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Abstract 
 

Product design engineering is undergoing a transformation from informal and largely 
experience-based discipline to a science-based domain.  Computational intelligence 
offers models and algorithms that can contribute greatly to design formalization and 
automation. This paper surveys computational intelligence concepts and approaches 
applicable to product design engineering. Taxonomy of the surveyed literature is 
presented according to the generally recognized areas in both product design engineering 
and computational intelligence. Some research issues that arise from the broad 
perspective presented in the paper have been signaled but not fully pursued.  No survey 
of such a broad field can be complete, however, the material presented in the paper is a 
summary of state-of-the-art computational intelligence concepts and approaches in 
product design engineering.  
 
Keywords: Computational intelligence, engineering design, product engineering, decision 
making, design automation. 
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1. Introduction 
Product design engineering is a complex discipline; it draws upon and contributes to 
other disciplines, and it is not well formalized. This interdisciplinary nature of product 
design engineering has resulted in numerous computational approaches that have been 
reported in the literature.  The goal of this paper is to discuss the recent computational 
intelligence results applied to product design engineering, and structure the 
computational intelligence approaches in a general unifying framework.  
 
No survey of such a broad field can be complete.  An attempt has been made to balance 
degree of detail against availability of literature sources.  Any imbalance in the coverage 
is due to the availability of information rather than topic’s importance. Such topics are 
included as they are relevant to the breadth of our survey. 
 
A general taxonomy of models used in product design engineering is proposed in Fig. 1. 
Some formal approaches in product design engineering fall into the programming 
language category (Category 1 in Fig. 1) equating designing mechanical components as 
coding.  This approach is analogous to the hardware design language developed in 
electronics.  
 

Category 1: 
Computer code 
development

Category 2: 
Design objects

Category 3: 
Genetic analogy

Category 4: 
Optimization

 
 

Figure 1. Classification of modeling approaches in product design engineering. 
 
There is no indication that a widely-accepted computer instruction approach to product 
design engineering will be realized in the near future, and therefore Category 2 in Fig. 1 
presents a more realistic option of object-based design. This is a coarser approach to 
product design engineering aiming at capturing higher-level objects, i.e., parts and 
assemblies defined by a collection of functions. Category 3 in Fig. 1 introduces a natural 
system perspective to product design engineering.  This perspective supposes that any 
product can be viewed as a genome, with subassemblies represented by chromosomes, 
and parts represented by genes. Genetic operators, decision rules, and other logic would 
govern the design and redesign of products. The nature-based perspective to mechanical 
design could be the most promising; as such, it will be a focal point of this survey. 
 
Many researchers favor an optimization approach to product design engineering, shown 
as Category 4 in Fig. 1.  This approach usually describes some aspects of design with a 
constrained objective function.  A multitude of different models reflects different facets 
of mechanical design under this approach.  However, here the term “optimization” is 
used in a broader sense than in mathematical programming.  Once a basic design concept 
is established, the remainder of the development process can be regarded as a refining 
that concept into a real product.  This sense of “refinement” is how the authors wish the 
reader to interpret the term “optimization”. 
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In summary, one may distinguish between Categories 2, 3, and 4, as representing 
perspectives of informational structure versus, evolutionary development, and 
optimization, respectively. 
 
In the next section, numerous approaches and methods that fall into Categories 2, 3, and 4 
are examined.   
 
 
2. Taxonomy of Computational Intelligence Algorithms, Techniques, 

and Tools  
Many experts agree that computational intelligence (CI) will contribute greatly to design 
automation. Machine learning algorithms fuse historical design information distributed in 
space and time into coherent and understandable design knowledge. The only 
impediment here is in the representation of such information in a uniform way. 
 
The computational intelligence approaches of potential use in product design engineering 
can be grouped into seven major classes.  These classes are identified and related to the 
three categories of Fig. 1 in Table 1. Note that Category 1 of Fig. 1 has been excluded 
from Table 1 as the computer code development approach requires an extensive coverage 
that could not be accommodated in this paper. The criterion used for matching a CI 
approach with a category is based on the literature coverage. If a substantive collection of 
research was found, then an “x” was placed in the appropriate entry of Table 1.  
 

Table 1. CI methods and categories of research approaches of Fig. 1. 
 

 Category 2: 
Design Objects 

Category 3: 
Genetic Analogy 

Category 4: 
Optimization 

Ontologies x   
Data Mining x   
Evolutionary Computation  x  
Decision Making   x 
Case-based Reasoning x  x 
Qualitative Reasoning   x 
Hybrid Approaches x x x 
 
The literature pertaining to each of the seven approaches of Table 1 is discussed in the 
sections that follow. 
 

2.1 Ontologies 
An ontology is an agreed upon set of terms and meanings that enables parties to share 
diverse knowledge through a common language (Gruber, 1992).  “Intelligent” methods 
and algorithms use knowledge organized into ontologies.  The nature and representation 
of ontologies are of importance to product design engineering.  Ontologies are the formal 
underpinnings of all methods that define knowledge as complex structures, and they are 
fundamental to Category 2 (Design Objects) approaches (see Table 1). 
 
Fowler et al. (2004) used ontologies of engineering features to develop software to check 
that product configurations satisfy both physical and organizational constraints.  
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Yoshioka et al. (2004) developed a framework for knowledge intensive engineering 
driven substantially by ontologies of physical concepts that constitute “pluggable” 
metamodels in the framework.  These physical concept ontologies form the common 
basis to integrate diverse information sources. 
 
Ontologies were used by Kitamura et al. (2004) to build and successfully deploy a 
framework to capture and reuse knowledge about product functions in a large electric 
corporation.  The authors reported that a key feature of their framework was its ability to 
make explicit the knowledge that designers would only use implicitly otherwise, and to 
help share the knowledge with team members. 
 
Brown et al. (2004) used ontologies to create a web-based repository to support the 
distributed development of automotive components, using conventional web technologies 
and standards.  Leveraging the Web for such purposes allows users to add and search 
content using ubiquitous and robust systems that many industries already have in place. 
 
