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Preface

Optimization is an essential part of research, both in science and in engi-
neering. In many cases the research goal is an outcome of an optimization
problem, for example, improving a vehicle’s aerodynamics or a metal alloy’s
tensile strength.

Motivated by industrial demands, the process of design in science and en-
gineering has undergone a major transformation. The advances in the fields
of intelligent computing paradigm and the introduction of massive comput-
ing power have facilitated a move away from paper-based analytical systems
towards digital models and computer simulations. Computer-aided design
optimization is now involved in a wide range of design applications, ranging
from large transatlantic airplanes to micro electro mechanical systems.

With the development of more powerful optimization techniques, the re-
search community is continually seeking new optimization challenges and
to solve increasingly more complicated problems. An emerging class of such
challenging problems is known as the ‘expensive optimization problems’. High
computational cost can arise due to:

e Resource-intensive evaluations of the objective function: such problems
arise when using ‘computer-experiments’, i.e., when a computer simula-
tion replaces a real-world laboratory experiment during the optimization
process. Such simulations can be prohibitory expensive (require anywhere
from minutes to hours of evaluation time for each candidate solution). Also,
there is no analytic expression for the objective function or its derivatives,
requiring optimization algorithms which are derivative-free. Examples in-
clude wing shape optimization and electronic circuit design.

e Very high dimensional problems: in problems with hundreds or thousands
of variables the ‘curse of dimensionality’ implies locating an optimum
can be intractable due to the size of the search space. Examples include
scheduling problems and image analysis.

On top of these difficulties, real-world optimization problems may ex-
hibit additional challenges such as a complicated and non-smooth landscape,
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multiple optima and discontinuities. Under these difficulties classical opti-
mization methods may perform poorly or may even fail to obtain a satis-
factory solution within the allocated resources (such as computer time). To
circumvent this, researchers turn to computational intelligence methods such
as agent-based algorithms, fuzzy logic and artificial neural networks. Such
methods have shown to perform well in challenging scenarios and they can
often handle a wide variety of problems when little or no-apriori knowledge
is available. These nature- and biologically-inspired techniques are capable of
‘learning’ the problem features during the optimization and this can improve
their performance and provide a better final solution.

However, the application of computational intelligence methods to expen-
sive optimization problems is not straightforward. Their robustness, also re-
ferred to as the ‘exploration-exploitation trade-off’, implies they do not ex-
ploit domain knowledge efficiently and this can impair their convergence. For
example, an evolutionary algorithm may require many thousands of function
evaluations to obtain a satisfactory solution, which is unacceptable when
each function evaluation requires hours of computer run-time. This necessi-
tates the need to explore various methods to bridge the missing gaps before
computational intelligence can be applied effectively to expensive problems.

Computational intelligence in Expensive Optimization Problems is a re-
cent and emerging field which has received increasing attention in the last
decade. This edited book represents the first endeavor to provide a snapshot
of the current state-of-the-art in the field, covering both theory and prac-
tice. This edition consists of chapters contributed by leading researchers in
the field, demonstrating the different methodology and practice to handle
high computational cost of today’s applications. This book is intended for
wide readership and can be read by engineers, researchers, senior undergrad-
uates and graduates who are interested in the development of computational
intelligence techniques for expensive optimization problems.

This book is divided into 3 parts:

I Techniques for resource-intensive problems
IT  Techniques for high-dimensional problems
IIT Real-world applications

Part I considers the various methods to reduce the evaluation time, such as
using models (also known as surrogate-models or meta-models, which are
computationally cheaper approximations of the true expensive function) and
parallelization. This section starts with two surveys on the current state-of-
the-art. Shi and Rasheed survey a wide range of model-assisted algorithms,
including frameworks for model-management in single objective optimiza-
tion while Santana-Quintero et al. survey fitness approximations in multi-
objective algorithms. Giannakoglou and Kampolis propose a flexible parallel
multilevel evolutionary algorithm (EA) framework where each level can em-
ploy a different model, different search algorithm or different parametrization.
They describe the performance of their approach with real-world expensive
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aerodynamic shape optimization problems. Koziel and Bandler describe an-
other approach which uses models of different fidelity, the ‘space-mapping’
method, to accelerate the optimization search. They apply their method to
electronic circuit design. In another related study, Takahama and Sakai pro-
pose methods for model management which assesses the model accuracy and
decides when a model needs to be improved. They implement their method
in a differential evolution framework. Ginsbourger et al. parallelize the Effi-
cient Global Optimization (EGO) algorithm which uses Kriging models and
the expected improvement criterion. They propose statistical criteria for se-
lecting multiple sites to evaluate for each iteration. Guimaraes et al. propose
a memetic algorithm for expensive design optimization problems. Their al-
gorithm identifies promising regions and candidates from these regions are
identified with a higher fidelity model and are given more weight by the algo-
rithm. Ochoa also employs statistical criteria and proposes using Estimation
of Distribution Algorithms (EDAs) to reduce the number of function evalua-
tions. The study describes several approaches such as Boltzmann estimation
and the Shrinkage EDAs. Also within the evolutionary computing framework,
Fonseca et al. explore the use of similarity-based models (a nearest-neighbour
approach) to extend the number of generations of an evolutionary algorithm
in expensive optimization problems. Nakayama et al. and Bird and Li ad-
dress the issues of expensive dynamic optimization problems. Nakayama et
al. describe a model-predictive control algorithm for dynamic and expensive
multiobjective optimization problems where they use a support-vector re-
gression model. On the other hand, Bird and Li suggest a specialized particle
swarm optimization (PSO) algorithm with least-squares regressors. The re-
gressors locally approximate the objective function landscape and accelerate
the convergence of the PSO to local optima.

