9.6 kb [1]. HCV infects approximately

170 million people worldwide and infection often leads
to serious chronic liver diseases including liver cirrhosis,
liver failure and hepatocellular carcinoma [2,3]. This is
attributed in part to the remarkable ability of the virus to
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establish persistent infections [4-7]. Current medical
treatment for HCV involves the antiviral agent type 1 IFN
combined with ribavirin, but only ~55% of treated
patients have a sustained virologic response, i.e., the
absence of detectable HCV RNA 24 weeks after cessation
of therapy [8,9]. Clearly, there is a desperate need for new
anti-HCV therapies.

miRNAs have been implicated as potential new targets for
HCV therapy. miRNAs are a class of small non-coding
RNA molecules of 20–22 nucleotides that regulate gene
expression through translational repression and mRNA
degradation [10]. miRNAs play key roles in regulating
gene expression in a variety of organisms and are involved
in crucial physiologic and pathologic processes [11-13].
In vitro studies have shown that the liver-specific miR-122
is required for HCV RNA replication [14], whereas IFN-
induced miRNAs miR-196 and miR-448 directly target
HCV genomic RNA for inhibition of viral replication [15].
However, a recent report showed that there was no corre-
lation between miR-122 expression and viral load in
human subjects with chronic HCV undergoing IFN ther-
apy, cautioning the extrapolation of in vitro observations
to human subjects with HCV infection [16]. As a new
player among gene regulation mechanisms, the functions
of miRNAs have not been fully clarified. The comprehen-
sive delineation of the relationships between HCV infec-
tion and cellular miRNAs is crucial to better understand
HCV pathogenesis and to develop novel therapeutic strat-
egies. To the best of our knowledge, there has not been a
systematic study using high-throughput technology to
analyze the role of cellular miRNAs during HCV infection.

Precise identification of miRNA targets is essential for the
functional characterization of individual miRNAs and a
better understanding of complex human diseases. Multi-
ple computational approaches have been developed to
predict miRNA-target relationships using sequence infor-
mation [17]. However, accurate prediction of physiologi-
cally active miRNA targets remains challenging. The
observation that many miRNAs cause mRNA degradation
of their targets provides opportunities to develop new
approaches for target identification and validation using
high-throughput expression profiling. Gene expression
profiling data has been used to identify functional targets
[18,19], and to improve target predictions [20,21]. When
the expression of miRNAs and mRNAs are simultaneously
profiled across different conditions, the miRNA and the
mRNAs that it targets for degradation should exhibit an
inverse expression relationship. A successful strategy for
miRNA target identification has been reported using the
inverse relationships between miRNAs and mRNAs
inferred from the paired expression profiles across differ-
ent conditions [22]. The utility of inverse correlation for
miRNA target identification has been further demon-

strated in more recent studies, such as surveys of miRNA
and mRNA expression in human cell lines [23] and
miRNA expression and protein abundance in rat kidneys
[24]. This approach, unlike miRNA transfection, avoids
artificial conditions needed to perturb gene expression in
the systems of interest.

Identification of functional modules has greatly advanced
our understanding of complex biological networks
[25,26]. A single miRNA can regulate a large number of
target genes in mammalian cells [27], and multiple miR-
NAs may regulate the same target [28]. To understand the
many-to-many regulatory relationships in complex cellu-
lar systems, attempts have been made to predict miRNA
regulatory modules. Yoon and De Micheli introduced the
concept of such modules, or groups of miRNAs and target
genes that are believed to participate cooperatively in
post-transcriptional gene regulation [29]. Their modules
are related only to miRNA-mRNA binding information at
the sequence level. To improve module prediction, two
different computational approaches have been proposed
to integrate mRNA and miRNA expression profiles
[30,31], using the same published expression dataset [32].
Both approaches introduced the measurement of coher-
ent expression among miRNAs or mRNAs, but not
between miRNAs and mRNAs. Recently, a graphical
model approach was used to predict miRNA regulatory
modules in Arabidopsis [33]. However, none of the above
explicitly considers the inverse expression relationships
for module prediction, which has been very effective in
terms of uncovering functional miRNA-target relation-
ships.

In this report, we present an integrative strategy for infer-
ring HCV-associated miRNA-mRNA regulatory modules,
by combining the inverse expression relationships
between miRNAs and mRNAs and computational target
predictions at the sequence level. We generated, for the
first time, a systematic profiling of cellular miRNA expres-
sion during HCV infection in human livers. We inferred
inverse expression relationships by simultaneous microar-
ray profiling of host miRNA and mRNA expression across
30 human liver biopsies, including samples from HCV-
infected and uninfected individuals. Using our integrative
computational approach, we identified 38 miRNA-mRNA
regulatory modules that were associated with HCV infec-
tion. We analyzed the functional roles of those modules at
the systems level through the integration of a large protein
interaction network. We show that the expression of mul-
tiple cellular miRNAs was altered and provide evidence
that miRNAs are involved in a combinatorial and modu-
lar fashion in the regulation of host responses during HCV
infection. Together, these results provide novel insights
into regulatory mechanisms at the miRNA level during
HCV infection, and our analytical approach shows the
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utility of an integrative strategy that may be applied to the
study other complex human diseases for the identification
of miRNA regulatory modules.

Results
Analysis strategy

Our strategy for the identification of miRNA-mRNA regu-
latory modules integrated two independent, yet comple-
mentary types of information: inverse expression
relationships and computational target predictions (Fig-
ure 1). The analysis of the gene expression data allowed
identification of genes that were inversely co-expressed
with a miRNA, whereas the target prediction was used to
identify genes containing binding sites of a miRNA. We
reasoned that the regulatory relationships identified using
two sources of information are more likely to be physio-
logically functional than those identified using either one
of them alone. Our approach consists of six major steps.
The first three steps are for inferring the inverse expression
relationships between miRNAs and mRNAs through the
analysis of expression correlations.

In step 1, we collected the paired expression data through
microarray profiling of the expression of both miRNAs
and mRNAs across the same set of HCV liver biopsy sam-
ples. To focus on HCV infection, we restricted our analysis
to those miRNAs differentially expressed between HCV
positive (HCV+) and HCV negative (HCV-) samples. In
step 2, we calculated the correlation for each miRNA-
mRNA gene pair based on the gene expression patterns
across different samples, and created one large miRNA-
mRNA correlation matrix. In step 3, we first estimated the
false detection rates associated with different thresholds
for correlations. We then select an appropriate threshold
based on the desired false detection rate, and converted
the correlation matrix into a binary miRNA-mRNA corre-
lation network. In parallel we obtained computational
target predictions based on seed match, and created a
miRNA-target matrix. In step 4, to integrate the inferred
inverse expression relationships and target predictions, we
combined the miRNA-mRNA correlation network and the
corresponding miRNA-target matrix into a miRNA-mRNA
regulatory network. In step 5, we represented the regula-

Workflow of module identificationFigure 1
Workflow of module identification. 1) Profile expression of both miRNAs and mRNAs in the same set of samples using 
microarrays. 2) Calculate miRNA-mRNA correlation matrix based on the similarities in the expressions across samples. 3) 
Estimate false detection rates for a series of thresholds, and choose one based on the desired false detection rate to convert 
the correlation matrix into a binary miRNA-mRNA correlation network. 4) Construct a miRNA-mRNA regulatory network 
by combining the constructed miRNA-mRNA correlation network and the corresponding miRNA-target matrix. 5) Represent 
the regulatory network as a bipartite graph. 6) Enumerate all maximal bicliques as candidate regulatory modules, and post-
process candidate modules, including the assessment of both the statistical significances, and differential expressions of target 
mRNAs between HCV+ and HCV-.
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tory network as a bipartite graph. There were two disjoint
sets of nodes in this graph, miRNA and mRNA genes. A
direct connection was placed from a miRNA to a mRNA
when: a) the expression of the miRNA was inversely cor-
related to that of the mRNA, and b) the mRNA was pre-
dicted to be the target of the miRNA.