Cox (2003) described the development of ontologies to facilitate searching design spaces 
based on the semantic grid concept of the Web.  The reported work is part of the Geodise 
project (http://www.geodise.org) intended to provide a complete web-enabled 
knowledge-based system (KBS) for design and optimization involving fluid dynamics. 
 
Tormey et al. (2003) developed agent-based systems using ontologies to support 
collaborative design processes by making diverse and distributed sources of knowledge 
appear homogenous and integrated to users. 
 
The Enterprise Intelligence Laboratory at University of Toronto has developed an 
extensive ontology based capability (see Gruninger et al. 2000) to address modeling of an 
entire enterprise, including requirements, supply chain management, quality 
management, etc. 
 
Lin and Ho (1999) used ontologies to analyze requirements in the domain of network 
management software.  

 
2.2 Data mining 

The volume of “legacy data” collected by industry is growing at an unprecedented rate.  
Such large quantity of data is usually difficult to process and analyze, yet is likely to be a 
source of valuable knowledge.  Data mining, also called knowledge discovery, provides 
algorithms for searching and summarizing the legacy data in a usable form.  Data mining 
can be combined with other approaches to develop intelligent systems. It falls into 
Category 2 (Table 1) as it creates design objects from the typically unstructured legacy 
data.   
 
Kusiak et al. (2000) proposed a data mining system for predicting product cost using 
historical design data.  A rough-set theory algorithm was used to extract the decision-
making knowledge. Ishino and Jin (2001) applied data mining for knowledge acquisition 
from design activities involving a CAD system. They developed a method called 
extended dynamic programming to extract the knowledge.  Romanowski and Nagi (2001) 
proposed a design system based on knowledge extracted from product life-cycle data.  
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Giess et al. (2002) mined manufacturing and assembly data of gas turbine rotors to 
establish and quantify relationships between the balance and vibration data, which in turn 
improved component tolerance designs.  Hamburg (2004) applied a decision-tree 
algorithm to support product development by analyzing high-level data such as market 
position, strategy, philosophy and culture of the manufacturing and customer behavior. 
The extracted knowledge was to be integrated in the product development process.  
Albers and Marz (2004) used data mining to extract know-how of disciplines related to 
design processes for micro-technological products. Cascint (2004) uses data mining 
techniques to create TRIZ-based semantic portals to support the redesign of metal parts in 
plastic. 
 
Terpenny et al. (2000) developed a methodology to assist in the discovery, classification, 
and capture of design knowledge.  The methodology was intended to guide industries in 
developing taxonomies and ontologies in a practical way.  By providing such guidance, 
the paper demonstrated that it was possible to build semi-autonomous, agent-based tools 
using structured knowledge in design. 

 
2.3 Evolutionary computation 

Evolutionary Computation is concerned with the development of problem solving 
methods based on concepts from natural systems. A number of evolutionary 
computational methods have been developed, including genetic algorithms, genetic 
programming, evolutionary strategies, and evolutionary programming. All of these 
approaches are discussed next. 
 

2.3.1 Genetic algorithms 
A human organism in its all complexity can be represented by approximately 30,000 
genes expressed as a vector of four genetic letters A, C, G, and T, or just series of zeros 
and ones, if one prefers the binary representation. Any two humans differ only in a small 
percentage of their “genetic vectors” regardless of their phenotypic differences (looks).  
How long would the vector of “product letters” need to be to represent a watch, a bicycle, 
or a space station?  One could argue that such vectors of characters can be handled by the 
modern computer hardware and software. Thinking of a product design in a bottom up 
(genetic like) rather than the top down (the way the products are often viewed today) 
leads one to believe that intelligent systems may dramatically change the course of 
product design engineering. The time could be ripe to explore the genetic design 
paradigm.  
 

Subassembly 1Chromosome 

Gene Part 11 Part 12 

Subassembly 2

Part 21 Part 22 Part 23 

Subassembly 3

Part 31 Part 22  
    

Figure 2. Genomic representation of a product. 
 

Fig. 2 shows a “genomic-like” representation of a product, where the genes represent 
parts, and the chromosomes represent subassemblies.  The same product could be 
represented at finer level by assigning genes to its design features.  
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Bentley and Wakefield (1995) applied a genetic algorithm to design a table.  Using 
primitive shape representations, tables were designed to satisfy the size constraints, the 
distribution of mass, and the resulting stability. Cho (2002) applied a genetic algorithm to 
learn the replication of human intent of interest to product design engineering.  The user 
provided initial selections and the algorithm optimized the intent. 
 
 2.3.2 Genetic programming 
Genetic Programming (GP): Genetic programming creates a computer program in the 
scheme computer language as the solution (Koza 1992 and Benzhaf et al. 1998). Zhang 
and Muehlenbein (1995) investigated the relationship between the performance and 
complexity of the evolved structures. Employing statistical search, Iba et al. (1995) 
introduced a new approach to genetic programming by integrating a GP-based adaptive 
search of tree structures and a local parameter tuning mechanism. In traditional GP, 
recombination can cause frequent disruption of building blocks, or mutation can cause 
abrupt changes in the semantics. Soule and Foster (1998) showed that poor results with 
parsimony pressure are due to “failed” populations that overshadow the results of the 
populations that successfully incorporate the parsimony pressure. Additionally, they 
showed that the effect of parsimony pressure could be measured by calculating the 
relationship between program size and performance within the population. This measure 
can be used as a partial indicator of success or failure of individual populations. Yao et 
al. (1999) proposed a fast evolutionary programming algorithm using as the primary 
operator Cauchy rather than Gaussian mutation. The authors showed the relationship 
between the search step size and the probability of finding a global optimum. Genetic 
programming has also been applied to multiobjective robust design by Forouraghi (2000). 
 
Within the limits of their current applicability, genetic programming algorithms have 
typically been able to generate and evaluate far more design alternatives than any team of 
designers.  As such, these algorithms can be effective design tools, especially in 
developing new and innovative design alternatives. 
 
