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Abstract

Full likelihood inference under Kingman’s coalescent is a computationally challenging
problem to which importance sampling (IS) and the product of approximate conditionals
(PAC) methods have been applied successfully. Both methods can be expressed in terms of
families of intractable conditional sampling distributions (CSDs), and rely on principled
approximations for accurate inference. Recently, more general �- and �-coalescents
have been observed to provide better modelling fits to some genetic data sets. We derive
families of approximate CSDs for finite sites�- and�-coalescents, and use them to obtain
‘approximately optimal’ IS and PAC algorithms for �-coalescents, yielding substantial
gains in efficiency over existing methods.
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1. Introduction

Importance sampling (IS) has a well-established role in population genetic inference as a
means of approximating likelihoods. In this context the method was introduced by Griffiths and
Tavaré, who derived a recursion for quantities of interest under Kingman’s coalescent [25] and
simulated a Markov chain to approximate its solution [17]–[20]. Their approach was identified
as IS by Felsenstein et al. [14], which led Stephens and Donnelly to derive the optimal proposal
distribution in terms of a family of conditional sampling distributions (CSDs) [41]. The CSDs
are inaccessible in general, but the authors introduced an approximation which yielded dramatic
improvements in efficiency and accuracy of IS algorithms. In addition, IS has been investigated
and applied to genetic problems such as demographic and other parameter inferences in [10],
[13], [15], [16], [21], [22] and [24].

Approximating the CSDs for various generalisations of Kingman’s coalescent has received
plenty of attention, both as a means of deriving approximations to the optimal importance
sampling algorithm and due to the product of approximate conditionals (PAC) method intro-
duced in [26]. De Iorio and Griffiths derived an approximation to finite alleles CSDs based on
the Fleming–Viot generator [8], [9] and Paul and Song provided a genealogical interpretation
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and included crossover recombination [31]. Further approximations based on hidden Markov
models have been obtained in [32] and [40], and applied in [38].

Kingman’s coalescent only permits binary mergers of ancestral lineages. The�-coalescents,
introduced by Pitman [33] and Sagitov [34], generalise Kingman’s coalescent by permitting
multiple lineages to merge in one event. The rate of coalescence of any k out of n lineages is
given by

λn,k :=
∫ 1

0
rk(1 − r)n−k 1

r2�(dr)

for some finite measure � on [0, 1], which can be taken to be a probability measure without
loss of generality. Popular choices of � include � = δ0, which corresponds to Kingman’s
coalescent,� = δ1 leading to star–shaped genealogies,� = (2/(2+ψ2))δ0+(ψ2/(2+ψ2))δψ ,
where ψ ∈ (0, 1] [12] and � = Beta(2 − α, α), where α ∈ (1, 2) [37]. See [3] for a review.

Investigations by Boom et al. [7], Árnason [1], Eldon and Wakeley [12], and Birkner
and Blath [2] have concluded that �-coalescents can provide better descriptions of some
populations than Kingman’s coalescent, particularly among marine species. Thus, similar
strategies of inference have been developed for them. An analogue of the Griffiths–Tavaré
recursion (see (2.1) in Section 2) for �-coalescents was derived by Birkner and Blath in [2].
In a subsequent paper [5] the authors characterised the optimal IS proposal distribution in
terms of a family of Green’s functions related to the time-reversal of the �-coalescent, and
used their representation to obtain an approximately optimal algorithm for the infinite sites
model of mutation. Steinrücken et al. [39] contains a detailed discussion of inference under
Beta-coalescents and their applicability to marine populations.

The �-coalescent family allows for multiple mergers, but only permits one merger at
a time. They are generalised further by the �-coalescents, which permit any number of
simultaneous, multiple mergers. The �-coalescents were introduced by Möhle and Sagitov
[29] and Schweinsberg [36] and can be expressed in terms of a finite measure � (again, a
probability measure without loss of generality) on the infinite simplex

� =
{
r = (r1, r2, . . . ) ∈ [0, 1]N :

∞∑
i=1

ri ≤ 1

}
.

We denote by λn;k1,...,kp;s the rate of jumps involving p ≥ 1 mergers with sizes k1, . . . , kp,
with s = n− ∑p

i=1 ki lineages not participating in any merger. The total number of lineages
before the mergers is denoted by n. This rate is given as

λn;k1,...,kp;s =
∫
�

s∑
l=0

(
s

l

) ∑
i1∈N

· · ·
∑
ip+l∈N

r
k1
i1

· · · rkpip rip+1 · · · rip+l
(1 − ∑∞

i=1 ri)
s−l∑∞

i=1 r
2
i

�(dr).

The �-coalescents have also been used to model genealogies of marine organisms [35] and
populations undergoing mass extinctions [42], although the question of which measures � are
biologically relevant remains open. Note that if � assigns full mass to the set {r ∈ � : r2 =
r3 = · · · = 0} the resulting process is a �-coalescent.

In this paper we characterise the optimal IS proposal distribution for finite sites, finite alleles
�- and �-coalescents in terms of their respective families of CSDs, and derive principled
approximations to the CSDs for both coalescent families. The rest of the paper is laid out
as follows. In Section 2 we provide a heuristic description of �-coalescents and derive their
optimal proposal distributions. In Section 3 we present principled derivations for approximate
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�-coalescent CSDs, based on the finite alleles�-Fleming–Viot generator and on genealogical
considerations. In Section 4 we present simulation studies using both IS and PAC algorithms on
data sets simulated from a finite sites�-coalescent. In Section 5 we generalise the IS algorithm
for the �-coalescent family, and derive the analogous approximate CSDs. We conclude with a
discussion in Section 6.