Finally, in step 6 we first enumerated all maximal
bicliques in the bipartitie graph and defined them as can-
didate regulatory modules. Next, for each candidate mod-
ule we assessed the statistical significance, or the
probability of finding it by chance, and the differential
expression of target mRNAs between HCV+ and HCV-
samples. The significant candidates, considered by both
measurements, were identified as HCV associated
miRNA-mRNA regulatory modules. We evaluated the
direct miRNA regulation of its targets in a few identified
modules using available miRNA transfection data [19].
We then performed functional analysis of miRNA target
genes to study the biological roles that the miRNAs play
during HCV infection. Each of these steps are detailed in
the following sections.

miRNA and mRNA expression in liver biopsy samples

In order to infer the inverse expression relationships
between miRNAs and mRNAs during HCV infection, we
generated a large paired miRNA and mRNA expression
dataset. We collected 24 HCV positive (HCV+) and 12
HCV negative (HCV-) liver biopsy samples from 29 liver
transplantation patients. After isolation of total RNA, the
expression of 470 unique human miRNAs in all samples
was profiled using microarrays. For 7 out of 29 patients,
two samples were taken from the same individuals, but at
different times (6–18 months apart) after transplantation.
Since we did not observe significant correlations between
samples from the same patients in terms of expression
profiles, all 36 samples were treated as independent
observations in the following analysis.

We first examined if the miRNAs showed differential
expression between HCV+ and HCV- samples. We found
multiple miRNAs were differentially expressed between
HCV+ and HCV- samples, though large variations within
each group of samples were observed (Additional file 1:
Table S1). Among them, miR-122 was under expressed in
the HCV+ samples (~1.8 fold, P = 1.5e-3,). As the most
abundant microRNA specifically expressed in liver tissues,
miR-122 has been shown to be involved in modulating
HCV replication [14]. Also, miR-16 was up-regulated
among HCV+ samples by ~2 fold (P = 9e-5). miR-16 is
shown to induce cell cycle arrest [34], and perturbation of
cell cycle progression may be a common scenario during
HCV infection that impacts the severity of liver injury
[35]. Furthermore, another cell-cycle associated miRNA,
miR-320 [36], was down-regulated (~1.8 fold, P = 1.1e-2)
in HCV+ samples.

To focus on HCV infection, and to simplify the down-
stream analysis, we limited our module analysis to those
miRNAs differentially expressed between HCV+ and HCV-
samples. Since it was unclear how much difference at the
miRNA level could lead to detectable phenotypical differ-
ences, that is, the differential expression of target mRNAs,
we used a relatively relaxed criteria, fold change > = 1.2
and P < 0.1, to select miRNAs differentially expressed
between HCV+ and HCV- samples. In total, 54 miRNAs
satisfied the criteria and were selected for future analysis
(Additional file 1: Table S1).

In parallel, we proceeded to profile mRNA expression in
30 of 36 liver biopsy samples, for which sufficient materi-
als were available, including 24 HCV+ and 6 HCV- sam-
ples. Many miRNAs derive from independent
transcriptional units, but some miRNAs locate in the
introns of protein-coding genes, so called miRNA host
genes. Since it has been reported that miRNA host genes
and intronic miRNAs tend to be co-expressed [37], we
looked at the expression of miRNA host genes in these
HCV related liver samples. Interestingly, we observed that
the expression levels of some, but not the majority of miR-
NAs and their host genes were significantly correlated
across these 30 liver biopsy samples. For example, the cor-
relation between miR-191 and its host gene DALRD3 was
0.65 (Pearson coefficient), P = 9.8e-5. Similarly, the corre-
lation between miR-16 and its host gene SMC4 was 0.55,
P = 0.0016. This information may be useful for future
studies on the regulation of miRNA expression.

Construction of a miRNA-mRNA regulatory network

To systematically link the 54 miRNAs identified above to
their potentially regulated target genes, we inferred the
inverse expression relationships between those miRNAs
and their target mRNAs using the generated expression
data. For each identified miRNA, we calculated all pair
wise correlations between the miRNA and every mRNA
represented on the microarray based on their expression
across all 30 samples. This resulted in a miRNA-mRNA
correlation matrix, in which the rows are mRNA transcrib-
ing genes and the columns are miRNA genes. We then
converted the correlation matrix into a binary matrix, a
miRNA-mRNA correlation network, by applying a thresh-
old on the correlations. Instead of choosing an arbitrary
high threshold, we first estimated the false detection rates
associated with a series of thresholds.

The false detection rate was defined as the percentage of
miRNA-mRNA gene pairs out of the total number of
selected pairs that would have the same or better correla-
tions just by chance. To do so, we generated simulated
datasets by randomly choosing the same number of arrays
from the real expression data. Essentially, we randomized
the correspondences among samples underlying the
miRNA and mRNA expression data, though the expres-
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sion data for each individual sample was the same. This
simulation should enable us to better balance the trade-
off between sensitivity (retaining more gene pairs) and
specificity (maintaining high correlations within each
gene pair) overall. We wanted to select a threshold which
would have a relatively low false detection rate overall,
but still leave us a large number of highly correlated
miRNA-mRNA gene pairs. We chose the threshold value
as Pearson correlation coefficient r ≤ -0.56 and P < 0.01,
for which we estimated that the overall false detection rate
was ~5.7% (Figure 2). We repeated the simulation experi-
ments independently three times, and obtained similar
false detection rates. The resulting miRNA-mRNA correla-
tion network had 7,407 connections between 54 miRNAs
and 3,093 mRNAs. On average, one miRNA was highly
correlated to ~137 mRNAs, and one mRNA to ~2.4 miR-
NAs (Additional file 1: Figure S1A).

Since the perfect match to the so-called seed region of 6–
8 nt at the 5' end of miRNA has been shown to be a major
determinant in the miRNA-target recognition process, we
examined if those inversely correlated mRNAs were
enriched with 6-mers matching the miRNA seed region in
their 3' UTR. We found that 10 out of 54 miRNAs showed
enrichment with seed 6-mers (Fisher exact test, P-value <

0.05). This suggests that inverse expression relationship
was very informative in terms of identification of miRNA
target genes, considering the complexities of the regula-
tory networks involved in the in vivo systems under study,
and that only a portion of all potential targets functionally
regulated at the mRNA level during HCV infection.

To investigate if miRNAs directly regulated the mRNA
level of those genes exhibiting a highly inversely corre-
lated expression profile, we superimposed miRNA target
prediction information onto the miRNA-mRNA correla-
tion network and created a regulatory network. In the reg-
ulatory network, a direct connection was placed from a
miRNA to an mRNA when: a) the expression level of the
miRNA was highly inversely correlated to that of the
mRNA, and b) the mRNA was predicted to be the target of
the miRNA. In this study, the miRNA target predictions
were based on the seed matches only (See Materials and
methods). On average, ~22% of correlated miRNA-mRNA
pairs overlapped with predicted miRNA-mRNA pairs. The
obtained regulatory network had 1,588 connections from
51 miRNAs to 1,077 mRNAs, 814 of which were also pre-
dicted miRNA-mRNA pairs by TargetScan. On average,
one miRNA was connected to about 31 mRNAs, and one
mRNA to 1.5 miRNAs (Additional file 1: Figure S1B).

To assess the broad HCV relevance of our regulatory net-
work, we used Ingenuity Pathways Analysis (IPA) to per-
form pathway analysis of those 1,077 mRNAs. We were
particularly interested in knowing if miRNAs targeted
genes in pathways that have been shown to be associated
with HCV infection. As shown in Table 1, our analysis sug-
gests that cellular miRNAs may be involved in the regula-
tion of multiple HCV-associated pathways. For example,
the chemokine mediated immune response is pivotal to
the clearance of virus during the acute HCV infection.
Dysregulation of chemokine signaling pathways has been
a common strategy exploited by a variety of viruses [38-
40], and miRNAs can be convenient tools for viruses to
implement that strategy [41]. Our results showed that
miRNAs may be able to target as many as 16 genes in this
particular pathway, including chemokine CXCL12 and its
downstream gene PKC-β. CXCL12 has been shown to be
regulated by HCV and able to induce HCV related fibrosis
[42,43].