 2.3.3 Evolutionary programming 
Evolutionary Programming (known also as Evolutionary Algorithms) incorporates 
aspects of natural selection or survival of the fittest. An evolutionary algorithm (EA) 
maintains a population of structures (initially randomly generated) that evolve according 
to rules of selection, recombination, mutation and survival, referred here as genetic 
operators. A shared “environment” determines the fitness (performance) of each 
individual in the population. The fittest individuals are more likely to be selected for 
reproduction (e.g., retention, duplication), while recombination and mutation modify the 
individuals, yielding potentially superior ones.  
 
The background on various implementations of evolutionary algorithms is provided in 
Fonseca and Fleming (1995), Bäck (1996), Coello (1999), and Van Veldhuizen and 
Lamont (2000). The last paper provides a comprehensive typology of EAs. A promising 
alternative in solving difficult and dynamic problems is the coevolutionary algorithm, 
which is a variation of EA where each individual represents only a partial solution to the 
problem (see Horn et al. 1994 and Moriarty and Miikkulainen 1998).  
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 2.3.4 Evolutionary strategies 
Evolutionary Strategy (ES): An algorithm where individuals (potential solutions) are 
encoded by a set of real-valued “object variables” (the individual's ‘genome). For each 
object variable an individual has a “strategy variable” determining the degree of mutation 
to be applied to the corresponding object variable. The strategy variables mutate, 
allowing the rate of mutation of the object variables to vary. The population size, the 
number of offspring produced in each generation and whether the new population is 
selected from parents and offspring or only from the offspring characterize an ES.  
 
Eiben and Bäck (1997) extended the evolutionary strategy approach to multi-parent 
recombination involving a variable number of parents to create an individual offspring. 
The extension was experimentally evaluated on a test suite of functions of different 
modality and separability and the regular/irregular arrangement of their local optima. 
Multi-parent diagonal crossover and uniform scanning crossover and a multi-parent 
version of intermediary recombination were considered in the experiment. Olafsson 
(1996) demonstrated the use of evolutionary game theory for allocation of service 
requirements on to an ensemble of heterogeneous network components. Schweitzer et al. 
(1997) applied Boltzmann and Darwin and mixed strategies to find differently optimized 
solutions (graphs of varying density) for the road network, depending on the degree of 
frustration. They showed that the optimization process occurs on two different time 
scales. In the asymptotic limit, a fixed relation between the mean connection distance 
(detour) and the total length (costs) of the network exists that defines a range of possible 
compromises. Thompson et al. (1999) presented evolutionary strategy to design a 
reconfigurable controller. The designed product exhibit better properties than the one 
designed with conventional constraint based methods. Moriarty and Miikkulainen (1998) 
applied co-evolutionary search to design a neural network. The designed network was 
robust due to neurons assuming overlapping roles as well as increased diversity. Lohn 
and Colombano (1999) presented an evolutionary search method for automatic generation 
of circuit designs. They used a set of circuit primitives that were synthesized in valid 
circuits. The algorithm allows for the evolution of the circuit size, circuit topology, and 
device values.  
 
 2.4 Decision making  
Product engineering has a significant decision-making element. Intelligent decision-
support systems are especially useful in product design engineering because of high 
complexity associated with the decisions and of the risks associated with making wrong 
decisions.  Decision-making algorithms optimize various design outcomes and therefore 
naturally fall in Category 4 (Table 1). 
 
Sim and Chan (1992) developed a knowledge-based system for rolling element bearing 
selection. They used heuristic knowledge supported by a manufacturer's catalogue to 
generate a solution.  Stacey et al. (2000) reported on a computational intelligence 
approach, called signposting, to support decision-making in design.  Signposting provides 
both inference knowledge and strategic problem solving knowledge by focusing on the 
dependencies between design parameters.  Danesh and Jin (2001) created an agent-based 
decision network to support decision-making in collaborative design.  Each designer is 
represented with a software agent in an objective-based negotiation environment. 
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Agents were also used by Chao et al. (2003) to model interactions between design 
systems used by multiple teams working on large-scale, complex design problems.  An 
evolutionary approach was used to automate negotiation between the agents in 
exchanging design solutions from different systems.  
 
Mussi (2004) presented a method for building decision-support systems based on 
decision theory using value of information.  The method accounts for the vagueness of 
information derived from tests needed to validate hypotheses crucial to task completion, 
which is typical of product design engineering situations. 
 
 2.5 Case-based reasoning 
Case-Based Reasoning (CBR) is an approach that attempts to mimic the human capacity 
to adapt and reuse solutions from known problems to new ones. It assumes that similar 
problems can be solved with similar solution approaches.  A case is a description of a 
problem and its solution. New problems are analyzed and compared to known cases until 
a best match is found.  The solution of the matching case is used (and sometimes 
adapted) to solve the new problem.  CBR performs best when the library of known cases 
is such that each case (a) is representative of a particular class of common problems, and 
(b) has some similarity to a few other cases in the library.  The major operational 
elements of CBR systems include: gathering and analyzing cases, establishing a 
“similarity measure” for new problems, and adapting known solutions to new problems.  
The structuring of cases places CBR to the Design Object (Category 2, Table 1) 
approach, while its aspects of space searching indicate its membership in Category 4 
(Optimization).   
 
CBR has been used to build software of known solutions. Depending on the way the 
similarity is defined, it is possible to apply CBR in quite innovative settings. Marling et 
al. (2002) presented the recent advances in CBR. 
 
Scott and Cook (2004) used CBR in combination with context-free grammars to “emulate 
human reasoning” with respect to assessing product requirements.  Morcous et al. (2002) 
applied CBR to model infrastructure deterioration in civil engineering structures using a 
large volume of data (i.e., large number of cases) on the strength and deterioration of 
structures. 
 
