Danil Prokhorov (Ed.)

Computational Intelligence in Automotive Applications

With 157 Figures and 48 Tables

Contents

Learning-Based Driver Workload Estimation Yilu Zhang, Yuri Owechko, and Jing Zhang

Yili	u Zhang, Yuri Owechko, and Jing Zhang	1
1	Background	1
2	Existing Practice and Its Challenges	3
3	The Proposed Approach: Learning-Based DWE	4
	3.1 Learning-Based DWE Design Process	4
	3.2 Benefits of Learning-Based DWE	5
4	Experimental Data	6
5	Experimental Process	8
6	Experimental Results	10
	6.1 Driver-Independent Training	11
	6.2 Driver-Dependent Training	13
	6.3 Feature Combination	14
7	Conclusions and Future Work	15
Refe	erences	16
Vis	sual Monitoring of Driver Inattention	
Lui	is M. Bergasa, Jesús Nuevo, Miguel A. Sotelo, Rafael Barea, and Elena Lopez	19
1	Introduction	19
2	Previous Work	20
3	System Architecture	21
	3.1 Image Acquisition System	22
	3.2 Pupil Detection and Tracking	24
	3.3 Visual Behaviors	26
	3.4 Driver Monitoring	28
4	Experimental Results	30
	4.1 Test Sequences	30
	4.2 Parameter Measurement for One of the Test Sequences	30
	4.3 Parameter Performance	31
5	Discussion	33
6	Conclusions and Future Work	35
Refe	erences	36

Ur	derstanding Driving Activity Using Ensemble Methods	
Ka	ri Torkkola, Mike Gardner, Chris Schreiner, Keshu Zhang, Bob Leivian, Harry Zhang,	
an	d John Summers	39
1	Introduction	39
2	Modeling Naturalistic Driving.	40
3	2.1 Europiment Design	41
	3.1 Experiment Design	41
1	5.2 Annotation of the Database	42
4	4.1 Decision Trees	43
	4.1 Decision frees	44
	4.2 Random Forests for Driving Maneuver Detection	40
5	Sensor Selection Using Bandom Forests	40
0	5.1 Sensor Selection Results	48
	5.2 Sensor Selection Discussion	50
6	Driver Instantion Detection Through Intelligent Analysis of Readily Avgilable Sensors	50
0	51 Driver Instreman	50
	6.2 Inattention Data Processing	53
7	Conclusion	56
Ref	erences	57
1001		
Co	mputer Vision and Machine Learning for Enhancing Pedestrian Safety	
Tar	rak Gandhi and Mohan Manubhai Trivedi	59
1	Introduction	59
2	Framework for Pedestrian Protection System	60
3	Techniques in Pedestrian Detection	61
	3.1 Candidate Generation	61
	3.2 Candidate Validation	66
4	Infrastructure Based Systems	71
	4.1 Background Subtraction and Shadow Suppression	71
	4.2 Robust Multi-Camera Detection and Tracking	72
	4.3 Analysis of Object Actions and Interactions	72
5	Pedestrian Path Prediction	72
6	Conclusion and Future Directions	75
Ref	erences	76
Δn	nlication of Graphical Models in the Automotive Industry	
Ma	thins Steinbrecher Frank Bücheimer and Rudolf Kruse	79
1	Introduction	79
2	Graphical Models	80
-	2.1 Bayesian Networks	80
	2.2 Markov Networks	80
3	Production Planning at Volkswagen Group	80
-	3.1 Data Description and Model Induction	81
	3.2 Operations on the Model	82
	3.3 Application	83
4	Vehicle Data Mining at Daimler AG	83
-	4.1 Data Description and Model Induction	84
	4.2 Model Visualization	84
	4.3 Application	85
5	Conclusion	88
Ref	erences	88

Extraction of Maximum Support Rules for the Root	
Cause Analysis	
Tomas Hrycej and Christian Manuel Strobel	89
1 Introduction	89
2 Root Cause Analysis for Process Optimization	90
2.1 Application Example	92
2.2 Manufacturing Process Optimization: The Traditional Approach	92
3 Rule Extraction Approach to Manufacturing Process Optimization	92
4 Manufacturing Process Optimization	94
4.1 Root Cause Analysis Algorithm	94
4.2 Verification	96
5 Experiments	97
5.1 Optimum Solution	98
6 Conclusion	99
References	99
Neural Networks in Automotive Applications	
Danil Prokhorov	.01
1 Models	.01

1	Models	101
2	Virtual Sensors	103
3	Controllers	106
4	Training NN	111
5	RNN: A Motivating Example	116
6	Verification and Validation (V & V)	118
Ref	erences	119