As another example, 13 genes in the tumor suppressor
phosphatase and tensin homolog (PTEN) signalling path-
way were predicted to be targeted by miRNAs during HCV
infection. PTEN is frequently mutated in a large number
of cancers, and PTEN deletion mice demonstrate chronic
liver injury and steatosis prior to the development of pri-
mary liver carcinomas[44], events that also coincide with
the progression of HCV-associated human liver diseases.
As a miRNA target [45-47], PTEN was down-regulated in

Estimated false detection rates associated with different thresholds for miRNA-mRNA expression correlationsFigure 2
Estimated false detection rates associated with dif-
ferent thresholds for miRNA-mRNA expression cor-
relations. The x-axis is a series of thresholds for the 
Pearson correlation coefficient. The requirement of P < 0.01 
was applied for all thresholds at the same time. The y-axis 
has false detection rates for the corresponding thresholds. 
The dotted lines indicate that the estimated false detection 
rate is ~5.7% when the threshold is chosen as Pearson corre-
lation coefficient r < = -0.56 and P < 0.01. For selected 
thresholds, the numbers aside show the total number of 
miRNA-mRNA pairs satisfying the corresponding threshold 
and the estimated false detection rate. The requirement of P 
< 0.01 alone has estimated false detection rate as ~14% in 
this dataset.
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the HCV infected livers. The ERK/MAPK singling pathway
plays a central role in intracellular signalling network and
is associated with a number of key biological functions
[48]. Multiple lines of evidence indicate the important
roles of the ERK/MAPK pathway in HCV replication and
viral gene expression [49,50]. Our results identified 18
genes in the ERK/MAPK pathway, including some key
members such as Ras (KRAS), 14-3-3 (YWHAQ), ERK3
(MAPK6) and STAT3, which may be targeted by miRNAs
during HCV infection. Together, this result clearly indi-
cates that genes in our regulatory network are closely
related to HCV infection in general. Also our results sug-
gest that cellular miRNAs have a broad impact on the reg-
ulation of host responses during HCV infection, and
provide novel insights into the regulation of these HCV-
associated pathways at the miRNA level.

Identification of miRNA-mRNA regulatory modules

To uncover the many-to-many regulatory relationships
between miRNAs and their functional target genes, and to
generate testable hypotheses for future experiments, we
attempted to predict miRNA-mRNA regulatory modules
in the constructed regulatory network. A miRNA-mRNA
regulatory module consists of a set of miRNAs and a set of
their targets, in which the miRNAs co-ordinately regulate
their targets. To ensure that every miRNA was connected
to every mRNA in the same module, we modelled each
regulatory module as a biclique in the regulatory network,
which essentially was a bipartite graph. We focused on
maximal bicliques to avoid redundancy. In total, we iden-
tified 284 maximal bicliques as our candidate regulatory
modules. The maximum number of miRNAs and the max-
imum number targets in a candidate module were 7 and
191 respectively, but the majority of modules had less
than 3 miRNAs and 5 mRNA targets (Additional file 1:
Figure S2). Since miRNAs tend to regulate large number of

targets, we chose to further analyze only those candidate
modules with relatively more mRNAs, i.e., modules with
10 or more mRNAs In total 47 out of 284 candidates were
kept, which covered ~90% of the targets in the regulatory
network (Additional file 1: Figure S3).

For each of these 47 predicted regulatory modules, we
estimated the P value, or the probability of finding it by
chance, using permutation based tests. We developed two
different metrics, the joint probability based P_score and
the counting based P_Nt (see Materials and methods for
details). Since P_score takes into account the strengths of
individual correlations and the different abundances of
predicted miRNA targets, we expected it to be more accu-
rate. But it is computationally intensive, as it searches for
one set of miRNAs and mRNAs with the maximum score
among all possible combinations of miRNAs and mRNAs
of the same size of the candidate modules. This might not
be feasible for candidate modules of even slightly larger
sizes. However, P_Nt counts the maximum number of tar-
gets that would be predicted to be regulated by the same
set of miRNAs as the candidate module using random
datasets. Therefore it is much more computationally effi-
cient, but possibly less accurate.

At the significance level of P value < 0.05, 4 out 47 candi-
date modules were considered as insignificant by P_score
and 5 by P_Nt, based on the analysis of 100 random data-
sets. Interestingly, all four candidates considered insignif-
icant by P_score were also considered insignificant by
P_Nt. This agreement indicates that these four candidates
could indeed happen by chance. More importantly, it sug-
gests that we might be able to use the metric P_Nt as an
approximation for the metric P_score in the future,
though more thorough comparisons are needed. How-
ever, in this study we deemed a candidate module as sta-

Table 1: Genes in HCV associated pathways identified as regulated by miRNAs during HCV infection

Canonical pathways (IPA) Predicted target genes Number of targets

Chemokine Signaling SRC, CALM3, CALM2, MAPK6, PPP1CB, KRAS, LIMK2, PTK2, CAMK2D, RRAS2, MAPK14, 
CCL2, RHOA, CXCL12, CALM1, PRKCB

16

B Cell Receptor Signaling MAP2K4, MAP3K14, CALM3, PIK3R1, CALM2, MAPK6, KRAS, INPPL1, PTEN, BCL2L1, 
CAMK2D, RRAS2, MAPK14, BCL10, PAG1, LYN, PIK3AP1, CALM1, PRKCB

19

PTEN Signaling PIK3R1, MAPK6, INPPL1, KRAS, CCND1, PTEN, PTK2, BCL2L1, RRAS2, GHR, BMPR1A, 
CDKN1A, FASLG

13

IL-6 Signaling MAP2K4, IL6ST, MAP3K14, MAPK6, MAP4K4, KRAS, IL1R1, STAT3, COL1A1, IL1F9, RRAS2, 
MAPK14, MAPKAPK2

13

ERK/MAPK Signaling RAP1B, SRC, PIK3R1, MAPK6, PPP1CB, KRAS, STAT3, PPP2R5A, DUSP2, EIF4E, PLA2G4C, 
YWHAQ, PTK2, MAPKSP1, RRAS2, ELF3, PRKCB, PRKAR1A

18

JAK/Stat Signaling RRAS2, PIK3R1, CDKN1A, SOCS6, MAPK6, KRAS, STAT3 7
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tistically significant only if it was considered as significant
by both metrics. This left us with 42 modules. We
repeated the simulation experiments independently three
times with similar results.

In parallel, we wanted to enrich those modules in which
targets were significantly differentially expressed between
HCV+ and HCV- samples. Our hypothesis was that genes
showing larger differences between HCV+ and HCV- sam-
ples were more likely to be related to HCV infection. For
each of 47 candidate modules, we also assessed the differ-
ential expression of targets between HCV+ and HCV- sam-
ples. Instead of testing one gene at a time, we treated all
targets within a module as one group and evaluated the
overall expression differences (See Materials and meth-
ods). This was expected to be more robust and sensitive.
Out of those 47 candidate modules with 10 or more tar-
gets, 42 had an adjusted P value of less than 0.05 and were
considered as HCV associated. We repeated the simula-
tion experiments for the calculation of adjusted P value
independently three times, and obtained same results.

By intersecting two lists from assessments above, we iden-
tified 38 miRNA-mRNA regulatory modules that were
both statistically significant (module P value) and HCV
associated (differential expression). Table 2 shows the
summary of these identified modules (Additional file 2
has details, including gene list, miRNA-target correlation
and target prediction). Since our target predications were
based on the 6-mer seed match alone, we decided to
examine if targets in our identified modules were also tar-
gets predicted by other computational approaches.
Noticeably, we found that on average ~52% of targets in
our predicted modules were also predicted as targets of
the corresponding miRNAs by TargetScan (Table 2), one
of the better computational predictions as suggested by
[51]. When we compared our predictions with the con-
served targets from TargetScan predictions, we found that
on average ~11.4% of the targets in our identified mod-
ules were also conserved (i.e., having at least one con-
served site as predicted by TargetScan, Table 2). This
agreement suggests that our integrative strategy enriched
for true functional miRNA-target relationships. A strict
requirement on evolutionary conservation might signifi-
cantly increase false negatives.