Rivard and Fenves (2000) developed a CBR system for conceptual design of buildings. 
The system supports the hierarchical decomposition of design cases, offers multiple 
views, and encapsulates the outcome of the design. Multiple case retrieval methods are 
available, and case adaptation is done by a “replay” method of existent processes.  Note 
that adaptation is generally a parametric operation requiring a parameterized model of the 
object being designed. Such parametric models may themselves be the object of 
intelligent systems. 
 
Concept maps were used to navigate and manipulate cases and their adaptations in the 
CBR system developed by Leake and Wilson (2001) to support aerospace design. 
 
Many applications of CBR in design have been restricted to relatively narrow domains.  
Lee and Luo (2002) developed a CBR system for the design of die-casting dies.  The 
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system logs how humans use it and trains itself to new cases, thus improving its 
performance that is transparent to its user community.  Tor et al. (2003) applied a two-
stage similarity algorithm to control the size of the search space in the CBR design of a 
stamping die.  Their solution is demonstrated to noticeably speed up die design.  Qin and 
Regli (2003) applied CBR to the design of mechanical bearings.  Vong et al. (2002) used 
CBR to design the hydraulic circuits of production machines. 
 
CBR has also been applied to broader cases,   e.g., Chiu (2003) used CBR to studying 
cognitive processes of designers.  
 
 2.6 Qualitative reasoning 
Qualitative reasoning allows developing models when the relationships between variables 
and parameters are not well established (Weld and de Kleer 1989).  These methods seek 
ideal solutions to simplified or abstracted situations and therefore they fall in Category 4 
(Table 1).  While they are not able to operate with highly detailed “real life” information, 
they are able to guide design engineers in general terms.  The qualitative reasoning 
approach integrates well with the knowledge to be extracted from the data sets (Bratko 
1994).  Bond graphs are well suited to integrate the process modeling constructs.  They 
provide means for unambiguous definition of the behavior of components by (Karnopp et 
al. 1990):  

• Use of a limited number of versatile general terms and symbols to provide a 
rational graphical structure describing the presence and the interaction of effects 
impacting the dynamic performance of the system; 

• Allowing for ready formation and subsequent changes of the structure, 
important  in the creative system design;  

• Use of the model structure to formally prepare a rational and adequately 
complete set of equations suitable for computer simulation of the system. 

  
Karnopp et al. (1990) described applications of bond graphs in engineering systems using 
the same set of ideal elements and provided standard techniques for translating these into 
a simulation model. Zakarian and Kusiak (2000) discussed bi-directional reasoning of 
interest to product design engineering. 
 
Other research in qualitative reasoning has focused on the application of qualitative 
physics to engineering in general – such as Pisan (1998), but has also examined the role 
of other theories of qualitative reasoning in product design engineering such as analogical 
reasoning (see Sgouros 1998).  Stahovich et al. (2000) used qualitative reasoning to 
develop a non-mathematical formalization of rigid-body mechanics. 
 
 2.7 Hybrid approaches 
As individual methods and techniques have matured, an interest in combining them has 
emerged. Combinations of different methods have led to hybrid approaches that could 
mitigate the shortcomings of the elemental methods.  Obviously, hybrid approaches span 
all of Categories 2, 3, and 4 in Table 1, as they combine aspects of all the major 
approaches. 
Chau and Albermani (2004) developed a hybrid system including production rules, 
object-oriented programming, and procedural methods to express engineering heuristics 



 

 

10 

in a blackboard KBS for designing liquid retaining structures.  The system can provide 
advise in preliminary design as well as downstream design stages. 
 
Lou et al. (2004) developed a new frame-rule structure for knowledge processing in mold 
design by incorporating features of product modeling, frame-based KBSs, case-based 
reasoning, and neural networks. They reported that design efficiency was significantly 
improved.  Zhang et al. (2004) developed a system integrating blackboard architecture 
with case-based reasoning for stamping process planning in progressing die design.  The 
advantage of the system is that case-based reasoning can be used with past data as well as 
other reasoning methods. Many hybrid approaches fall in the category of soft computing 
methods and are discussed at numerous conferences and publications.  One of the major 
drivers of soft computing is the fuzzy set theory (e.g., see Zadeh 1976; Karray and De 
Silva 2004).  
 
Nursel (2003) reported an interesting use of a genetic algorithm to design neural network 
structures. The combined genetic algorithm and neural network approach are reported to 
reduce the computational complexity in design and manufacturing applications. 
 
Evolutionary programming was used by Rosenman (2000) to adapt previously stored 
design solutions in a case-based reasoning system.  It is argued that such “knowledge-
lean” techniques are more broadly applicable than conventional case-based design 
approaches.  Chan et al. (2000) used the analytical hierarchy process methodology 
jointly with expert systems, fuzzy systems, and neural networks to develop a decision-
support tool for designing flexible manufacturing systems. 
 
3. Process View of Product Design Engineering 
Product development processes can be considered as artifacts sharing commonality with 
the products themselves. In this section, a categorization of design processes based on 
similarities between the process and product characteristics is presented. The 
categorization in this section refers to the three main categories of Table 1. 
 
3.1 Typological Characteristics of Processes 
 
Modularity.  The first and most obvious characteristic is that of modular versus 
platform-based processes (in analogy to product development).  Modular processes are 
composed of “ready-made” elements that can be assembled into an overall process.  The 
functional nature of the modules, makes optimization (Category 4, Table 1) approaches 
likely to be used. 
 
Platform-based processes use common bases that are modified to suit specific needs.  
Since they depend on well-established bases, there is ample opportunity to perform data 
mining. However, platform-based processes are easy to institutionalize but harder to 
adapt to corporate and technological changes. 
 
Platform orientation.  Analogous to the product platform typology of Schuh et al. 
(2000), processes can be based on standard components, basic components, common 
architecture, and standard interfaces. Processes based on standard components are built 
up from specific component processes; the overall structures of these processes are 
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defined each time a new process is developed.  A process based on basic components 
reuses certain fundamental process components connected in well-understood ways 
(within a particular company or setting), adorning the process with other (possibly new) 
process components as needed.  A process based on common architecture uses pre-
defined overall process structure (e.g., a generalized workflow-like arrangement) and 
fleshes out process components as required by the application of the architecture to a 
particular situation.  Finally, a process based on standard interfaces develops process 
architecture and components. 
 
