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Abstract. Computation intelligence paradigms including artificial neural net-
works, fuzzy systems, evolutionary computing techniques, intelligent agents 
and so on provide a basis for human like reasoning in medical systems.  
Approximate reasoning is one of the most effective fuzzy systems. The compo-
sitional rule of inference founded on the logical law modus ponens is furnished 
with a true conclusion, provided that the premises of the rule are true as well. 
Even though there exist different approaches to an implication, being the crucial 
part of the rule, we modify the early implication proposed in our practical mod-
el concerning a medical application. The approximate reasoning system  
presented in this work considers evaluation of a risk in the situation when phy-
sicians weigh necessity of the operation on a patient. The patient’s clinical 
symptom levels, pathologically heightened, indicate the presence of a disease 
possible to recover by surgery. We wish to evaluate the extension of the opera-
tion danger by involving particularly designed fuzzy sets in the algorithm of 
approximate reasoning. 

Keywords: Computational intelligence, approximate reasoning, compositional 
rule of inference, operation risk, symptom levels, parametric membership  
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1   Introduction 

Recent advances in computational intelligence techniques have offered tremendous 
opportunities to represent uncertain and imprecise knowledge in medical decision 
making. Artificial neural networks mimic the biological information processing 
mechanisms in a limited sense and help in fusing learning ability in decision making 
systems [1-11]. Fuzzy systems provide a means to transform computer programming 
to a sort of human reasoning system. Evolutionary computation involves a collection 
of algorithms based on the evolution of population towards a solution of a certain 
problem. Genetic algorithms, a part of evolutionary computing, are widely used in 
tasks such as optimization, automatic generation of artificial neural network architec-
tures and so on. Multiagent systems are designed to act autonomously on behalf of the 
humans or users.--- 
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The tremendous interest in the applications of computational intelligence in health-
care among researchers is evident by a number of publications in journals and  
conference proceedings. A decision support system for breast cancer detection using 
Bayesian networks is reported in [12]. The authors have used multiple images of each 
breast and demonstrated the merit of their approach in comparison to the single image 
system. The use of the personalized reasoning mechanism for an intelligent medical  
e-learning system on atheromatosis is reported in [13]. Atheromatosis of the aortic 
arch has been recognized as an important source of embolism, which is a frequent 
cause of stroke. A new classification technique of continuous EEG recordings based 
on a network of spiking neurons is presented in [14]. The merit of the proposed  
technique is demonstrated.  

Decision support systems in wireless capsule endroscopy are revisited in [15]. The 
author has reported a study on pattern recognition system for texture characterisation 
and classification of capsule-endoscopic images. A decision support scheme for 
choosing antibiotic in open heart surgery is presented in [16]. Methods such as kernel 
density estimation, with market basket analysis and text analysis for compression are 
used in the implementation of decision support system. 

Fuzzy rule induction and artificial immune systems in breast cancer familiarity 
profiling is reported in [17]. It is demonstrated that the biologically inspired data min-
ing techniques are competitive tools in cancer research. Online analytical process 
methodology for assessing the risk of developing acute coronary syndromes is  
reported in [18]. It is demonstrated that the technique offers a more accurate risk  
assessment as it takes into account variable interaction. A fuzzy relational based 
medical diagnostic decision support system is reported in [19]. The authors claim that 
the system replicates closely a physician’s perception of symptom-disease associa-
tions and his/her approximate reasoning for diagnosis. An online decision support 
system for diagnosing hematologic malignancies by flow cytometry immunopheno-
typing is reported in [20]. The system is expected to facilitate clinical diagnosis of 
hematologic disease. A multiagent based healthcare system is reported in [21].  
The system is aimed to help telemedicine service, patient monitoring and diagnosis, 
emergency management, and so on. 

Mobile collaboration framework for u-healthcare agent services is presented in 
[22]. The authors have demonstrated successfully the use of agents in healthcare  
applications. The use of mobile agents for diagnostic support in ubiquitous healthcare 
is reported in [23]. The authors have proposed a mobile agent for diagnostic support 
by using neuro-fuzzy algorithm for consultation report. The merit of the proposed 
system is demonstrated. Privacy-aware autonomous agent system for pervasive 
healthcare is reported in [24]. The authors have developed the system which takes 
into account contexural information such as the user’s location and identify, the time 
of the day, the artifacts used, and the presence of colleagues to infer hospital worker’s 
availability and privacy demands. A new paradigm for modelling illness in the human 
population is reported in [25]. The authors have reported a patient model using a  
mobile software agent. It is believed that the patients can investigate the effects of 
their life styles on their medical conditions. A hybrid intelligent medical diagnostic 
system using the fusion of fuzzy and evolutionary algorithms is reported in [26]. The 
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system is designed to diagnose and prescribe treatment of blood gas disturbances  
and disorders. The diagnosis process is modelled using domain expert and existing  
literature. 