2. The �-coalescent and its optimal proposal distributions

In the notation of [31], let L = {1, . . . , |L|} be a set of loci, El be the finite set of alleles
at locus l ∈ L, θl be the mutation rate at locus l ∈ L and P (l) be a family of stochastic
matrices giving transition probabilities of mutations at locus l ∈ L. Let θ := ∑

l∈L θl be the
total mutation rate, H := E1 × · · · × E|L| be the set of haplotypes and

�H =
{
x = (x1, . . . , x|H |) ∈ [0, 1]|H | :

∑
h∈H

xh = 1

}

be the space of probability vectors of allele frequencies. Define a sample by n = (nh)h∈H ∈
N|H | and let n := ∑

h∈H nh. Let eh be the canonical unit vector with a 1 in position h and 0
elsewhere. For l ∈ L and h ∈ H let h[l] define the allele at locus l of haplotype h. Finally, for
a ∈ El let Sal (h) be the haplotype obtained from h by overwriting locus l by allele a.

The dynamics of a finite sample of individuals from the stationary�-Fleming–Viot process
under the finite alleles model of mutation can be described as follows. For a rigorous account,
see [11].

Consider a sample of n typed lineages and associate to each lineage a unique level from
{1, . . . , n}. Let 
 be a Poisson process on R+ × [0, 1] with rate dt ⊗ r−2�(dr). At each
(t, r) ∈ 
 every lineage flips a coin with success probability r , and all successful lineages
‘look down’ and copy the type of the participating lineage with the lowest level. Independently,
the type of each lineage mutates at locus l with rate θl and jumps drawn from P (l). This particle
system embeds the�-coalescent, with coalescence events traced along the look-down-and-copy
jumps.

Let (Hi)
−T
i=0 define the sequence of type configurations of the ancestral sample after i events,

whether they be mutations or coalescences. H0 contains the frequency counts of the observed
sample, H−T is the type of the most recent common ancestor (MRCA) and the other His
correspond to intermediate states along the ancestral tree. Note that the likelihood P(H0) can
be written as

P(H0) =
∑
A

P{H0 | A}P(A),

where A is the space of possible ancestries and P{H0 | A} = 1 if the leaves ofA are compatible
with H0, and 0 otherwise. These ancestries can be decomposed into a sequence of updates as
above to give

P(H0) =
∑
H0

∑
H−1

· · ·
∑
H−T

P{H0 | A}
−T∏
i=−1

P{Hi+1 | Hi}P(H−T ), (2.1)

where P(H−T ) is the invariant distribution of the mutation operator obtained by viewing
mutation as a mixture Markov chain on H with weights {θl/θ}l∈L and mixture components
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{P (l)}l∈L, and

P{Hi+1 | Hi}

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
θl

nθ − qnini
((ni)Sal (h)

+ 1 − δah[l])P (l)ah[l] if Hi+1 = Hi − eSal (h) + eh,(
ni

k

)
λni,k

nθ − qnini

(ni)h − k + 1

ni − k + 1
if Hi+1 = Hi + (k − 1)eh,

where −qnn = ∑n−1
j=1

(
n

n−j+1

)
λn,n−j+1 is the total rate of coalescence of n untyped lineages,

ni is the number of lineages inHi , and (ni)h is the number of lineages of type h inHi . See [2]
for a detailed derivation.

As with Kingman’s coalescent, (2.1) can be approximated by sampling N independent
ancestors from the stationary distribution of the mutation mechanism, generating an ancestral
tree A from each ancestor and counting the proportion of trees with leaves that are compatible
with H0. However, obtaining a nonzero estimator with reasonable probability requires a
prohibitively large number of simulations as likelihoods of O(10−10), or much smaller still,
are typical even among modest data sets. A better approach is to start with the data, propose
mutations and coalescences backwards in time until the MRCA is reached, and, thus, ensure
every simulated tree is compatible with the observed leaves. This yields

P(H0) =
∑
H−T

· · ·
∑
H−1

−T∏
i=−1

P{Hi+1 | Hi}
Q(Hi | Hi+1)

P(H−T )Q(Hi | Hi+1)

= E

{ −T∏
i=−1

P{Hi+1 | Hi}
Q(Hi | Hi+1)

P(H−T )
}
, (2.2)

where Q(· | Hi+1) is an arbitrary proposal distribution satisfying mild support conditions, and
the expectation is with respect to ⊗−T

i=−1Q(Hi | Hi+1). Equation (2.2) can be approximated by
the IS estimator

p̂(H0) = 1

N

N∑
j=1

−Tj∏
i=−1

P{H(j)
i+1 | H(j)

i }
Q(H

(j)
i | H(j)

i+1)
P(H

(j)
−Tj ),

where {{H(j)
i }−Tji=0 }Nj=1 is an independent and identically distributed (i.i.d.) sample of sequen-

tially constructed coalescent trees from the distributions Q(Hi | Hi+1).
The following theorem is a �-coalescent analogue of Theorem 1 of [41]. A similar result,

using ratios of Green’s functions instead of CSDs, is presented in Lemma 2.2 of [5].