Differentiation.  Some processes, called here standardized processes, are based on 
common process models intended to meet specific goals (such as best practices).  
Otherwise, processes can be early differentiation processes or delayed differentiation 
processes (Kusiak, 1999). The latter two processes differ in the distribution of process 
activates.  The early differentiation process shapes the unique design at the beginning of 
the process, while late differentiation process makes design unique at the final stage. 
Therefore the late differentiation processes are more likely reusable across different 
products. This characterization is concerned primarily with optimization, i.e., finding an 
ideal process based on corporate and other constraints and thus fall in Category 4 of 
Table 1. 
 
Modification.  Processes can be modified generally for three reasons.  Modifications 
may be done to customize the process for reuse in a new setting.  Processes may also be 
modified for improvement, either gradually (e.g., continuous improvement) or by more 
radical re-engineering method.  Re-engineering of processes is usually undertaken only 
when substantial changes are essential. This characterization belongs to Category 4 as it 
deals with optimization and goal attainment. 
 
Customization.  Processes can be characterized by the type of their reuse. Unique 
processes that are not expected to be reused as opposed to the processes developed using 
principles of mass customization.  For the latter, we intend that specific process aspects 
are identified apriori as variable and that are expected to change based on how the 
process will be applied.  Considering process elements is analogous to the design objects 
of Category 2 (Table 1).  However, allowing for customization of processes in response 
to the environment in which the process is to be used, such processes associate with 
Category 3 (e.g., if evolutionary computation algorithms are used to perform the 
customization) or Category 4 (e.g., if heuristic/deterministic algorithms are used to 
perform the customization). 
 
Construction.  Another characteristic that can distinguish processes is the method by 
which they are constructed, in analogy to the generally accepted kinds of product design: 
innovative design, variant design, or redesign.  Generative methods develop new 
processes “from scratch” based on prior knowledge.  Variant methods develop processes 
from existent ones by modifying existent processes.  Reverse-engineered processes are 
those developed by dissecting existent processes, usually to address identified 
shortcomings.  We consider all three of these methods as Category 4 (Table 1) because 
the development of the new process is primarily oriented to goal satisfaction.  
Additionally, instances of the variant and reverse-engineered methods may also be 
Category 3 if they depend on evolutionary analogies. 
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Evolution.  One may also characterize processes by the way they change over time.  The 
basic division in this case is between changes in procedural elements – the tasks and 
activities that occur in the process – and changes in the nature of the information objects 
used by those activities and tasks.  Since both procedural elements and information 
elements can be treated as design objects, this characteristic associates Category 2 (Table 
1).  If the specific changes over time take advantage of the evolutionary analogy, then 
such processes belong to Category 3. 
 
The above defined elements will make up the library of constructs proposed in this paper. 
This library will be an important element of a product design engineering cyber-
infrastructure.  
 

3.2 Selection of  CI methods 
The typology presented in Section 3.1 can be used to guide the selection of CI methods.  
For example, consider the following hypothetical company. 

1. The company is well established, with significant corporate design knowledge 
stored in various conventional databases, e.g., CAD database. 

2. The company is a consumer goods producer with small profit margins, and it 
cannot afford substantive process overhaul.  That is, the company prefers small 
and continuous process improvements. 

3. The company designs a broad range of consumer products under a single brand. 
4. The company has a number of distinct divisions, but there is significant 

movement of personnel between the divisions.  This suggests a preference for 
design processes that can vary between divisions but that has a common base to 
leverage worker expertise. 

5. The company has developed pockets of procedural expertise that are not 
systematically connected.  The company plans using this expertise for process 
improvements. 

6. There are no known serious process problems in the company, but process 
effectiveness is noted as slowly decreasing. 

7. The company’s structure includes fairly independent groups. The interactions 
between the groups are defined by the corporate leadership. 

 
One might identify the company as seeking gradual, platform-based modularity using 
variant design methods, mass customization, and standardized interfaces to address the 
identified process problems.  Solutions will be based on changes to procedural elements 
because of procedural expertise being exchanged between groups with movements of 
personnel. 
 
Based on this description, one may then consider various CI methods based on the 
mapping between process characteristics and the categories outlined above. The 
hypothesis is that the CI methods identified in this way would be best suited for use by 
the company. 
 
For example, one could propose a case-based reasoning system to support this company.  
CBR works best with a broad range of slightly similar products, and can help discover 
new variations on existent products.  The movement of personnel between divisions 



 

 

13 

provides a “vector” to distribute new knowledge and tools (such as CBR) throughout the 
company, so a phased implementation seems possible.  Furthermore, the “pockets” of 
expertise suggests that a knowledge acquisition system with data mining support could be 
useful to pull the knowledge from the “pockets” and eventually redistribute it to other 
workers. 
 
Clearly, not enough information is presented here to allow a detailed and reliable 
selection of specific CI methods for specific companies.  However, we believe we have 
shown the potential of this approach.  Indeed, one can envision a three-dimensional 
matrix aligning company characteristics (as outlined in the list above) on one axis, 
against process characteristics (e.g. platform-based modularity) on a second axis, and 
computational technologies on the third axis.  One might then use the matrix as a guide to 
identify what technologies of computational intelligence might be proposed for specific 
industrial settings.  An exploration of such a scheme is, however, beyond the scope of 
this paper and is deferred to a future publication. 
 

3.3 Evolutionary computation and process perspective 
Process modeling involves two notions (see Fig. 3): 

• Horizontal, and 
• Vertical 

 

Horizontal  expansion
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Figure 3. Horizontal and vertical expansion of a process model. 
 
A process model is seldom developed at one level rather it is built vertically and 
horizontally. The top node in the hierarchy denotes the overall process that is 
decomposed into lower level components. The most granular model is usually a network 
of activities (the horizontal notion).  
 