A diagnostic support system for bladder tumor grading is reported in [27]. The  
authors have combined fuzzy cognitive maps with support vector machines to achieve 
better tumor malignancy classification. The proposed system presents better classifi-
cation accuracy than the existing systems and thus able to make decisions with high 
diagnostic accuracy. A computer aided diabetes management system is reported in 
[28]. A good review of the computer aided diabetes education e-learning tool and an 
approach to therapy management is presented by the author. The Glucose-Insulin and 
Glycemic Index Web Simulator (GIGISim) tool deals with the patient needs. Rule-
based assistance to Brain Tumor Diagnosis is presented in [29]. The authors have 
used a brain tumor database consisting of nuclear magnetic resonance spectroscopic 
signals. It is demonstrated that three spectral frequencies are sufficient to represent to 
diagnose human brain tumor. The design of a leaning environment for improving 
critical thinking skills in nursing domains is reported in [30]. The authors have  
presented the analysis of critical thinking. A learning system is proposed for facilitat-
ing decision making process. The system is in continuous improvement phase. 

It is obvious from the above discussion that computational intelligence paradigms 
have become integral part of medical decision making. As a case study, we present 
the application of approximate reasoning in surgical decision making. The technique 
of approximate reasoning, earlier evolved by Zadeh [31, 32] quickly found many  
adherents who differentiated the foundations of the theory. Especially, the changes 
concerned the implication IF…THEN…ELSE…, which constitutes an important  
factor of the reasoning system. In [33-35] we can trace the discussion revealing defi-
nitions of the implication generated by Kleene and Denies, Willmot, Mamdani and 
Assilian, Larsen, Gödel et al. The trials of inserting individually created operations on 
fuzzy sets discern the approaches mentioned above. Even the item of compositional 
rule of inference was debated from separate points of views [36-40]. We can mention 
the Yager conception [40] and the Sugeno design [33] as the most original modifica-
tions of the initial version of the rule. 

For a practitioner an applicable meaning of approximate reasoning is essential,  
especially in technique and natural sciences where vagueness of input and output is 
often expected. Although some technical trials of applications are remarkable, it can 
happen coincidentally to counterpart the approximate reasoning in medicine. The only 
contribution in the topic, found by the author in [31], is a discussion of the model  
employing a pharmacological example.  

Since members of surgical staff make decisions about operations on severely-ill 
patients with the highest care then we wish to support these verdicts by results coming 
from reasoning systems. We adopt Zadeh’s approach to the rule [31, 32, 42], which is 
slightly modified by us and based on Lukasiewicz’s definition of the fuzzy implica-
tion [31, 36, 42]. We still find this rule to be the most appealing for the reason of sim-
ply performed operations and clearly interpretable results. Then we build an own 
original apparatus accommodated to medical assumptions. Particular fuzzy sets that 
contain input data and output effects are designed in compliance with the physician’s 
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hint. The discussion about how to find the objective of reasoning, i.e. operation risk, 
is accomplished in Section 2. Fuzzy sets, taking place in the model, are furnished with 
appropriate membership degrees in Section 3. Section 4, added as a presentation of 
efficiency of the algorithm, reveals some risks in cancer surgery. 

2   Adoption of Approximate Reasoning to Operation Decisions 

For patients, who suffer from e.g. cancer, decisions concerning their operations are 
made with the highest thoughtfulness. In the later or the last stage of the disease the 
possibility to cure the patient totally of cancer by operating him/her for tumors is ra-
ther little. As a physician does not want the patient to run the risk to suffer even more 
after an unnecessary operation, he ought to judge thoroughly the consequences of the 
surgery.  

We intend to involve approximate reasoning to support mathematically the extrac-
tion of a proper decision when discerning the operation danger. The most decisive 
clinical symptoms found in an individual patient will be taken into consideration to 
evaluate the risk. 

Let us ponder a logical compound statement 

                 qq

pqpp

THEN) )))NOT(THEN

)NOT(IF(ELSE)THENIF((AND( IF
 (1)

whose primitive statements p and q are included in the equivalent form of (1) derived as 

    .))()(( qqpqpp →¬→¬∧→∧  (2)

The logical joint ELSE is interpreted in (2) as the conjunction ∧ in compliance 
with the suggestions made by Lukasiewicz and Zadeh [31, 36]. 

