
Computational Intelligence Methods for

Rule-Based Data Understanding

WŁODZISŁAW DUCH, RUDY SETIONO, SENIOR MEMBER, IEEE, AND

JACEK M. ŻURADA, FELLOW, IEEE

Contributed Paper

In many applications, black-box prediction is not satisfactory,
and understanding the data is of critical importance. Typically, ap-
proaches useful for understanding of data involve logical rules,
evaluate similarity to prototypes, or are based on visualization or
graphical methods. This paper is focused on the extraction and use
of logical rules for data understanding. All aspects of rule gener-
ation, optimization, and application are described, including the
problem of finding good symbolic descriptors for continuous data,

tradeoffs between accuracy and simplicity at the rule-extraction
stage, and tradeoffs between rejection and error level at the rule
optimization stage. Stability of rule-based description, calculation
of probabilities from rules, and other related issues are also dis-
cussed. Major approaches to extraction of logical rules based on
neural networks, decision trees, machine learning, and statistical
methods are introduced. Optimization and application issues for
sets of logical rules are described. Applications of such methods to
benchmark and real-life problems are reported and illustrated with
simple logical rules for many datasets. Challenges and new direc-
tions for research are outlined.

Keywords—Data mining, decision support, decision trees, fea-
ture selection, fuzzy systems, inductive learning, logical rule extrac-
tion, machine learning (ML), neural networks, neurofuzzy systems.

I. INTRODUCTION

Prediction of the stock market, or of the weather changes

in the next few days, is a goal in itself. Black-box statistical

approaches to data analysis that offer the best fit to the data

Manuscript received February 16, 2003; revised February 4, 2004. The
work of W. Duch was supported in part by the Polish Committee for Scien-
tific Research under Grant 8 T11C 006 19. The work of J. M. Żurada was
supported in part by the Systems Research Institute, Polish Academy of Sci-
ence.

W. Duch is with the Department of Informatics, Nicolaus Copernicus Uni-
versity, Toruń 87-100, Poland, and was also with School of Computer En-
gineering, Nanyang Technological University, Singapore 639798 (e-mail:
duch@ieee.org).

R. Setiono is with the School of Computing, National University of Sin-
gapore, Singapore 119260 (e-mail: rudys@comp.nus.edu.sg).

J. M. Żurada is with the Department of Electrical and Computer En-
gineering, University of Louisville, Louisville, KY 40292 USA (e-mail:
j.zurada@ieee.org).

Digital Object Identifier 10.1109/JPROC.2004.826605

are a satisfactory solution for such problems. Prediction of

climate changes is also very important, but understanding

of the factors that facilitate the changes is of even greater

importance. These changes could be summarized by a rule:

IF fossil fuels are burned, THEN the climate warms up.

Formulation of understandable rules derived from analysis

of data is not the same as creating predictive models of

data.

Many methods of data analysis devised in pattern recog-

nition, neural networks, evolutionary computation, and re-

lated fields are aimed mainly at building predictive data

models, adapting internal parameters of the data models

to account for the known (training) data samples and al-

lowing for predictions to be made on the unknown (test)

data samples. For example, naive Bayesian methods in

statistics typically fit Gaussian distributions to data. Linear

discrimination methods search for hyperplanes that separate

different classes. Support vector machines (SVMs) provide

nonlinear hypersurfaces for the same purpose, while multi-

layered perceptron (MLP) neural networks combine many

sigmoidal basis functions adjusting internal parameters to

create, using training data, vector mappings from the input

to the output space. Discovery of class structures, inter-

esting association patterns, sequences, or causal relation-

ships has never been an explicit goal in designing such

methods [1], [2].

Predictive nonparametric classification and approxima-

tion methods frequently achieve high accuracy using a large

number of numerical parameters in a way that is incompre-

hensible to humans. This leads to several dangers. When

the number of parameters is of the order of the number of

data vectors, predictive models may easily overfit the data.

In some cases, even an abundance of data will not prevent

overfitting [3]. Many irrelevant attributes may contribute

to the final solution. Combining predictive models with a

priori knowledge about the problem is usually difficult.

Therefore, the use of the black-box models in expert systems

that require systematic reasoning and offer explanations

0018-9219/04$20.00 © 2004 IEEE

PROCEEDINGS OF THE IEEE, VOL. 92, NO. 5, MAY 2004 771

of their recommendations may not be possible. In novel

situations, predictions of the black-box models may be quite

unreasonable, since there is no way to control and test the

model in the areas of the future space that are far from the

training data. In safety-critical domains, such as medical,

industrial, or financial applications, such risks may not be

acceptable.

The a priori knowledge about a problem to be solved is

frequently given in a symbolic, rule-based form. Extraction

of knowledge from data, combining it with available sym-

bolic knowledge, and refining the resulting knowledge-based

expert systems is a great challenge for computational intel-

ligence. Reasoning with logical rules is more acceptable to

human users than the recommendations given by black box

systems [4], because such reasoning is comprehensible, pro-

vides explanations, and may be validated by human inspec-

tion. It also increases confidence in the system, and may help

to discover important relationships and combination of fea-

tures, if the expressive power of rules is sufficient for that.

Machine learning (ML) started as a subfield of artificial in-

telligence (AI), setting as its explicit goal the formulation of

symbolic inductive methods (i.e., methods that learn from ex-

amples) [5]. These methods were supposed to discover rules

that could be expressed in natural language, and would be

similar to those a human expert might create. Since achieving

this type of understanding is not always feasible, ML has

broadened in recent years to include all methods that learn

from data.

Verification of understanding text that is read, or multi-

media data that is viewed or listened to, may be done by ques-

tioning, summarizing, and other verbal techniques. It does

not mean that the “inner models” in the brain are based on

logical constructions that are used for effective communica-

tion. Symbolic description is not the only way to understand

data. In fact, cognitive psychology experiments show that

human categorization is based on memorization of examples

and creation of prototypes that are abstractions of these ex-

amples, rather than on logical rules defining natural objects

in some feature spaces [6]. “Intuitive understanding” is based

on experience, i.e., on memorized examples of patterns com-

bined with various similarity measures that allow for their

comparison and evaluation. Decision borders between dif-

ferent categories produced in this way may be quite complex

and difficult to describe using linguistic statements.

Visualization provides another way of understanding

data—a single picture may be worth a thousand words.

Visualization of various signals carrying multidimensional

information is frequently used in military, medical, and

industrial applications. Visualization forms a basis of the

exploratory data analysis (EDA) that tries to uncover under-

lying data structure, detect outliers and anomalies, and find

important variables [7], [8]. Experts are able to understand

the data simply by inspecting such visual representations.

Visualization of neural networks outputs and activities of

hidden layer allows to understand better mappings they

perform [9]. A special form of visualization is afforded by

graphical methods that are aimed at the representation of

the relationships between different elements of the problem

description [10]. Bayesian belief networks are a good

example of such graphical models.

The best explanation of the data obviously depends on the

type of problem and the intention of the user, as well as the

type of questions and explanations that are commonly ac-

cepted in a given field. Among many methods of data under-

standing, this paper focuses on classification rules in their

simplest, propositional form, derived from datasets that con-

tain structured information. We shall assume that a set of

symbolic or continuous-valued predicate functions has been

defined for some objects, thus providing values of attributes

(features) for categorization of these objects. The intention

here is to understand the class structure of these objects. Even

this limited focus area has so many aspects that it is difficult

to review it in one paper. There are hundreds of ways one

can combine neural, fuzzy, similarity-based, rough, induc-

tive, clusterization, optimization, genetic, and other evolu-

tionary techniques to find and optimize sets of logical rules.

Because there is an overabundance of algorithms, only those

computational intelligence techniques that proved to be di-

rectly useful to data understanding have been presented here.

A long section presenting various applications not only illus-

trates the usefulness of some methods, but also provides a

gauge to evaluate progress in this field.

In the next two sections, types of propositional logical

rules are discussed, followed by the discussion of linguistic

variables and the expressive power of rules. Section IV de-

scribes decision trees for rule generation, Section V presents

ML approaches, and Section VI discusses neural network

methods for logical rule extraction. This is followed by opti-

mization of the sets of rules, various tradeoffs involved, and

application of logical rules for calculation of probabilities in

Section VII. An illustrative example to the benchmark Iris

data is given in Section VIII, and applications of various

rule-extraction methods to the analysis of benchmark and

real-world datasets are described in Section IX. Challenges

and new directions of research are discussed at the end of the

paper.1

II. PROPOSITIONAL LOGIC RULES

This section discusses various types of logical rules in the

context of decision borders they create in multidimensional

feature spaces. Standard crisp propositional IF THEN

rules are the simplest and most comprehensible way of ex-

pressing knowledge; therefore, they are discussed first.

Although the form of propositional rules may differ, they

always partition the whole feature space into some sub-

spaces. A general form of a crisp rule is

IF THEN Class (1)

1The authors have included excerpts from their earlier paper [11] and
[151], as they felt that this inclusion would be beneficial to the readers who
are not necessarily specialists in computational intelligence techniques, and
that doing so would enhance the tutorial value and completeness of this
survey paper. Additional need for the inclusion has arisen because of the
nonoverlapping readership of the PROCEEDINGS OF THE IEEE and the spe-
cialized literature sources cited in this work.

772 PROCEEDINGS OF THE IEEE, VOL. 92, NO. 5, MAY 2004

If belongs to the subspace , then it should be assigned

a class label . A fuzzy version of this rule is a mapping

from the space to the space of fuzzy class labels. However,

without certain restrictions on the shapes of decision borders,

such rules can be difficult to comprehend.

A fruitful way of looking at sets of logical rules is to

treat them as a classification model that provides an approx-

imation to the posterior probability . Given

the sample vector and a model based on the set of

rules, the goal is to provide an estimate of probability that

belongs to class . Crisp logic rules should give precise

“yes” or “no” answers; therefore, .

The condition part of a rule is defined by a conjunction

of logical predicate functions . In the

most common case, predicate functions are tests on a

single attribute if feature has values that

belong to a subset (for discrete features) or to an interval

. The index enumerates here intervals

or (fuzzy) subsets for attribute associated with tests .

The conjunction of such conditions for several attributes

defines a hyperrectangular area covering a part of the feature

space where the rule is assumed to be true, expressed as

THEN Class

(2)

Some algorithms [4], [11] generate rules for which hyper-

rectangular covering areas may overlap. Classification prob-

abilities in the overlapping region may be estimated by

taking , that is,

the number of training vectors from the class in the re-

gion divided by the number of all training vectors falling

into this region. Other ways of resolving conflicts are based

on voting procedures or selecting rules with the lowest false

positive rate [12]. Decision trees and algorithms that use dis-

cretized data explicitly avoid such overlaps. Most decision

trees are based on simple tests . For ordered

variables, each test defines a hyperplane perpendicular to

and intersecting its axis at . Since the tests are done in a hi-

erarchical manner, the feature space is partitioned recursively

into hyperrectangles within hyperrectangles (see Fig. 1). All

rules obtained from decision trees are, therefore, nonoverlap-

ping, sharing antecedents in a hierarchical manner.

Fuzzy set theory is based on real-valued predicate

functions called membership functions. The

usual interpretation is that belongs to a fuzzy set

to a degree . Instead of input values , mem-

bership values in several fuzzy sets are used in

rule conditions. In many cases, these fuzzy sets have

reasonable interpretation. For example, if the member-

ship functions are low pressure ,

normal pressure and

high pressure , one may say that the pressure

is a bit low. Using logical predicates for the variable

“pressure” leads to a sudden jump, from one interval to the

adjacent one, when a small change in the input value is

made. Fuzzy logic removes such discontinuities. Predicates

based on intervals lead to

Fig. 1. Three kinds of wine, with over 50 samples for each kind
displayed using color and flavanoid content features. Decision
borders for propositional crisp logical rules separating wine types
divide the feature space into hyperrectangles, with the ELSE
condition covering the remaining space (upper figure). Decision
trees partition the space in a hierarchical manner (lower figure).

hyperrectangular decision borders, while soft localized or

semilocalized membership functions provide more flexible

decision borders.

Flexibility of the fuzzy approach depends on the choice

of membership functions. Fuzzy logic classifiers frequently

use a few membership functions per input feature [13]–[15].

Triangular membership functions provide oval decision bor-

ders, similar to those provided by Gaussian functions (see

Fig. 2). In fact, each fuzzy rule may be represented as a

node of a network that processes input vectors. The resulting

basis function network is formally equivalent to an inference

system based on fuzzy rules [14]. Triangular membership

functions may be regarded as a piecewise linear approxi-

mation to Gaussian membership functions, while trapezoidal

membership functions are similar approximations to the soft

trapezoid functions obtained from combinations of two sig-

moidal transfer functions (see next section).

The fuzzy set theory [13]–[16] gives only a formal defini-

tion of membership function and relation,

DUCH et al.: COMPUTATIONAL INTELLIGENCE METHODS FOR RULE-BASED DATA UNDERSTANDING 773

Fig. 2. Shapes of decision borders for: (a) general clusters;
(b) fuzzy rules (using product of membership function); (c) rough
rules (trapezoidal approximation); and (d) crisp logical rules.

but the precise meaning of fuzzy rules and the operator

is not determined. One natural interpretation is based on the

similarity of to the prototypes typical for the class, but

at least four other interpretations may be distinguished [17].

Membership functions should reflect some properties of the

data distribution, such as position of clusters in the data or

similarity to known prototypes.

The conjunctive form of the rule conditions, as in (2), is

most common, but other ways to combine conditions may

also be used. In some applications, it is sufficient that at least

out of possible conditions of a rule are true. These

-of- rules are easy to define if the predicate functions

return integer values zero or one, instead of logical values

true or false. The antecedent of the rule (2) becomes

IF THEN Class (3)

where for each feature , an interval (linguistic term)

is picked up.

Such rules are implemented in a natural way by a threshold

function , where all are binary, ,

and for , or for .

In neural network terminology, such threshold function is

called a logic neuron (see Section VI), and if , are arbi-

trary real numbers and the threshold function is replaced by

a smooth function of sigmoidal shape (for example, hyper-

bolic tangent), it is called a perceptron. Threshold functions

create rules that are equivalent to an alternative of many con-

junctive terms. For example, if (at least half of

the conditions should be true), then the number of equivalent

conjunctive terms is . The decision borders defining

the classes in the feature space are still hyperplanes perpen-

dicular to the axes, but the shapes of the regions where the

-of- rule is true may be quite complex and difficult to

analyze. If the predicate functions return

continuous values corresponding to the degree of fulfillment

of some tests on the attribute , the weighted -of- rule

becomes equivalent to the decision of a perceptron, with a

hyperplane defining the decision border.

-of- rule conditions are based on classical con-

junctions, although the number of terms may be quite

large. Fuzzy logic uses general functions ,

called T-norms, to replace when two conditions

, are combined; ,

are here real-valued fuzzy membership functions, such as

Gaussian or triangular-shape functions. If

are continuous, then the product , , or

may be taken as the T-norm. We shall

not go in this direction further, since the interpretability of

rules using more sophisticated T-norms is rather difficult to

grasp in an intuitive way.

Another way to generalize propositional rules is to admit

predicate functions that perform tests on more than

one attribute of . For example, a distance

, between vector and a prototype , lower than the

threshold , may be used to determine if .

Such prototype-based rules are quite natural in some applica-

tions and may still be intuitively easy to understand. Again,

instead of logical predicates, some degree of fulfillment of

such condition may be introduced. For example, the logistic

function defines a fuzzy distance-based

rule

(4)

producing a fuzzy degree of truth value .

The shapes of decision borders provided by such condi-

tions depend on the distance functions used. For continuous

features and Euclidean distance functions, hyperellipsoidal

decision borders are obtained (for normalized features they

are spherical). Using norm (Chebyschev norm)

leads to hyperrectangular

decision borders [18] with prototype in the center.

Although fuzzy rules may be written in the same form as

(2), the logical operator is now replaced by the appropriate

T-norm, usually a product of membership functions for indi-

vidual features. A rule is fulfilled to the degree

(5)

where the product includes all attributes that appear in

the rule condition, and all membership functions of fuzzy

subsets of attribute used in the definition of the rule .