In Part II, researchers explore sophisticated operators, such as those uti-
lizing domain knowledge or which self-adapt during the search to combat
the ‘curse of dimensionality’. Caponio et al. implement a memetic algorithm
which combines differential evolution (DE) with an adaptive local search
which scales the DE vector, along with other algorithmic enhancements. Car-
valho and Ferreira tackle the electric network distribution problem, which is
a large scale combinatorial problem. They propose several hybrid Lamarckian
evolutionary algorithms with specialized operators. dos Santos et al. tackle
the traveling salesman problem (TSP) and propose a reinforcement learning
metaheuristic for a specialized parallel hybrid EA. They show performance
can be improved by using multiple search trajectories. Siiral et al. also focus
on the TSP and the TSP with back hauls problem and propose several evo-
lutionary algorithms with specialized crossover and mutation and operators.
They show that utilizing domain knowledge improves the algorithms perfor-
mance. Cococcioni et al. study multiobjective genetic Takagi-Sugeno fuzzy
systems in high-dimensional problems, which pose a challenge to such mul-
tiobjective EAs. They propose two enhancements to the multiobjective EA
to accelerate the search. Davis-Moradkhan and Browne propose a specialized
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evolutionary algorithm to tackle the multicriterion minimum spanning tree
problem, a challenging combinatorial problem. They suggest several special-
ized operators as well as several algorithm variants to improve the spread of
solutions along the Pareto front. Lastly, Shilane et al. present a specialized
evolutionary algorithm to tackle the problem of risk-minimization in statis-
tical parameter estimation, a multimodal high-dimensional problem. They
demonstrate that their algorithm compares well with existing parameter-
estimation methods while having the advantage that it can run in parallel.

Part III focuses on real-world applications. Successful application of com-
putational intelligence methods to real-world problems is non-trivial and
there are important insights and lessons to be learned from researchers’ ex-
perience. Chen et al. use a particle swarm optimization algorithm for an
expensive optimization problem of a transceiver design. They study a semi-
blind joint maximum likelihood channel estimation and data detection for
a receiver and the minimum bit-error-rate multiuser transmission. Results
show their algorithm outperforms existing approaches. Donateo describes
a multiobjective optimization of a diesel engine piston. The study used a
multiobjective evolutionary algorithm which is parallelized over a cluster to
reduce evaluation time. They obtained a more efficient engine with lower
pollution level. Vasile and Croisard study the robust planning of a space mis-
sion, where the computational time grows exponentially with the number of
uncertain variables. They use a multiobjective EA and apply the Evidence
theory and an indirect approach to estimate the belief and plausibility func-
tions. Kumar and Bauer propose a methodology to manage an expensive
design process from the conceptual stage to a final design. They apply the
methodology to the design of electrical drives and electrical circuits. Won et
al. consider the problem of reliable network design and proposed a hybrid
EA-ant colony system algorithm. They propose a multiring encoding scheme
to combine the two and apply their algorithm to a variety of network design
problems. Yamada and Berger describe the optimization of neural network
for speech recognition using an EA. The structure of the EA changes from
a random search to a steady state EA and finally to an elitist EA during
the optimization. The algorithm reduces the high computational cost of the
optimization by identifying a promising subset of variables and concentrat-
ing on it. Guichén and Castro tackle the expensive optimization problem of
automatic image registration optimization by using a parallel evolutionary
algorithm. The study describes an implementation of a fast and robust In-
ternet subtraction service using a distributed evolutionary algorithm and a
service-oriented architecture. Finally, Pilato et al. describe an expensive mul-
tiobjective optimization digital circuits, where the proposed algorithm uses
fitness inheritance and approximation models to reduce the number of calls
to the expensive simulation.



Preface XI

Overall, the chapters in this volume discuss a wide range of topics which
reflect the broad spectrum of computational intelligence in expensive opti-
mization problems. The chapters highlight both the current achievements

and challenges and point to promising future research venues in this exciting
field.

September 2009 Yoel Tenne
Chi-Keong Goh
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