To support the horizontal notion of process modeling concepts from evolutionary 
computation will be applied. The feasibility of applying evolutionary computation, in 
particular genetic programming is illustrated in Fig. 4. The crossover operator applied to 
the process model in Fig. 4(a) produces the model in Fig. 4(c) by using the sub-model in 
Fig. 4(b).   
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Figure 4. Illustration of the crossover operator in a process model. 
 
The crossover operator demonstrated in Fig. 4 is one of many operators defined in 
genetic programming that can be applied in product design engineering (e.g., see 
operators defined in Hawley and Mori 1999).   
 
The evolutionary computation concepts can be applied to support the horizontal notion of 
process modeling. The use of evolutionary computation in horizontal process modeling is 
illustrated with the following three activity operators: 

• Specialize 
• Generalize 
• Mutate 

 
To demonstrate these operators consider the model in Fig. 5(a). The generalization 
operator transforms the model in Fig. 5(a) in the model in Fig. 5(b) by incorporating 
activity 5. Similarly, the specialization and mutation operations are illustrated in Fig. 5(c) 
and 5(d). 
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Figure 5. Activity model operators: (a) reference model, (b) generalization, (c) 
specialization, (d) mutation. 

 
In addition to the activity operators, algebra for inputs, outputs, controls, mechanisms, 
and logical connectors can be defined. For example, the generalize operator applied to an 
Exclusive OR connector would transform it into an OR-connector.  
 
One of the tools that can contribute to increasing the autonomy of process models is data 
mining. For example, a decision rule derived by a data-mining algorithm may select in 
the model in Fig. 5(a) the path {1 - 2 - 3} based on real-time data.  
 
The sub-process in Fig. 5(a) could be a fragment of the active web search process. At 
present the information on the web is organized and largely searched hierarchically. In 
the near future, the process of retrieving web information will be active.  One way to 
make the web active is to introduce process models that would adapt depending on the 
arising conditions, e.g., changing user’s profile, the domain search frequency, changing 
the domain content. Data-mining agents could track and increase adaptability of the 
search process of various design libraries and repositories.    
 
 
4. Problem View of Product Design Engineering 
The review of the literature points to numerous topics of interest to both research and 
industry.  The most urgent topics include: 

• Innovation  
• Conceptual design 
• Standardization 
• Modularity  
• Design of product families 
• Design complexity management 

 
The relationship between each of these topics and the taxonomy presented in Section 2 is 
discussed below.  For a researcher interested in a particular topic, this relationship allows 
identifying pertinent CI techniques and literature in Section 2.  A practitioner may 
identify models and tools (Section 2) for a topic of interest.  
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4.1 Innovation 
The term innovation is widely used in a broad range of settings, however, analysis of the 
engineering literature indicates that the knowledge about the underlying science of 
innovation is limited. The recently published “Innovate America” Report (NIIR 2004) 
has brought renewed interest in innovation. 
 
Innovations in any domain can be enhanced by principles and insights from disparate 
disciplines. However, the process of identifying the linkages between the disparate 
disciplines and the target domain is not well developed (Kostoff  2003). 
 
There are three basic approaches to innovate: structured, creative, and dynamic, 
producing either a sustaining or a disruptive product (Allen 2003). Structured innovation 
spawned during the industrial era, was engineered to be highly efficient and replicable by 
innovating within set guidelines. It has been primarily used in large corporations, and it 
emphasizes internal leadership, strategic planning, effective execution of ideas, 
shareholder pressure, and financial resources more than other approaches, while placing 
less emphasis on a creative environment (Report_1 2003). Creative innovation thrives 
more often in small organizations where focusing on the “big picture” is easier 
accomplished (Allen 2003; Shah 2004). The greatest advantage to the creative approach 
is the process itself. Dynamic innovation is a blend of both the structure and creative 
innovation approaches. Businesses of all sizes from small to large have used the dynamic 
approach to produce successful innovations. Dynamic innovation has taken on the aspects 
of structured innovation that embody strategic thinking and planning, along with the need 
for execution of projects (Report_1 2003).  
  
Sustaining innovations are built off previous innovations (Allen 2003), e.g., the palm 
PDA. The PDA been an innovative and successful device, however, its predecessor the 
Apple Newton (a disruptive innovation) has failed. Sustaining innovations tend to be 
more successful then the disruptive ones. The sustaining innovation follows the 
incumbent and therefore it is easier to develop and market. 
 
Several tools have been developed in support of innovation in engineering, including 
TRIZ – a Russian algorithm for Theory of Inventive Problem Solving (TRIZ Journal 
2005), the Osborn/Parnes creative problem solving (CPS) process (Daupert 2005), and 
the innovation technology (IvT) approach. 
 
TRIZ was developed to aid innovation by studying the patterns of problems and 
solutions, rather than relying on the spontaneous creativity of individuals or groups 
(Domb 2003). This is done by focusing on a problem in its basic form while 
simultaneously understanding that this problem is rarely the actual problem to be solved. 
TRIZ handles three basic problems: the technical conflict and physical contradiction 
problem in which a solution creates another problem; the inventive problem where before 
a problem is solved, the solution of the conflict must be resolved; and the creation of the 
ideal machine/process in which something simplistic is constructed from a concept (Siem 
1996).  
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The CPS is an “as-needed” problem solver for a generation of innovative solutions. The 
process greatly increases the chances of creating useful and unique solutions to almost 
any problem applied by groups or individuals. During the working process, combining 
convergent and divergent thinking is used to generate numerous potential solutions, while 
the user imagination is used freely to aid in the creation of innovative and working 
solutions. 
 
Another approach used by engineers is the innovation technology, IvT, approach. It 
involves various tools for problem-solving, e.g., modeling, simulation, virtual reality, 
data mining, artificial intelligence, rapid prototyping, high throughput chemistry, and 
high throughput screening (Report_2 2004).  
 
Other innovation tools include CREAX (Report_3 2005), Visual Mind (Report_4 2005), 
and Pull Thinking (Report_5 2005). 
 