The logical statement (2) is a tautology, which can be easily confirmed by the me-
thod of truth tables. We also prove that thesis q in (2) will become true if the premises 
p and )()( qpqp ¬→¬∧→  constitute true statements as well. In order to  

accomplish the last proof we utilize the method of denying the truth of the thesis q. 
Let ν(p) and ν(q) denote the truth values of p and q according to the convention of 
binary logic. If, on behalf of the proof, we assume that the thesis q is not true then 
ν(q) = 0. From the previous assumption ∧→ )(( qpv  ))( qp ¬→¬  1=  if 

1)( =→ qpv  and →¬ pv( 1) =¬q . But ν(q) = 0, which suggests that ν(p) = 0 as 

well to warrant 1)( =→ qpv . On the other hand we have already assumed that prem-

ise p is true. As the suggestion ν(q) = 0 leads to the contradiction “p is false” against 
“p is true” then we will accept ν(q) = 1. 

In accordance with the extended law modus ponens proposed by Zadeh [31, 32] we 
interpret (2) as a sentence 

 
IF 
p` (premise) 

AND                                                                                                                          (3) 
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(IF p THEN q) ELSE (IF (NOT p) THEN (NOT q)) (premise) 
THEN 
q` (thesis) 
 

provided that the semantic meaning of p and p` (q and q` respectively) is very close. 
Let p be visualized by a fuzzy set P in the universe X and let q be expressed by an-

other fuzzy set Q in the universe of discourse Y. Analogously, the fuzzy set P`⊂ X 
constitutes a mathematical formalization of the primitive statement p` whereas Q`⊂ Y 
replaces formally the sense of q`. The modus ponens rule thus becomes 

 
IF 
p` = P` (premise) 
AND                                                                                                                         (4) 
(IF p = P THEN q = Q) ELSE (IF (NOT p = CP) THEN (NOT q = CQ)) (premise) 
THEN 
q`= Q` (thesis) 
 

The sets CP and CQ are complements of P and Q. 
When making a feedback to the medical task previously outlined, we wish to use a 

technique of accommodating actual theoretical assertions to concrete formulations 
letting us evaluate the operation decision in some grades of risk. 

Let S denote a symptom possessing the most decisive power in the evaluation of 
the operation risk. We regard S as either the complex qualitative symptom or the 
symptom whose intensity is assimilated with level codes. These codes, determined for 
both descriptions of S’s complexion, form the universe X = “symptom levels” = 
{1,…,k,…,n}. Let us assume that level 1 is associated with the slightly heightened 
symptom values whereas level n indicates their critical status. 

The statement p` 
 

p` = “symptom S is found in patient on level k” 
 

is now addressed to a fuzzy set P` introduced by 

n

nμ
k

kμμ
P` P`P`P` )()(

1

)1(
 ++++= LL . (5)

The sentence p built by 
 

“p = “rising levels of S are essential for operation risk” 
 

is dedicated to a fuzzy set P given by 

n

nμ
k

kμμ
P PPP )()(

1

)1(
 ++++= LL . (6)

Another category of elements, constituting a content of the universe Y, is deter-
mined in the model as risk grades. We set risk grades in Y = “operation risk grades”  
= {L0 = “none”, L1 = “little”, L2 = “moderate”, L3 = “great”, L4 = “total”}, on condi-
tion that Y is experimentally restricted to five risk grades only.  
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For sentence q 
 

q = “operation risk exists for patient” 
 

a creation of a fuzzy set Q is supported by 

               4

4

3

3

2

2

1

1

0

0 )()()()()(
 

L

Lμ
L

Lμ
L

Lμ
L

Lμ
L

Lμ
Q QQQQQ ++++= . (7)

At last, we define q` containing the final risk judgment as a statement 
 

q` = “patient runs estimated risk of being operated”, 
 

where risk is graded by membership degrees of the corresponding fuzzy set Q´ pro-
posed as 

                4

4`

3

3`

2

2`

1

1`

0

0` )()()()()(
` 

L

Lμ
L

Lμ
L

Lμ
L

Lμ
L

Lμ
Q QQQQQ ++++= . (8)

In the next paragraph we accomplish the discussion about an apparatus providing 
us with membership degrees of sets (5)–(8). 