Summing the degrees of fulfillment of all rules

associated with class and dividing over the sum of degrees

of fulfillment of all rules gives an estimation of classification

probability

(6)

Some Gaussian classifiers [realized, for example, by radial

basis function (RBF) networks [14]], equivalent to fuzzy sys-

tems with Gaussian membership functions, sum the network

outputs assigned to class , dividing the result by the sum

of all outputs to normalize it. These estimates are not “true

probabilities,” but they give an idea of how strongly the rules

support the assignment of vector to different classes .

774 PROCEEDINGS OF THE IEEE, VOL. 92, NO. 5, MAY 2004

The conclusion of a rule may also be generalized to cover

fuzzy labels or real-valued labels . For example,

rules predicting color may use the continuous value corre-

sponding to the light wavelength, or cluster the results around

some prototypes, such as “green” or “red.”

With continuous functions determining conditions and

continuous labels as conclusions, rules become general

mappings of object features to some labels, .

For example, spectral properties of light sources and surfaces

reflecting them are mapped into colors. The feature space

is partitioned in a fuzzy or crisp way by a set of membership

functions defined for all , for ex-

ample, a set of overlapping Gaussians for the light spectrum.

A fuzzy subspace contains all vectors with nonzero

degree of membership . Since multivariate

mappings are difficult to interpret, understanding the data

using rules may be regarded as an attempt to discretize the

mapping in some way.

Rough set theory [19], [20] can also be used to derive

crisp logic propositional rules. In this theory, for two-class

problems the lower approximation of the data is defined as

a set of vectors, or a region of the feature space containing

input vectors that belong to a single class with probability

, while the upper approximation covers all

instances which have a nonzero chance

to belong to this class. In practice, the shape of the boundary

between the upper and the lower approximations depends

on the indiscernibility (or similarity) relation used. Linear

approximation to the boundary region leads to trapezoidal

membership functions, i.e., the same shapes of decision

borders as those obtained by fuzzy systems with such

membership functions. The crisp form of logical rules is ob-

tained when trapezoidal membership functions are changed

into rectangular functions. These rectangles allow for the

definition of logical linguistic variables for each feature by

intervals or sets of nominal values (see Fig. 2).

Decision borders provided by the crisp and fuzzy rules fre-

quently do not allow for a good approximation with a small

number of rules. From the perspective of accuracy and sim-

plicity, the ability to deal with oblique distributions of data

may be more important than softer decision borders. Using

combinations of input features makes the meaning of rules

based on such new features difficult to comprehend (“mixing

apples with oranges”). Another form of incomprehensible

rules is obtained from a union of half-spaces defined by hy-

perplanes, forming a convex, polyhedral shape. “ [T]o

what extent are fuzzy classifiers useful as fuzzy, and at which

point do they turn into black boxes? Practice has shown so

far that trying to reach the accuracy of good nonfuzzy model

by a fuzzy one is likely to require more time and resources

than for building up the initial nonfuzzy classifier” [21]. The

design of a rule-based system is, thus, always a compromise

between the flexibility of decision borders and the compre-

hensibility of the rules.

Although individual fuzzy, rough, and neurofuzzy sys-

tems differ in their approach to logical rule discovery, their

ultimate capability depends on the decision borders that they

provide for classification. A natural category may have quite

complex shape in feature space. Geometrical description

and visualization of clusters may be used to query relational

databases [22]; here we are interested in the automatic dis-

covery of such descriptions. From a methodological point of

view, one should always first try the simplest models based

on crisp logic rules, and only if they fail, more complex

forms of rules should be attempted. Neural networks with

nodes that implement separable transfer functions (i.e.,

calculate products of functions, one for each feature) in

a single hidden layer, are capable of creating the same

decision borders as crisp, fuzzy, or rough set rule sets [23].

Propositional logic has in itself a limited expressive power

and may be used only in domains where attribute-value lan-

guage (i.e., vector feature space description) is sufficient to

express knowledge. Complex objects, represented by graphs

or multisets, should be treated with first-order or higher order

logic [24], [25]. Since even the full first-order logic is com-

putationally difficult to implement, various restrictions have

been proposed to make the process of rule discovery compu-

tationally effective [26].

III. LINGUISTIC VARIABLES

Logical rules (as do other attempts to verbalize knowl-

edge) require symbolic inputs, called linguistic variables.

This implies that the input data have to be quantized, i.e.,

features defining the problem should be identified, and their

subranges (sets of symbolic values, integer values, or contin-

uous intervals) labeled. For example, in crisp logic, a variable

“size” has the value “small” if the continuous variable

measuring size falls in some specified range .

Using one continuous input variable, several binary (logical)

variables may be created: size small (size,small) equal

to one (true) only if variable size has the value small.

A. Types of Linguistic Variables

Two types of linguistic variables are in use. Universal,

context-independent variables are created by partitioning

the range of feature values and using the resulting linguistic

variables without any modification in logical rules. They

are identical in all regions of the feature space. Using such

variables makes it easy to avoid overlapping of the decision

regions in different rules. Defining, for example, three

triangular membership functions per attribute— ,

, —rules for combinations

IF THEN Class

are sought [15], with . Unfortunately, the number

of combinations grows exponentially with the number of at-

tributes (here as), restricting the applications of context-

independent partitioning to a small number of dimensions.

Although attempts to overcome the combinatorial explosion

by changing the form of fuzzy rules have been reported [27],

[28], covering a complex data cluster may require a large

number of such membership functions.

Context-dependent linguistic variables may be different in

each rule [29]. Their definition takes into account interac-

tion between linguistic variable in the process of rule forma-

DUCH et al.: COMPUTATIONAL INTELLIGENCE METHODS FOR RULE-BASED DATA UNDERSTANDING 775

tion, optimizing intervals in each rule. Low tire pressure for

a bicycle is different than for a car or a truck. For example,

taking broad iff ,

narrow iff , and small iff

, large iff , two simple rules

IF broad small

THEN great

IF narrow large

THEN great

ELSE so-so

would be more complex if written using linguistic variables

that partition into distinct or just partially overlapping

subsets. In the context of linguistic variable large,

linguistic value narrow, a subset of broad should be

used. Instead of using a fixed number of linguistic variables

per feature, one should use context-dependent linguistic vari-

ables, optimized for each rule.

Depending on the type of variable , the predicate

function defining a linguistic variable may have a

different interpretation. If is the wavelength of light,

nm nm , then Color is red, i.e., logical

condition Color Red is true. One may also introduce

predicates for each color defined by logical functions

Color green , Color red , Color blue , etc. Such

logical predicate functions map symbolic or real values of

into binary 0, 1 or logical false, true values.

B. Methods for Creating Linguistic Variables

Determination of intervals defining linguistic variables for

real-valued attributes gives rise to a good discretization of

continuous data. The simplest way to select initial linguistic

variables is to analyze histograms obtained by displaying

data for all classes for each feature. Histograms should be

smoothed, for example, by assuming that each feature value

is really a Gaussian or a triangular fuzzy number (kernel

smoothing techniques are discussed in [30]). Unfortunately,

histograms for different classes frequently overlap strongly,

limiting the applicability of this method for finding linguistic

variables (as shown in Fig. 7 later).

Methods that are useful for creating linguistic variables

draw inspiration from different fields [31]. Global dis-

cretization methods are independent of any rule-extraction

method, treating each attribute separately. Local discretiza-

tion methods are usually embedded in rule-extraction

algorithms, performing discretization using a subset of all

data only (the subset covered by a decision tree node or a

given network node). Global methods may be based on:

1) searching intervals that contain vectors from a single

class [32]; 2) entropy or information theory to determine

intervals that have low entropy or high mutual information

with class labels [33]; 3) univariate decision trees to find the

best splits for a single feature [34]; 4) latent variable models

[35]; or 5) Chi-square statistics to merge intervals [36].

A discretization algorithm based on a separability criterion

[37], described below, creates a small number of intervals (or

subsets) with high information content. The best “split value”
for an open interval should separate the maximum number of

pairs of vectors from different classes. Among all split values

that satisfy this condition, the one that separates the smallest

number of pairs of vectors belonging to the same class is

selected. The criterion is applicable to both continuous and

discrete features. Since one feature is treated at a time, the

minimization process is fast. The split point for continuous

features is a real number , while for discrete features it is

a subset of the set of alternative values of the feature. In all

cases, the left side (LS) and the right side (RS) of a split value

is defined by a test for a given dataset

LS

RS LS (7)

where a typical test is true if the selected feature

or (for discrete feature) . The separability

of a split value (SSV), or of a subset , is defined for a given

test as

SSV LS RS

LS RS (8)

where is the number of classes, is the set of data vec-

tors that belong to the class , and is the

number of elements in the set . Points outside of the fea-

ture value range have the SSV equal to zero, while sepa-

rability for all other values is positive. For two separable

classes with , elements, SSV has a maximum

value . For each fea-

ture with at least two different values, at least one split value

of maximal separability exists. If maximum separability is

reached for several split values close to each other, the split

value closest to the average is selected.

The separability criterion can be used to discretize a

continuous feature to find both context-independent and

context-dependent linguistic variables. In the first case, it

is used for each feature independently, until the increase

in separability due to new splits is sufficiently small, or

when a sufficient number of linguistic variables have been

obtained. If all split values for a given feature have a very

low separability, the feature either does not contribute any

information or should be taken into account in conjunction

with the discretization of another feature. This leads to the

context-dependent linguistic variables that are obtained from

a partial decision tree built using the separability criterion.

A search for the best separability of a pair or a combi-

nation of several features is performed quite efficiently by

using hierarchical partitioning with best-first search for the

best split points, or using more expensive beam search tech-

niques that escape local minima. For a pair of the features, the

beam search complexity is quadratic in the number of split

values considered, enabling in practice exhaustive search.

Searching for all feature split values at the same time takes

into account mutual interactions of features. Therefore, it

may significantly improve results. However, since the search

complexity is high, a small width of the beam search should

be selected to make it practical.

776 PROCEEDINGS OF THE IEEE, VOL. 92, NO. 5, MAY 2004

Fig. 3. Construction of a linguistic unit converting continuous
inputs to linguistic variables. This unit calculates a function
F (X) = S �(W X + b) + S �(W X + b). Type 1
functions, equivalent to �(X � b) ��(X � b), are obtained
for W = W = S = +1, S = �1, and implement logical
condition L(X) = True iff X 2 [b; b). Type 2 functions are
negation of Type 1 functions, and are obtained, for example, with
W = �1, W = S = S = +1. The remaining two types of
functions are obtained for S = 0 or for b outside of the data
range.

C. Feature-Space Mapping Networks

Local discretization methods may also use neurofuzzy

algorithms, adjusting adaptive parameters of a network to

model probability density functions. RBF networks with

Gaussian membership functions may be used for extracting

fuzzy rules. A feature space mapping (FSM) is a constructive

neural network [23], [38], [39] that estimates the posterior

probability . Nodes of this network calculate

localized, separable transfer functions

providing linguistic variables . Crisp decision re-

gions are obtained by using rectangular transfer functions

where is

the step function equal to one for (see Fig. 3). If

this is not sufficient, Gaussian, trapezoidal, and bicentral

combinations of sigmoidal functions [40] or other separable

transfer functions may be used. A bicentral type of function

is constructed as the difference of two sigmoidal functions

or as the product of pairs

of sigmoidal functions for all

features. For logistic sigmoidal function ,

the two types of bicentral functions are identical after nor-

malization [11]. These functions have soft trapezoidal

shapes, providing natural generalization of rectangular crisp

logic membership functions.

The FSM network is initialized using a decision tree, or

a clustering method based on dendrograms [38]. A small

number of network functions that have nonzero

values for the training data are set up. Each network node

covers a cluster of input vectors. The initialization process

is robust and may lead to reasonable intervals for the initial

linguistic variables without any training. The training proce-

dure changes the positions and dispersions of the functions to

cover the data more precisely. The node that on average has

Fig. 4. MLP network with linguistic (L) and rule (R) units. An
additional aggregation layer may be added between the input and
L-units.

the largest output for all training vectors covers the largest

number of input vectors. This node, assigned to a majority

class, corresponds to the most general logical rule. Training

of the network, or adaptation of node parameters, is

equivalent to learning context-dependent membership func-

tions (factors) and fuzzy conjunctive rules (prod-

ucts of these factors).

If bicentral functions are used and the slope of the sig-

moidal function is slowly increased during training,

the soft trapezoidal shapes of membership functions for each

feature are transformed in a smooth way into rectangles, pro-

viding crisp linguistic variables. In this case, for each net-

work node, the component is defined by an interval

corresponding to a linguistic variable. This interval is

adjusted to cover the largest number of vectors that belong to

the class associated with the node. Linguistic vari-

ables that are always true (factors for all

within the data range) may be dropped, since they do not

carry any information. Nodes that cover only a few training

vectors are removed and nodes that cover many training vec-

tors are optimized. If necessary, more nodes are added to the

network, playing the role of specialized logical rules [39].

Linguistic neural units (L-units) based on bicentral func-

tions have a natural implementation as a combination of two

nodes in the MLP network [11], [29]. The basic scheme of

such a unit is shown in Fig. 3. An input is connected via

, weights to two neurons, each with its own sepa-

rate bias and . The two hidden neurons of the L-unit

are connected to its output neuron via weights and .

All weights are exactly zero or 1, determining the type

of the linguistic variable (Fig. 3); biases determine the po-

sition of the soft trapezoidal window. Increasing the slope

of the sigmoidal function during training allows for transi-

tion from fuzzy to crisp logic. The constrained architecture

MLP network (Section VI, Fig. 4) filters continuous input

features through L-units and combines their logical outputs

in the hidden rule units (R-units), providing logical rules. The

training of L-units may alternate with the training of R-units.

Training more units than needed leads to zero weights of

some units, allowing for their removal.

DUCH et al.: COMPUTATIONAL INTELLIGENCE METHODS FOR RULE-BASED DATA UNDERSTANDING 777

IV. DECISION TREES FOR RULE GENERATION

Decision trees are an important tool in data mining.

They are fast and easy to use, although the hierarchical

rules that they generate have somewhat limited power

(Fig. 1). Most trees use a top-down algorithm performing

a general-to-specific heuristic hill-climbing search for the

best partitioning of the feature space into regions con-

taining vectors from a single class. Heuristics are usually

based on information-theoretic measures. Despite greedy

hill-climbing search algorithms that may create suboptimal

tree structures, in many applications, rules generated by

decision trees are simple and accurate.

A. Methods Using Information Gain

The 1R algorithm leads to the simplest decision rules [32].

This algorithm searches for the best feature that has a set of

values or a range of values for which vectors from a single

class dominate, and presents it as a rule. ID3 [41] and its

successors, C4.5 [42] and C5.0, are currently the most widely

used algorithms for generating decision trees. Given a dataset

, a decision tree is generated recursively as follows.

1) If contains one or more examples, all belonging to

a single class, then create a leaf node and stop.

2) If contains examples belonging to a mixture of

classes, information gain is used as a heuristic to split

into partitions (branches) based on the values of a

single feature.

Suppose that each pattern in the dataset belongs to one

of the classes, , and is the number of

patterns in class . The amount of information contained

in class distribution is

(9)

where the number of all patterns in the set is

. If the dataset is split into two subsets

using the split value of feature (7),

the amount of information in LS and RS can be similarly

computed

where and are, respectively, the number of sam-

ples in LS and RS subsets that belong to the class , and

, are the number of samples in LS and RS, respec-

tively. The information gained by splitting the dataset into

and using a test on feature is

IGain (10)

The normalized information gain is

NGain
IGain

(11)

A feature with its corresponding value maximizing the

normalized gain is selected for splitting a node in the growing

tree.

Rules obtained from the C4.5 tree are mutually exclusive,

but some conditions may be spurious. The C4.5 rules algo-

rithm [42] simplifies rule sets by deleting those conditions

that do not affect accuracy significantly (the minimum de-

scription length principle is used to determine them; see [1,

Ch. 7] or [2, Ch. 9]). The final set of rules may contain some

rules that can be dropped, since some cases are covered by

more than one rule. The remaining rules are ordered, with

rules making the fewest false positive errors coming first.

The majority class among those cases that are not covered

by any rules becomes the default class. This leads to smaller

sets of rules while preserving their accuracy.