Genetic algorithms (GAs) have been used to design new electronic circuits. In some cases 
Gas have outperformed the circuitry designed by humans (Ando et al. 2003 and 
Thompson et al. 1999).  Some research, e.g., Deb (2003), suggests that genetic 
algorithms can help discover “innovative principles” of designing.  
 
It is expected that in the near future, evolutionary computation algorithms, will become 
embedded in software and integrated with other systems to support innovation. The 
ramification and use of the existing methodologies, e.g., group thinking and 
brainstorming, will be better understood, and new progressive methodologies will be 
developed.  
 
Some of the drivers for the development of innovation science are: 

• Innovation is the engine of the global economy, accounting for some 50% of the 
economic growth (NIIR 2004).  

• Innovation will mark the first economic revolution of the 21st century (Shah 
2004). 

• Innovation involves almost all aspects of life, yet the innovation process is not 
well understood. 

• Innovation applies to the creation of methods used in industry, including the 
design of consumer goods and services. 

• The increasing complexity of technologies, their interdependencies, and the 
rapidly expanding volume of data call for a paradigm shift to be led by 
innovation.   

 
Innovation clearly belongs to Category 2 and 3 (Table 1). 
 

4.2 Conceptual design 
Conceptual design is the early stage of design where general notions of a product are 
developed.  To date no computer-based system has been developed that can actually 
perform conceptual design.  However, there are a number of systems that have been 
proposed to assist human designers in this task.  These systems generally involve 
knowledge management in the areas of expected and desired function and behavior of 
products.  Conceptual design falls in Category 2 (Table 1). 
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Zhang et al. (2005) developed a graph and matrix representation for the functional design 
of mechanical products.  The system assists in performing design tasks that involve 
reasoning about function and behavior of products.  Berrais (2005) reported on a KBS 
that is used as an interactive design tool for all stages of design and analysis of 
earthquake resistant reinforced concrete buildings, paying special attention to the 
preliminary stages, by imposing a predefined design methodology.  Lina and Farahati 
(2003) developed a KBS for assembly design of blade and shell assemblies that focuses 
on the early stages of product development, before actual component shapes have been 
determined.  Experimental validation of two cases indicates satisfactory results. 
 
Parmee and Bonham (2000) used evolutionary techniques for quick identification of 
regions of complex design spaces that contain high-performance solutions.  The results of 
such searches stimulate human designers in an iterative process of solution space 
refinement.  Test results indicate that such an approach can stimulate innovation.  Zavbi 
and Duhovnik (2000) developed a KBS using physical laws to identify key behaviors in 
technical systems and assists designers in establishing behavioral models of products 
from their expected functions.  The system uses the analytical hierarchy process (AHP) 
methododolgy to select among possible physical laws, and a prescriptive design process.  
Cvetkovic and Parmee (2002) used several types of agents (search agents, interface 
agents, and information agents) to develop an evolutionary conceptual design system.  A 
special type of agent to capture preference was also developed to account for qualitative 
and experiential knowledge of the designers. 
 
Ming (2001) developed a computer-based system using inductive learning to semi-
automate concept design tasks.  Ling et al. (2004) proposed case-based reasoning to 
represent function spaces.  Kryssanov et al. (2001) suggested that semiotics could 
significantly improve our understanding of the creative process of designing and 
developing an applicable computational theory. 
 

4.3 Standardization 
Standardization is the activity of developing uniform products or product components 
that can be used in different settings.  Standardization of products and components has 
been discussed in the literature from different viewpoints.  Because standardization 
regards goal-attainment and optimization (e.g., lowering part counts, increasing 
production runs), falls in Category 4 (Table 1). 
 
Tarondeau (1998) discussed the impact of standardization on the number of components, 
number of reference points to be managed, and the manufacturing complexity.   Lee and 
Tang (1997) developed a model optimizing the trade-off between the investment in 
standardization and the profit due to the economy of scale.  Erol (1999) proposed a 
mathematical formulation for the standardization of low value components that was 
solved by Dupont et al. (1999).  
 
Fouque (1999) discussed different scenarios for the standardization of two components 
(C1 and C2) into one (C), namely: an increase in the service level of component C1 
and/or C2, a decrease in the correlation between the demand for C1 and C2, an increase 
in the uncertainty of demand for C1 and/or C2, similar costs of the components C1 and 
C2, and a low demand for the two components. Standardization aggregates the risk and 
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reduces the uncertainty of the standardized component C in respect to the uncertainty of 
each component C1 and C2. In addition, the level of in-process inventory may be reduced 
and the productivity and service level may increase (Dupont 1998). 
 
Kota et al. (2000) proposed a measure that captures the level of commonality in a product 
family, i.e., the potential of the part family to divide the elements and to reduce the total 
number of parts. This measure allows the comparison of design alternatives.  Thoteman 
and Brandeau (2000) presented an approach for determining an optimum commonality 
among sub-products from the customer differentiation view point. For highly diversified 
products, standardization is not the best solution.  
 

4.4 Modularity 
A way to design products for highly diversified requirements is to apply modular design 
methods.  These methods are to direct designers towards products including functional 
units (modules) that are often interchangeable and reusable over different products or 
product variants.   
 
Modules imply standard interfaces allowing for their use across different products. To 
implement the modular design concept, it is necessary to partition a product into semi-
independent or mutually separable elements. It then becomes possible to design, 
manufacture, and service the modules independently. The differentiation of products is 
accomplished at the assembly stage by the selection of modules and their location in a 
product (Agard and Kusiak 2004a).   
 
Kusiak and Huang (1996, 1998) discussed modular design aimed at the production of a 
wide variety of products at low cost. A matrix representation of the product allowed the 
identification of modules sharing different characteristics.  Numerous applications of the 
product modular concept in are presented in Kusiak (1999) and the recent product design 
engineering literature. 
 
Product flexibility and the use of common components across various products are 
important in modular design (Gertosio and Dussauchoy 2004). The flexibility of a 
module (the number of its uses) depends on its functionality and the required standard 
interfaces. 
 