Theorem 2.1. Let π(m | n) define the sampling distribution of the next m individuals, given
the types of the first n from a population evolving according to the stationary �-Fleming–Viot
process. Then the optimal proposal distributions Q∗ are given by

Q∗(Hi | Hi+1) ∝

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(ni+1)hθl

π(eSal (h) | Hi+1 − eh)

π(eh | Hi+1 − eh)
P
(l)
ah[l] if Hi = Hi+1 − eh + eSal (h),(

(ni+1)h
k

)
λni+1,k

π((k − 1)eh | Hi+1 − (k − 1)eh)
if Hi = Hi+1 − (k − 1)eh,

where the first term ranges over all possible mutations for all haplotypes present in the sample,
and the second over all present haplotypes and k ∈ {2, . . . (ni+1)h}.
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Proof. The argument giving the mutation term is identical to that in Theorem 1 of [41] and
is omitted.

For the coalescence term suppose the n lineages evolve according to the lookdown con-
struction of [11], and define the types of the n particles at time t by Dn(t) = (h1, . . . , hn).
Define ϒk as the event that in the last δ units of time there was a merger involving lineages
n−k+1, n−k+2, . . . , n. To simplify the presentation let h{i : j} := (hi, hi+1, . . . , hj−1, hj ).
Then

P{ϒk | Dn(t) = (h{1 : n−k}, h, . . . , h)}
=

∑
g{2 : k}∈Hk−1

P{ϒk ∩Dn(t − δ) = (h{1 : n−k}, h, g{2 : k}) ∩Dn(t) = (h{1 : n−k}, h, . . . , h)}
P{Dn(t) = (h{1 : n−k}, h, . . . , h)}

=
∑

g{2 : k}∈Hk−1

P{Dn(t − δ) = (h{1 : n−k}, h, g{2 : k})}δλn,k
P{Dn(t) = (h{1 : n−k}, h, . . . , h)} + o(δ)

= δλn,k

π((k − 1)eh | Dn(t)− (k − 1)eh)
+ o(δ).

By exchangeability every set of k lineages coalesces at this same rate, so the total rate is obtained
by multiplying by

(
nh
k

)
.

Remark 2.1. It is tempting to simplify the situation further by decomposing

π((k − 1)eh | n − (k − 1)eh) =
k−2∏
j=0

π(eh | n − (k − 1 + j)eh)

and, thus, requiring only univariate CSDs. In general a decomposition like this requires
exchangeability, which the CSDs satisfy but typically approximations do not. However, in
the �-coalescent setting the argument being decomposed will always consist of only one type
of allele. Permuting lineages which feature only in the sample being conditioned on does not
affect the outcome even for nonexchangeable families of distributions, so in this particular
context univariate CSDs are sufficient. Note that this will not be the case for �-coalescents,
since simultaneous mergers of several types of lineages is permitted.

3. Approximating the �-coalescent CSDs

An approximation to the CSDs for Kingman’s coalescent was derived in [8] by noting that the
Fleming–Viot generator can be written component-wise as L = ∑

h∈HLh and then assuming
that there exists a probability measure, and an expectation Ê with respect to that measure, such
that the standard stationarity condition E{Lf (X)} = 0 holds component-wise,

Ê{Lhf (X)} = 0 for every h ∈ H and f ∈ C2(�H ).

Substituting the probability of an ordered sample q(n | x) = ∏
h∈H x

nh
h yields a recursion

whose solution is defined as the approximate CSD. The same argument can be applied to the
�-Fleming–Viot process to define approximate CSDs for the �-coalescent.
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Theorem 3.1. Let π̂(m | n) define the approximate �-coalescent CSD as defined above.
It solves the following recursion:

m

[
�({0})(n+m− 1)

2
+ θ + 1

n+m

n+m∑
k=2

(
n+m

k

)
λn+m,k

]
π̂(m | n)

=
∑
h∈H

mh

[
�({0})(nh +mh − 1)

2
π̂(m − eh | n)

+
∑
l∈L

θl
∑
a∈El

P
(l)
ah[l]π̂(m − eh + eSal (h) | n)

+ 1

nh +mh

{mh+1∑
k=2

(
nh +mh

k

)
λn+m,kπ̂(m − (k − 1)eh | n)

+
nh+mh∑
k=mh+2

(
nh +mh

k

)
λn+m,k

× π̂(m −mheh | n − (k −mh − 1)eh)

π̂((k −mh − 1)eh | n − (k −mh − 1)eh)

}]
.

(3.1)

Proof. The generator of the �-Fleming–Viot jump-diffusion can be written as

Lf (x) =
∑
h∈H

�({0})xh
2

∑
h′∈H

(δhh′ − xh′)
∂2

∂xh∂xh′
f (x)

+
∑
h∈H

∑
l∈L

θl
∑
a∈El

xSal (h)
(P

(l)
ah[l] − δah[l])

∂

∂xh
f (x)

+
∑
h∈H

xh

∫
(0,1]

{f ((1 − r)x + reh)− f (x)}r−2�(dr)

=:
∑
h∈H

Lhf (x). (3.2)

Substituting q(n | x) yields the following three terms on the right-hand side:

∑
h∈H

�({0})nh
2

[
(nh − 1)q(n + eh | x)−

∑
h′∈H

(nh′ − δhh′)q(n | x)

]
(3.3)

+
∑
h∈H

nh
∑
l∈L

θl

[∑
a∈El

P
(l)
ah[l]q(n − eh + eSal (h) | x)− q(n | x)

]
(3.4)

+
∫
(0,1]

{∑
h∈H

nh∑
k=0

(
nh

k

)
rk(1 − r)n−kq(n − (k − 1)eh | x)

−
n∑
k=0

(
n

k

)
rk(1 − r)n−kq(n | x)