B. Methods Using SSV

The SSV separability criterion (8) has also been used in

the top-down decision tree construction algorithm [37]. Se-

lection of the feature to be split and the split value is done

using beam search, so at each stage, several (usually ten) par-

tial trees compete until the best one emerges when the final

trees are selected. If there are no contradictory examples in

the data, the decision tree achieves 100% accuracy. To avoid

overfitting, a cross-validation training is performed to find

the optimal pruning parameters for the tree. In each cross-val-

idation pass, the number of errors counted on the test part of

the data is calculated. The degree of pruning is equal to the

number of nodes removed that increase the number of er-

rors of their parent by not more than . The minimum total

cross-validation test error (sum of all cross-validation test er-

rors) is obtained for the optimal degree of pruning , assuring

the best generalization.

SSV decision trees have two other unique properties. The

separability measure is applied not only to the individual

features, but also to the linear or nonlinear combinations of

the features, in effect allowing for more flexible decision

borders than in typical decision trees. In particular, the test

based on distances between the data vectors

from the tree node and some reference vectors in the

feature space is used. Such tests allow for discovery of a very

simple rules and useful prototypes for classes [43]. Combina-

tion of different tests leads to heterogeneous decision borders

of the SSV tree and facilitates the discovery of simple class

structures.

Decision tree algorithms that use the values of a single fea-

ture when splitting a node generate axis-parallel hyperplanes.

If oblique hyperplanes are allowed, a more compact decision

tree could be generated. Oblique decision trees are more gen-

eral than univariate trees. To build an oblique decision tree,

a new feature that is a linear combination of the original fea-

tures is constructed at each nonleaf node. By using this new

feature, the tree effectively partitions the input attribute space

by hyperplanes that do not have to be axis-parallel. Sev-

eral researchers [44]–[48] have proposed various approaches

for computing the hyperplane weight coefficients for each

node of the tree, applying such techniques as simulated an-

nealing, randomization, regression, linear programming, and

neural-inspired algorithms.

778 PROCEEDINGS OF THE IEEE, VOL. 92, NO. 5, MAY 2004

C. Methods Using Random Perturbation

CART [49] splits each node in the decision tree to maxi-

mize the purity of the resulting subsets. A node with patterns

that belong only to one class has the highest purity. Nodes

with patterns from several classes have a nonzero “Gini di-

versity index,” calculated as

Gini (12)

In its default setting, CART builds univariate decision trees.

However, it also allows for the generation of oblique decision

trees. A node split in the latter case is induced by the hyper-

plane , where ’s are the normalized

features, ’s are the coefficients that determine the orienta-

tion of the hyperplane, and is a threshold. The values of

and are fine-tuned by perturbing their values to decrease the

impurity of the split.

OC1 [46] combines deterministic hill climbing with ran-

domization to find the best multivariate node split. It first

finds the best axis-parallel split at a node, then looks for a

better split by searching for oblique hyperplanes in the at-

tribute space. Oblique hyperplanes with lower impurity than

the best axis-parallel split are obtained by randomly per-

turbing the current hyperplane to a new location.

D. Hybrid Connectionist–Symbolic Method

The NN-DT algorithm [48] makes use of both connec-

tionist and symbolic approaches to generate oblique deci-

sion trees. First, a three-layer feedforward neural network is

constructed and pruned. The hidden unit activations of the

pruned network are then given as input to a univariate de-

cision-tree generating method such as C4.5. Since the hy-

perbolic tangent function is used to compute the activation

values of the hidden units, the conditions for node splitting

in the decision tree involve nonlinear terms that are the hy-

perbolic tangent of linear combinations of a set of input at-

tributes. The nonlinearity, however, can be removed easily,

since the hyperbolic tangent function is a one-to-one func-

tion. Thus, NN-DT effectively generates oblique decision

trees.

A common problem with the decision trees is their insta-

bility, that is, sensitivity to small changes in the training data

[50]. For example, quite different trees with similar accuracy

can be created in a cross-validation procedure. For predic-

tive modeling, this is treated as a disadvantage, and commit-

tees of trees are formed to stabilize the results. For discovery

of interesting rules, creation of a “forest of trees” instead of

a single one is actually an advantage, allowing for creation

of alternative sets of rules that classify the data with similar

accuracy. Robust rules that appear most frequently in many

trees generated during cross validation are found in this way.

Rule sets of similar overall accuracy nevertheless may differ

significantly in their sensitivity and specificity. Algorithms

to create forests of SSV decision trees have been presented

in [43].

V. INDUCTIVE APPROACHES TO EXTRACTION OF LOGICAL

RULES

The ML community has produced many inductive learning

algorithms, also called concept learning algorithms. Many of

these algorithms work only for symbolic inputs, so contin-

uous features have to be discretized first. A comprehensive

reference discussing inductive algorithms and comparing

logical rules generated in this way with rules provided by

other methods is not available at the time of this writing, but

selected algorithms were presented in a textbook [24].

For over 30 years, Michalski has been working on the

family of AQ covering algorithms [51], creating more than

20 major versions. In AQ concept description, rules for as-

signing cases to a class are built starting from a “seed” ex-

ample selected for each class. A set of most general rules that

cover this and other examples that belong to the same class is

generated (this is called “a star”). An evaluation function that

includes several criteria (based on the precision of the rule,

the number of correctly classified examples divided by total

number covered) is applied to these rules, and then the best

rule is selected. Examples covered by this rule are removed

from the learning set and the process is repeated. Variants in-

clude algorithms that are noise tolerant, are based on incre-

mental learning, use many constructive induction operators

to create new attributes, use evolutionary algorithms for fea-

ture selection, are hypothesis driven, and have only partial

memory of presented cases (for online learning). The AQ15

program and several other algorithms were used in a multi-

strategy approach to data mining [52], combining ML, data-

base, and knowledge-based technologies.

CN2 [53] is an example of a covering algorithm com-

bining features of AQ with decision tree learning. A search

for good rules proceeds in a general-to-specific order, adding

new conjunctive conditions or removing disjunctive ones. It

starts with a rule assigning all cases to class : “If True Then

Class= ,” and performs a beam search, specializing the rule,

using as search heuristics either precision (as AQ), entropy

(as ID3 or C4.5), or Laplacian error estimate:

, where is the total number of

examples covered by the rule, is the number of class

examples, and is the number of classes. Generated rules

are either ordered (have to be used in specified sequence) or

unordered.

RIPPER [54] creates conjunctive rules covering examples

from a given class, adding new features in a similar way as

decision trees, selecting the best subsets or splits on the basis

of information gain heuristics [42]. A rule is grown on the

training data (usually two-thirds of all available data) until

it covers examples from a given class, and then pruned, re-

moving the last conditions, until the difference between the

number of correctly covered cases minus the incorrectly cov-

ered cases, divided by the number of all cases covered by

the rule, reaches a maximum. The rule is added to the set of

rules and all examples covered by it are discarded. The total

number of rules is restricted by a criterion based on the min-

imum description length and the total set of rules optimized.

On many datasets, this algorithm has found simpler and more

DUCH et al.: COMPUTATIONAL INTELLIGENCE METHODS FOR RULE-BASED DATA UNDERSTANDING 779

accurate rules than those generated by a C4.5 decision tree

in the rules mode.

Version spaces (VS) is an algorithm that also belongs to the

family of covering algorithms [24], [55]. The VS algorithm

works with symbolic inputs, formulating hypotheses about

the data in the form of conjunctive rules. Such a hypothesis

space may be ordered according to how general or specific

the hypothesis is. For example, the hypothesis

is less general than or . The version space

is the subset of hypotheses from consistent with all

training examples in . The VS algorithm works by special-

izing general hypotheses and generalizing the specific ones.

Inductive logic programming (ILP) is a subfield of ML

concerned with inducing first-order predicate calculus logic

rules (FOL rules) from data (examples and additional knowl-

edge) expressed as Prolog programs [56]. Objects classified

by FOL rules may have a relational, nested structure that

cannot be expressed by an attribute-value vector. This is

useful for sequential data (such as those in natural language

analysis or bioinformatics), and for structured data, when

an unknown part of the complex object is responsible for

classification (such as in chemistry).

Unfortunately, in contrast to neural networks or decision

trees, software implementations of inductive ML algorithms

are not readily available; therefore, it is difficult to evaluate

and compare them with other methods.

VI. NEURAL NETWORKS FOR RULE EXTRACTION

Neural networks are regarded commonly as black boxes

performing mysterious functions and representing data in

an incomprehensible way. Contrary to this opinion, they

can be used to provide simple and accurate sets of logical

rules. Two issues should be considered: understanding

what neural networks really do, and using neural networks

to extract logical rules describing the data. Although the

function realized by a typical neural network is difficult

to understand, it may be simplified and approximated by

logical rules. Many neural algorithms that extract logical

rules directly from data have been devised. There are very

few comparisons with other methods, and results in the

form of explicit logical rules are rarely published. Several

neural algorithms for rule extraction have been compared

experimentally on benchmark datasets with very good

results [4], [11], [57]–[60].

Compared to ML and decision tree methods,

neural-inspired algorithms have important advantages,

especially when the inputs are continuous. In such cases,

good linguistic variables may be determined simultaneously

with logical rules, and selection and aggregation of features

into smaller number of useful features may be incorporated

in the neural model. In addition, adaptation mechanisms for

continuously changing data are built in, and wide-margin

classification provided by neural networks leads to more

robust logical rules.

Neural rule-extraction algorithms may be compared using

six aspects (as proposed in [61], and extended in [11]): 1) the

“expressive power” of the extracted rules (types of rules ex-

tracted); 2) the “quality” of the extracted rules (accuracy,

fidelity comparing to the underlying network, comprehen-

sibility and consistency of rules); 3) the “translucency” of

the method, based on local–global use of the neural net-

work (analysis of the individual nodes versus analysis of the

total network function); 4) the algorithmic complexity of the

method; 5) specialized network training schemes; and 6) the

treatment of linguistic variables: some methods work only

with binary variables, other with discretized inputs, and yet

others with continuous variables that are converted to lin-

guistic variables automatically.

A. Global Methods

In the simplest case, the inputs and outputs are binary and

the network yields logical outputs. After training, the net-

work performance is equivalent to a set of logical rules that

may be found by taking all possible combinations of features

as input. For logical features , the number of conjunctive

rules is (in the rule antecedent, each feature may either be

absent or be present as or as). To limit the number

of nodes in the search graph, one may try to limit the number

of literals in the antecedents of extracted rules. In one of the

first neural rule-extraction methods, Saito and Nakano [62]

restricted the maximum number of positive and negative lit-

erals and the depth of the breadth-first search process, addi-

tionally restricting the search tree to those combinations of

literals that were present in the training set. Due to these re-

strictions, their method sometimes creates a rule that is too

general. This drawback has been removed in the method de-

veloped by Gallant [63]. The difficulty comes from the in-

puts that are not specified in the rule provided as a candidate

by the search procedure. Gallant takes all possible values for

these inputs, and although rules generated in this way are al-

ways correct, they may be too specific.

The validity interval analysis (VIA) method developed by

Thrun [64] is a further extension of the global approach. A

validity interval, specifying the maximum activation range

for each input, may be found using linear programming tech-

niques. These intervals may be propagated backward and for-

ward through the network. Arbitrary linear constraints may

be applied to input as well as output units, giving the method

the ability to check the validity of nonstandard form of rules,

such as the -of- rules. VIA can also handle continuous-

valued input features, starting from the training values and

replacing them with intervals that are increased to achieve a

good generalization of the rules. The method may be applied

to any neural network with monotonic transfer functions. Un-

fortunately, it has a tendency to extract rules that are too spe-

cific and rather numerous.

Neural network classifiers map whole feature space areas

into single output numbers. If this mapping could be inverted

and the input subspace leading to constant (or approximately

constant) outputs characterized, logical rules could be found.

Inversion techniques of feedforward neural networks have

many applications (for a survey, see [65]), and have been

recently applied in rule extraction using interval arithmetic

[66]. The complexity of the inversion method grows expo-

nentially with the dimension of the feature space, but in com-

bination with feature selection techniques, this method may

have some applications.

780 PROCEEDINGS OF THE IEEE, VOL. 92, NO. 5, MAY 2004

Constructive neural network with three triangular mem-

bership functions per one continuous input has recently been

used to extract one dominant rule per neuron [67]. Extrac-

tion of only one dominant rule and pruning of rule condi-

tions is computationally simple. There is no reason why good

fuzzy rules should be obtained with such poor discretization,

but by chance (as shown in Fig. 7 later), the Iris problem is

solved quite accurately, making a false impression that it is a

promising method.

B. Local Methods

Methods presented above were global, based on analysis

of outputs of the whole network for various inputs. Local,

or “decompositional,” methods [4] analyze fragments of the

network, usually single hidden nodes, to extract rules. Such

networks are based either on sigmoidal functions (step func-

tions in the logical limit) or on localized functions. Using

step functions, the output of each neuron becomes logical

(binary), and since the sigmoidal output functions are mono-

tonic and their input values are between zero and one, it

is enough to know the sign of the weight to determine its

contribution to activation of a given unit. A search for rules

involves possible combinations of input features. Rules

corresponding to the whole network are combined from rules

for each network node.

Local methods for extraction of conjunctive rules were

proposed by Fu [68]–[71] and by Setiono and Liu [57]–[59],

[72]. As with the global methods, the depth of search for

good rules is restricted. The weights may be used to limit

the search tree by providing the evaluation of contributions

of inputs that are not specified in rule antecedents. As shown

by Sethi and Yoo [73], the number of search nodes is then

reduced to . In the Subset algorithm of Towell

and Shavlik [74], inputs with largest weights are analyzed

first, and if they are sufficient to activate the hidden node of

the network irrespective of the values on other inputs, a new

rule is recorded. Combinations of the two largest weights

follow, until the maximum number of antecedent conditions

is reached. A fuzzy version of this approach has been pro-

posed by Hayashi [75].

C. Simplifying Rule Extraction Process

All these methods still have a problem with an exponen-

tially growing number of possible conjunctive propositional

rules. Towell and Shavlik [74] proposed to use -of-

rules, since they are implemented in a natural way by net-

work nodes. In some cases, such rules may be more compact

and comprehensible than conjunctive rules. To avoid a

combinatorial explosion of the number of possible input

combinations for each network node, groups of connections

with similar weights are formed. Weights in the group are

replaced by their averages. Groups that do not affect the

output are eliminated and biases are reoptimized for frozen

weights. Such a simplified network has an effectively lower

number of independent inputs; therefore, it is easier to

analyze. If symbolic knowledge is used to specify initial

weights, as it is done in the knowledge-based artificial neural

networks (KBANN) of Towell and Shavlik [76], weights are

clustered before and after training.

The search process is further simplified if the prototype

weight templates (corresponding to symbolic rules) are used

for comparison with the weight vectors [77]—weights are

adjusted during training to make them more similar to the

templates. The RuleNet method based on templates has been

used to find the best -of- rules in steps, and the

best sets of nested -of- rules in steps [78], ex-

ploring large spaces of candidate rules. The method handles

only discrete-valued features; therefore, initial discretization

is necessary for continuous features. The network has only

one hidden layer with a specific architecture to inject sym-

bolic rules into the network and to refine them iteratively.

Several authors noticed the need for simplifying neural

networks to facilitate the rule-extraction process. Setiono and

Liu [79] use a regularization term in the cost function to itera-

tively prune small weights. After simplification, the network

is discretized by clustering activation values of the hidden

unit obtained during presentation of the training set. The

method does not guarantee that all rules will be found, but

results for small networks were encouraging. The method

of successive regularization [80] is based on a similar idea,

with Laplace regularization (sum of absolute weight values)

in the error function, inducing a constant decay of weights.

Only weights smaller than some threshold are included in the

regularizing term (this is called selective forgetting). Hidden

units are forced to become fully active or completely inac-

tive. As a result of training, only a skeletal network structure

is left, and the dominant rules are extracted easily. Keeping

this skeletal network frozen, small connections are revived

by decreasing the regularization parameters. After training

of this more complex network, additional logical rules are

obtained from analysis of new nodes/connections. Another

simple method belonging to this group has been presented

by Geczy and Usui [81]. Weights in the MLP network with

one hidden layer are mapped, after training, into 0, 1, or

1 values, simplifying the rule search step. In the MLP2LN

approach [82], described in some detail below, such a map-

ping is incorporated in the learning scheme.