Prior research on modular design has emphasized consistency of the design process and 
manufacturing. For example, the taboo search algorithm presented in Dupont et al. 
(1999), aimed at the design of an assembly system for modular products. A modular 
design methodology intended to produce a large variety of products at a low cost is 
discussed in Erens and Verhulst (1997). Other examples of modular concepts are 
presented in Gertosio and Dussauchoy (2004). 
 
Modular design leads to a large number of different products using a limited number of 
modular components. One aspect of product modularity, the design product families, has 
been discussed in Martin (1999), Newcomb et al. (1998), Simpson (2000), Erens and 
Verhulst (1997), Dahmus et al. (2001), Gonzalez-Zugasti et al. (1999), and Jiao and 
Tseng (1999). 
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Modular process design with CI has been pursued in disciplines where processes are 
inherent elements of products, such as in chemical and electrical engineering.  Byrne and 
Bogle (2000) used optimization methods to design modular chemical plant process 
flowsheets.  Similarly, Smayling et al. (1999) developed modularized process elements to 
automate the design of electronic components. 
 
Goel and Bhatta (2004) used design patterns as starting points to modularize design 
activities involving analogical reasoning, and develop computable models of limited 
domains based on their approach.  Fensel et al (2003) reported on their Unified Problem-
Solving Method Description Language (UPML), which used modularized process 
elements to implement reusable methods, applied to simple design problems. 
 
Modularity is associated with Category 4 (Table 1). 
 

4.5 Design of product families 
While modularity (discussed above) treats the identification, specification, and design of 
modules, a separate issue – design of product families – builds upon modularity concepts, 
taking a more holistic perspective on product development.  Like modular design, 
product family belongs to Category 4 (Table 1). 
 
To meet diversified product requirements, numerous strategies are available (Agard and 
Kusiak 2004b). It is conceivable that a standardized product would satisfy many 
customers, as well as the requirements of a single customer. A cost-based compromise 
between these two strategies is of interest. Therefore single and multi-objective models 
are of interest.  Fellini et al. (2002) addressed performance losses of product families 
with respect to individually designed products, arising from commonality constraints.  
This is done by a user-specified performance loss tolerance on an optimization of choice 
of components.  Seepersad et al. (2002) based their multi-objective approach on a utility-
based compromise decision-support model. 
 
Du et al. (2002) used graph-rewriting techniques to create hierarchies of graph schema 
for different product families, which can provide an interactive environment for 
customers to make choices among product offerings.  Siddique and Rosen (2001) and 
Corbett and Rosen (2004) developed constraint-based methods for combining design 
configuration spaces that model design requirements for physical connections, module 
partitions, and assembly sequences for product families.  They also presented a new 
designer-guided method, called the partitioning method, for decomposing configuration 
design problems hierarchically to enable significant reductions in design space sizes. 
 
The delayed product differentiation concept implies delaying the point of differentiation 
of the product or the process (in which a product acquires its identity) (Lee and Tang 
1997). The goal of the delayed product differentiation is to maximize the use of standard 
elements and to push back, to the latest time possible, the point when each product differs 
from another. Some authors, e.g., He et al. (1998), used the term postponement as a 
synonym of delayed differentiation.  
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4.6 Design complexity management 
To meet the customer needs, product diversity tends to grow over time and therefore a 
suitable management strategy is needed. The cost of offering a large portfolio of products 
should not exceed gains obtained by satisfying the customer needs. It is essential to 
determine the level of diversity that minimizes the total cost (see Fig. 6). 
 
The major challenge is how to offer a large diversity of products while managing a 
limited diversity of components. Different approaches have been used to address this 
challenge, e.g., standardization, modular design, design of product families, and product 
delayed differentiation. Assemble-to-order is a policy that links modular design and 
product delayed differentiation. According to this policy, modules are built from basic 
parts and stocked, the final assembly is done after an order has been confirmed. 
 
The large apparent diversity for the customers is enabled by a combinatorial association 
of basic parts. 
 

 

 

 

 

 

 

Figure 6. Product diversity cost (Tarondeau 1998). 

 
The major component of diversity is not visible to the customers. It is actually created by 
the evolution of components (changes in technology) or the creation of new versions 
(product upgrades). 

 
 

5. Conclusion 
This paper has surveyed recent literature and generalized emerging concepts of 
computational intelligence in product design engineering.  The research covered in this 
paper is being vigorously pursued and no survey as broad as this one could be complete. 
Rather than considering all papers published, a representative “slice” of recent research 
has been described.  The reviewed literature indicates certain trends that are briefly 
summarized next. 
 
Some recent research combined multiple approaches to develop new tools.  As the new 
techniques become better-understood (e.g., CBR) they are used as building blocks upon 
which more powerful systems are constructed.  This is a characteristic of the area that 
was not evident a decade ago. 
 
Another somewhat paradoxical trend that can be observed is a tendency to include a 
human in the “loop” of the intelligent system. This may be an indication that developing 
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totally autonomous and thinking software is not feasible (at least given the current 
understanding of the computing science and the human mind). Usable intelligent systems 
of systems involving humans are likely to emerge in time. 
 
A third trend is the emergence of the www as a component of the computational 
intelligence landscape. Whether by using Semantic Web technologies or just using 
browsers as user interface tools, the Web continues to be a growing application platform. 
 
The role of data, data analysis, knowledge extraction, and knowledge management in 
product design engineering is gaining momentum. As sufficient volume of information 
surrounding the design process will be captured, design may become process driven. 
Dynamically induced knowledge and models could guide the design of innovative 
artifacts. 
 
Another conclusion one may draw is that there appears to be some correlation between 
characteristics of corporate settings and the kinds of CI tools that could be most 
beneficial in those settings (see Section 3.2).  The authors have not gathered “hard” data 
on this matter, but instead we suggest that it may be a fruitful avenue for future work. 
 
Finally, evolutionary computation algorithms could pave way towards systems 
supporting many of the frameworks reviewed in this paper, including increased 
automation and enhanced innovation in product design engineering.    
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