}
r−2�(dr).
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The k = 0 terms inside the integral cancel because
∑
h∈H xh = 1 and the k = 1 terms cancel

because
∑
h∈H nh = n, which means the third summand can be written as∑
h∈H

{ nh∑
k=2

(
nh

k

)
λn,kq(n − (k − 1)eh | x)− nh

n

n∑
k=2

(
n

k

)
λn,kq(n | x)

}
. (3.5)

Substituting (3.3), (3.4), and (3.5) into (3.2) and rearranging, we obtain∑
h∈H

[
�({0})(n− 1)

2
+ θ + 1

n

n∑
k=2

(
n

k

)
λn,k

]
q(n | x)

=
∑
h∈H

{
�({0})(nh − 1)

2
q(n − eh | x)+

∑
l∈L

θl
∑
a∈El

P
(l)
ah[l]q(n − eh + eSal (h) | x)

+ 1

nh

nh∑
k=2

(
nh

k

)
λn,kq(n − (k − 1)eh | x)

}
. (3.6)

The component-wise vanishing property implies

Ê

{∑
h∈H

mhLhq(n | X)

}
=

∑
h∈H

mhÊ{Lhq(n | X)} = 0

so that (3.6) becomes

m

[
�({0})(n− 1)

2
+ θ + 1

n

n∑
k=2

(
n

k

)
λn,k

]
Ê{q(n | X)}

=
∑
h∈H

mh

{
�({0})(nh − 1)

2
Ê{q(n − eh | X)}

+
∑
l∈L

θl
∑
a∈El

P
(l)
ah[l]Ê{q(n − eh + eSal (h) | X)}

+ 1

nh

nh∑
k=2

(
nh

k

)
λn,kÊ{q(n − (k − 1)eh | X)}

}
.

Note thatπ(m | n) = E{q(n+m | X)}/E{q(n | X)} so that substituting n �→ n+m, assuming
that E = Ê and dividing by E{q(n | X)} provides the desired recursion.

Corollary 3.1. The univariate approximate CSDs π̂(eh | n) satisfy[
�({0})n

2
+ θ + 1

n+ 1

n+1∑
k=2

(
n+ 1

k

)
λn+1,k

]
π̂(eh | n)

= nh

2
(�({0})+ λn+1,2)+

∑
l∈L

θl
∑
a∈El

P
(l)
ah[l]π̂(eSal (h) | n)

+ 1

nh + 1

nh+1∑
k=3

(
nh + 1

k

)
λn+1,k

π̂((k − 2)eh | n − (k − 2)eh)
. (3.7)

Proof. The result follows by substituting m = eh into (3.1).
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As per Remark 2.1 it is sufficient to work with the simpler recursion (3.7) as opposed to the
full recursion (3.1). However, because of the denominator in the final term of (3.7) the resulting
system of equations still contains as many unknowns as the recursion for the full likelihood.
Hence, further approximations are needed to obtain a family of proposal distributions which is
feasible to evaluate and sample.

Definition 3.1. Setting � = δ0 in (3.7) results in the approximate CSDs derived in [41] for
Kingman’s coalescent. This approximation ignores the dynamics of the�-coalescent but results
in a valid IS proposal distribution that still simulates�-coalescent trees. The corresponding IS
proposal distribution is denoted by QSD.

Paul and Song [31] introduced the trunk ancestry, which can be used to obtain an approxi-
mation which makes better use of the �-coalescent structure. We briefly recall the definition
of the trunk ancestry here before using it to define a second approximate CSD family.

Definition 3.2. The trunk ancestry A∗(n) of a sample n is a deterministic, degenerate process
started from n and evolving backwards in time but undergoing no dynamics.

In the trunk ancestry, the lineages that form n do not mutate or coalesce, and, hence, do
not reach a MRCA. Instead they form an ancestral forest or ‘trunk’ that extends infinitely into
the past.

The first two terms on the right-hand side of (3.7), corresponding to pairwise mergers and
mutations, can be interpreted genealogically as the rates with which the (n + 1)th lineage
mutates and is absorbed into A∗(n) by a pairwise merger. The third term corresponds to a
multiple merger between the (n + 1)th lineage and two or more lineages in n of the same
type. Because this last term involves coalescence between lineages in n it does not have an
interpretation in terms of A∗(n). However, it can be forced into this framework by noting that
the only relevant information is the time of absorption of the (n+ 1)th lineage and the type of
the lineage(s) in n with which it merges. Motivated by the trunk ancestral interpretation, we
expect the following recursion to be a good, tractable approximation to (3.7).

Definition 3.3. Let π̂K(eh | n) be the distribution of the type of a lineage which, when traced
backwards in time, mutates with rates θl according to the transition matrix P (l) at each locus
l ∈ L and is absorbed into A∗(n) with rate

�({0})n
2

+ 1

n+ 1

n+1∑
k=2

(
n+ 1

k

)
λn+1,k,

choosing its parent uniformly upon absorption. The corresponding IS proposal distribution is
denoted by QK.

Proposition 3.1. It holds that π̂K(eh | n) satisfies the equations

[
�({0})n

2
+ θ + 1

n+ 1

n+1∑
k=2

(
n+ 1

k

)
λn+1,k

]
π̂K(eh | n)

= �({0})nh
2

+
∑
l∈L

θl
∑
a∈El

P
(l)
ah[l]π̂

K(eSal (h) | n)+ nh

n(n+ 1)

n+1∑
k=2

(
n+ 1

k

)
λn+1,k
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and is the stationary distribution of the Markov chain on H with transition matrix

P + [�({0})/2 + (1/n(n+ 1))
∑n+1
k=2

(
n+1
k

)
λn+1,k]N∑

l∈L θl + (�({0})n/2)+ (1/(n+ 1))
∑n+1
k=2

(
n+1
k

)
λn+1,k

, (3.8)

whereN is the |H | × |H | matrix with each row equal to (n1, . . . , n|H |) and P is the transition
probability matrix on H formed as a mixture of the matrices {P (l)}l∈L with weights {θl}l∈L.