Rule extraction as learning (REAL) is a rather general

technique introduced by Craven and Shavlik [83] for in-

cremental generation of new rules (both conjunctive and

-of- rules). If a new example is not classified correctly

by the existing set of rules, a new rule based on the mis-

classified example is added, and the fidelity of the extended

set of rules is checked against the neural network responses

on all examples used so far. The RULENEG algorithm [4],

[84], [156] is based on a similar principle: one conjunctive

rule per input pattern is generated, and if a new training

vector is not classified correctly by the existing set of rules

, a new rule is created as a conjunction of all those inputs

literals that have influence on the class of the vector. This

is determined by consecutive negation of each input value

followed by checking (using the neural network), if the

predicted class has changed.

In the BRAINNE algorithm [85], a network of inputs

and outputs is changed to a network of inputs

and outputs, and then retrained. Original inputs with

weights that change little after extension and retraining of

DUCH et al.: COMPUTATIONAL INTELLIGENCE METHODS FOR RULE-BASED DATA UNDERSTANDING 781

the network, correspond to the most important features. The

method can handle continuous inputs and has been used in

several benchmark and real-life problems, producing rather

complex sets of rules [4], [85]. Logical rule extraction has

also been attempted using a self-organizing ART model

[86] and fuzzy ARTMAP architecture [87]. In the last

case, a certainty factor for each rule is provided. Simpler

self-organizing architectures may also be used for rule

extraction [88], although accuracy of the self-organized

mapping for classification problems is rather poor [89].

The DEDEC algorithm [4], [90] extracts rules by finding

a minimal information sufficient to distinguish, from the

neural network point of view, between a given pattern and

all other patterns. To achieve this, a new set of training

patterns is generated. First, inputs are ranked in order of

their importance, which is estimated by inspection of the

influence of the input weights on the network outputs.

Second, clusters of vectors are selected and used instead of

original cases. Only those features ranked as important are

used to search for conjunctive rules.

Any rule-based method may be used to approximate the

neural network function on some training data. The network

is used as an “oracle,” providing as many training examples

as needed. This approach has been used quite successfully by

Craven and Shavlik in their TREPAN algorithm [91], com-

bining decision trees with neural networks. Decision trees are

induced on the training data, plus the new data obtained by

perturbing the training data. The additional training data are

classified by the neural network. Nodes in the decision tree

are split only after a large number 10 of vectors that fall

in a given node have been analyzed. Therefore, the method

is more robust than direct decision tree approaches, which

suffer from a small number of cases in the deeper branches.

Such trees offer the best fidelity to the classification by the

network. Classifiers based on ensembles of different models,

similarity-based classifiers, statistical methods, or any other

classifiers that produce incomprehensible models of the data

may be approximated by rule-based systems in the same way.

Neural networks based on separable localized activation

functions are equivalent to fuzzy logic systems [14], [92].

Each node has a direct interpretation in terms of fuzzy rules,

which eliminates the need for a search process. Gaussian

functions are used for inserting and extracting knowledge

into the radial basis set type of networks [93]. A more general

neurofuzzy system based on separable functions was pro-

posed by Duch [23], [94]. A discussion of rule extraction

using localized transfer functions has been given by Andrews

and Geva [95], [96]. These authors developed a quite suc-

cessful approach called RULEX [97], based on constrained

MLP networks with pairs of sigmoidal functions combined

to form “ridges,” or “local bumps.” Rules in this case are ex-

tracted directly from an analysis of the weights and thresh-

olds, since disjointed regions of the data are covered by one

hidden unit. In effect, the method is similar to a localized net-

work with steplike activation functions. The method works

for continuous as well as discrete inputs.

Methods of combining neural and symbolic knowledge,

refining probabilistic rule bases, scientific law discovery

[98], and data mining [30], are related closely to the

applications of neural networks for extraction of logical

rules. Symbolic rules may be converted into RAPTURE

networks [99] and trained using a modified backpropagation

algorithm for optimization of certainty factors. The network

prunes small connections and grows by adding new nodes if

classification accuracy becomes too low.

It may seem that neurofuzzy systems should have advan-

tages in application to rule extraction, since crisp rules are

just a special case of fuzzy rules. Many neurofuzzy systems

have been constructed [23], [100]–[103]. However, there is

a danger of overparametrization of such systems, leading

to difficulty of finding optimal solutions even with the help

of evolutionary algorithms or other global optimization

methods [104]. Systems based on rough sets [19] require

additional discretization procedures that may determine

the quality of their performance. We have included a few

results obtained by fuzzy and rough systems in Section IX.

Algorithms deriving very simple crisp logic rules, based on

decision trees or neural networks, may have advantages over

the fuzzy, rough, or neurofuzzy systems. Unfortunately,

many rule-extraction methods have been tested on datasets

that are not in the public domain; therefore, their relative

advantages are hard to assess.

D. The MLP2LN Algorithm

To facilitate extraction of logical rules from an MLP net-

work, one could transform it smoothly into a network per-

forming logical operations [a logical network (LN)]. This

transformation is the basis of the MLP2LN algorithm [105].

Skeletonization of a large MLP network is the method of

choice if the goal is to find logical rules for an already-trained

network. Otherwise, starting from a single neuron and con-

structing the LN using training data directly (constructive, or

C-MLP2LN algorithm) is faster and usually more accurate.

Since interpretation of the activation of the MLP network

nodes is not easy [106], a smooth transition from MLP to

a logical type of network performing similar functions is ad-

vocated. This transition is achieved during network training

by the following.

1) Increasing gradually the slope of sigmoidal func-

tions to obtain crisp decision regions.

2) Simplifying the network structure by inducing the

weight decay through a penalty term.

3) Enforcing the integer weight values 0 and 1, in-

terpreted as irrelevant input, positive

and negative evidence. These objectives are

achieved by adding two additional terms to the error

function

(13)

The first part is the standard mean-square-error (MSE)

measure of matching the network output with

the desired output class for all training data samples

782 PROCEEDINGS OF THE IEEE, VOL. 92, NO. 5, MAY 2004

. The second term, scaled by , is used frequently in the

weight pruning or in the Bayesian regularization method

[107], [108] to improve generalization of the MLP networks.

A naive interpretation of why such regularization works is

based on the observation that small weights and thresholds

mean that only the linear part of the sigmoid around is

used. Therefore, the decision borders are rather smooth. On

the other hand, for logical rules, sharp decision borders are

needed and a simple skeletal network is necessary. To achieve

these objectives, the first regularization term is used at the

beginning of the training to force some weights to become

sufficiently small to remove them.

The second regularization term, scaled by , is a sum over

all weights and has minimum (zero) for weights approaching

0 or 1. The first term is switched off and the second in-

creased in the second stage of the training. This allows the

network to increase the remaining weights and, together with

increasing slopes of the sigmoidal functions, to provide sharp

decision borders.

In the error backpropagation training, partial derivatives

of the error function (13) are calculated. The

two additional terms in the error function contribute

(14)

to this derivative. Although nonzero weights have values re-

stricted to 1, increasing the slopes is equivalent to using

a single, large nonzero weight value .

R-units combine the logical inputs received from L-units

that are responsible for creating the hyperrectangular

subspaces. Domain knowledge that may help to solve the

problem may be inserted directly into the network structure,

defining initial conditions which could be modified further

in view of the incoming data. Since the final network struc-

ture becomes quite simple, inserting partially correct rules to

be refined by the learning process is quite straightforward.

The training may proceed separately for each output class.

A constructive procedure frequently leads to satisfactory so-

lutions after a very fast training. A single hidden neuron

(R-unit neuron) per class is created and trained using a back-

propagation procedure with regularization. and the slope

of sigmoidal function are increased gradually and weights

with magnitude smaller than 0.1 are removed. is then in-

creased until the remaining weights reach 0 0.05 or

0.05. Finally, very large slopes 1000 and integer weights

0, 1 are set, effectively converting neurons into threshold

logic functions. The weights of existing neurons are frozen

and new neurons (one per class) are added and trained on the

remaining data in the same way as the first one. This proce-

dure is repeated until all data samples are classified correctly,

or until the number of rules obtained grows sharply, signi-

fying overfitting (for example, one or more rules per one new

vector classified correctly are obtained).

The C-MLP2LN network expands after a neuron is added

and then shrinks after connections with small weights are re-

moved. A set of rules is found for each class

separately. The output neuron for a given class is connected

to the hidden neurons created for that class—in simple cases,

only one neuron may be sufficient to learn all instances, be-

coming an output neuron rather than a hidden neuron (Fig. 4).

Output neurons performing summation of the incoming sig-

nals are linear and have either positive weight 1 (adding

more rules) or negative weight 1. The last case corresponds

to those rules that cancel some of the errors created by the

rules found previously that were too general. They may be

regarded as exceptions to the rules.

Since only one neuron per class is trained each time, the

C-MLP2LN training is fast. Both a standard MLP architec-

ture with linguistic inputs or the L–R network may be used

with the C-MLP2LN approach. Since the first neuron for a

given class is trained on all data for that class, the rules it

learns are most general, covering the largest number of in-

stances. Therefore, rules obtained by this algorithm are or-

dered, starting with rules that have the largest coverage and

ending with rules that handle only a few cases. This ordering

allows for a very easy check of the quality of a set of rules

by looking at the errors on the training data. An optimal bal-

ance between the number of rules and the generalization error

is usually obtained when only the rules that cover a larger

number of cases are retained.

The final solution may be presented as a set of rules, or as a

network of nodes performing logical functions, with hidden

neurons realizing the rules, and the hidden-output neuron

weights set to 1. However, some rules obtained from anal-

ysis of the network may involve spurious conditions; there-

fore, an optimization and simplification step is necessary (see

Section VII).

Although constraints (13) do not transform the MLP ex-

actly into an LN, after they are enforced successfully, they are

sufficient to facilitate logical interpretation of the final net-

work function (Fig. 5). The and parameters determine

the simplicity/accuracy tradeoff of the generated network and

extracted rules. If a very simple network (and, thus, simple

logical rules) is desired, providing only rough description of

the data, should be as large as possible: although one may

estimate the relative size of the regularization term versus

the MSE, a few experiments are sufficient to find the largest

value for which the MSE is still acceptable, and does not de-

crease sharply when is decreased. Smaller values of

should be used to obtain more accurate networks (larger sets

of rules). The final value of near the end of the training

may grow larger than the maximum value of .

An MLP network is transformed into an LN by increasing

the slope of sigmoidal functions to infinity, changing them

into the step functions. Such a process is difficult, since a

very steep sigmoidal function leads to the nonzero gradients

only in small regions of the feature space; thus, the number

of vectors contributing to the learning process goes to zero.

Therefore, when convergence becomes slow for large slopes,

it is necessary to stop network training, extract logical rules,

and optimize the intervals of the linguistic variables. This

optimization step, described in Section VII, is performed at

the level of the rule-based classifier, not the MLP network.

E. Search-Based Procedures

The search-based training procedure is an interesting, al-

though seldom used, alternative to the gradient-based back-

DUCH et al.: COMPUTATIONAL INTELLIGENCE METHODS FOR RULE-BASED DATA UNDERSTANDING 783

Fig. 5. Convergence of the MLP2LN network for the Iris data. Five contours of constant values
(0.3–0.7, with 0.5 in the middle) for three hidden sigmoidal functions are shown. The data is
displayed in x (petal length) and x (petal width) coordinates. Small sigmoidal slopes (top left
drawing) at the beginning of the training gradually increase, becomeing stepwise (lower right), with
contours collapsing to a single line. The space is now partitioned into hyperboxes.

propagation training [109]–[111]. Quantization of network

parameters (weights and biases) allows for replacement of

gradient minimization by a search procedure. Steplike dis-

continuous transfer functions, as well as any smooth func-

tions, may be used in search-based optimization. Increasing

step by step the resolution of quantization from coarse to

fine, a search for the optimal network parameters is made

with arbitrary precision. Replacing the gradient-based back-

propagation training methods by global search algorithms

to minimize the value of the error function is rather expen-

sive; therefore, some form of a heuristic search should be

used, for example, best-first search or beam search [112].

Even if the best-first search algorithm is used (corresponding

to the steepest gradient descent), a good solution may be

found by gradually increasing the resolution of the discrete

network parameters [109]. In backpropagation training, this

would correspond roughly to a period of learning with rather

large learning constants, with some annealing schedule for

decreasing the learning constant.

The algorithm starts with one neuron per class and all

weights and biases , so that all data are

assigned to the default class (corresponding to zero network

output). At the beginning of the search procedure, the step

value for weights (and biases) is set. This value is added or

subtracted from weights and biases , . Best-first

search or beam search strategies are used to modify one or

two network parameters at a time. To speed up the search, all

single changes of parameters are tested and a number of the

most promising changes (i.e., changes decreasing the value

of the cost function) are selected (the beam width). Second,

all pairs of parameter changes from the chosen set, or even

all the subsets of this set, are tested, and the best combina-

tion of changes applied to the network. Since the first stage

reduces the number of weights and biases that are good can-

didates for updating, the whole procedure is computation-

ally efficient. The value of is reduced in half if no further

improvement is found. After training of the initial neurons,

more neurons are added to the classes that have not been sep-

arated correctly, and the search procedure is repeated for the

new weights and biases only.

VII. OPTIMIZATION, RELIABILITY, AND THE USE OF SETS

OF RULES

Controlling the tradeoff between comprehensibility and

accuracy, optimizing the linguistic variables and final rules,

and estimating the reliability of rules are rarely discussed in

papers on logical rule extraction. In practical applications, it

may be quite useful to have a rough, low-accuracy, simple de-

scription of the data and to be able to provide a more accurate

but more complex description in a controlled manner. Neural

or other methods of logical rule extraction may provide ini-

tial rules, but their further refinement is often desirable [113].

Rules obtained from analyzing neural networks or

decision trees may involve spurious conditions. More

specific rules may be contained in general rules, or logical

784 PROCEEDINGS OF THE IEEE, VOL. 92, NO. 5, MAY 2004

expressions may be simplified if written in another form.

Therefore, an important part of rule optimization involves

simplification and symbolic operations on rules. A Prolog

program may be used for such simplifications [114]. In

addition, optimal linguistic variables for continuous-valued

features may be found for the sets of rules extracted. These

optimized linguistic variables may be used to extract better

rules in an iterative process, starting from initial values

of linguistic variables, extracting logical rules, optimizing

linguistic variables, and repeating the whole process with

new linguistic variables until convergence is achieved.

Usually two or three iterations are sufficient to stabilize the

sets of rules.

A. What to Optimize?

Optimal linguistic variables (intervals) and other adaptive

parameters may be found by maximization of predictive

power of a rule-based (or any other) classifier. Confidence

in the classification model may be improved at a cost of

rejecting some cases, i.e., assigning them to the “unknown”

class. After training a neural network or other classifiers,

outputs from these models may be interpreted as probabili-

ties. Suppose that the confusion matrix for a

two-class problem is known

(15)

with rows corresponding to true classes, and columns to the

predicted classes. Thus, vectors from the true class

are correctly recognized as [true positives (TP)], and

vectors from the class are incorrectly assigned to

the class [false negatives (FN)]; is the number of

class vectors that have been rejected by the model as

“unknown” (if there is no default class covered by the “else”

condition, rule conditions may not cover the whole feature

space). In the second row, analogous quantities for the

class are stored, [true negatives (TN)], [false posi-

tives (FP)], and , unclassified vectors from the class.

The sum of first-row entries is equal

to the total number of the vectors and of the second-row

entries to the number of vectors.

Probabilities are computed for a model on

samples. The quantities

are the training set estimations of probabilities of predicting

class if the true class is ; the model may also reject

some cases as unpredictable, assigning them to the class .

The are the a priori probabilities for

the two classes and .

They should not be confused with

or probabilities that model will assign a vector

to class .

