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This paper is aimed to give a comprehensive view about the links between computational intelligence and

data mining. Further, a case study is also given in which the extracted knowledge is represented by fuzzy

rule-based expert systems obtained by soft computing based data mining algorithms. It is recognized that

both model performance and interpretability are of major importance, and effort is required to keep the

resulting rule bases small and comprehensible. Therefore, CI technique based data mining algorithms have

been developed for feature selection, feature extraction, model optimization and model reduction (rule base

simplification). Application of these techniques is illustrated using the Wine data classification problem.

The results illustrate that that CI based tools can be applied in a synergistic manner though the nine steps

of knowledge discovery.

Povzetek:

1 Introduction

In our society the amount of data doubles almost every

year. Hence, there is an urgent need for a new generation

of computationally intelligent techniques and tools to assist

humans in extracting useful information (knowledge) from

the rapidly growing volume of data.

Historically the notion of finding useful patterns in data

has been given a variety of names including data mining,

knowledge extraction, information discovery, and data pat-

tern processing. The term data mining has been mostly

used by statisticians, data analysts, and the management

information systems (MIS) communities.

The term knowledge discovery in databases (KDD)

refers to the overall process of discovering knowledge from

data, while data mining refers to a particular step of this

process. Data mining is the application of specific algo-

rithms for extracting patterns from data [1]. The addi-

tional steps in the KDD process, such as data selection,

data cleaning, incorporating appropriate prior knowledge,

and proper interpretation of the results are essential to en-

sure that useful knowledge is derived form the data.

KDD has evolved from the intersection of research fields

such as machine learning, pattern recognition, databases,

statistics, artificial intelligence, and more recently it gets

new inspiration from computational intelligence.

When we attempt to solve real-world problems, like

extracting knowledge from large amount of data, we re-

alize that they are typically ill-defined systems, difficult

to model and with large-scale solution spaces. In these

cases, precise models are impractical, too expensive, or

non-existent. Furthermore, the relevant available informa-

tion is usually in the form of empirical prior knowledge

and input–output data representing instances of the sys-

tem’s behavior. Therefore, we need an approximate reason-

ing system capable of handling such imperfect information.

While Bezdek [2] defines such approaches within a frame

called computational intelligence, Zadeh [3] explains the

same using the soft computing paradigm. According to

Zadeh ”... in contrast to traditional, hard computing, soft

computing is tolerant of imprecision, uncertainty, and par-

tial truth.” In this context Fuzzy Logic (FL), Probabilistic

Reasoning (PR), Neural Networks (NNs), and Evolution-

ary Algorithms (EAs) are considered as main components

of CI. Each of these technologies provide us with comple-

mentary reasoning and searching methods to solve com-

plex, real-world problems. What is important to note is

that soft computing is not a melange. Rather, it is a part-

nership in which each of the partners contributes a distinct

methodology for addressing problems in its domain. In this

perspective, the principal constituent methodologies in CI

are complementary rather than competitive [4].

The aim of this paper is to illustrate how these elements

of CI could be used in data mining. This special issue is
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Figure 1: Steps of the knowledge discovery process.

focused on some of the theoretical developments and ad-

vances in this field.

Steps of Knowledge Discovery

Brachman and Anand [5] give a practical view of the KDD

process emphasizing the interactive nature of the process.

Here we broadly outline some of its basic steps depicted in

Fig. 1 taken from [6], and we show the connections of these

steps to CI based models and algorithms.

1. Developing and understanding the application do-

main, the relevant prior knowledge, and identifying

the goal of the KDD process. The transparency of

fuzzy systems allows the user to effectively com-

bine different types of information, namely linguistic

knowledge, first-principle knowledge and information

from data. An example for the incorporation of prior

knowledge into data-driven identification of dynamic

fuzzy models of the Takagi-Sugeno type can be found

in [7] where the prior information enters to the model

through constraints defined on the model parameters.

In [8] and [9] a different approach has been developed

which uses block-oriented fuzzy models.