Proof. The simultaneous equations follow by tracing the (n + 1)th lineage backwards in
time and decomposing based on the first event, and the transition matrix follows immediately
from the simultaneous equations.

Note that QK has a very similar form to QSD, and as a consequence of the linearity in N in
(3.8) the efficient Gaussian quadrature approximation of Appendix A of [41] can be applied to
both with minor modifications for QK.

4. Simulation study

In this section we present an empirical comparison between the IS algorithms defined by
QSD and QK, and the generalised Griffiths–Tavaré proposal distribution from [2] which will
be denoted by QGT. We will also introduce two PAC algorithms making use of, respectively,
π̂K and a refinement to be specified below, and investigate their accuracy. Simulated samples
have been generated using the efficient sampling algorithm provided in Section 1.4.4 of [3].
Approximate CSDs have been evaluated using a Gauss quadrature of order four (seeAppendixA
of [41] for details).

Simulated chromosomes consist of 15 loci with two possible alleles denoted {0, 1} and
mutation matrix P (l) = ( 0 1

1 0 ) at each locus. The coalescent is a Beta(2 −α, α)-coalescent. All
simulations have been run on a single core on a ToshibaTM laptop, and make use of a stopping
time resampling scheme [23] with resampling checks made at hitting times of all sample sizes
reaching B = {n − 5, n − 10, . . . , 5}. This generic resampling regime has been chosen for
simplicity and without regard for any particular proposal distribution.

4.1. Experiment 1

The total mutation rate is θ = 0.1 spread evenly among all 15 loci. The coalescent is
specified as α = 1.5. The data consists of 100 sampled chromosomes, 95 of which share a
single type, four lineages, a second type one mutation away from the main block, and a single
lineage is of a third type one different mutation removed from the main block.

We consider inferring both θ and α individually, assuming that all other parameters are
known and that θl = θ/L for every l ∈ L. Eight independent simulations of 30 000 particles
each were run on an evenly spaced grid of mutation rates spanning the interval [0.025, 0.2].
The same simulations were then repeated on an evenly spaced grid spanning α ∈ [1.1125, 1.9].
The resulting likelihood surfaces are shown in Figure 1.

The most striking observation is that both approximate CSDs yield algorithms which are
two orders of magnitude faster than the Griffiths–Tavaré scheme. Moreover, it is clear that the
α-surface obtained from QGT has not fully converged. The wide confidence envelope at the
left-hand edge and the lack of monotonicity at the right-hand edge of the QGT θ -surface are
indicative of poorer performance when inferring θ as well.

The runtimes of QSD and QK are very similar in both cases, and all four surfaces from
these proposals are good approximations of the truth. In the θ -case the accuracy of the two is

https://doi.org/10.1239/jap/1437658613 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1437658613


528 J. KOSKELA ET AL.

-8.7
-8.8
-8.9
-9.0
-9.1
-9.2
-9.3
-9.4

-8.7
-8.8
-8.9
-9.0
-9.1
-9.2
-9.3
-9.4

-8.7
-8.8
-8.9
-9.0
-9.1
-9.2
-9.3
-9.4

-8.8
-9.0
-9.2
-9.4
-9.6

-8.8
-9.0
-9.2
-9.4
-9.6

-8.8
-9.0
-9.2
-9.4
-9.6

0.04 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

0.08 0.12 0.16 0.20

0.04 0.08 0.12 0.16 0.20

0.04 0.08 0.12 0.16 0.20

True likelihoodConfidence envelope

Figure 1: Simulated log-likelihood surfaces from 30 000 particles with ±2SE confidence envelopes.
The left column is for θ and the right for α. The true surfaces are based on a 1 000 000 particle simulation

using the QK proposal distribution.
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Figure 2: Simulated likelihood surface from 30 000 particles using QK. The surface is interpolated from
an 8 × 8 grid of independent simulations. The star denotes the maximum–likelihood estimation (MLE),

which must lie on one of the grid points.
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very similar, but in the α-case QK yields noticeably tighter confidence bounds and a smoother
surface. This is particularly true of low values of α, which correspond to Beta-coalescents that
are very different from � = δ0.

Joint inference of α and θ is also of interest. In Figure 2 we show a joint likelihood heat
map for the two parameters constructed from a grid of simulations of 30 000 particles from the
QK proposal. The surface is flat due to the limited amount of information in 100 samples, but
the maximum likelihood estimator is close to the true (1.5, 0.1) and the surface shows a high
degree of monotonicity.

4.2. Experiment 2

We expect the performance of the QSD proposal to deteriorate the further the true model
is from Kingman’s coalescent, and the more demanding the data set. To that end the one-
dimensional inference problems for θ and α were repeated for a sample of 150 lineages with
true parameters θ = 0.15 and α = 1.2. The data set consists of 144 lineages of a given type
with four other types present, each a single mutation removed from the main group. The sizes
of these groups are 3, 1, 1, and 1. The results are shown in Figure 3.