Evaluation of miRNA target regulation by use of in vitro 

miRNA transfection data

Since the connections between miRNAs and target
mRNAs in our predicted modules were inferred based on
inverse expression relationships and computational target
predictions, it was unknown if those miRNAs could actu-
ally regulate their target genes directly. We therefore
assessed the relationships using independent miRNA
transfection studies. Linsley et al reported that each of 24

selected miRNAs was transfected into cell lines in vitro,
and genome-wide mRNA expression was profiled both
before and after each transfection [19]. The down-regula-
tion of target mRNA level upon the miRNA transfection
would indicate a direct regulation by the transfected
miRNA.

Out of 24 miRNAs studied, three of them, miR-16, miR-
215 and miR-15b, happened to be in at least one of our
predicted modules (Table 2). We looked at the targets in
each of those 3 modules with a single regulatory miRNA.
We found that targets in 2 out of 3 predicted modules
were significantly down-regulated by the corresponding
miRNAs, miR-16 and miR-215 (Figure 3). Remarkably,
the mismatches within the seed region (at positions 2 and
3, and 4 and 5) reversed the down-regulation of those pre-
dicted targets, but not mismatches outside the seed region
(at positions 18 and 19, and 19 and 20) (Figure 3B).
Obviously the in vitro system differed significantly from
real human livers. However, the result strongly suggests
that miRNAs were able to regulate many, if not all, of our
predicted targets directly. More importantly, it clearly
indicates that the direct regulation of mRNAs by miRNAs
may be predicted with a high success rate using our inte-
grative strategy.

Integrative functional analysis

As shown in Table 2, some regulatory modules had more
than one miRNA, indicating that those miRNAs co-ordi-
nately regulated the same targets. At the same time, some
miRNAs appeared in multiple regulatory modules, sug-
gesting individual modules were interconnected. To better
understand the biological functions of identified regula-
tory modules, we examined them at the systems level by
looking for interaction partners for predicted miRNA tar-
gets in a large protein-interaction network. For each pre-
dicted regulatory module, we performed functional
analysis of its targets plus direct interaction partners of
those targets in the protein interaction network. Specifi-
cally, we analyzed the enrichment of Gene Ontology
(GO) terms in the biological process category or specific
KEGG pathways. This analysis may also be applied after
combining several identified modules.

To illustrate the complexity of combinatorial regulations
at the miRNA level, we show in Figure 4 a combined net-
work of three identified modules involving two miRNAs,
miR-16 and-215, that were up-regulated in HCV+ sam-
ples. It should be noted that these two miRNAs and their
targets may also be involved in other modules with differ-
ent miRNAs and mRNAs (Table 2). Both miRNAs targeted
large number of genes, 191 for miR-16 and 86 for miR-
215, and 21 genes were targeted by both (Figure 4A and
4B, module # 4, 27 and 28 in Table 2). In the protein
interaction network, miR-16 and miR-215 targets interact
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Table 2: Summary of identified miRNA-mRNA regulatory modules

mRNA expression in HCV+ vs. HCV-b Module p-valuec

Module
identifier

No. of mRNA No. of
miRNA

miRNA miRNA
gene family

% of overlapped 
targetsa

log2 ratio p-value adj.
p-value

P_score P_Nt Selected GO 
terms (BP)d

miRNA down-regulated, and mRNA up-regulated in HCV+ vs. HCV-

7 48 1 hsa-miR-320 mir-320 56.2 (12.5) 0.6 4.8E-09 0.001 1.1E-25 0 cell cycle 
checkpoint

8 34 1 hsa-miR-92 mir-25 44.1 (20.6) 0.6 5.6E-10 0 1.3E-33 0 actin cytoskeleton 
organization and 
biogenesis

10 77 1 hsa-miR-296 mir-296 62.3 (2.6) 0.8 4.3E-15 0 5.5E-37 0 T cell receptor 
signaling pathway

29 37 1 hsa-miR-193b mir-193 43.2 (2.7) 0.6 3.9E-08 0 3.3E-33 0 regulation of 
apoptosis

30 39 1 hsa-miR-181b mir-181 59 (5.1) 1.0 5.8E-24 0 2.8E-22 0.03 cell cycle 
checkpoint

37 46 1 hsa-miR-422b mir-378 39.1 (2.2) 0.5 6.4E-07 0 8.1E-26 0 B cell 
differentiation

39 74 1 hsa-miR-122a mir-122 51.4 (1.4) 0.5 1.7E-05 0.011 1.4E-44 0.01 DNA repair

50 11 2 hsa-miR-122a,
hsa-miR-320

mir-122,
mir-320

54.5 (0) 0.8 4.9E-13 0 1.3E-56 0 MAPKKK cascade

87 11 2 hsa-miR-193b,
hsa-miR-320

mir-193,
mir-320

31.8 (0) 0.5 2.1E-06 0.001 2.8E-53 0 cell cycle 
checkpoint

miRNA up-regulated, and mRNA down-regulated in HCV+ vs. HCV-

1 52 1 hsa-miR-130a mir-130 46.2 (19.2) -0.5 2.3E-05 0.016 6.5E-15 0.02 regulation of Rho 
protein signal 
transduction

2 66 1 hsa-miR-26b mir-26 60.6 (13.6) -0.7 3.6E-08 0 7.9E-32 0 actin cytoskeleton 
organization and 
biogenesis

4 191 1 hsa-miR-16 mir-15 54.5 (18.3) -0.8 2.5E-09 0 2.6E-46 0 insulin receptor 
signaling pathway

13 51 1 hsa-miR-21 mir-21 49 (5.9) -0.6 7.6E-07 0.002 3.8E-33 0 inactivation of 
MAPK activity
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15 170 1 hsa-miR-26a mir-26 62.4 (17.1) -0.6 6.4E-07 0.002 4.8E-50 0 insulin receptor 
signaling pathway

16 22 1 hsa-miR-155 mir-155 54.5 (4.5) -0.6 7.7E-10 0 4.7E-17 0.02 B cell 
differentiation

18 59 2 hsa-miR-26a,
hsa-miR-26b

mir-26 62.7 (15.3) -0.6 3.2E-07 0.001 7.8E-85 0 innate immune 
response

27 86 1 hsa-miR-215 mir-192 43 (1.2) -0.7 1.8E-07 0.002 8.2E-32 0 insulin receptor 
signaling pathway

28 21 2 hsa-miR-16,
hsa-miR-215

mir-15,
mir-192

38.1 (9.5) -0.7 7.0E-09 0 2.2E-51 0 apoptotic 
program

36 37 1 hsa-miR-324-3p mir-324 45.9 (0) -0.6 2.9E-08 0 2.6E-07 0 cAMP-mediated 
signaling

43 88 1 hsa-miR-202 mir-202 43.2 (13.6) -0.6 2.3E-04 0.036 5.6E-52 0 apoptotic 
program

52 82 1 hsa-miR-509 mir-509 50 (1.2) -0.6 1.6E-11 0 4.8E-60 0 transforming 
growth factor 
beta receptor 
signaling pathway

55 48 1 hsa-miR-424 mir-322 60.4 (20.8) -0.7 1.2E-09 0 1.3E-13 0.02 nuclear import

56 30 2 hsa-miR-16,
hsa-miR-424

mir-15,
mir-322

53.3 (23.3) -0.7 1.5E-09 0 1.1E-58 0 transforming 
growth factor 
beta receptor 
signaling pathway

57 12 1 hsa-miR-191 mir-191 66.7 (0) -0.6 4.0E-07 0.002 7.8E-51 0 positive regulation 
of peptidyl-serine 
phosphorylation

58 15 2 hsa-miR-26a,
hsa-miR-424

mir-26,
mir-322

66.7 (23.3) -0.7 2.1E-10 0 1.4E-44 0 transforming 
growth factor 
beta receptor 
signaling pathway

59 19 2 hsa-miR-16,
hsa-miR-26a

mir-15,
mir-26

60.5 (26.3) -0.7 4.4E-11 0 2.4E-62 0 transforming 
growth factor 
beta receptor 
signaling pathway