2. Creating target data set.

3. Data cleaning and preprocessing: basic operations

such as the removal of noise, handling missing data

fields.

4. Data reduction and projection: finding useful fea-

tures to represent the data depending the goal of the

task. Using dimensionality reduction or transforma-

tion methods to reduce the effective number of vari-

ables under consideration or to find invariant repre-

sentation of data. Neural networks [10], cluster analy-

sis [11], Markov blanket modeling [12], decision trees

[13], evolutionary computing [14] and neuro-fuzzy

systems are often used for this purpose.

5. Matching the goals of the KDD process to a partic-

ular data mining method: Although the boundaries

between prediction and description are not sharp, the

distinction is useful for understanding the overall dis-

covery goal. The goals of knowledge discovery are

achieved via the following data mining methods:

– Clustering: Identification of a finite set of cat-

egories or clusters to describe the data. Closely

related to clustering is the method of probabil-

ity density estimation. Clustering quantizes the

available input-output data to get a set of pro-

totypes and use the obtained prototypes (signa-

tures, templates, etc., and many writers refer to

as codebook) and use the prototypes as model

parameters.

– Summation: finding a compact description for

subset of data, e.g. the derivation of summary for

association of rules and the use of multivariate

visualization techniques.

– Dependency modeling: finding a model which

describes significant dependencies between vari-

ables (e.g. learning of belief networks).

– Regression: learning a function which maps a

data item to a real-valued prediction variable

and the discovery of functional relationships be-

tween variables.

– Classification: learning a function that maps

(classifies) a data item into one of several pre-

defined classes.

– Change and Deviation Detection: Discover-

ing the most significant changes in the data from

previously measured or normative values.

6. Choosing the data mining algorithm(s): selecting al-

gorithms for searching for patterns in the data. This

includes deciding which model and parameters may

be appropriate and matching a particular algorithm

with the overall criteria of the KDD process (e.g. the

end-user may be more interested in understanding the

model than its predictive capabilities.) One can iden-

tify three primary components in any data mining al-

gorithm: model representation, model evaluation, and

search.

– Model representation: the language is used to

describe the discoverable patterns. If the repre-

sentation is too limited, then no amount of train-

ing time or examples will produce an accurate

model for the data. Note that more powerful

representation of models increases the danger of

overfitting the training data resulting in reduced

prediction accuracy on unseen data. It is impor-

tant that data analysts fully comprehend the rep-

resentational assumptions which may be inher-

ent in a particular method.

For instance, rule-based expert systems are of-

ten applied to classification problems in fault

detection, biology, medicine etc. Among the

wide range of CI techniques, fuzzy logic im-

proves classification and decision support sys-

tems by allowing the use of overlapping class de-

finitions and improves the interpretability of the
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results by providing more insight into the classi-

fier structure and decision making process [15].

In Section 2 a detailed discussion about the use

of fuzzy techniques for knowledge representa-

tion in classifier systems will be given.

– Model evaluation criteria: qualitative state-

ments or fit functions of how well a particular

pattern (a model and its parameters) meet the

goals of the KDD process. For example, pre-

dictive models can often judged by the empirical

prediction accuracy on some test set. Descriptive

models can be evaluated evaluated along the di-

mensions of predictive accuracy, novelty, utility,

and understandability of the fitted model.

Traditionally, algorithms to obtain classifiers

have focused either on accuracy or interpretabil-

ity. Recently some approaches to combining

these properties have been reported; fuzzy clus-

tering is proposed to derive transparent models

in [16], linguistic constraints are applied to fuzzy

modeling in [15] and rule extraction from neural

networks is described in [17]. Hence, to ob-

tain compact and interpretable fuzzy models, re-

duction algorithms have to be used that will be

overviewed in Section 3.

– Search method: consists of two components:

parameter search and model search. Once the

model representation and the model evaluation

criteria are fixed, then the data mining problem

has been reduced to purely an optimization task:

find the parameters/models for the selected fam-

ily which optimize the evaluation criteria given

observed data and fixed model representation.