We see that QK is noticeably faster when inferring θ , and slightly faster when inferring α. It
also produces substantially more accurate estimates than QSD for small values of θ . The 30 000
particle runs have not yielded an accurate estimate for large values of θ from either algorithm.
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Figure 3: Simulated log-likelihood surfaces from 30 000 particles with ±2SE confidence envelopes.
The left column is for θ and the right for α. The downward spike in the lower confidence boundary of
the bottom left surface is an artifact caused by a negative value of the estimate, and the real part of the

logarithm has been plotted. The values of the standard errors have no such spike.
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The α-surface from QSD looks superficially better, but both surfaces are very similar and good
matches to the true likelihood.

The deterioration of the performance of QSD is to be expected because the true Beta(0.8, 1.2)-
coalescent is a significant departure from the� = δ0 assumption used to derive the correspond-
ing approximate CSDs. Such coalescents are of particular interest because significantly more
efficient implementations exist for Kingman’s coalescent, and these should be preferred when-
ever the Kingman hypothesis of � = δ0 cannot be rejected. It is likely that the overestimated
likelihood near θ = 0.06 coincides with the MLE for this data set, had it been generated by
Kingman’s coalescent. Hence, QK is the recommended proposal distribution in practice.

Based upon the reported run times in Figures 1 and 3, we expect our IS algorithm to be
feasible for samples containing hundreds of lineages formed of tens of loci, or an order of
magnitude more if methods such as a driving value [19] or bridge sampling [27] are employed
to reduce the number of independent simulations. There is also a strong dependence on model
parameters: fast coalescence (or low α in our setting) corresponds to faster simulation runs,
and both high mutation rate and large haplotype space will result in a slower algorithm.

4.3. Experiment 3: product of approximate conditionals

The IS algorithms used in the previous numerical experiments provide accurate results with
reasonable computational cost, but the inference problems and data sets are of toy size and
complexity. It is clear that these algorithms will be too slow for many problems of interest, such
as genome-wide data or large sample sizes. The PAC method is a principled way of overcoming
this restriction at the cost of asymptotic correctness, but with very significant improvements in
speed. It is based on decomposing the likelihood of observed alleles h1, . . . , hn into a product
of CSDs:

P{h1, h2, . . . , hn} = π(hn | h1, . . . , hn−1)π(hn−1 | h1, . . . , hn−2)× · · · × π(h2 | h1)π(h1)

and then substituting in a tractable, approximate CSD to obtain computable estimates. We
consider two different classes of CSDs: π̂K(· | n), and a modified version in which a lineage
is absorbed into A∗(n) with rate

∑
h∈H

{
�({0})nh

2
+ 1

nh + 1

nh+1∑
k=2

(
nh + 1

k

)
λn+1,k

}
and inherits the type of the cluster nh into which it is absorbed. This approximate CSD will
be denoted by π̂K2(· | n). Note that because π̂K2(· | n) depends nonlinearly on the exact
frequencies (nh)h∈H , the precomputations which are possible for all other CSDs considered in
this paper are not possible (see Proposition 1 of [41] for details). For an IS algorithm this loss
of efficiency in evaluating the CSDs would be devastating, but PAC algorithms are fast enough
to remain feasible. The order of the Gauss quadrature used to approximate the CSDs has also
been increased to 10 for both families.

Neither approximate CSD family is exchangeable, so the estimates of the likelihood depend
on the order in which the count data n is conditioned upon. Following the approach of Li and
Stephens [26], and subsequent works making use of the PAC method, we partially address this
issue by averaging our estimates across 1000 uniformly random permutations of the data. The
number of permutations is substantially greater than what has been used for PAC models based
on Kingman’s coalescent, but has proven necessary in trial runs (results not shown) and comes
at little additional cost. The results of applying these PAC algorithms to both the individual and
joint inference questions posed in experiments 1 and 2 are summarised in Figures 4 and 5.
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Figure 4: The PAC log-likelihood surfaces normalized to 0 following Li and Stephens [26]. The true
likelihood surfaces in the left column are from experiment 1, and the true surfaces in the right column are

from experiment 2.

The results of the PAC calculations seem mixed. Both PAC algorithms are extremely fast,
and would likely remain feasible even for reasonably large data sets. The PAC likelihood
estimates are consistently too low by many orders of magnitude. Nevertheless, the PAC MLEs
in Figure 4 are strikingly close to the true maximisers, particularly for the smaller data set in
the left column. On the other hand, the joint MLEs in Figure 5 are much further from the
truth, although the surfaces still broadly capture the diagonal shape seen in Figure 2. It is also
interesting to note that the two PAC methods perform very similarly in the one-dimensional
problems in Figure 4, but the two-dimensional surface obtained from πK2 is a better fit than
that from πK for the smaller sample. For the larger sample the surfaces are nearly identical.

The run times in Figure 4 indicate that the PAC method will remain computationally feasible
for substantially larger data sets than the IS algorithm, at least up to tens of thousands of lineages
and/or thousands of loci. Of course, the accuracy of the PAC method to such data sets cannot
be concluded from the trials presented here, and careful verification will be necessary on a
case-by-case basis. In further contrast to IS, the runtime of the PAC algorithm is independent
of the model parameters, and influenced only weakly by the size of the space of haplotypes.

A substantial amount of work will be required to develop a thorough understanding of the
accuracy and pitfalls of these PAC algorithms, and whether or not the more advanced PAC
algorithms developed for Kingman’s coalescent can be adapted to the �-coalescent setting as
well. Our preliminary simulations motivate this undertaking, and confirm that the PAC method
can provide useful, principled and fast results for �-coalescents.
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Figure 5: The PAC joint log-likelihood surfaces normalized to 0. Locations of MLEs are indicated by
stars. Figure 2 provides a suitable IS comparison to the top row.