To increase confidence in the decision of the model, the er-

rors on the test set may be decreased at the cost of rejecting

some vectors. In neural networks, this is done by defining

minimum and maximum thresholds for the activity of output

units. Similar thresholds may be introduced in models esti-

mating probability. The following error function may be used

for corrections after training of the model to set these thresh-

olds:

(16)

If the parameter is large, the number of errors after

minimization may become zero, but some input vectors will

not be recognized (i.e., rules will not cover the whole input

space). Optimization of the cost function allows

one to explore the accuracy–rejection rate tradeoff. This

function is bounded by 1 and should be minimized over

parameters in without constraints. For discontinuous cost

function (crisp logic rules), this minimization may be

performed using simulated annealing or multisimplex global

minimization methods.

For a single rule , one may minimize

(17)

i.e., the difference between the probability of FPs minus TPs,

divided by the rule coverage for the class (some algo-

rithms minimize only case [54]). Several other quan-

tities are used to evaluate the quality of classification models

, as follows:

• overall accuracy ;

• overall error rate ;

• overall rejection rate

;

• sensitivity , or

conditional probability of predicting class when the

vector was indeed from this class;

• specificity

(same as above, but for class);

• precision .

Sensitivity is also called “recall” or “detection rate,”

since it is the proportion of correctly recognized cases ,

while (1-Specificity) is the false alarm rate

. Note that the overall accuracy is equal to a combi-

nation of sensitivity and specificity weighted by the a priori

probabilities

(18)

Thus, sensitivity (specificity) plays the role of accuracy of

the model for the class only, with being

the fraction of samples from this class (all other classes) in

the training set. In the -class problem, one can always use

a separate model to distinguish a single class from all

other classes . The cost function for the model is (all

)

(19)

This function should be minimized over parameters of the

model created for the class. For large , only the

error is important and it may decrease at the expense of the

DUCH et al.: COMPUTATIONAL INTELLIGENCE METHODS FOR RULE-BASED DATA UNDERSTANDING 785

rejection rate—for example, by making the rule intervals

tighter or the thresholds for neural activity closer to one

and zero. In an extreme case, no errors will be made on the

training set, since the classifier will reject all such cases.

For , only accuracy is maximized, leading to fewer

rejections. Using the error (loss) and the rejection rate, (19)

becomes

(20)

For , a sum of the overall error and rejection rate

is minimized, while for large , the error term dominates,

allowing the rejection rate to grow. In many applications, it is

important to achieve the highest sensitivity or specificity. The

error function (20) distinguishes only one of these quantities.

Relative costs allow for selective optimization of sensitivity

and specificity. If the cost of assigning vectors from true class

to the predicted class is set to one, and the cost of

making an opposite error is , the cost function (20) becomes

(21)

For , this is equivalent to the maximization of

, and for large , to the maximization

of .

Receiver operator characteristic (ROC) curves show the

tradeoff between sensitivity (detection, or TP rate) and

(FP, or alarm, rate), allowing for another way of ad-

justing the rejection thresholds. If a classifier produces

probabilities , a threshold may be set such that

vector is assigned to the class if .

Each value of corresponds to the point and

on the ROC curve. For , both and

, while for , both and

. Random guessing should produce the same

proportion of TPs to FPs, taking account of the a priori pro-

portions found in the data, i.e., . This corresponds to

a point on the diagonal of the ROC curve, since in this case

. A crisp rule classifier produces only

one point (in Fig. 6 points for two classi-

fiers, A and B, are shown). The area under the line connecting

(0,0) with point plus the line connecting with (1,1), is

known as the area under ROC curve (AUC) [115]. For a crisp

rule classifier AUC . Thus, different combi-

nations of sensitivity and specificity give the same AUC as

long as the sum is constant. Maximization of AUC

is equivalent to the minimal cost solution ((21)) with no re-

jections and .

Fuzzy rules may in principle achieve higher accuracy

and better ROC curves. Unfortunately, typical algorithms

for fuzzy rule construction or extraction [13], [100], [116]

generate a large number of such rules, so the issues of

overfitting, generalization, and comprehensibility become

very important in this case. There are many ways to opti-

mize fuzzy rules. One idea is to select the most important

membership function and update their parameters using

gradient-based cost function minimization [117]. Genetic

algorithms are quite frequently used for optimization of

Fig. 6. ROC curves for two crisp logic rule-based classifiers,
A and B, with identical area under the curve. ROC curves are
usually presented using the (FP, TP) axes or, equivalently, 1� S

and S axis.

membership funcitons as well as the number of rules.

Entropy-based genetic optimization [104] seems to give

quite good results.

B. How Reliable Are Optimized Rules?

Estimating the reliability of the rules is very important in

many applications. Tests of classification accuracy should

be performed using stratified cross validation, each time in-

cluding rule optimization on the training set. A hierarchy of

rule sets may be created by changing the value of in (20)

to obtain models with increasing classification accuracy at

the expense of larger rejection rate. A set of rules that classi-

fies selected training cases 100% correctly for all data parti-

tionings may be used with high confidence in its prediction;

cases that are not covered by this set of rules require another

set of rules of lower accuracy (the accuracy is estimated on

the training set by cross validation).

Logical rules, like many other classification systems, may

become brittle if the decision borders are placed too close to

the data vectors instead of being placed between the clusters

(as shown in Fig. 9 later). The brittleness problem is solved

either at the optimization stage by selecting the middle values

of the intervals for which best performance is obtained or, in a

more general way, by adding noise to the data. Using the first

method, one determines the largest cuboid (in the parameter

space) in which the number of errors is constant, starting

from the values of the optimized parameters. The center of

this cuboid is taken as the final estimation of the adaptive

parameters. The second method is equivalent to a specific

form of regularization of the classification model [108]. A

better method to overcome the brittleness problem based on

uncertainty of inputs is described below.

Neural systems have good generalization properties be-

cause they are wide-margin classifiers. Their decision bor-

ders result from the MSE optimization of a smooth function

that covers large neighborhood contributing to the error. This

leads to three important features: 1) rules are extracted from

data using inexpensive gradient methods instead of global

786 PROCEEDINGS OF THE IEEE, VOL. 92, NO. 5, MAY 2004

minimization; 2) more robust rules with wider classification

margins are found; 3) class probability, instead of crisp 0–1

decisions, may be estimated.

Because gradient methods suffer from the local minima

problem, a good initialization, or repeated starts from random

initialization, should be used.

C. Probabilities From Rules

Input values are usually taken from observations that may

not be completely accurate. Therefore, instead of the attribute

value , a Gaussian distribution

centered at with dispersion should be given. These

dispersions are set initially using the estimation of uncertain-

ties of a particular type of features, to be optimized later (see

below). This distribution may be treated as a fuzzy number

with membership function. A Monte Carlo procedure

may be performed to compute probabilities : vectors

are sampled from a Gaussian distributions of all attributes,

and results of classification are averaged to obtain probabil-

ities. For crisp rules, analytical evaluation of this probability

is based on the cumulative distribution function [11]

erf

(22)

where erf is the error function and makes

the erf function similar to the standard unipolar sigmoidal

function with the accuracy better than 2% for all . Taking

a logistic function instead of the erf function corresponds to

an assumption about the error distribution of being not a

Gaussian, but rather . This distribution is

very similar to the Gaussian distribution. For unit slope of

the logistic function and , these two distributions

differ at each point by less than 3.5%. If the rule involves

closed interval , the probability that fuzzy Gaussian vari-

able is in this interval

(23)

Thus, the probability that a given condition is fulfilled is

proportional to the value of the soft trapezoid function re-

alized by L-unit. Crisp logical rules with the assumption that

data have been measured with finite precision lead to soft

L-functions that allow for calculation of classification proba-

bilities that are no longer binary. ROC curves become smooth

and the area under them (AUC) is larger than that for crisp

sets of rules. Crisp logical rules obtained from any algorithm

may be fuzzified or obtained directly from neural networks.

Crisp logical rules with the assumption of input uncertainties

are equivalent to fuzzy rules with specific membership func-

tions. The ease of interpretation favors crisp rules, while the

accuracy and the possibility of application of gradient-based

techniques for optimization favors fuzzy rules.

The probability that a vector satisfies a rule

may be defined as the product of probabilities for all

rule conditions. Such definition assumes that all the attributes

that occur in the rule are mutually independent, which is

usually not the case. If a pair of strongly dependent attributes

is used in linguistic variables of a single rule, one of these

variables may be dropped and the other reoptimized at the

stage of rule simplification. Therefore, the product should be

a good approximation to real probability. Obviously, the rule

may not contain more than one premise per attribute, but it is

easy to change the rules appropriately if they do not satisfy

this condition.

Another problem occurs when the vector belongs to a

class covered by more than one rule. Rules may overlap be-

cause they use only a subset of all attributes, and antecedents

of different rules are not mutually exclusive. Summing and

normalizing probabilities obtained for different classes may

give results quite different from real Monte Carlo probabili-

ties. To avoid this problem, probabilities from single rules are

added and then joint probabilities subtracted. For two rules

, for class , the probability is

. For more

rules, care should be taken to correctly add and subtract all

terms.

An error function based on the number of misclassifica-

tions is usually used to optimize rule parameters. The error

function may also be based on the sum over all probabilities

(24)

where includes intervals defining the linguistic variables,

are Gaussian uncertainties of all inputs, and

is calculated using (23). The confusion matrix computed

using probabilities instead of the error counts allows for

optimization of (16) using gradient-based methods.

Uncertainties of the values of features are additional

adaptive parameters that may be optimized. In the simplest

case, all are taken as a percentage of the range of each

feature , and one-dimensional

(1-D) minimization of the error function over is per-

formed. Minimization of the soft error function may lead

to the increase of the number of misclassifications (for

vectors near decision borders with similar probabilities of

different classes), despite the fact that the overall probability

of correct classification will increase. A few iterative steps

should lower the number of misclassifications. After each

minimization, is decreased and minimization repeated;

for sufficiently small , probabilities are almost binary.

In the limit, minimization of the soft error function (24)

becomes equivalent to minimization of the number of

misclassifications, but the brittleness problem is solved be-

cause the intervals that are placed optimally for larger input

uncertainties do not change in subsequent minimizations.

VIII. EXTRACTION OF RULES—EXAMPLE

The process of rule extraction is illustrated here using the

well-known Iris dataset, provided by Fisher in 1936. The data

have been obtained from the UCI ML repository [118]. The

Iris data have 150 vectors evenly distributed in three classes:

DUCH et al.: COMPUTATIONAL INTELLIGENCE METHODS FOR RULE-BASED DATA UNDERSTANDING 787

iris-setosa, iris-versicolor, and iris-virginica. Each vector has

four features: sepal length and width , and petal length

and width (all given in centimeters).

A. Data Preparation

The simplest way to obtain linguistic variables, often used

in design of fuzzy systems, is based on division of each fea-

ture data range into a fixed number of parts and use of the tri-

angular (or similar) membership functions for each part [13],

[14]. The same approach may be used for crisp logic. Di-

viding the range of each feature into three equal parts, called

small , medium , and large the

feature will be called small if , medium if

, and large if . Instead of four contin-

uous-valued inputs, a network with 12 bipolar inputs equal

to 1 is constructed. An input vector may now be written

in symbolic form as , written for simplicity

as . If the value of is small, the network input

should be , and .

With this discretization of the input features, three

vectors of the iris-versicolor class ([coded as ,

, and] become identical with some

iris-virginica vectors and cannot be classified correctly,

yielding the maximum classification accuracy of 98%. Such

vectors should be removed from the training sequence.

The accuracy of classification using logical rules depends

critically on selection of linguistic variables. Although

there is no reason why dividing feature ranges into a fixed

number of intervals should provide good linguistic units,

for the Iris example, by chance, it is quite good. Using

two variables per feature, small and large, that divide the

range of feature values in the middle, 13 vectors from the

iris-setosa class become identical to some vectors from

the two other classes. Using four linguistic variables per

feature also decreases classification accuracy, making 16

iris-versicolor cases identical to iris-virginica. Evidently,

division into three classes is a fortuitous choice. Analysis

of the histograms of the individual features for each class,

shown in Fig. 7 and Table 1, proves that the division into

three equal parts is almost optimal, cutting the histograms

into the regions where vectors from a single class dominate.

For example, the iris-virginica class is more frequent for the

value of above 4.93 and iris-versicolor are more frequent

below this value. Discretization based on histograms (shown

in Table 1) is certainly better. The data range was divided

into 15 bins and histograms were smoothed by counting not

only the number of vectors falling in a given bin, but also

by adding 0.4 to adjacent bins.

B. Rule Extraction

The rule extraction process is illustrated below using the

constructive C-MLP2LN method [11]. The histogram-based

discretization is quite useful for the initialization of L-units,

although random initialization would, after some training,

also lead to similar intervals. A single neuron per class is

sufficient to train the C-MLP2LN network to maximum ac-

curacy (three errors, due to the discretization). The final net-

work structure (Fig. 8) has 12 input and 3 output nodes.

Fig. 7. Histograms of the four X � X features of iris
flowers. Thirty bins were used and simple smoothing applied. The
horizontal axis is length in centimeters; the vertical axis is the
number of samples in a given bin. The X and X histograms
(upper row, left and right) overlap strongly, but the X and X
features (lower row, left and right) allow for better discrimination
than the first two features.

Table 1
Linguistic Variables Obtained by Analysis of Histograms

Fig. 8. Final structure of the network for the Iris problem.

Nodes representing linguistic variables in Fig. 8 are con-

structed from L-units (Fig. 3). The hidden-layer nodes repre-

sent rules (R-nodes), and are identical with the output layer,

simplifying the general structure of the L–R network shown

in Fig. 4. Separate hidden nodes are needed only when more

than one neuron is necessary to represent the rules for a given

class. The network was trained with the backpropagation al-

gorithm for about 1000 epochs, and the final weights were

within 0.05 from the desired 1 or 0 values. After training,

the slopes of sigmoidal functions are set to a very large value,

788 PROCEEDINGS OF THE IEEE, VOL. 92, NO. 5, MAY 2004

changing the L-unit functions into rectangular fil-

ters (Fig. 3), and the R-units into threshold logic functions

. The following weights and thresholds

for the three neurons were obtained (only the signs of the

weights are written):

Setosa

Versicolor

Virginica

These weight vectors are so simple that all input combina-

tions leading to activations above the threshold are noticed

immediately. The corresponding rules are

iris setosa if

iris versicolor if

iris virginica if

From the trained network shown in Fig. 8, it is clear that only

two features, and , are relevant, since all weights for

the remaining features become zero. The first rule correctly

classifies all samples from the iris-setosa class. Together with

the other two rules, 147 vectors (98%) are classified correctly

using only the and features.

C. Alternative Rule Sets

In contrast to classification systems that are better if

they have lower cross-validation errors, rule-extraction

algorithms should not give just one unique answer. Using

the L–R network, several solutions may be found, depending

on the regularization parameters . In the rules presented

above, linguistic variables were derived by inspection of the

histograms and were not optimized. As a result, the solution

obtained is rather brittle (Fig. 9), since the decision borders

are placed too close to the data.

The simplest set of rules with optimized linguistic

variables involve only one attribute, petal length

iris setosa if

iris virginica if

ELSE iris versicolor

The first rule is accurate in 100% of the cases, since it

easily separates the setosa class from the two other classes.

The overall accuracy of these three rules is 95.3% (seven

errors). Slightly more accurate rules (96%) are obtained with

smaller regularization parameters

iris setosa if

iris virginica if

iris versicolor otherwise.

All these rules are more robust than those obtained with

linguistic variables from histograms. More complex solu-

tions are found using and a small value of . To

find all rules that are compatible with a given set of weights

and thresholds, one has to perform a search process, consid-

ering combinations of all inputs to the activation of the net-

work node. Because of regularization, only relevant inputs

Fig. 9. Iris dataset displayed in the petal length X (horizontal)
and width X (vertical) coordinates; decision regions (rules) for
the three classes are also shown. Note the three iris-versicolor
cases that are incorrectly classified using these two features. The
brittleness of rules is illustrated by the decision border placed too
close to the vectors from the setosa class.

have nonzero weights; therefore, the search space has el-

ements, where the number of used features is usually much

smaller than the number of all features. An efficient method

to perform such analysis has been presented in [11]. The ad-

ditional complexity of new rules should be justified by the

increase of their accuracy. For the Iris data with histogram

discretization, the highest accuracy of rules is 98% and has

already been achieved with the rules given above.