60 11 3 hsa-miR-16,
hsa-miR-26a,
hsa-miR-424

mir-15,
mir-26,
mir-322

54.5 (33.3) -0.7 5.3E-12 0 2.5E-67 0 transforming 
growth factor 
beta receptor 
signaling pathway

Table 2: Summary of identified miRNA-mRNA regulatory modules (Continued)
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63 28 1 hsa-miR-199a* mir-199 0 (0) -0.8 5.0E-07 0.002 2.1E-04 0.03 negative 
regulation of MAP 
kinase activity

73 12 2 hsa-miR-16,
hsa-miR-509

mir-15,
mir-509

66.7 (25) -0.6 2.0E-09 0 4.2E-55 0 negative 
regulation of 
translational 
initiation

76 28 2 hsa-miR-215,
hsa-miR-26a

mir-192,
mir-26

57.1 (12.5) -0.6 6.7E-07 0 1.0E-66 0 transforming 
growth factor 
beta receptor 
signaling pathway

78 23 2 hsa-miR-130a,
hsa-miR-16

mir-130,
mir-15

47.8 (10.9) -0.4 1.3E-07 0.001 9.6E-63 0 RNA-mediated 
gene silencing

79 35 1 hsa-miR-146b mir-146 68.6 (2.9) -0.3 5.5E-08 0 4.7E-14 0 complement 
activation, 
alternative 
pathway

81 23 1 hsa-miR-15b mir-15 30.4 (8.7) -0.3 2.3E-04 0.019 6.7E-05 0.03 telomere 
maintenance via 
telomerase

94 23 2 hsa-miR-202,
hsa-miR-509

mir-202,
mir-509

56.5 (6.5) -0.4 4.3E-06 0.005 2.0E-89 0 transforming 
growth factor 
beta receptor 
signaling pathway

96 15 2 hsa-miR-21,
hsa-miR-26a

mir-21,
mir-26

53.3 (23.3) -0.5 1.7E-08 0.001 1.6E-51 0 MAPKKK cascade

101 11 3 hsa-miR-21,
hsa-miR-26a,
hsa-miR-26b

mir-21,
mir-26

54.5 (21.2) -0.4 1.0E-05 0.005 8.8E-72 0 innate immune 
response

102 10 3 hsa-miR-215,
hsa-miR-26a,
hsa-miR-26b

mir-192,
mir-26

53.3 (20) -0.6 5.9E-07 0.003 1.4E-75 0 endothelial cell 
migration

170 10 2 hsa-miR-202,
hsa-miR-324-3p

mir-202,
mir-324

50 (10) -0.5 1.0E-07 0.001 1.1E-32 0 response to 
dsRNA

aThe overlap (%) is with the TargetScan prediction. The number in parenthesis is the overlap (%) with TargetScan conserved predicted targets, i.e. those targets with a conserved site as predicted by TargetScan.
bDifferential expression of target mRNAs in HCV+ vs. HCV- was assessed together as one group for each module. adj. p-value: adjusted p-value, estimated based on 1000 permutations.
cModule p-value was estimated based on 100 simulations. P_score: the scoring method. P_Nt: the counting method.
dOne representative GO term was manually selected for each module. See text for details.

Table 2: Summary of identified miRNA-mRNA regulatory modules (Continued)
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with many other proteins, including targets of the same
miRNA and another miRNA (Figure 4C). From this net-
work, we extracted a sub-network which included genes in
several enriched KEGG pathways that are known to be
associated with HCV infection (Figure 4D).

This sub-network suggests that HCV may be able to
repress the expressions of several key genes in a number of
HCV pathways via miR-16, miR-215, or both. For exam-
ple, miR-16 targets MAPK14 (p38 MAPK) and BID (also a
miR-215 target), which are two key regulators in apopto-
sis-associated pathways [52,53]. The induction of apopto-
sis among virus-infected cells is an effective host
mechanism against virus infection. MAPK14 could be
activated by inflammatory cytokines induced by virus
infections and subsequently activate the downstream
effectors that participate in the induction of IFN-depend-
ent gene transcription [54]. This process may lead to
apoptosis of virus-infected cells. Activated by the signal-
ling from the proinflammatory chemokines, BID in turn
activates mitochondria-mediated apoptosis. Intriguingly,
in a chimeric mouse-human model the activation of BID
results in a considerable decline of HCV RNA in serum,
which suggests the antiviral property of BID [55]. By
repressing the expression of MAPK14 and BID via miR-
NAs, HCV may be able to hinder apoptosis before ensur-
ing successful establishment of virus replication at an
early stage of infection.

We also observed miRNA targeting of Smad4, CD82 and
PTEN (Figure 4D), which function as suppressors in tum-
origenesis and metastasis. Smad4 is a central component
of the TGF-β pathway, and degradation of Smad4 in
tumors could specifically inhibit the tumor suppressor
effect of TGF-β [56]. Similarly, down-regulation of the
metastasis suppressor CD82 is correlated with cancer pro-
gression and poor survival in patients [57]. Furthermore,
elevating the degradation of CD82 promotes tumor
metastasis in mice [58]. PTEN mutations are observed in
a wide range of cancers. More importantly, liver-specific
loss of PTEN leads to rapid development of HCC in mice
[59]. Therefore, by down-regulating the expression of
these tumor suppressor genes including Smad4, CD82
and PTEN through cellular miRNAs, a persistent HCV
infection could eventually lead to tumor development
and metastasis in liver.

To obtain an overview of the functional impact of all
modules on HCV infection, we attempted to annotate
each module with a representative biological function. To
do this, we looked for GO terms in the biological process
category enriched in each individual module (target
mRNAs plus interaction partners), as GO annotations
have much better coverage of the whole genome than
KEGG pathways and Ingenuity canonical pathways. We

annotated each module by manually selecting one of the
significantly enriched (P < 0.01) GO terms (Table 2). The
selection of the GO term was judged by its association
with HCV infection as indicated in previous publications,
and the ratio of the number of genes in the module versus
the total number of genes annotated to that particular GO
term. Our selected biological functions included cell cycle
checkpoint, innate immune response and negative regula-
tion of translational initiation, which all have been exten-
sively reported to be related to HCV infection. Overall, our
findings suggest that our identified regulatory modules
covered various biological processes that may be per-
turbed during HCV infection through cellular miRNA reg-
ulation, and that the miRNA regulation may occur in a
combinatorial fashion as suggested by the analysis of reg-
ulatory modules. It would also be interesting in the future
to investigate if these regulatory modules preferentially
target similar components in large signaling networks as
reported [13,60].

Discussion
Twenty years since the identification of HCV, virologists
and clinicians are still struggling to understand the under-
lying cause of HCV-related liver diseases. The recent dis-
covery of the roles of miRNAs in many human diseases
suggests that studies exploring the relationships between
HCV and host miRNAs may provide new insights into
HCV pathogenesis. In this study, we devised an integrative
strategy to systematically investigate cellular miRNAs and
their roles in gene regulation during HCV infection. Our
computational approach integrates two independent, but
complementary types of information: the inverse expres-
sion relationships inferred from the paired expression
profiles of miRNAs and mRNAs, and the computational
target prediction based on sequence information.