5. Importance sampling for �-coalescents

The important tools in deriving the optimal proposal distributions Q∗(· | ·) and the ap-
proximate CSDs π̂K(· | ·) were, respectively, the lookdown construction of [11] and the trunk
ancestry of [31]. Both of these are also available for the �-coalescent, and in this section we
make use of them to extend the IS algorithm to this family of models.

A lookdown construction for the�-coalescent and the�-Fleming–Viot process was derived
by Birkner et al. [6] and can be described as follows. For ease of notation, we assume�({0}) =
0. If � does have an atom at zero, its treatment is identical to the �-case.

Let 
� be a Poisson point process on R+ ×�× [0, 1]N with rate

dt ⊗
( ∞∑
i=1

r2
i

)−1

�(dr)⊗ dr⊗N

and associate to each lineage a level {1, . . . , n}. Define the function

g(r, u) :=
{

min{j ∈ N : ∑j
i=1 ri ≥ u} if u ≤ ∑∞

i=1 ri,

∞ otherwise.

At each (tj , (rj1, rj2, . . . ), (uj1, uj2, . . . )) ∈ 
� group the n particles such that all particles
l ∈ {1, . . . , n} with g(rj , ujl) = k form a family for each k ∈ N. Among each family every
particle copies the type of the particle with the lowest level. In addition each particle follows
an independent mutation process as for the �-coalescent.

This lookdown construction will be instrumental in establishing the following recursion,
which is an explicit version of (2.1) for�-coalescents and a finite sites analogue of the sampling
recursion presented in [28] for the infinite alleles model.
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Theorem 5.1. The likelihood of type frequencies n ∈ N|H | sampled from the stationary
�-Fleming–Viot process solves

P(n) = 1

gn + nθ

{ ∑
h : nh>0

∑
l∈L

θl
∑
a∈El

(nSal (h)
+ 1 − δah[l])P{n − eh + eSal (h)}

+
n1∑
k1=1

· · ·
n|H |∑
k|H |=1

∑
π1∈P k1n1

· · ·
∑

π |H |∈P k|H |
n|H |

1
{∑
h∈H

kh < n

}(
n

|π1
1 |, |π1

2 |, . . . , |π |H |
|H | |

)

×
( | ∨h∈H πh|

|π1|, . . . , |π |H ||
)−1

× λn;K(∨h∈Hπ
h);S(∨h∈Hπ

h)P(k)

}
, (5.1)

with the convention that
∑0
k=1 f (k) = f (0) and where 1 is the indicator function. Here P khnh

denotes the set of equivalence relations on nh ∈ N elements with kh ≤ nh equivalence classes,
πh = (πh1 . . . π

h
kh
) denotes such an equivalence relation so that

∑kh
i=1 |πhi | = nh and ∨h∈Hπ

h

is the equivalence relation on n elements obtained from applying each πh to the corresponding
nh elements. The vector K(π) lists the sizes of all equivalence classes with more than one
member, S(π) is the number of classes with exactly one member, and gn is the total coalescence
rate of n untyped lineages given by

gn =
n−1∑
a=1

n!
a!

∑
b1,...,ba∈N,b1+···+ba=n

λn;K(b);S(b)
b1! × · · · × ba ! .

Proof. The proof is the same as the proof in Section 1.4.1 of [3], adapted here from the
�-coalescent to the �-coalescent. Let p define the distribution of the types of the first n levels
of the stationary lookdown construction. Decomposing according to which event (whether
mutation or a merger) occurred first when tracing backwards in time yields

p(y1, . . . , yn) = 1

gn + nθ

{ n∑
i=1

∑
l∈L

θl
∑
a∈El

P
(l)
ah[yi ]p(y1, . . . , yi−1, S

a
l (yi), yi+1, . . . , yn)

+
∑

π∈P(y)
λn;K(π);S(π)p(γπ (y1, . . . , yn))

}
, (5.2)

where P(y) is the set of equivalence relations describing permissible mergers for the sample
y = (y1, . . . , yn) (that is, mergers where no equivalence class contains lineages of more than
one type) and γπ(y1, . . . , yn) is the vector of types which results in (y1, . . . , yn) if the look-
down-and-copy event denoted by the equivalence relation π takes place.

By exchangeability, we are only interested in the vector of n = (n1, . . . , n|H |) type frequen-
cies. For such a vector define the canonical representative as

κ(n) := (1, . . . , 1︸ ︷︷ ︸
n1

, 2, . . . , 2︸ ︷︷ ︸
n2

, . . . , |H |, . . . , |H |︸ ︷︷ ︸
n|H |

)

and the likelihood as

p0(n) :=
(

n

n1, . . . , n|H |

)
p(κ(n)).
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Now we have the following identities:

nh

(
n

n1, . . . , n|H |

)
p(κ(n − eh + eSal (h))) = (nSal (h)

+ 1 − δah[l])p0(n − eh + eSal (h)),(
n

n1, . . . , n|H |

) ∏
h∈H

(
nh

|πh1 |, . . . , |πhkh |
)
p(κ(k))

=
(

n

|π1
1 |, |π1

2 |, . . . , |π |H |
|H | |

)(
k

k1, . . . , k|H |

)−1

p0(k),

which, when substituted into (5.2), yield the desired recursion.