The cost function (16) allows for final optimization of lin-

guistic variables. Different values of parameters and (

is not so important here) lead to a hierarchy of rules with in-

creasing reliability. The simplest set of rules has used

only one feature . Lowering the final hyperparameter

and optimizing the intervals using L-units leads to the fol-

lowing set of rules:

setosa if

versicolor if

virginica if

The set of rules correctly classifies 147 vectors,

achieving the overall 98.0% accuracy. Since linguistic vari-

ables have been optimized, there is no theoretical accuracy

limit due to the discretization. Still, due to overlapping

distributions of data from different classes, it may not be

possible to remove all errors. The first two rules have 100%

reliability, while all errors are due to the third rule, covering

53 cases. With further decrease of the constraint hyperpa-

rameters , it is possible to replace one of these rules by four

new rules, with a total of three attributes and 11 antecedents,

necessary to classify correctly a single additional vector, a

clear indication that overfitting occurs.

One hundred percent reliability of all rules is achieved

after optimization of rules with increasing and

DUCH et al.: COMPUTATIONAL INTELLIGENCE METHODS FOR RULE-BASED DATA UNDERSTANDING 789

minimization of (16). The smallest value of for which all

rules do not make any errors is found. This set of rules leaves

11 vectors—eight virginica and three versicolor—as unclas-

sified

setosa if

versicolor if

virginica if

The vectors rejected by rules may be classified by

rules , but the reliability of classification for the vectors

in the border region is rather low: with

they should be assigned to the virginica class and with

to the versicolor class. For this small dataset, the true

probability distributions of leaf sizes for the two classes of

the iris flowers certainly overlap, so a more precise answer

is impossible.

The Iris example is too simple to see the full advantage of

applying optimization and probabilistic evaluation of rules,

since the number of parameters to optimize is small and op-

timal accuracy (98%) is achieved with crisp rules. For cases

near the decision border between iris virginica and iris versi-

color, more realistic probabilities are calculated

using (23). The natural uncertainties here are 0.1, equal

to the accuracy of measurements. Six vectors near the vir-

ginica/versicolor decision border have probabilities between

0.5 and 0.75, the remaining vectors have higher probabilities

[11].

D. Comparison

We have used the Iris example for pedagogical reasons

only. Reclassification accuracies (in-sample accuracies for

the whole dataset) of rules derived by several rule-extraction

systems are reported in Table 2. Complexity and reclassifi-

cation accuracy of rules found by the different methods give

some idea about their relative merits. Examples of statistical

estimation of accuracy (out-of-sample accuracy) are given

for larger datasets with separate test parts later in this paper.

The number of rules and conditions does not characterize

fully the complexity of the set of rules, since fuzzy rules have

additional parameters. The “else” condition is not counted as

a separate rule.

The neurofuzzy ReFuNN [13], [123] and NEFCLASS sys-

tems [119] belong to the best known of its kind. Linguistic

variables used by these systems are based on three equally

distributed fuzzy sets for each feature, limiting the accuracy

that may be achieved with such rules. The best seven fuzzy

rules of NEFCLASS classified correctly 96.7% of data. This

system was not able to reduce the number of features auto-

matically, but if used with the last two Iris features, it will

give the same performance using only three best rules (out

of nine possible) with six conditions. ReFuNN found nine

rules with 26 conditions and could also benefit from feature

selection. Increasing the number of fuzzy linguistic variables

to five per feature leads to 104 rules and 368 conditions. The

main purpose of building rule-based systems, i.e., compre-

hensibility of data description, is lost if the number of rules is

large. The poor result of the FuNe-I neurofuzzy system [120]

Table 2

Number of Rules (NR), Number of Conditions (NC), and
Number of Features Used (NF) by Rules Extracted for the Iris
Dataset by Different Systems. Rules Are Either Crisp (C),
Fuzzy (F), Rough (R), or Weighted (W)

is also due to the use of fuzzy linguistic variables based on

fixed partition of the data range.

Rough sets do not produce a comprehensible description

of this simple data, creating a large number of rules. The Gro-

bian rough set system [121] used 118 rules for perfect classi-

fication, reaching only 91%–92% in tenfold cross-validation

tests. Earlier application of rough sets to the Iris data [124]

gave very poor results (77% accuracy), probably because

four linguistic attributes per feature were used. This shows

again the importance of optimization and the use of context-

dependent linguistic variables instead of ad hoc partitions of

input features. A combination of evolutionary optimization

with an MLP network [122] also finds 100% correct rules

that overfit the data and will perform poorly in cross-valida-

tion tests. Thus, even such simple data may be rather difficult

to handle for some rule-extraction systems.

IX. ILLUSTRATIVE APPLICATIONS

This section provides examples of interesting logical

rules discovered using computational intelligence methods

that were used to analyze datasets available in standard

repositories [118] and collected in various projects. Analysis

of each dataset illustrates different aspects of the usefulness

of rule-extraction algorithms. Most datasets contain mixed

nominal–numerical features, but some contain only sym-

bolic information, or only numerical data. Some datasets

are small (around 100 cases), and some are large (tens

of thousands of cases). Some data seem to contain only

trivial knowledge, other data contain useful knowledge. In

some cases crisp logical rules are sufficient, while in a few

cases fuzzy rules seem to be more appropriate. A real-life

example leading to the construction of an expert system

for psychometric applications is provided. An example of

relational rules for an approximation problem is also given.

Rule-extraction methods should not be judged only on the

basis of the accuracy of the rules, but also on their sim-

plicity and comprehensibility. Unfortunately, different rules

are generated on each cross-validation partition, making it

difficult to estimate expected statistical accuracy of rules.

The simplest sets of rules are usually quite stable; that is, the

same rules are extracted in different cross-validation tests,

790 PROCEEDINGS OF THE IEEE, VOL. 92, NO. 5, MAY 2004

and reclassification accuracy for such rules is close to cross-

validation estimations. The best comparison of expected ac-

curacy is offered on large datasets with separate test parts.

A. Mushrooms

The first dataset contains descriptions of 8124 samples

of mushrooms, corresponding to 23 species of gilled mush-

rooms of the Agaricus and Lepiota family [118]. Descrip-

tions were based on The Audubon Society Field Guide to

North American Mushrooms. Each mushroom sample is la-

beled as edible or nonedible, meaning either poisonous or not

recommended for eating. The guide states clearly that there

is no simple rule for determining the edibility of a mush-

room—no rule like “leaflets three, let it be” for poisonous

oak and ivy.

Properties of mushrooms include cap shape, surface, and

color; gill attachment, spacing, size, and color; stalk shape,

root, surface, and color above and below the ring; ring type

and number; veil type and color; odor; and spore print color,

as well as information about the type of mushroom popula-

tion and habitat. Altogether 22 symbolic attributes are given

for each mushroom sample, and each attribute may take up

to 12 different values, which is equivalent to 118 logical fea-

tures indicating presence or absence of a specific feature. For

example, mushroom may have one of the nine odor types: al-

mond, anise, creosote, fishy, foul, musty, pungent, spicy, or

none.

In 51.8% of the cases, the mushrooms are edible, the

rest being nonedible (mostly poisonous). The problem of

dividing them into these two categories is linearly separable;

thus, perfect classification may be achieved using linear

discrimination or other standard statistical techniques.

Unfortunately, such methods do not help to understand why

some mushrooms should not be eaten. A single neuron may

learn correctly all training samples, but the resulting network

has many nonzero weights and is difficult to analyze. Using

the C-MLP2LN algorithm with the cost function (13), the

following disjunctive rules for nonedible mushrooms have

been discovered [11]:
odor almond anise none

spore print color green

odor none stalk surface below ring

scaly stalk color above ring brown

habitat leaves cap color white.

Rule misses 120 nonedible cases (98.52% accuracy),

and says that edible mushrooms from the Agaricus and Lep-

iota family have no odor, or it must be of the almond or anise

type, otherwise they are nonedible. Adding rule leaves 48

errors (99.41% accuracy), adding the third rule leaves only

eight errors (99.90% accuracy), and all four rules to

distinguish between edible and nonedible mushrooms cor-

rectly. For large values of the weight-decay regularization

parameter in (13), only one rule with a single attribute

(odor) is produced, while for smaller values of , a second

attribute (spore-print-color) contributes to the activation of

the first neuron. Adding a second neuron and training it on

the remaining cases generates two additional rules, han-

dling 40 cases and handling only eight cases.

Table 3

Summary of Rule-Extraction Results for the Mushroom Dataset,
Giving Number of Rules (NR), Conditions in All Rules (NC),
Number of Features Used (NF), and Reclassification
Accuracy of the Rules

For the mushroom dataset, the SSV tree has found a 100%

accurate solution that can be described as four logical rules

using only five attributes. The first two rules are identical

to the rules given above, but the remaining two rules are

different, using “gill-size” instead of stalk and cap-related

attributes. Since the last two rules cover only a small per-

centage of all cases, many equivalent descriptions are pos-

sible. SSV rules give perhaps the simplest set of rules found

so far

odor almond anise none

spore print color green

gill size narrow stalk surface above ring

silky scaly population clustered.

This is the simplest systematic logical description of the

mushroom dataset and, therefore, may be used as a bench-

mark for other rule-extraction methods. Odor is the most im-

portant attribute, and perhaps for that reason animals need

such a good sense of smell. If odor is removed from the de-

scription of mushroom samples, 13 rules are needed to reach

100% correct classification.

The same logical rules have also been derived using as

few as 10% of all data for training [125]; therefore, results

from cross validation should be identical to the results given

in Table 3. Some authors derive conjunctive rules for ed-

ible mushrooms (negation of the disjunctive rules for noned-

ible mushrooms presented above), reporting lower number

of rules with the same accuracy; therefore, the total number

of conditions is a more reliable measure of the complexity

of rule sets. This example illustrates how important the sim-

plicity of the rules is. Although statistical or neural methods

may classify this data perfectly, logical rules derived here

give probably the most comprehensible description of the

data.

B. The Ljubljana Cancer Data

The second example involves prediction of the breast

cancer recurrence. The data have been collected at University

Medical Centre, Institute of Oncology, Ljubljana (formerly

Yugoslavia) [118], and contains 201 cases of patients that

DUCH et al.: COMPUTATIONAL INTELLIGENCE METHODS FOR RULE-BASED DATA UNDERSTANDING 791

Table 4

Ljubljana Cancer Dataset, Tenfold Cross Validation and
Reclassification Accuracy Results, in Percentages

did not suffer from recurrence of cancer (70.3%) and 85 that

had recurrence (29.7%). There are nine attributes, including

age (nine bins), tumor size (12 bins), number of nodes

involved (13 bins, starting from 0–2), degree of malignancy

(1, 2, or 3), and information about menopause, which breast

and breast quadrant were affected, and whether radiation

treatment has been applied.

These data have been analyzed using a number of algo-

rithms (e.g., [126]–[131]). The results are rather poor, as

should be expected, since the data attributes are not very

informative. Several ML methods gave predictions that are

worse than those of the majority classifier (70.3%), as shown

in Table 4. In general, for small datasets, the more complex

the model, the worse the results in cross-validation tests.

Strong regularization of the C-MLP2LN, or strong

pruning of the SSV decision tree, generates most often a

single logical rule for the recurrence events.

IF involved

THEN recurrence ELSE no-recurrence.

This rule contains rather trivial knowledge (at least trivial for

the medical doctors): recurrence of the breast cancer is ex-

pected if the number of involved nodes is bigger than min-

imal (not in [0,2] bin) and the cancer is highly malignant

degree . Overall reclassification accuracy of this rule

is 76.2% and, since it is stable, reclassification results on the

whole data are identical to average cross-validation values.

Unfortunately, this rule covers only 37 cases, correctly recog-

nizing 27 out of 85 recurrence cases sensitivity ,

and covering incorrectly ten cases from the no-recurrence

class (precision of the rule is 73%). Perhaps after longer ob-

servation time, recurrence of cancer may also be expected

in these cases. The else condition has 95.0% specificity and

76.7% precision.

Such a simple rule cannot overfit the data, and may be

found in many (but not in all) cross-validation partitions.

A more complex set of three rules obtained using SSV

achieves 77.6% reclassification accuracy, but in the tenfold

Table 5

Results From the Tenfold Cross Validation and Reclassification for
the Wisconsin Breast Cancer Dataset

cross-validation tests, the average is only 73.5% (worst

result 0.8%, best 1.0%), i.e., only a few percent above

the default value, indicating that these rules are already too

complex and overfit the data.

A CART decision tree gives 77.1% in the leave-one-out

tests [126], but the tenfold cross-validation result quoted

in Table 4 is much lower, since the rules are unstable. For

small and noisy data, Breiman advocates generating many

bootstrap subsets of the data and averaging over all models

created on these subsets [50]. For the Ljubljana cancer data,

averaging over ten trees created on different subsets of the

data improves the results by about 3% at the expense of losing

interpretability. Instead of averaging over decision trees or

rule-based models, the best approach to find good rules is to

select the most frequent (and thus most stable) rule. Another

solution is to generate many alternative sets of rules with

similar accuracy (for example, a forest of decision trees

[43]) and ask the domain expert to select interesting rules.

It would be difficult to improve upon the results of these

simple rules, which are easily understood by anyone. We

doubt that there is any more information in this dataset.

Most methods give significantly lower accuracy using more

complex models. For example, an FSM with 20 fuzzy rules

(average for all cross-validation) gives results that are only

slightly better than the default accuracy. LERS [130], an

ML technique based on rough sets, gave after optimization

almost 100 “certain” rules and about the same number of

“possible” rules, achieving accuracy that is below the ma-

jority rate. Although it certainly is not the limit of accuracy

for rough set systems, it shows that rule-based systems may

also easily overfit the data. A large number of rules will

usually lead to poor generalization, and the insight into the

knowledge hidden in the data will be lost.

C. Wisconsin Breast Cancer Data

The Wisconsin breast cancer dataset [132] is one of the

favorite benchmark datasets for testing classifiers (Table 5).

Properties of cancer cells were collected for 699 cases, with

792 PROCEEDINGS OF THE IEEE, VOL. 92, NO. 5, MAY 2004

458 benign (65.5%) and 241 (34.5%) malignant cases of

cancer. They include estimation of the uniformity of cell size

and shape, epithelial cell size, and six other attributes, all

taking integer values ranging from one to ten. The problem

is to distinguish between malignant and benign cancer cells.

The simplest rule that has been found using SSV and

C-MLP2LN algorithms says the following.

IF Uniformity of Cell Size=1 or 2

THEN benign,

ELSE malignant.

This rule assigns 41 benign cases to malignant and 12 ma-

lignant cases to benign, achieving 92.4% accuracy (sensi-

tivity 91.0%, specificity 95.0%, and precision 97.2%). Two

more accurate rules for the malignant class were found using

the C-MLP2LN algorithm [11].

IF Uniformity of Cell Size Bland

Chromatin

THEN malignant, ELSE benign

These rules cover 215 malignant cases and ten benign cases

(precision 95.6%), achieving overall accuracy (including the

else condition) of 94.9%. Many other sets of rules of slightly

higher complexity may be discovered using the forest of de-

cision trees [43].

Using L-units in the C-MLP2LN network, four quite accu-

rate rules for the malignant class were created (their precision

is in parenthesis)

For simplicity, the names of the features are replaced here

with their numbers in the description of the data (is clump

thickness; see [118] for full description). Including the else

condition, these rules classify all data with 97.7% accuracy.

Only five malignant cases were misclassified as benign (FNs)

and 11 benign as malignant (FP). A fuzzified version of these

rules [using (23) corresponding to the Gaussian dispersion

of inputs equal 0.5] predicts with almost 100% confidence

that these cases belong to the wrong class. This is an indica-

tion that the dataset may contain a few misclassified cases.

Many other sets of rules have been discovered for this

dataset [11], [133]. An optimized set of five rules [using (16)]

for the malignant cancer cells gives

These rules classify only one benign vector as malignant

(and , the same vector), and the else condition for the

benign class makes six errors, giving 99.0% overall accuracy.