Due to modus ponens rule (4) we set all decision data in the scheme 
 
IF 
“symptom S is found in patient on level k” = P` (premise) 
AND 
(IF “rising levels of S are essential for operation risk” = P THEN “operation risk 

exists for patient” = Q) ELSE (IF (“rising levels of S are not essential for operation 
risk” = CP THEN operation risk does not exists for patient = CQ) (premise) 

THEN 
“patient runs estimated risk of being operated” = Q` (thesis) 

 
In conformity with [31, 36, 42] we first prognosticate a mathematical expression of 

the implication  
 
(IF “rising levels of S are essential for operation risk” = P THEN “operation risk 

exists for patient” = Q) ELSE (IF (“rising levels of S are not essential for operation 
risk” = CP THEN operation risk does not exists for patient = CQ) 

 

performed as matrix R. Even though several approaches to membership functions of 
implications were made [31-33, 35, 36, 38, 42] we still feel attracted by the Lu-
kasiewicz [36, 42] conception of fuzzy implication R with a membership function 
derived as 

,)))(1()((

))())(1((1),( 

iQP

iQPlR

Lk

LkLkμ
μμ

μμ
−+∧

+−∧=
 (9)

k = 1,…,n, l = 0,…,4, for all x ∈ X and all y ∈ Y. 



 Computational Intelligence in Medical Decisions Making 151 

The membership degrees of set Q` will be visualized after composing set P` with 
relation R due to Zadeh’s compositional rule [1] 

RPQ` o´ =  (10)

designated by the membership function 

))),(),((min(max)( `´ lRP
Xk

lQ LkkLμ μμ
∈

= . (11)

The comparisons of magnitudes of membership degrees in set Q` yield indications 
referring to judgments of the risk grades after consideration of symptom level k veri-
fied in the patient. 

As the operations of maximum and minimum have a tendency to filter the input da-
ta, which sometimes does not result in a clear-cut decision, then we will propose an-
other set of composition operations in (10). In accordance with [43] we propose  

RPQ`
+⋅

= o´  (12)

assisted by membership degrees  

∑

∑

=

=
⋅

=
n

k
lR

n

k
lRP

lQ

L

Lkk

L

1

1
`

`

)(

),()(

)(

μ

μμ
μ . (13)

To be able to apply (13) we ought to prove that the value of the quotient μQ`(Ll) is a 
number belonging to the interval [0, 1]. To verify this we first notice that 

),()(` lRP Lkk μμ ⋅  ),( lR Lkμ≤ since both )(` kPμ  and ),( lR Lkμ  are less than one for 
all k and l, k = 1,…,n, l = 0,…,4. This causes the value of a product to be lesser than 
the values of both factors. We thus conclude that the numerator is less than or equal to 
the denominator, which guarantees that the entire value of the quotient is a member of 
[0, 1]; therefore it can be approved as a membership degree of Ll coming from the 
support of Q`. 

We also notice that the sum placed in the denominator of the quotient never  
becomes equal to zero, since almost all risk grades will be designed as positive quan-
tities. This assumption prohibits membership degrees of the risk grades from being 
undefined structures. 

Values ),( lR Lkμ  are adaptable to be treated as weights of level importance  
assigned to a distinct risk. These, as the entries of matrix R are invariants in the  
system promoting the same diagnostic model, contrary to information concerning 
different patients that is changeable. And, additionally, we can prove that operation 
(13) satisfies the criteria of OWA operators [43].  
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3   Mathematical Design of Data Sets 

The decision model designed in Section 2 includes operations on fuzzy sets furnished 
with symbolically established membership degrees. In the current paragraph we put 
some life into theoretical symbols by assigning to them mathematical structures. The 
set P` a.k.a. (5) now gets assigned 
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for the kth symptom level certified in the patient examined. 
Another set P, concerning the same symptom levels in the support, is found by (6) 

and modified as 

,
1
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LL
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 (15)

due to the previously made assumptions, which suggest the tendency to ascending 
values of the membership degrees in P. 

The set Q is more sophisticated to design as a fuzzy set whose support consists of 
other fuzzy sets Ll, l = 0,…,4, commonly defined in a symbolic risk reference set Z = 
[0, 1]. We also intend to determine the membership degrees of Q as some characteris-
tic quantities from [0, 1]. Evaluation of these numbers is founded on a procedure in-
volving a linguistic variable  

 

“operation risk grades” = {L0 = “none”, L1 = “little”, L2 = “moderate”, L3 = “great”, 
L4 = “total”},  

 

experimentally restricted to five risk grades only.  
We first fuzzify the expressions concerning the items of the list to continue further 

with their defuzzification in order to attach numerical equivalents to the words from 
the list. Each word assists now a fuzzy set Ll, l = 0, 1, 2, 3, 4, whose constraint is 
grounded on an s-class mapping defined for z in Z = [0, 1] as [44] 
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(16)

We clarify the fact that formulas of all membership functions are derived from only 
one predetermined subject defining )(

0
zLμ . The equality )()( )(0

zz lLLl
μμ =  reveals 
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that )(z
lLμ  is dependent on a parameter l equal to level number l, l = 0,…,4. The h unit 

determines a distance between 
lLα  and 

1+lLα  (respectively 
lLβ and 

1+lLβ  or 
lLγ and 

1+lLγ ) for symmetric functions s.  