As in Section 2 we can consider approximating the solution to (5.1) by importance sampling,
and the following theorem is a straightforward extension of Theorem 2.1.

Theorem 5.2. The optimal proposal distributions for recursion (5.1), denoted Q∗
�, are

Q∗
�(Hi | Hi+1)

∝

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

nhθl
π(eSal (h) | Hi+1 − eh)

π(eh | Hi+1 − eh)
P
(l)
ah[l] if Hi = Hi+1 − eh + eSal (h),∑

π1∈P k1n1

· · ·
∑

π |H |∈P k|H |
n|H |

∏
h∈H

(
nh

|πh1 |, . . . , |πhkh |
)

×λn;K(∨h∈Hπ
h);S(∨h∈Hπ

h)

π(n − k | k)
if Hi+1 = n and Hi = k,

where mergers of the second type range over kh = {1, . . . , nh} and
∑
h∈H kh < n.

Proof. The argument is identical to the proof of Theorem 2.1 taking into account the
larger class of permitted simultaneous multiple mergers and, hence, different combinatorial
coefficients.

As before, the CSDs used in the statement of Theorem 5.2 are not available, but any
approximation to them will yield an unbiased algorithm and better approximations can be
expected to correspond to more efficient algorithms. The generator of the �-Fleming–Viot
process is not as immediately tractable as its Fleming–Viot and �-Fleming–Viot counterparts
so we abandon the generator-based approach of De Iorio and Griffiths (see [8] and [9]) and
derive approximate CSDs from the trunk ancestry A∗(n).

Definition 5.1. Let π̂K
�(eh | n) be the CSD obtained by letting the (n + 1)th lineage mutate

with rates {θl}l∈L via transition matrices {P (l)}l∈L, be absorbed into A∗(n) with rate

1

n+ 1

n∑
k=1

∑
π∈P kn+1

(
n+ 1

|π1|, . . . , |πk|
)
λn+1;K(π);S(π),

and choose its parent uniformly upon absorption.
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Proposition 5.1. The approximate CSD π̂K� (eh | n) solves the following recursion:[
θ + 1

n+ 1

n∑
k=1

∑
π∈P kn+1

(
n+ 1

|π1|, . . . , |πk|
)
λn+1;K(π);S(π)

]
π̂K� (eh | n)

= nh

n(n+ 1)

n∑
k=1

∑
π∈P kn+1

(
n+ 1

|π1|, . . . , |πk|
)
λn+1;K(π);S(π) +

∑
l∈L

θl
∑
a∈El

P
(l)
ah[l]π̂

K
� (eSal (h) | n)

and is the stationary distribution of the Markov Chain on H with transition probability matrix

P + {1/n(n+ 1)
∑n
k=1

∑
π∈P kn+1

(
n+1

|π1|,...,|πk |
)
λn+1;K(π);S(π)}N

θ + 1/(n+ 1)
∑n
k=1

∑
π∈P kn+1

(
n+1

|π1|,...,|πk |
)
λn+1;K(π);S(π)

,

where P and N are as in Proposition 3.1.

Proof. The proof is identical to Proposition 3.1 and follows by considering the first event
backwards in time encountered by the lineage.

Note that because simultaneous multiple mergers can take place, the decomposition in
Remark 2.1 is no longer valid and multivariate approximate CSDs π̂K

�(m | n) must also be
specified. This is most naturally done by averaging over all permutations of the lineages in m,
but this is computationally infeasible for all but very small samples m. The PAC approach
of averaging over a relatively small number of random permutations can be used to yield a
more practical family, although algorithms will still be limited by the fact that evaluating the
CSDs requires computing all equivalence classes on n elements. This burden can be alleviated
considerably by assuming that the measure� places full mass on a finite dimensional simplex,
which amounts to restricting the number of permitted simultaneous mergers to the same, finite
number. If this number is small compared to the size of the data set, far fewer terms will need to
be computed at each stage of the algorithm but the model still allows for more general ancestral
trees than any �-coalescent. In particular, the case of up to four simultaneous mergers arising
in coalescent models of diploid populations (see [4], [30]) seems computationally feasible.

6. Discussion

In this paper we have developed novel IS algorithms for inference under the �- and �-
coalescent models, which retain the rigorous motivations of proposals that have been designed
for Kingman’s coalescent [8], [9], [31]. Furthermore, they outperform existing algorithms for
�-coalescent inference, and, like all IS methods, are unbiased. It should be noted however
that the greater modelling flexibility provided by �- and �-coalescents comes with additional
computational cost in comparison to the more restrictive Kingman’s coalescent. The inference
problems considered in this paper have consisted of small samples of chromosomes comprised
of a small number of loci, each with a simple mutation model. While some cost is certainly
unavoidable, these computations can be sped up considerably by reducing the number of
independent simulations through making use of driving values [19] or bridge sampling [27]. It
is also noteworthy that, as with IS algorithms in general, all of the algorithms used here can be
parallelised very effectively.

The limits on data sets which can be feasibly analysed using IS are restrictive even under
Kingman’s coalescent, so alternate methods have been developed to tackle broader classes
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of problems. The PAC method is a prime example, and our simulations suggest that it is
also a viable approach for �-coalescents. Much work has been carried out on sophisticated
approximations to CSDs for Kingman’s coalescent with recombination and other features,
and our results in Section 4.3 indicate that investigating similar approaches under �- and �-
coalescents is a fruitful direction for future research. Many of the generalisations of interest
result in processes with generators that vary from those studied in this paper only by additive
terms so we expect that the machinery used here can be applied more generally with little added
difficulty.
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