Fuzzy rules do not lead to higher accuracy, nor do they

offer a better insight into the structure of this data. The

NEFCLASS neurofuzzy system [119] with three trapezoidal

membership functions per input feature generated four

rules, and the “best per class” rule learning gave only 80.4%

correct answers. If only two membership functions per

feature are used, a much better reclassification accuracy of

96.5% is obtained using the same number of fuzzy rules. The

FSM neurofuzzy system generated 12 rules with Gaussian

membership functions, providing 97.8% on the training and

96.5% on the test part in tenfold cross-validation tests. Crisp

rules are more accurate and understandable in this case.

Creating a forest of heterogeneous decision trees [43], a

single rule with 97.3% accuracy (sensitivity and

specificity) has been found. This rule identified one

of the training vectors as a good prototype for the malignant

case

IF THEN

ELSE

where is the Euclidean distance from this vector.

Prototype-based rules are little known so far and computa-

tionally more costly to find, but certainly for some data, they

may be simple and accurate.

D. Diabetes

The “Pima Indian Diabetes” dataset [118] is also fre-

quently used as benchmark data [89], [134]–[136]. All

patients were females, at least 21 years old, of Pima Indian

heritage. Seven hundred sixty-eight cases have been col-

lected, 500 (65.1%) healthy and 268 (34.9%) with diabetes.

Eight attributes describe age, number of times pregnant,

body mass index, plasma glucose concentration, diastolic

blood pressure, diabetes pedigree function, and other med-

ical tests.

This dataset was used in the Statlog project [89], with

the best tenfold cross-validation accuracy around 77.7% ob-

tained by logistic discriminant analysis. Our estimation of

variance on cross-validation partitions is about 5%. His-

tograms overlap strongly and do not provide a useful starting

point for the definition of linguistic variables for this dataset,

but neural L-units and SSV separability criterion (8) provide

good cutoff points. Simplest rules use only two attributes, the

“plasma glucose concentration” (PGC) and the body mass

index (BMI), weight in kg height in m . A single rule ob-

tained from the C-MLP2LN network and SSV tree

IF THEN diabetes

ELSE healthy

has an accuracy rate of 74.9% and, since the rule is quite

stable, derived as the best for all partitions of data, reclas-

sification and cross-validation results are identical. Unfortu-

nately, this rule recognizes only 122 out of 268 cases with di-

DUCH et al.: COMPUTATIONAL INTELLIGENCE METHODS FOR RULE-BASED DATA UNDERSTANDING 793

Table 6

Results From the Tenfold Cross Validation and Reclassification for
the Pima Indian Diabetes Dataset; Accuracy in Percentages

abetes correctly (sensitivity , specificity).

Two rules found by the SSV decision tree

IF

THEN diabetes, ELSE healthy

achieve overall accuracy of 76.2%, with sensitivity

and specificity . On some cross-validation par-

titions, slightly different rules are found with the same

pruning or regularization parameters; therefore, the tenfold

cross-validation accuracy of these rules is 75.3 4.8%.

It is difficult to improve significantly upon these results

using fuzzy rules. For example, using an FSM neurofuzzy

system with about 50 Gaussian functions optimized for each

tenfold cross-validation partition gives 86.4% accuracy on

the training part, but only 73.7 3.1% on the test part. An in-

cremental network (IncNet [137]) using six to eight Gaussian

functions achieves 77.2 3.3% on the test part. Only slightly

better results are achieved using linear discrimination. Com-

parison of the results given in Table 6 is not complete, since

the standard deviation of most methods is rather high, and

differences of a few percent are not statistically signifcant. We

have recalculated some of the results using the Ghostminer

software package [138] to provide better comparison.

Statistical discrimination methods work quite well in this

case, indicating that a single hyperplane divides the classes

in an almost optimal way. Simple logical rules are also quite

competitive in this case, allowing for understanding of im-

portant factors that determine the diagnosis.

E. The Hypothyroid Data

This is a somewhat larger medical dataset [118], containing

screening tests for thyroid problems. The training data have

3772 medical records collected in the first year, and the test

Table 7

Results for the Hypothyroid Dataset

data have 3428 cases collected in the next year of the study.

Most people are healthy (92.47% in the training and 92.71%

in the test data), some suffer from primary hypothyroid condi-

tions (about 5%), and some from compensated hypothyroid

conditions (about 2.5%). Each record stores information

about person’s age, a number of binary indicators such as

sex, goiter, whether the person is on some medications, is

pregnant, had thyroid surgery, tumors, and the level of five

hormones, TSH, T3, TT4, T4U, and FTI. Altogether 21

attributes are provided, 15 binary and 6 continuous.

Four simple rules were found by the C-MLP2LN algo-

rithm [11], with 99.68% accuracy on the training set and

99.07% accuracy on the test set. For the primary hypothy-

roid class, two rules are sufficient (all values of continuous

features are multiplied here by 1000)

FTI TSH

FTI TSH T

For the compensated hypothyroid class, one rule is created

FTI TSH

on thyroxine no surgery no

and the third class (healthy) is covered by the else condition.

These rules give 99.68% accuracy on the training set and

99.07% error on the test set. Optimization of these rules leads

to a more accurate set (precision is given in parentheses, with

the same rule order as above)

FTI TSH

FTI TSH

T

FTI

TSH TT

on thyroxine no surgery no

The else condition for healthy cases has 100% precision

on the training set. These rules make only four errors on the

training set (99.89%) and 22 errors on the test set (99.36%).

The rules are conservative, assigning healthy persons (all

errors are very close to the decision border) to one of the

hypothyroid problem groups. Rules of similar quality have

been found by Weiss and Kapouleas [139] using a heuristic

version of the predictive value maximization (PVM) method

and using the CART decision tree. The differences among

PVM, CART, and C-MLP2LN for this dataset are rather

794 PROCEEDINGS OF THE IEEE, VOL. 92, NO. 5, MAY 2004

small (Table 7), but other methods, such as well-optimized

MLP (including evolutionary optimization of network

architecture [140]) or cascade correlation neural classifiers,

give results that are significantly worse. The poor results of

k-NN are especially worth noting, showing that in this case,

despite a large number of reference vectors, similarity-based

methods are not competitive. Ten fuzzy rules obtained using

FSM with Gaussian membership functions are also less

accurate than the three crisp rules presented above.

The C-MLP2LN solution seems to be close to optimal

[141]. Similar rules were found with the SSV decision tree

(again, is for the primary hypothyroid class, for the

compensated hypothyroid)

FTI TSH thyroid surgery no

FTI TSH TT

thyroid surgery no on thyroxine no

ELSE healthy.

The test set accuracy of these rules is 99.33%. A heteroge-

neous version of the SSV tree [43] found modified rule

(primary hypothyroid class)

involving Euclidean distance from vector number 2917. This

modified set of rules makes only six errors on the training

set (99.84%) and 21 errors on the test set (99.39% accu-

racy). These rules have been found with a fully automatic

rule-extraction approach.

The results are summarized in Table 7. It is worth noting

that the error of the best neural network classifiers is still

twice as large (1.5%) as the error made by these simple rules.

Forcing sharp division into three output classes creates the

need for sharp decision borders that fuzzy and neural systems

cannot easily provide. This may be the reason for excellent

results obtained by crisp logic sets of rules for medical data.

Thus, extracted rules can expose logical structure hidden in

the data.

F. Hepatobiliary Disorders

The next example shows that crisp logic rules are not

always successful but may be helpful to discover prob-

lems with the data. The hepatobiliary disorders dataset

contains medical records of 536 patients admitted to a

university-affiliated Tokyo-based hospital, with four types

of hepatobiliary disorders: alcoholic liver damage, primary

hepatoma, liver cirrhosis, and cholelithiasis. The records

include results of nine biochemical tests and the sex of the

patient.

These data have been used in several publications [116],

[142]–[144]. They have been divided into 373 training cases

(with class distribution of 83, 127, 89, and 74) and 163 test

cases (with class distribution of 33, 51, 35, and 44) [142].

Three fuzzy sets per each input were assigned according to

the recommendation of the medical experts. A fuzzy neural

network was constructed and trained until 100% correct an-

swers were obtained on the training set. The accuracy on the

test set varied from less than 60% to a peak of 75.5%. Al-

though we quote this result in Table 8, from the method-

ological point of view they are not correct, since the best

network has been selected by looking at the test set results.

Fuzzy rules equivalent to the fuzzy network were derived,

but their accuracy on the test set was not given. Mitra et al.

[143] used a knowledge-based fuzzy MLP system, achieving

test set accuracy between 33% and 66.3%, depending on the

actual fuzzy model used.

Simple rules created by decision trees or C-MLP2LN pro-

cedure have quite low accuracy, reaching only 50%–60%.

The C-MLP2LN algorithm found 49 crisp logic rules re-

sulted in 83.5% accuracy on the training and 63.2% on the

test set [11]. Optimizing the rules did not improve these re-

sults significantly. The best results were obtained from deci-

sion trees without any pruning, leading to about 100 rules and

68%–75% accuracy on the test set. The -nearest-neighbors

algorithm achieves best results for , also indicating that

decision borders are very complex and many logical rules

will be required.

Fuzzy rules derived using the FSM network, with Gaussian

as well as with triangular functions, gave an average accuracy

of 75.6%–75.8%. A neurofuzzy FSM network used over 100

neurons to achieve this. Rotating these functions (i.e., intro-

ducing a linear combination of inputs to the rules) did not im-

prove this accuracy. An attempt to find good prototypes was

made in [18], optimizing the selection of a distance function

(Canberra distance was selected, summing

contributions from all features), and using feature selec-

tion (four features were removed). The algorithm generated

57 prototypes (out of 373 training vectors), but the proto-

type-based rules achieved only 64.2% accuracy on the test

set. Tenfold cross-validation tests on the mixed data (training

plus test data) gave similar results.

Many methods give rather poor results on this dataset,

including variants of instance-based learning (IB2–IB4,

except for the IB1c, which is designed specifically to work

with continuous input data), statistical methods (Bayes,

LDA), and pattern recognition methods (LVQ). The best

results were obtained with the K method based on algo-

rithmic complexity optimization, giving 78.5% on the test

set, and the -nearest-neighbors with Manhattan or Canberra

distance function, , and selection of features, giving

83.4% accuracy (for details, see [18], [145]). Various results

for this dataset are summarized in Table 8.

For these data, rules in any form do not seem to work well,

indicating that classes overlap strongly. The best one can do

is to identify the cases that can be classified reliably, and

assign the remaining cases to pairs of classes [146]. The data

seem to be very noisy, but results are well above the default

(31% for the majority class in the test data). One may expect

such behavior of the classification methods for data with a

high degree of randomness, containing pairs of identical or

very similar vectors. For example, results of tests made on

the same patient taken at different times will produce very

similar vectors. Indeed, visual inspection of the data using

multidimensional scaling would show many paired vectors,

including 26 identical pairs of vectors in the training data.

DUCH et al.: COMPUTATIONAL INTELLIGENCE METHODS FOR RULE-BASED DATA UNDERSTANDING 795

Table 8

Results for the Hepatobiliary Disorders (Taken From [11]).
Accuracy in Percentages on the Training and Test Sets

Table 9

Summary of Results for the NASA Shuttle Dataset

G. NASA Shuttle

The shuttle dataset from NASA contains nine continuous

numerical attributes related to the positions of radiators in

the space shuttle [118]. There are 43 500 training vectors and

14 500 test vectors, divided into seven classes in a very un-

even way: in the training set, about 80% of vectors belong to

class 1, and only six examples are from class 6. These data

have been used in the Statlog project [89]; therefore, the re-

sults obtained with many classification systems are available

for comparison (Table 9).

An MLP network trained with backpropagation algorithm

reached an accuracy of 95.5% on the training set and 96.57%

on the test set. An RBF network works better here, reaching

98.60% on the test set. -nearest-neighbor is very slow in

this case, requiring all 43 500 training vectors as reference

for computing distances, reaching 99.56% on the test set, but

with feature selection improving to 99.95%.

An FSM network with rectangular membership functions

and an SSV decision tree have been used with great success

for these data [11]. Initializing the FSM network gives seven

nodes (one per class), already achieving 88% accuracy. An

optimized set of 17 crisp logic rules generated by an FSM

network makes only three errors on the training set (99.99%

correct), leaving eight vectors unclassified, and no errors on

the test set, leaving nine vectors unclassified (99.94% cor-

rect). For example, the rules for the third class are

After small Gaussian fuzzification of inputs (as described

in Section VII), only three errors and five unclassified vec-

tors are left for the training, and one error is made (with the

probability of correct class for this case being close to 50%)

and three vectors left unclassified for the test set.

The 17 rules created by SSV decision tree gave even better

results. They are 100% correct on the training data and make

only one error on the test set (accuracy equal to 99.99%).

A similar accuracy has been achieved by the NewID decison

tree (descendant of the ID3 tree, [89]), although in the Statlog

project, this tree has not been among the best three methods

for any other of the 22 datasets analyzed. Results of the C4.5

decision tree are significantly worse.

Logical rules provide most accurate and quite simple (two

to three rules per class) description of the NASA shuttle

dataset. Technical applications may quickly produce very

large number of data samples, but rule-extraction systems,

especially those based on decision trees, handle such data

efficiently.

H. Psychometry

The Minnesota multiphasic personality inventory (MMPI)

test is used frequently to evaluate psychological characteris-

tics reflecting social and personal maladjustment, including

psychological dysfunction. The test consists of 550 ques-

tions, with three possible answers (yes, no, do not know)

to each question. Hundreds of books and papers have been

written on the interpretation of this test (see [147]). Many

computerized versions of the MMPI test exist to assist in in-

formation acquisition, but evaluating the results is still done

by an experienced clinical psychologist. Since the number of

well-trained psychologists is limited, providing an automatic

support for psychological diagnosis is important. In fact, this

project was initiated by psychologists looking for computa-

tional tools that could speed up the process of initial evalua-

tion of questionnaires and support their diagnostic decisions.

Linear combinations of the raw MMPI test answers are

used to compute 14 real-valued coefficients, called psycho-

metric scales. These coefficients are often displayed as a

histogram (called a psychogram), allowing skilled psychol-

ogists to diagnose specific problems, such as neurosis, drug

addiction, or criminal tendencies. The first four coefficients

are used as control scales, measuring the willingness and

the consistency of answers, which determine the validity of

the analyzed test. The remaining coefficients are used for

the so-called clinical scales. These scales were developed

to measure tendencies toward hypochondria, depression,

hysteria, psychopathy, paranoia, schizophrenia, etc. A large

number of simplification schemes have been developed to

make the interpretation of psychograms easier. They may

range from rule-based systems derived from observations of

796 PROCEEDINGS OF THE IEEE, VOL. 92, NO. 5, MAY 2004

characteristic shapes of psychograms, Fisher discrimination

functions, or systems using a small number of coefficients,

such as the three Goldberg coefficients [147].

A rule-based system is most desirable because a detailed

interpretation, including a description of personality type,

may be associated with each diagnosis, depending on the

rule conditions. Two datasets were used in this study [113],

[148], one for women, with 1027 cases belonging to 27

classes (normal, neurotic, drug addicts, schizophrenics, psy-

chopaths, organic problems, malingerers, etc.) determined

by expert psychologists, and the second for men, with 1167

cases and 28 classes. The psychometric data came from

the Academic Psychological Clinic of Nicolaus Copernicus

University, Poland. Answers to the questionnaires have been

combined into 14 psychometric coefficients (scales). This

reduced data was analyzed by the C4.5 classification tree

[42] and the FSM neurofuzzy network to generate an initial

set of logical rules.

For the dataset containing tests for women, the C4.5

rules algorithm created 55 rules, achieving 93.0% correct

responses. Since it is impossible to estimate the accuracy of

the psychometric coefficients used as input values, Gaussian

uncertainties were introduced [as described in Section VII,

(22)]. Their optimal values (minimizing the number of

errors on the training set) were between 1% and 1.5% of the

feature range. This procedure allows for an evaluation of the

probabilities and improves C4.5 rules reclassification results

to 93.7%. An FSM network with rectangular membership

functions generated 69 rules, agreeing in 95.4% of the cases

with the diagnoses by human experts. Gaussian fuzzification

increases the accuracy of these rules to 97.6%. Larger input

uncertainties, up to 5% of the feature range, lead to roughly

the same number of classification errors as the original crisp

rules, but provide softer evaluation of possible diagnoses,

assigning nonzero probabilities to classes that were not

covered by the slightly fuzzified rules, and reminding the

experts of the possibility of alternative diagnoses.