Model search occurs as a loop over the parame-

ter search method [18].

The automatic determination of fuzzy classifi-

cation rules from data has been approached by

several different techniques: neuro-fuzzy meth-

ods [19], genetic-algorithm based rule selec-

tion [20], hybrid combination of genetic algo-

rithm and neural learning [21] and fuzzy cluster-

ing in combination with GA-optimization [22]

[23]. For high-dimensional classification prob-

lems, the initialization step of the identification

procedure of the fuzzy model becomes very sig-

nificant. Several CI based tools developed for

this purpose will be presented in Section 4.

7. Data mining: searching for patterns of interest in a

particular representation form or a set of such rep-

resentations: classification rules or trees, regression.

Some of the CI models lend themselves to trans-

form into other model structure that allows informa-

tion transfer between different models. For example,

in [24] a decision tree was mapped into a feedforward

neural network. A variation of this method is given

in [25] where the decision tree was used for the in-

put domains discretization only. This approach was

extended with a model pruning method in [26]. An-

other example is that as radial basis functions (RBF)

are functionally equivalent to fuzzy inference sys-

tems [27, 28], tools developed for the identification

of RBFs can also be used to design fuzzy models.

8. Interpreting mined patterns, possibly return to any

of the steps 1-7 described above for further itera-

tion. This step can also involve the visualization of

the extracted patterns/models, or visualization of the

data given the extracted models. Self-Organizing Map

(SOM) as a special clustering tool that provides a

compact representation of the data distribution, hence

it has been widely applied in the visualization of high-

dimensional data [29]. In Section 5 the theory and in

Section 6 the application of SOM will be presented.

9. Consolidating discovered knowledge: incorporating

this knowledge into another system for further action,

or simply documenting and reporting it.

The remainder of this article is organized as follows.

In the remaining sections, tools for visualization, knowl-

edge representation, classifier identification and reduction

are discussed. The proposed approaches are experimentally

evaluated for the three-class Wine classification problem.

Finally, conclusions are given in Section 7.

2 Effective Model Representation by

Fuzzy Systems

2.1 Classifier Systems

The identification of a classifier system means the con-

struction of a model that predicts whether a given pattern,

xk = [x1,k, . . . , xn,k, ], in which yk = {c1, . . . , cC} class

should be classified. The classic approach for this problem

with C classes is based on Bayes’ rule. The probability of

making an error when classifying an example x is mini-

mized by Bayes’ decision rule of assigning it to the class

with the largest posterior probability:

x is assigned to ci ⇐⇒ p(ci|x) ≥ p(cj |x) ∀j 6= i (1)

The a posteriori probability of each class given a pattern

x can be calculated based on the p(x|ci) class conditional

distribution, which models the density of the data belong-

ing to the ci class, and the P (ci) class prior, which repre-

sents the probability that an arbitrary example out of data

belongs to class ci

p(ci|x) =
p(x|ci)P (ci)

p(x)
=

p(x|ci)P (ci)
∑C

j=1 p(x|cj)P (cj)
(2)

As (1) can be rewritten using the numerator of (2) we would

have an optimal classifier if we would perfectly estimate

the class priors and the class conditional densities. Of
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course in practice one needs to find approximate estimates

of these quantities on a finite set of training data {xk, yk},

k = 1, . . . , N . Priors P (ci) are often estimated on the ba-

sis of the training set as the proportion of samples of class

ci or using prior knowledge. The p(ci|x) class conditional

densities can be modeled with non-parametric methods like

histograms, nearest-neighbors or parametric methods such

as mixture models.

2.2 Fuzzy Rules for Providing

Interpretability of Classifiers

The classical fuzzy rule-based classifier consists of fuzzy

rules that each describe one of the C classes. The rule

antecedent defines the operating region of the rule in the

n-dimensional feature space and the rule consequent is a

crisp (non-fuzzy) class label from the {c1, . . . , cC} set:

ri : If x1 is Ai,1(x1,k) and . . . xn is Ai,n(xn,k)
then ŷ = ci, [wi] (3)

where Ai,1, . . . , Ai,n are the antecedent fuzzy sets and wi

is a certainty factor that represents the desired impact of the

rule. The value of wi is usually chosen by the designer of

the fuzzy system according to his or her belief in the ac-

curacy of the rule. When such knowledge is not available,

wi = 1, ∀ i is used.