Profiling miRNA and mRNA expression and inferring 

inverse expression relationships

The systematic identification of inverse expression rela-
tionships relies on the simultaneous transcriptional pro-
filing of miRNAs and mRNAs across the same of set of
samples. Although this can be laborious and costly, and
the robustness of the functional miRNA-target relation-
ships inferred from expression data depends upon the
number of available samples, it may be beneficial for
many studies. miRNA profiling provides another layer of
valuable information about complex cellular systems. For
example, it has been shown that miRNA signatures, but
not mRNA signatures, are able to discern poorly differen-
tiated tumors successfully [32]. miRNA profiling will be
more accessible with the rapid development of high-
throughput technologies such as miRNA microarrays and
next-generation sequencing. Although it would be also
informative to measure protein abundance changes
[24,51,61], mRNA profiling is more convenient at this
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Evaluation of direct miRNA regulation of target mRNAs using in vitro transfection dataFigure 3
Evaluation of direct miRNA regulation of target mRNAs using in vitro transfection data. A. Heatmap showing 
inverse expression patterns between miR-16 and its 191 targets (module # 4 in Table 2). Top row shows miR-16 expressions 
across 30 liver biopsy samples, rows below for its targets. Columns represent samples, identical for both miRNAs and mRNAs. 
Expressions converted into z-scores. Entry in yellow (blue) indicates expression level of a gene is higher (lower) than mean 
across all samples. B. Heatmap showing down-regulation of miR-16 targets after transfection into cultured cells. Rows are tar-
gets and columns are experiments. The measurements for 181 of 191 targets available, and shown as log2 ratios of 24 h after 
transfection to mock. Transfections were done with 100 nm miRNAs using HCT116 Dicer-/- cells, the first with 25 nm miR-
NAs using DLD-1 Dicer -/- cells. In table at the bottom, row 'Mis_match' shows if miR-16 with mismatches used, indicated by 
locations. 18,19 represents mismatches at positions 18 and 19 of miR-16 mature sequences counted from 5'. 18,19 and 19,20 
(2,3 and 4,5) outside (within) seed region. One-sample t-tests (Pval.t for p-values) and non-parametric Wilcoxon tests 
(Pval.wc) used to assess if overall target expressions shifted after transfection. C. Heatmap showing inverse expression pat-
terns between miR-215 and its 86 targets (module #27 in Table 2), similarly as in (A). D. Heatmap showing down-regulation of 
miR-215 targets after transfection, similarly as in (B). The measurements for 85 of 86 targets were available. Table at the bot-
tom shows cell types (Cell) and concentrations ('Conc.'). The transfection data was downloaded from GEO: GSM156550, 
GSM156546, GSM156565, GSM156566, GSM156563, GSM156564 for data shown in (B) from left to right, and GSM156552, 
GSM156548 in (D). See Linsley et al, 2007 for details.

HCV- HCV+
Mis_match 18,19 19,20 2,3 4,5

Pval.t 8.7E-10 3.6E-13 1.7E-08 7.5E-07 0.8 0.074

Pval.wc 6.6E-10 5.6E-12 7.2E-10 3.1E-07 0.67 0.018

(191) (181)

A. B.

miR-16

miR-16 targets

(86) (85)

miR-215 targets

C. D.

HCV- HCV+

miR-215

Cell DLD-1 HCT116

Conc. (nM) 25 100

Pval.t 1.5E-09 1.4E-07

Pval.wc 1.1E-09 6.0E-07

*
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time, and studies profiling both miRNAs and mRNAs are
emerging [32,62]. It is possible to use a miRNA host gene
as a proxy for the expression of the intronic miRNA [63],
but its application might be limited considering that
many miRNAs do not have host genes. Also miRNAs and
their host genes may be regulated differently even they are
from the same primary transcripts.

For a number of reasons, inferring inverse expression rela-
tionships may be particularly attractive for studies using
clinical samples. First, it is not possible to perturb gene
expression in humans as required by some techniques like
in vitro miRNA transfections. Second, relatively large indi-
vidual variations are expected for studies using clinical
samples in general in comparison to using model experi-
mental systems. Whereas large variations could be a sig-
nificant challenge for conventional approaches, such as
the identification of differentially expressed genes, the
analysis of correlations actually takes advantage of those
variations. It infers functional relationships by examining
correlated changes in expression across different samples
and conditions.

Computational prediction of miRNA targets in 

conjunction with inverse expression relationships

Precise target prediction remains challenging, especially
when the predictions are based on sequence information
alone. On the basis of several considerations, we pre-
dicted miRNA targets based on the seed matches alone.
First, the fact that the existing computational target predic-
tions differ strongly [64] makes a rational selection of one
list of predictions over another extremely challenging. It
remains difficult to assess accurately their performance, in
part because of the limited number of experimentally val-
idated targets and the diversities of datasets being used for
the evaluation [17,65]. The second consideration is cover-
age. We observed that most computational techniques for
miRNA target predictions start with the identification of
potential targets based on the seed matching between
miRNAs and mRNAs [17]. Without additional functional
data, multiple rounds of filtering may be used to achieve
a higher degree of specificity (fewer false-positives) as
compared to sensitivity (fewer false negatives) based on
various features like binding affinity and evolutionary
conservation [17]. Although those features are useful for
the enrichment of true miRNA targets in general, the crite-
ria for filtering may have nothing to do with HCV infec-
tion in human livers, the primary biological interest here.
Therefore, the filtering could eliminate many biologically
important targets. Finally, we reasoned that after filtering
based on significant inverse expression relationships,
many of the remaining miRNA-mRNA pairs would
already be functional miRNA-target pairs. For example,
we were able to filter ~20,000 genes represented on the
array down to ~3,000 genes in our constructed correlation

network, based on the inverse expression relationships
alone. Each miRNA was highly correlated to ~130 mRNAs
on average, which was in the typical reported range of
100–200 targets per miRNA [27,28].

Considering that the seed match between miRNA and tar-
get is one of the most accurate predictors of miRNA target-
ing, and that most computational techniques for miRNA
target predictions mainly rely on this information, we pre-
dicted targets based on this information alone for use in
this study. By combining paired gene expression profiling,
we expected to obtain reliable miRNA-target relationships
physiologically active in our studied systems, while with a
much better coverage. Later, when we compared our
results with the target list from TargetScan, one of better
available computational predictions, we found that more
than half of the targets in our predicted modules were also
considered as targets by their predictions, and many of
them were also evolutionarily conserved. It was also
encouraging that targets in two out of three predicted
modules were significantly down-regulated in independ-
ent miRNA transfection experiments. These promising
results strongly support our initial decision, but direct
experimental validations will be critical for future studies.
In principle, our strategy can directly take any single one
or some combination of existing predicted target lists eas-
ily, but it would be informative to know what kind of fea-
tures and filtering would be more effective when
combined with inverse expression relationships.

Gene expression coherence within miRNA-mRNA 

regulatory modules

Within a regulatory module, the expression of member
genes is expected to be tightly correlated. Previous
approaches for predictions of miRNA regulatory modules
considered as a measurement the expression coherence;
that is, that the expression of member miRNAs (and their
targets) would be highly correlated within a module. This
was not explicitly taken into consideration in our
approach. However, we found that in all of our identified
modules, the expression of miRNAs (Pearson correlation
coefficient 0.86 on average for all modules) and mRNAs
(0.6) were highly correlated with each other.

At least three factors may have contributed to the expres-
sion coherence observed in our predictions. First, expres-
sion coherence could be a by-product of inferring the
inverse expression relationships. By requiring that all
mRNAs must be highly correlated to each of the same set
of miRNAs, we automatically enriched for a set of mutu-
ally highly correlated mRNAs. The same was true for miR-
NAs. Second, those miRNAs selected for module analysis
were all differentially expressed between HCV+ and HCV-
samples, therefore the expression of those miRNAs tended
to be similar overall. Finally, we used a statistical model to
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An example of combined analysis of three identified regulatory modulesFigure 4
An example of combined analysis of three identified regulatory modules. Schema showing the relationships among 
module 4, 27, and 28 in Table 2. miRNAs are in red, and mRNA targets are in turquoise (miR-215), or in yellow (miR-215 and 
miR-16), or in green (miR-16). B. Combined overview of three modules, including miR-215, miR-16, and 86 miR-215 targets 
and 191 miR-16 targets (21 targets in common). C. An overview of the network expanded from B, by adding protein interac-
tion partners of targets (black dots). Lines indicate protein interaction or miRNA-mRNA regulation. D. A sub-network in (C). 
Shown are genes in significantly enriched (p-value < 0.01), and HCV associated (manually selected based on literatures) KEGG 
pathways, including Cell cycle, Apoptosis, P53, MAPK, Insulin, Focal adhesion, Jak-Stat, TGF-beta, Toll-like. Each pathway had at 
least 10 member genes, including 2 or more predicted targets in (C).

miR-215 miR-16

A.

B.

D.

C.
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select only those modules where all targets within the
module were differentially expressed between two those
groups of samples. Obviously, modules with targets of
similar expression profiles would have better P values.
Not only does our approach ensure coherent expression
within each predicted module, but also it prevents the pre-
dictions from drifting away from our primary interest;
that is, differences related to the presence or absence of
HCV infection.