On Learning Machines for Engine Control

Gérard Bloch, Fabien Lauer, and Guillaume Colin	125
1 Introduction	125
1.1 Common Features in Engine Control	125
1.2 Neural Networks in Engine Control	126
1.3 Grey Box Approach	127
2 Neural Models	128
2.1 Two Neural Networks	128
2.2 Kernel Expansion Models and Support Vector Regression	129
2.3 Link Between Support Vector Regression and RBFNs	130
3 Engine Control Applications	131
3.1 Introduction	131
3.2 Airpath Observer Based Control	132
3.3 Estimation of In-Cylinder Residual Gas Fraction	138
4 Conclusion	141
References	142

Recurrent Neural Networks for AFR Estimation and Control in Spark Ignition Automotive Engines

Au	tomotive Engines	
Iva	n Arsie, Cesare Pianese, and Marco Sorrentino	145
1	Introduction	145
2	Manifold Fuel Film Dynamics	146
3	AFR Control	148
	3.1 RNN Potential	149
4	Recurrent Neural Networks	149
	4.1 Dynamic Network Features	150
	4.2 Recurrent Neural Network Architectures for AFR Control	151

5	Model Identification	153
	5.1 RNN Learning Approach	154
	5.2 Input Variables and RNNs Formulation	155
6	Experimental Set-Up	155
	6.1 Training and Test Data	156
7	Results	162
	7.1 FRNNM: AFR Prediction	162
	7.2 IRNNM: AFR Control	164
8	Conclusion	165
Ref	ferences	166
. .		

Intelligent Vehicle Power Management: An Overview

Yi	L. Murphey	169
1	Introduction	169
2	Intelligent Power Management in a Conventional Vehicle System	170
3	Intelligent Power Management in Hybrid Vehicle Systems	173
	3.1 A Fuzzy Logic Controller Based on the Analysis of Vehicle Efficiency Maps	174
	3.2 An Intelligent Controller Built Using DP Optimization and Neural Networks	176
	3.3 Intelligent Vehicle Power Management Incorporating Knowledge About Driving Situations	180
4	Intelligent Systems for Predicting Driving Patterns	184
	4.1 Features Characterizing Driving Patterns	184
	4.2 A Multi-Class Intelligent System for Predicting Roadway Types	185
	4.3 Predicting Driving Trend, Operation Mode and Driver Style	186
5	Conclusion	188
Ref	ferences	188

An Integrated Diagnostic Process for Automotive Systems

Automotive Manufacturing: Intelligent Resistance Welding

Ma	hmoud El-Banna, Dimitar Filev, and Ratna Babu Chinnam	219
1	Introduction	219
2	Resistance Spot Welding: Background	220
3	Online Nugget Quality Evaluation Using Linear Vector Quantization Network	221
4	Intelligent Constant Current Control Algorithm	226
	4.1 Intelligent Constant Current Control and Stepper Based Control without Sealer	231
	4.2 Intelligent Constant Current Control and Stepper Based Control with Sealer	232

Contents	XV
0011001100	

5 Ref	Conclusions	234 234
Int	celligent Control of Mobility Systems	
Jar	mes Albus, Roger Bostelman, Raj Madhavan, Harry Scott, Tony Barbera, Sandor Szabo,	
Tse	ai Hong, Tommy Chang, Will Shackleford, Michael Shneier, Stephen Balakirsky,	007
Cre	arg Schlenoff, Hui-Min Huang, and Fred Proctor	237
1	Introduction	237
2	Autonomous On-Road Driving	239
	2.1 NIST HMMWV Testbed	239
	2.2 4D/RCS Task Decomposition Controller for On-Road Driving	241
	2.3 Learning Applied to Ground Robots (DARPA LAGR)	255
3	Standards and Performance Measurements	262
	3.1 Autonomy Levels for Unmanned Systems (ALFUS)	262
	3.2 Joint Architecture for Unmanned Systems (JAUS)	263
	3.3 The Intelligent Systems (IS) Ontology	264
	3.4 DOT Integrated Vehicle Based Safety System (IVBSS)	265
4	Tothed and Exproved view based based by System (17,000)	267
4	1 UCADE MARCHARD AST Example	201
	4.1 USARSHI / MOAST Framework	201
	4.2 PRediction in Dynamic Environments (PRIDE) Framework	269
	4.3 Industrial Automated Guided Vehicles	270
5	Conclusions and Continuing Work	272
Ref	ferences	273
Inc	dex	275