The and connective is modeled by the product opera-

tor allowing for interaction between the propositions in the

antecedent. Hence, the degree of activation of the ith rule

is calculated as:

βi(xk) = wi

n
∏

j=1

Ai,j(xj,k) (4)

The output of the classical fuzzy classifier is determined

by the winner takes all strategy, i.e. the output is the class

related to the consequent of the rule that has the highest

degree of activation:

ŷk = c∗i , i∗ = arg max
1≤i≤C

βi(xk) (5)

The fuzzy classifier defined by the previous equations

is in fact a quadratic Bayes classifier when βi(xk) =
p(x|ci)P (ci).

As the number of the rules in the above representation

is equal to the number of the classes, the application of

this classical fuzzy classifier is restricted. In the [30], a

new rule-structure has been derived to avoid this problem,

where the p(ci|x) posteriori densities are modeled by R >

C mixture of models

p(ci|x) =

R
∑

l=1

p(rl|x)P (ci|rl) (6)

This idea results in fuzzy rulebase where the consequent of

rule defines the probability of the given rule represents the

c1, . . . , cC classes:

ri : If x1 is Ai,1(x1,k) and . . . xn is Ai,n(xn,k)

then ŷk = c1 with P (c1|ri) . . . ,

ŷk = cC with P (cC |ri) [wi] (7)

The aim of the remaining part of the paper is to review

some techniques for the identification of the fuzzy classifier

presented above. In addition, methods for reduction of the

model will be described.

3 Model Evaluation Criteria and

Rule Base Reduction

Traditionally, algorithms to obtain best classifiers have

been based either on accuracy or interpretability. Recently

some approaches to combining these properties have been

reported; fuzzy clustering is proposed to derive transparent

models in [16], linguistic constraints are applied to fuzzy

modeling in [15] and rule extraction from neural networks

is described in [17].

3.1 Similarity-driven rule base

simplification

The similarity-driven rule base simplification method [31]

uses a similarity measure to quantify the redundancy

among the fuzzy sets in the rule base. A similarity mea-

sure based on the set-theoretic operations of intersection

and union is applied:

S(Ai,j , Al,j) =
|Ai,j ∩ Al,j |

|Ai,j ∪ Al,j |
(8)

where |.| denotes the cardinality of a set, and the ∩ and

∪ operators represent the intersection and union of fuzzy

sets, respectively. S is a symmetric measure in [0,1]. If

S(Ai,j , Al,j) = 1, then the two membership functions

Ai,j and Al,j are equal. S(Ai,j , Al,j) becomes 0 when the

membership functions are non-overlapping. The complete

rule base simplification algorithm is given in [31].

Similar fuzzy sets are merged when their similarity ex-

ceeds a user defined threshold θ ∈ [0, 1] (θ=0.5 is applied).

Merging reduces the number of different fuzzy sets (lin-

guistic terms) used in the model and thereby increases the

transparency. The similarity measure is also used to detect

“don’t care" terms, i.e., fuzzy sets in which all elements of

a domain have a membership close to one. If all the fuzzy

sets for a feature are similar to the universal set, or if merg-

ing led to only one membership function for a feature, then

this feature is eliminated from the model. The method is

illustrated in Fig. 2

3.2 Multi-Objective Function for GA based

Identification

To improve the classification capability of the rule base,

genetic algorithm (GA) optimization method can be ap-

plied [32] where the cost function is based on the model
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Figure 2: Similarity-driven simplification.

accuracy measured in terms of the number of misclassifi-

cations. Also other model properties can be optimized by

applying multi-objective functions. For example in [33]

to reduce the model complexity, the misclassification rate

is combined with a similarity measure in the GA objec-

tive function. Similarity is rewarded during the iterative

process, that is, the GA tries to emphasize the redundancy

in the model. This redundancy is then used to remove un-

necessary fuzzy sets in the next iteration. In the final step,

fine tuning is combined with a penalized similarity among

fuzzy sets to obtain a distinguishable term set for linguistic

interpretation.