Using data from an in vitro system to validate direct 

regulations

In this study, we used data from an in vitro miRNA trans-
fection study to evaluate the miRNA-target regulatory rela-
tionships that we derived from data collected from
human liver biopsies. Although the experimental systems
are not equivalent, the use of the in vitro data provided a
valuable and convenient approach to quickly assess the
predicted miRNA regulation in general. Until recently,
knowledge of HCV infection has been limited by the lack
of a cell culture model supporting full HCV replication
and by the absence of convenient animal models [66].
Complete replication of HCV has been achieved in vitro
recently, though the chimpanzee remains the only animal
model for HCV infection. Perturbing more relevant in vitro
systems like HCV JFH-1 infection system in Huh7.5 cells,
using techniques such as miRNA transfection, will facili-
tate the validation of predictions in the future.

Conclusion
We have developed an integrative approach to identify
HCV infection-associated miRNA-mRNA regulatory mod-
ules by combining paired miRNA and mRNA expression
data and computational target prediction. Using this tech-
nique, our comprehensive analysis of the first systematic
expression profiling of cellular miRNAs and mRNAs in
HCV infected human livers indicates that miRNAs have
wide impact on gene regulation during HCV infection.
This regulation occurs in a combinatorial and modular
fashion. These results provide new insights into the regu-
lation of host responses and HCV pathogenesis. Our
approach may be applied to the study of miRNA regula-
tion in other complex human diseases.

Methods
Profiling of miRNA and mRNA expression

Liver biopsy samples

Twenty four HCV positive (HCV+) and 12 HCV negative
(HCV-) tissue samples from percutaneous core needle
biopsy specimens from liver transplantation patients were
obtained according to clinical protocols at the University
of Washington Medical Center. Following informed con-
sent at the time of acquisition, all research samples were
collected, flash frozen, and stored at -80°C. In total, sam-
ples from 29 patients were included in this study. The

study was approved by the Institutional Review Board for
Human Subject Review. For 30 of 36 liver biopsy samples,
we obtained sufficient materials to profile both miRNA
and mRNA expressions, which were used for inferring
miRNA-mRNA functional regulatory relationships.
Biopsy samples were from 19 HCV+ and 6 HCV- patients
following liver transplantation. For this group of patients,
liver recipient ages ranged from 24 to 72, with an average
of 55 years, while ages of the liver donors ranged from 13
to 58, averaging 32 years. HCV negative patients were
transplanted on account of autoimmune hepatitis, alco-
hol-induced cirrhosis or primary biliary cirrhosis. All
other patients were transplanted on account of HCV-
induced cirrhosis, gave evidence of recurrent HCV infec-
tion after transplant, and had intrahepatic HCV titers aver-
aging 54,800 copies per 100 ng RNA at the time of biopsy.
For 4 of these 30 liver biopsy samples, the transplantation
patients had developed fibrosis by the time those biopsies
were taken.

Sample preparation and RNA extraction

Tissue samples from liver biopsies were homogenized in
Trizol reagent (Invitrogen, CA). The total RNA was iso-
lated according to the manufacturer's protocol (Invitro-
gen). The integrity of miRNA and total RNA was
confirmed by Bioanalyzer (Agilent small RNA kit and
Nano kit). Prior to being included in the microarray anal-
yses, the samples were tested for HCV RNA by qRT-PCR.

miRNA microarray analysis

miRNA gene expression profiling was carried out using
Agilent human miRNA microarray Version 1 (Agilent
Technologies, Palo Alto, CA), similarly as in [67]. Briefly,
the miRNA microarray was designed based on the Sanger
miRBase release 9.1, and contain 20–40 features targeting
each of 470 human miRNAs (Agilent design ID 016436).
Total RNA (100 ng) was used for making miRNA probes
according to the Agilent protocol. Probes were hybridized
at 55°C for 22 hours. Then the slides were washed by
Gene expression wash buffer 1 at 16°C for 5 minutes and
by Gene expression wash buffer 2 at 37°C for 5 minutes.

After hybridization and washing, the slides were scanned
using an Agilent slide scanner. Microarray results were
extracted using Agilent Feature Extraction software. We
processed and analyzed the expression data using the
limma package for the R programming environment [68].
The total gene signal from the GeneView result files,
which summarized the measurements of all probes for
each gene on an array, was used in the analysis. Only
those genes which were detected in at least 90% of the
samples in either HCV+ or HCV- groups were kept in the
further analysis. The detection of a gene was based on the
"gIsGeneDetected" column. The expression data was nor-
malized across arrays using median centered approach. To
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damp down the variability for low-intensity genes, an off-
set of 5 was used to add a constant to the signals before
log-transforming. To avoid missing values after log-trans-
formation, any signal which was still less than 0.5 was
reset to be equal to 0.5. A batch factor was included in the
linear model to remove potential batch effects. Differen-
tial expression was assessed by using moderated t-statis-
tics.

mRNA microarray analysis

The mRNA gene expression profiling was carried out using
the Agilent Human 1A (V2) 22 K oligonucleotide expres-
sion arrays. Each microarray experiment was done with
four technical replicates by reversing dye hybridization for
experimental and reference samples. The same reference
sample was used for all hybridizations. Slides were
scanned with an Agilent DNA microarray scanner, and
image data were processed using Agilent Feature Extractor
Software, which also performed error modeling. All data
were subsequently uploaded into Rosetta Resolver
(Rosetta Biosoftware, Seattle, WA) for data analysis. The
Resolver system performs a squeeze operation that creates
ratio profiles by combining replicates while applying error
weighting. The error weighting consists of adjusting for
additive and multiplicative noise. The Resolver system
then combines ratio profiles to create ratio experiments
using an error-weighted average as described in Roland
Stoughton and Hongyue Dai, Statistical Combining of
Cell Expression Profiles (US Patent #6,351,712, February
26, 2002). For each microarray experiment, the calcula-
tion of mean ratios between expression levels of each gene
in the analyzed sample pair, standard deviations, and P
values was performed using Resolver. All microarray data
have been deposited in the GEO database with the Super-
Series accession number GSE15387. All data described in
this report are also publicly available at http://viro
mics.washington.edu, in accordance with proposed
MIAME standards.

Discovery of miRNA-mRNA regulatory modules

miRNA-mRNA correlation network

In the miRNA-mRNA correlation network, there are two
sets of vertices (nodes). One set of vertices are miRNAs,
and another set are mRNAs. An unweighted and undi-
rected edge (connection) is put between a pair of miRNA-
mRNA genes if those two are co-expressed across different
conditions (liver biopsy samples) with a correlation better
than a specified threshold. We first calculated a miRNA-
mRNA correlation matrix, where the rows were mRNAs,
and the columns were miRNAs. All miRNA-mRNA pair
correlations were calculated using the standard Pearson
method. Correlation coefficients between gene pairs
involving fewer than 80% (24/30) of data points (sam-
ples) were discarded due to missing values. Based on a

selected threshold, the calculated correlation matrix was
converted into a binary matrix of the same size. An entry
in the binary matrix was 1 if the corresponding correlation
was better than or equal to the threshold, otherwise the
entry was 0. Only those vertices, both miRNAs and
mRNAs, having at least one connection to other vertices
were kept in the final network.

miRNA-mRNA regulatory network

To investigate if miRNAs directly regulated the mRNAs
with which they were highly correlated as defined above,
we superimposed miRNA target predictions onto the
miRNA-mRNA correlation network. We only kept those
entries where the mRNAs (rows) were the predicted tar-
gets of the corresponding mRNAs (columns) in the
miRNA-mRNA correlation network. The resulting net-
work was defined as a miRNA-mRNA regulatory network,
essentially a bipartite graph. Similarly, there were two dis-
joint sets of vertices in this network, miRNAs and mRNAs.
A direct connection was placed from a miRNA to an
mRNA when: a) the expression level of the miRNA was
highly correlated to that of the mRNA, and b) the mRNA
was predicted to be the target of the miRNA.