We prepare constraints for L0, which are affected by 25.0
0

−=Lα , 125.0
0

−=Lβ  

and 0
0

=Lγ  as 
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and 
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By inserting in (17) and (18) the current value l, l = 0,…,4, and the distance h, ca-
sually determined as h = 0.25, we obtain a formula of the left branch of Ll 
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and a function shaping its right branch 
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Figure 1 collects plots of L0–L4 in conformity with different values of l included in 
(19) and (20). 
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Fig. 1. The terms of “operation risk grades” as fuzzy sets L0–L4 

Actually, we have an intension to emphasize the meaning of parametric nature of 
the Ll membership functions, which deprives the model of many distinct formulas. 
Apart from this advantage we focus on generating the functions that represent elegant 
structures mathematically expressed. 

In the process of defuzzification we consider only z-values for which the sets L0–L4 
get the status of normal sets, i.e., z = 0, z = 0.25, z = 0.5, z = 0.75 and z = 1. For these, 
another fuzzy set “numerical operation risk” is projected by developing its member-
ship function in the form of  
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(21)

Via the selected z-quantities above, we tie their membership degrees calculated by 
means of (21) to expressions from the list in order to establish relations between words 
and their numerical replacements. Therefore, the set Q finally obtains a shape of 

43210

1875.05.0125.00
 

LLLLL
Q ++++= . (22)

We now wish to demonstrate the action of approximate reasoning accustomed to 
the judgment of surgical risk. 

4   Risks Grades in Cancer Surgery 

In patients, who suffer from cancer as the recognized diagnosis, one of the symptoms, 
namely, CRP (C-reactive proteins) is carefully measured and discussed with a view to 
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make a decision about accomplishing a successful operation. The heightened values 
of CRP (measured in milligrams per liter) are theoretically discerned in four levels 
stated as  

 

1 = “almost normal” for CRP < 10, 
2 = “heightened” if 10 ≤ CRP ≤ 20,  
3 = “very heightened” if 20 ≤ CRP ≤ 25, 
4 = “dangerously heightened” for CRP > 25. 
 

Due to (15) set P is expressed as  

4
1

3
75.0

2
5.0

1
25.0

 +++=P
 

(23)

in X = {1,…,4}. 
Suppose that an individual patient examined reveals the CRP-value to be 23. CRP is 

thus classified in level 3 and set P` characteristic of the patient is stated in the form of 

4
75.0

3
1

2
75.0

1
5.0

` +++=P .
 

(24)

according to (14). 
The sets (23) and (22) together with  

4
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(25)

and 

43210
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C 

LLLLL
Q ++++=  (26) 

generate matrix R with the entries computed in compliance with (9). R is expanded as 
a two-dimensional table 

⎥
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⎥
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which, inserted in (10) for P` determined by (24), provides us with  

43210

75.0875.075.0625.05.0
` 

LLLLL
Q ++++= . (28)



156 E. Rakus-Andersson and L.C. Jain 

By interpreting the meaning of (28) we understand that there exists a risk when 
considering an operation in patient whose CRP-index is evaluated on the third level. 
The most possible risk is evaluated as “great” according to the highest quantity of the 
membership degree. The total danger of accomplishing the surgical operation is eva-
luated as essential with the membership degree 0.75. 

Even the results of implementing (13) given as 

43210

725.0795.075.069.066.0
` 

LLLLL
Q ++++= . (29)

fully confirm the risk extension judged by (28). 
We hope that the classical model of approximate reasoning, modified by us and 

adapted to the problem of operation decision can constitute its complementary solu-
tion, especially when a decision of saving somebody’s life via surgery is crucial. 

5   Conclusions 

We have presented an overview of the computational intelligence paradigms in medical 
decision making. As a case study, we have used approximated reasoning to introduce 
the initial interpretation of the system to approximate the operation risk concerning pa-
tients with rising values of a biological index. The formulas of membership degrees and 
membership functions have been expanded by applying a formal mathematical design. 
We expect that the study makes a contribution in the domain of mathematical models 
projected for medical applications. 

 In future works we wish to examine a model consisted of several symptoms that 
are divided in different numbers of levels. The symptoms should be included in the 
pattern simultaneously, which may expose some internal interactions among them. In 
other words, the operation risk will be a criterion that can employ many data factors. 
We count on finding some helpful remarks in [45] to implement an algorithm support-
ing the method newly planned. 
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