The GAs is subject to minimize the following multi-

objective function:

J = (1 + λS∗) · Error , (9)

where S∗ ∈ [0, 1] is the average of the maximum pairwise

similarity that is present in each input, i.e., S∗ is an aggre-

gated similarity measure for the total model. The weight-

ing function λ ∈ [−1, 1] determines whether similarity is

rewarded (λ < 0) or penalized (λ > 0).

3.3 Other Reduction Algorithms

The application of orthogonal transforms for reducing the

number of rules has received much attention in recent liter-

ature [34]. These methods evaluate the output contribution

of the rules to obtain an importance ordering. For modeling

purpose Orthogonal Least Squares (OLS) is the most ap-

propriate tool [35]. Evaluating only the approximation ca-

pabilities of the rules, the OLS method often assigns high

importance to a set of redundant or correlated rules. To

avoid this, in [36] some extension for the OLS method was

proposed.

Using too many input variables may result in difficul-

ties in the interpretability capabilities of the obtained clas-

sifier. Hence, selection of the relevant features is usually

necessary. Others have focused on reducing the antecedent

by similarity analysis of the fuzzy sets [33], however this

method is not very suitable for feature selection. Hence, for

this purpose, Fischer interclass separability method which

is based on statistical properties of the data [37] has been

modified in [38].

4 CI based Search Methods for the

Identification of Fuzzy Classifiers

Fixed membership functions are often used to partition the

feature space [20]. Membership functions derived from the

data, however, explain the data-patterns in a better way.

The automatic determination of fuzzy classification rules

from data has been approached by several different tech-

niques: neuro-fuzzy methods [19], genetic-algorithm based

rule selection [20] and fuzzy clustering in combination with

GA-optimization [22]. For high-dimensional classification

problems, the initialization step of the identification proce-

dure of the fuzzy model becomes very significant. Com-

mon initializations methods such as grid-type partitioning

[20] and rule generation on extrema initialization [39], re-

sult in complex and non-interpretable initial models and the

rule-base simplification and reduction step become compu-

tationally demanding.

4.1 Identification by Fuzzy Clustering

To obtain compact initial fuzzy models fuzzy clustering al-

gorithms [22] or similar but less complex covariance based

initialization techniques [38] were put forward, where the

data is partitioned by ellipsoidal regions (multivariable

membership functions). Normal fuzzy sets can then be

obtained by an orthogonal projection of the multivariable

membership functions onto the input-output domains. The

projection of the ellipsoids results in hyperboxes in the

product space. The information loss at this step makes the

model suboptimal resulting in a much worse performance

than the initial model defined by multivariable membership

functions. However, gaining linguistic interpretability is

the main advantage derived from this step. To avoid the er-

roneous projection step multivariate membership functions

[40] or clustering algorithms providing axis-parallel clus-

ters can be used [30]

4.2 Other Initialization Algorithms

For the effective initialization of fuzzy classifiers crisp de-

cision tree-based initialization technique is proposed in

[41]. DT-based classifiers perform a rectangular partition-

ing of the input space, while fuzzy models generate non-

axis parallel decision boundaries [42]. Hence, the main

advantage of rule-based fuzzy classifiers over crisp-DTs is

the greater flexibility of the decision boundaries. There-

fore fuzzy classifiers can be more parsimonious than DTs

and one may conclude that the fuzzy classifiers, based on

the transformation of DTs only [43], [44] will usually be

more complex than necessary. This suggests that the sim-

ple transformation of a DT into a fuzzy model may be

successfully followed by model reduction steps to reduce

the complexity and improve the interpretability. The next

section proposes rule-base optimization and simplification

steps for this purpose.
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5 Clustering by SOM for