Search for miRNA-mRNA regulatory modules

To uncover if multiple miRNAs co-ordinately regulate
groups of mRNAs, we searched for miRNA-mRNA regula-
tory modules. Here, a miRNA-mRNA regulatory module
is defined as a set of miRNAs and a set of mRNAs, in
which each mRNA is both a target of, and highly corre-
lated to all of the miRNAs in the module. Since the con-
structed miRNA-mRNA regulatory network is a bipartite
graph, a module in the network corresponds to a biclique
in the bipartite graph. A biclique, or a complete bipartite
graph, is a special kind of bipartite graph, where every ver-
tex in the first set (miRNAs) is connected to every vertex in
the second set (mRNAs) [69]. We enumerated all maximal
bicliques in the miRNA-mRNA regulatory network using
[70]. Each identified biclique was considered as a candi-
date miRNA-mRNA regulatory module.

miRNA target prediction

We predicted miRNA targets based on the seed matches.
The seed region of a miRNA is defined as positions 2–7 of
a mature miRNA numbered from its 5' end [71]. When the
3' UTR sequence of an mRNA contains a perfect match to
the seed of a miRNA, the mRNA is considered as a pre-
dicted target of the miRNA. Those seed matches are fur-
ther classified into four classes in order: matches to
positions 2–8 with 'A' in position 1 (8-mer), 2–8 (7-mer),
2–7 with 'A' in position 1 (2–7.A1), and 2–7 (6-mer) [71].
The 3' UTR sequences and the corresponding mapping
between different gene identifiers were downloaded from
Ensembl (Ensembl 52) using BioMart [72]. For compari-

http://viromics.washington.edu
http://viromics.washington.edu
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sons, two publicly available target predictions, miRBase
(version 5) [73] and TargetScan (release 4.2) [71], were
obtained from their respective Web sites.

Post-processing and statistical analysis

Generation of random datasets

To generate a random miRNA-mRNA expression dataset,
we randomly chose, with replacement, the same number
of miRNA microarray data from the original microRNA
dataset to generate a 'random' miRNA microarray dataset.
Similarly, we generated a random mRNA microarray data-
set by randomly choosing the same number of mRNA
microarray data from the original mRNA microarray data-
set. Since the underling samples in the random miRNA
microarray dataset do not correspond to the samples in
the random mRNA microarray dataset, high miRNA-
mRNA correlations obtained from this random miRNA-
mRNA dataset are a result of chance and therefore are con-
sidered as false.

To generate a random set of miRNA target predictions, we
first converted the real target predictions into a binary
miRNA-target matrix. The rows are mRNAs and the col-
umns are miRNAs. If mRNA i is a predicted target of
miRNA j the corresponding entry ij is set to 1, otherwise it
is set to 0. We then randomly permuted the rows of the
miRNA-target matrix. This ensures that we keep the same
distributions for both the numbers of target mRNAs per
miRNA, and the number of miRNAs per mRNA. This also
ensures that multiple miRNAs for the same mRNAs are
correlated in the same way as in the real predictions.

Estimation of false detection rate

For a selected threshold for miRNA-mRNA correlations,
we estimated the total number of miRNA-mRNA pairs
with correlations better than or equal to the threshold
found by chance using permutation-based tests. For each
run, we generated a random miRNA-mRNA expression
dataset as described above. We then calculated the corre-
sponding miRNA-mRNA correlation matrix in the same
way as described. The total number of miRNA-mRNA
gene pairs with correlations satisfying the specified thresh-
old was recorded as the number of false positives. We
repeated the same process 100 times, and chose the
median value of false positives as the estimated number of
false positives associated with the threshold. Using the
real miRNA-mRNA dataset we obtained the total number
of miRNA-mRNA gene pairs with correlations satisfying
the same threshold. The false detection rate associated
with the threshold was defined as the ratio between the
estimated number of false positives and the total numbers
of selected miRNA-mRNA gene pairs from the real dataset.
The false detection rates were calculated for a series of
thresholds. The selection of a threshold was then based on
a desired false detection rate.

Statistical significance of candidate regulatory modules

To evaluate if a candidate module can occur merely by
chance, we assessed its statistical significances with two
different metrics. For a candidate module, we first esti-
mated the possibility of predicting equal or more num-
bers of targets by chance, given the same set of miRNAs.
We generated a two-component random dataset as
described above, a random miRNA-mRNA expression
dataset and a random miRNA target prediction dataset.
We then identified modules with this random dataset,
using the same procedure and the same parameter values
as we did on the real dataset. We recorded the number of
targets predicted to be regulated by the same miRNAs in
the candidate module. We repeated this same process 100
times. The percentage of times that equal or more targets
were predicted to be regulated by the same miRNAs are
considered as a P value for the candidate, denoted as
P_Nt.

In parallel, we estimated the statistical significance of the
same candidate module using a scoring based metric. A
score was calculated for a pair of mRNA i and miRNA j
with correlation r. The score for the ij-pair, Sij, consists of
two components: a) the probability of being a target of the
miRNA j, Pt_j, b) the probability of having the same or bet-
ter correlations than r between miRNAs and mRNAs,
Pcor(r). The score Sij (Eq. 1) was defined as the product of
these two, and then log transformed for the convenience
of calculation:

Essentially Sij represents the joint probability of being a
target and having a high correlation, which are assumed to
be independent. Sij is set to zero if mRNA i is not a pre-
dicted target of miRNA j, or the correlations between
mRNA i and miRNA j is relatively too weak (defined as the
P value of the correlation coefficient is greater than 0.01
here). The score for any set of m miRNAs and t mRNAs
was calculated as the sum of scores of mt miRNA-mRNA
gene pairs, with the assumption that every miRNA-mRNA
pair is independent of others.

For every random dataset generated above, we estimated
the corresponding distributions for both correlations and
target predictions. For a candidate module with m miR-
NAs and t mRNAs, we calculated the score using the esti-
mated distributions. For comparison, we enumerated all
sets of m miRNAs and t mRNAs and found the one with
the maximum score from the random dataset. The paired
student t-test was performed to test if the candidate mod-
ule had significantly better scores than the best scores
obtained from random datasets. The P value from the

S P P r P P rij t j cor t j cor= − × = − −log( ( )) log( ) log( ( ))_ _

(1)
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one-side t-test was the scoring based P value for the candi-
date module, P_score.

Differential expression of targets in candidate modules

We fit a two-way ANOVA model (Eq. 2) to evaluate if
overall the targets of a candidate module were differen-
tially expressed between HCV+ and HCV- samples. Let yijk

be the normalized expression levels for the ith gene, jth
treatment and kth replicates of this gene, we model gene
effect ψi, treatment effect τj as two factors having i and j
levels, i = 1, 2,..., I, j = 1, 2,..., J where I represents the
number of genes in the candidate module and J represents
the number of conditions to compare (HCV+ vs. HCV-
here):

To choose an appropriate cutoff p-value for the treatment
effect τ, we randomly selected the same number of genes
as in the candidate module from the mRNA microarray
dataset and fit the ANOVA model. We repeated the proc-
ess 1,000 times. The percentage of times obtaining a P
value less than that of the candidate module was consid-
ered as the adjusted P value, assuming the majority of
genes represented on the array were not differentially
expressed between HCV+ and HCV- samples.

Functional analysis of identified regulatory modules

Protein interaction network

The protein-protein interaction network data was down-
loaded from BioGRID (release 2.0.46). The NCBI Entrez
GeneID was used to catalog interactions and redundant
interactions were removed. The final network had 7,820
proteins and 24,828 interactions.

Enrichment analysis of functional groups

For the enrichment analysis of GO terms and KEGG path-
ways, we created a customized annotation package for all
human Entrez Genes using AnnotationDbi, a Bioconduc-
tor package in R [74]. Enrichment was assessed using a
one-sided hypergeometric test, using the GOstats [75]. We
also used Ingenuity Pathways Analysis software (Ingenu-
ity Systems, CA) for pathway analysis. IPA analyzes gene
sets in the context of manually curated pathways and net-
works. Fisher's exact test was used to select significant
pathways.

Abbreviations
HCV: hepatitis c virus; miRNA: microRNA; GO: Gene
Ontology. IPA: Ingenuity Pathways Analysis.
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