Visualization

The Self-Organizing Map (SOM) algorithm performs a

topology preserving mapping from high dimensional space

onto map units so that relative distances between data

points are preserved. The map units, or neurons, form usu-

ally a two dimensional regular lattice. Each neuron i of the

SOM is represented by an l-dimensional weight, or model

vector mi = [mi,1, . . . , mi,l]
T . These weight vectors of

the SOM form a codebook. The neurons of the map are

connected to adjacent neurons by a neighborhood relation,

which dictates the topology of the map. The number of the

neurons determines the granularity of the mapping, which

affects the accuracy and the generalization capability of the

SOM.

SOM is a vector quantizer, where the weights play the

role of the codebook vectors. This means, each weight

vector represents a local neighborhood of the space, also

called Voronoi cell. The response of a SOM to an input x

is determined by the reference vector (weight) m
0
i which

produces the best match of the input

i0 = arg min
i

‖mi − x‖ (10)

where i0 represents the index of the Best Matching Unit

(BMU).

During the iterative training, the SOM forms an elastic

net that folds onto "cloud" formed by the data. The net

tends for approximate the probability density of the data:

the codebook vectors tend to drift there where the data are

dense, while there are only a few codebook vectors where

the data are sparse. The training of SOM can be accom-

plished generally with a competitive learning rule as

m
(k+1)
i = m

(k)
i + ηΛi0,i(x − m

(k)
i ) (11)

where Λi0,i is a spatial neighborhood function and η is the

learning rate. Usually, the neighborhood function is

Λi0,i = exp

(

‖ri − r
0
i ‖

2

2σ2(k)

)

(12)

where ‖ri − r
0
i ‖ represents the Euclidean distance in the

output space between the i-th vector and the winner.

6 Case study: Wine Classification by

CI techniques

6.1 Wine Data

The Wine data 1 contains the chemical analysis of 178

wines grown in the same region in Italy but derived from

three different cultivars. The problem is to distinguish the

three different types based on 13 continuous attributes de-

rived from chemical analysis. : Alcohol, Malic acid, Ash,

Alcalinity of ash, Magnesium, Total phenols, Flavanoids,

Non-flavanoid phenols, Proanthocyaninsm color intensity,

Hue, OD280/OD315 of diluted wines and Proline (Fig. 3).

6.2 Fuzzy Classifier Identified by GA

An initial classifier with three rules was constructed by the

covariance–based model initialization technique proposed

in [38] using all samples resulting in 90.5% correct, 1.7%
undecided and 7.9% misclassifications for the three wine

classes. Improved classifiers are developed based on the

GA based optimization technique discussed in Section 3.2.

Based on the similarity analysis of the optimized fuzzy sets,

some features have been removed from individual rules,

while the interclass separability method have been used to

omit some features in all the rules. The achieved member-

ship functions are shown in Fig. 4, while the obtained rules

are shown in Table 1.

6.3 Fuzzy Classifier Identified by Fuzzy

Clustering

A fuzzy classifier, that utilizes all the 13 information profile

data about the wine, has been identified by the clustering

algorithm proposed in [30], where the obtained classifier

is formulated by rules given by (7). Fuzzy models with

three and four rules were identified. The three rule-model

gave only 2 misclassification (98.9%). When a cluster was

1The Wine data is available from the University of California, Irvine,

via anonymous ftp ftp.ics.uci.edu/pub/machine-learning-databases.
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Figure 3: Wine data: 3 classes and 13 attributes.
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added to improve the performance of this model, the ob-

tained classifier gave only 1 misclassification (99.4%).

The classification power of the identified models is com-

pared with fuzzy models with the same number of rules

obtained by Gath-Geva clustering, as Gath-Geva cluster-

ing can be considered the unsupervised version of the

proposed clustering algorithm. The Gath-Geva identified

fuzzy model gives 8 (95.5%) misclassification when the

fuzzy model has three rules and 6 (96.6%) misclassification

with four rules. These results indicate that the proposed

clustering method effectively utilizes the class labels.

The interclass separability based model reduction tech-

nique is applied to remove redundancy and simplify the ob-

tained fuzzy models and five features were selected. The

clustering has been applied again to identify a model based

on the selected five attributes. This compact model with

three, four and five rules gives four, two and zero misclas-

sification, respectively. The resulted membership functions

and the selected features are shown in Fig. 5.

6.4 Visualization by SOM

The SOM presented in Section 5. has been utilized to vi-

sualize the Wine data. SOM can be effectively used for

correlation hunting, which procedure is useful for detect-

ing the redundant features. It is interesting to note that the

rules given in Table 1 can easily validated by the map of

the variables given in Fig. 6

Figure 6: Self-Organizing Map of the Wine data

6.5 Discussion

The Wine data is widely applied for comparing the capa-

bilities of different data mining tools. Corcoran and Sen

[45] applied all the 178 samples for learning 60 non-fuzzy

if-then rules in a real-coded genetic based-machine learn-

ing approach. They used a population of 1500 individ-

uals and applied 300 generations, with full replacement,

to come up with the following result for ten independent

trials: best classification rate 100%, average classification

rate 99.5% and worst classification rate 98.3% which is 3

misclassifications. Ishibuchi et al. [20] applied all the 178

samples designing a fuzzy classifier with 60 fuzzy rules

by means of an integer-coded genetic algorithm and grid

partitioning. Their population contained 100 individuals

and they applied 1000 generations, with full replacement,

to come up with the following result for ten independent

trials: best classification rate 99.4% (1 misclassifications),

average classification rate 98.5% and worst classification

rate 97.8% (4 misclassifications). In both approaches the

final rule base contains 60 rules. The main difference is the

number of model evaluations that was necessary to come

to the final result.

As can be seen from Table 2, because of the simplic-

ity of the proposed clustering algorithm, the proposed ap-

proach is attractive in comparison with other iterative and

optimization schemes that involves extensive intermediate

optimization to generate fuzzy classifiers.

The results are summarized in Table 2. As it is shown,

the performance of the obtained classifiers are comparable

to those in [45] and [20], but use far less rules (3-5 com-

pared to 60) and less features.

Comparing the fuzzy sets in Fig. 5 with the data in Fig. 3

shows that the obtained rules are highly interpretable. For

example, the Flavonoids are divided in Low, Medium and

High, which is clearly visible in the data. This knowledge

can be easily validated by analyzing the SOM of the data

given in Fig. 6.
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7 Conclusion

The design of rule base classifiers is approached by com-

bining a wide range of CI tools developed for knowledge

representation (fuzzy rules), feature selection (class sepa-

rability criterion), model initialization (clustering and deci-

sion tree), model reduction (orthogonal methods) and tun-

ing (genetic algorithm). It has been shown that these tools

can be applied in a synergistic manner though the nine steps

of knowledge discovery.
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Table 1: Three rule fuzzy classifier (L=low, M=medium , H=high).

1 2 3 4 5 6 7 8 9 10 11 12 13

Alc Mal Ash aAsh Mag Tot Fla nFlav Pro Col Hue OD2 Pro Class

R1 H - - - - - H - - M L - L 1

R2 L - - - - - - - - L L - H 2

R3 H - - - - - L - - H H - H 3

Table 2: Classification rates on the Wine data for ten independent runs.

Method Best result Aver result Worst result Rules Model eval

Corcoran and Sen [45] 100% 99.5% 98.3% 60 150000

Ishibuchi et al. [20] 99.4% 98.5% 97.8% 60 6000

Cluster + GA 99.4 % varying schemes 98.3% 3 4000-8000

Gath-Geva clustering 95.5 % 95.5 % 95.5 % 3 1

Sup. cluster (13 features) 98.9 % 98.9 % 98.9 % 3 1

Sup. cluster (5 features) 100 % 100 % 100 % 5 2