For the dataset containing tests for men, the C4.5 rules

algorithm created 61 rules that gave 92.5% correct answers

(93.1% after fuzzification), while FSM generated 98 rules,

giving 95.9% accuracy, and after fuzzification 96.9%.

Statistical estimation of generalization by tenfold cross

validation gave 82%–85% correct answers with FSM (crisp

unoptimized rules) and 79%–84% correct answers with

C4.5. Fuzzification improves FSM cross-validation results

to 90%–92%. Results from the IncNet, a neural network

model [137], are significantly more accurate, reaching

93%–95% in cross-validation tests, compared with 99.2%

for classification of the whole dataset using the same model

[113].

There are two to three rules per class, each involving two to

nine attributes. For most classes, there were only a few errors,

and it is quite probable that they were due to the psychol-

ogists’ interpretation of the psychogram data. Two classes,

organic problems and schizophrenia, were especially diffi-

cult to diagnose, since their symptoms are easily confused

with each other. Schizophrenia patients may have symptoms

similar to that of neurosis, paranoia, drug addiction, and a

Fig. 10. Psychogram with rule conditions and fuzzified inputs
(psychometric scales) displayed. Control scales start with “?,” and
the clinical scales with Hp (hypochondria). The match between
rule conditions and actual values calculated from the MMPI test
is shown in percentages.

few other classes. Psychologists have assigned a detailed in-

terpretation to each of these rules. Fuzzification leads to ad-

ditional adjectives in verbal interpretation, such as “strong

tendencies” or “typical.” An expert system using these rules

should be evaluated by clinical psychologist in the near fu-

ture. A typical rule has the form

If Then Paranoia

where is the hysteria scale, is the schizophrenia scale,

and is the social introversion scale value. An example of

a psychogram with rule conditions shown as vertical bars is

shown in Fig. 10. The rule has five conditions and the actual

case is accepted by that rule with 71.8% probability, calcu-

lated with an assumption of Gaussian uncertainties shown on

the vertical bars for each condition. The rule condition for the

psychostenia (Ps) scale fits with only 72.2% to the measured

value, showing that this value is close to the boundary of lin-

guistic variable interval.

Although logical rules are not the most accurate on these

data, they certainly are most useful. It is not clear how ac-

curate the psychometric evaluation are and how to measure

the errors in such applications. The class labels for the cases

in the database have been provided by a single clinical psy-

chologist. If several independent diagnoses were made, the

psychometric decision support system could use a voting

committee approach to reach more reliable conclusions, or

could be trained with probabilities of the diagnoses.

I. Automobile Gas Mileage Prediction

Each of the previous examples concerned classification

problems, where the predicted class memberships were dis-

crete and crisp propositional logic rules worked rather well.

Rule-based description may also be used for approximation

problems, when variables that should be predicted are contin-

uous. Crips rule conditions with spline-type functions used as

conditions may be used for local approximation of complex

functions. In the automobile gas mileage prediction example

described below, fuzzy relational rules are extracted.

A common feature of the vast majority of data-driven

rule-based fuzzy models presented in the literature is the

partitioning of the input space, based on the assumption of

the independence between the data components. In many

cases, this assumption does not hold, because complex

DUCH et al.: COMPUTATIONAL INTELLIGENCE METHODS FOR RULE-BASED DATA UNDERSTANDING 797

systems, encountered in real environments, contain input at-

tributes that exhibit some degree of mutual dependency. An

implementation of a data-driven fuzzy model incorporating

dependencies between its input variables into the process of

approximate reasoning, and based on the idea of relational

rule partitioning [149], was proposed in [150]. In the context

of data understanding, exposing the dependencies offers

more insight into the data structure, thereby providing more

realistic representation of many complex systems [149].

Relational fuzzy rules proposed in [150] and [151] employ

the following linguistic proposition in order to express the

functional relationship of local, approximately linear, mutual

dependence between two variables:

is positively or negatively correlated with

(25)

where , are 1-D fuzzy sets on the universes of and

, respectively. An example of such a proposition is “en-

gine r/min around 2500 is positively correlated with vehicle

speed around 70 mi/h.”

In this proposition, “around 2500” and “around 70” are

fuzzy sets, and “engine r/min” and “vehicle speed” are lin-

guistic variables. For a given data instance, to have a high

similarity degree with such a defined linear prototype, it must

not only preserve the correlation pattern, but also be suf-

ficiently close to (2500; 70). For example, a data sample

(1500; 50) has a smaller degree of similarity than (2000;

60). Although both exhibit the same similarity to the corre-

lation pattern, the latter is more compatible with the notions

of “r/min around 2500” and “speed around 70 mi/h.” The

proposition (25) can be represented in fuzzy set theory by a

two-dimensional (2-D) fuzzy set.

An -dimensional fuzzy set (relation), where , can

be decomposed into 2-D sets (binary relations).

For large ’s, the inclusion of all possible propositions (25)

in a single rule would render the proposed approach useless.

However, the approximately linear character of the dis-

cussed relationships requires that only binary relations

be used, in order to adequately represent the considered

-dimensional fuzzy set. For more detailed explanation

of the theoretical aspects involved in the construction of

relational fuzzy rules, see [151].

The process of generating relational fuzzy rule-based data

explanations consists of the following two steps.

1) Initial rule generation.
Fuzzy -means clustering [152] is first performed to

find similar data groups (clusters). The locations and

shapes of the initial membership functions are esti-

mated using subsets of data whose membership to the

corresponding clusters is greater than some threshold

membership value. The shape parameters include

spreads as well as rotation angles. The shape parame-

ters of the membership functions allow for assessment

of strength of the potential linear relationships be-

tween the pairs of input variables. The estimated

membership functions are employed in the creation

of initial relational linguistic rules. The pairing of the

input variables in the rule antecedent is performed

using the available a priori knowledge. When no such

knowledge exists, the variables believed to be strongly

correlated with each other are paired.
2) Parameter tuning.

The parametric representation of the membership

functions, estimated from data, facilitates numerical

minimization of the approximation error. This mini-

mization can be performed using any first- or second-

order gradient-based optimization method. After this

minimization is completed, the refined membership

functions are translated into final relational linguistic

rules.

This simple example illustrates the idea of using rela-

tional fuzzy rules in the analysis of the relationship between

automobile fuel consumption and several of its characteris-

tics. The automobile gas mileage prediction is a nonlinear

regression problem of modeling fuel consumption based on

several vehicle characteristics. The following six numerical

attributes specify the automobile type: number of cylinders,

displacement, horsepower, weight, acceleration, and model

year. Experimental results on this data set were reported

in [153]. In the present experiment, instances with missing

values were removed, such that the data set contained 392

samples. This set was then divided randomly into training

and test subsets, each one containing 196 samples. In [153],

weight and model year were found to be the two most

significant input variables. Therefore, these two attributes

were used here, in order to keep the presentation simple and

to allow for a direct comparison of the obtained results with

those reported in [153].

The clustering, performed several times for different

cluster numbers, starting with , revealed no significant

improvement in the approximation quality when .

Therefore, was selected as the final number of

clusters. For each cluster, a set of points with membership

grade greater than 0.5 was found. Those points were then

used to compute the initial model parameters. The input

membership functions obtained by the clustering are shown

in Fig. 11 (top). Some positive correlation can be observed

between “low weight” and “new model year” and between

“average weight” and “more or less new model year.”

The prediction error of the initial model was root

mean square (RMS) (training data), and RMS

(testing data). Tuning the membership functions

for 50 epochs, using Levenberg–Marquardt optimization,

decreased the RMS errors to and ,

respectively. The prediction accuracy reported in [153] was

RMS and , using a model with

four rules. A fuzzy model with relational rules achieves a

comparable accuracy using three rules. Therefore, the rela-

tional rule-based fuzzy model compares well with the model

reported in [153] in terms of the numerical performance and

complexity.

One-dimensional and 2-D membership functions were

subsequently extracted from the model. The final 2-D input

membership functions are shown in Fig. 11 (bottom) and

their 1-D projections are shown in Fig. 12. The following

rules provide the linguistic description of the input–input

and input–output relationships represented by the data:

798 PROCEEDINGS OF THE IEEE, VOL. 92, NO. 5, MAY 2004

Fig. 11. Initial (top) and final (bottom) 2-D antecedent membership functions for the Auto-MPG
example.

: IF (“rather small weight” is moderately positively

correlated with “rather new model year”) THEN mi/gal

is high.

: IF (“small weight” is weakly positively correlated

with “more or less new model year”) THEN mi/gal is

average.

: IF (“more or less large weight” is moderately neg-

atively correlated with “old model year”) THEN mi/gal

is low.

In terms of the relationships between the output (mi/gal)

and the inputs (weight and model year), the conclusion that

can be drawn from the three rules above is that miles/gallon

correlates positively with model year, i.e., the newer the

car, the higher the miles/gallon, and it correlates negatively

with the weight, i.e., the heavier the car, the lower the

miles/gallon. The three rules divide the universe of the

output variable miles/gallon into three fuzzy classes: low,

average, and high. The additional knowledge derived from

the relational rule antecedents can be explained as follows:

• : The meaning of a moderate positive correla-

tion between “rather small weight” and “rather new

model year” is that cars built soon after 1979 with

weight slightly more than 2000 lb have the same high

miles/gallon as cars built immediately before 1979

with weight slightly less than 2000 miles/gallon.

• : Weak positive correlation can be regarded as a lack

of dependency between the weight and model year for

cars with medium miles/gallon.

• : Moderate negative correlation between “more or

less large weight” and “old model year” means that

cars built before 1974 with more than 3700 lb weight

have the same low miles/gallon as cars built after 1974,

weighing less than 3700 lb.

The numbers used in these explanations are based on the

membership functions depicted in Fig. 11 and Fig. 12.

X. SUMMARY, CHALLENGES, AND NEW DIRECTIONS OF

RESEARCH

Only one approach to data understanding has been re-

viewed here: the extraction of crisp and fuzzy logical rules

from data. Some of the algorithms presented above may also

be used to understand what black box classifiers (such as

neural networks) really do.

From a geometrical point of view, crisp propositional logic

rules provide hyperplanes that divide the feature space per-

DUCH et al.: COMPUTATIONAL INTELLIGENCE METHODS FOR RULE-BASED DATA UNDERSTANDING 799

Fig. 12. Final 1-D membership functions for the Auto-MPG example.

pendicular to the axes into areas with symbolic names cor-

responding to class labels. If the classes in the input space

are separated correctly with such hyperplanes, accurate log-

ical description of the data is possible and worthwhile. Oth-

erwise, the logical description of data converges slowly with

the number of linguistic variables, leading to complex sets

of rules that do not give any insight into the data structure.

Fuzzy logic may offer a better approximation with fewer

rules, including simple piecewise linear approximation rules

and more complex membership functions. However, fuzzy

rules based on triangular or Gaussian membership functions

provide oval decision borders that do not approximate cor-

rectly the sharp decision boundaries that are necessary for de-

scribing data with inherent logical structure. Although fuzzy

rules are symbolic, their comprehensibility is lower than that

of crisp rules. A good strategy is to start with extraction of

crisp rules first, try to use fuzzy rules if the results are not

satisfactory, and if the number of logical rules is too high or

the accuracy of classification is too low, switch to other clas-

sification methods.

Logical rules are often highly accurate; they are easy to

understand by experts in a given domain, and they may ex-

800 PROCEEDINGS OF THE IEEE, VOL. 92, NO. 5, MAY 2004

pose problems with the data itself. Artifacts introduced in

real-world datasets by various preprocessing methods may

not be obvious if statistical or pattern recognition methods of

classification are used. For example, replacing missing fea-

tures in the data by their averages for a given class leads to

good results in cross-validation tests, but for new data sam-

ples, of unknown class, the results may be disastrous. The

problem may remain obscured by a large number of internal

parameters of neural or other classifiers, but logical rules can

easily expose it. A medical database that contains several

data samples obtained from the same patient may seem easy

to classify. In extreme cases there may be no useful informa-

tion in data, but the nearest-neighbor methods may achieve

quite high accuracy, since the training set will contain cases

similar to the test cases (Section IX-F). Logical description

of such data will be complex and inaccurate, immediately

showing that there is a problem.

Although there are many methods that extract logical rules

from the data, we have stressed here the advantages of neural

networks. The black-box reputation they enjoy is due to their

ability to create complex decision borders, but with proper

regularization, they may also create decision borders that are

equivalent to logical rules. Neural networks are wide-margin

classifiers, placing their decision borders in an optimal way,

providing linguistic variables without the need for prior dis-

cretization, giving sets of rules of different complexity, de-

pending on the regularization parameters, and allowing for

the insertion of known rules into the network structure.

After extracting rules, various cost functions for addi-

tional optimization of linguistic variables may be used,

creating hierarchical sets of logical rules with a different

reliability–rejection rate, or a different specificity and sensi-

tivity. A great advantage of fuzzy logic is the soft evaluation

of probabilities of different classes, instead of binary yes or

no crisp logic answers. Fuzzification of the input values may

give the same probabilities as the Monte Carlo procedure

performed for input vectors distributed around measured

values. Thus, simple interpretation of crisp logical rules

is preserved, accuracy is improved by using additional

parameters for estimation of measurement uncertainties, and

gradient procedures, instead of costly global minimization

may be used. Gaussian uncertainties are equivalent to “soft

trapezoid” fuzzification of the rectangular crisp membership

functions. Sets of crisp logical rules may then be used to

calculate probabilities. Novel vectors that would either be

rejected or assigned to the default class are assigned to the

most probable class.

For several benchmark problems, interesting knowledge

in the form of a very simple logical description has been

discovered. Logical rules extracted from symbolic data (see

our mushroom example) have not been found by human ex-

perts before. Although many classifiers have been tried on

the Ljubljana cancer data, relatively high accuracy of a rule

containing rather trivial knowledge shows that there is no

more information in this data. One may argue that the ref-

erence accuracy for various problems should be calculated

using common sense knowledge, rather than the frequency

of the most common class. Sometimes, the simplest logical

description of the data may take a form of similarity to a pro-

totype case (see the Wisconsin cancer data).

For some problems, such as the hypothyroid (Sec-

tion IX-E) or NASA shuttle (Section IX-G), logical rules

proved to be more accurate than any other classification

method [145], including neural networks. Possible explana-

tions of this empirical observation are the following.

1) The inability of soft transfer functions (sigmoidal or

Gaussian) to represent sharp, rectangular boundaries

that may be necessary to separate two classes defined

by an intrinsic crisp logical rule.

2) The problem of finding a globally optimal solution of

the nonlinear optimization problem for neural classi-

fiers; in some cases global optimization method may

improve logical rules, but separating optimization of

linguistic variables and optimization of rules may still

lead to better solutions than gradient-based neural clas-

sifiers are able to find.

3) The problem of finding an optimal balance between

the flexibility of adaptive models, and the danger

of overfitting the data. Bayesian regularization

[107], based on weight decay priors [see (13)], im-

proves neural and statistical classification models by

smoothing decision borders. It has an adverse effect

if sharp decision borders are needed. Sharp decision

borders require large weights and thresholds, while

regularization terms decrease all weights. Logical

rules give much better control over the complexity

of the data representation and elimination of out-

liers—rules that cover only a few new data vectors are

identified easily and removed.

4) For medical data, labeling the patients as “sick” or

“healthy” introduces implicitly crisp logical rules.

Forced to make yes–no diagnoses, human experts may

fit the results of tests to specific intervals.

Extracting propositional logical rules from data is rela-

tively simple, but several challenges still remain. The whole

process of logical data description and creation of expert sys-

tems from extracted rules is still far from being automatic,

and perhaps will remain so for a long time. In a way, anal-

ysis of each data set is not just a new problem, but quite

frequently, it is a new type of problem. In bioinformatics, pre-

dictive models are useful, but it is the biological knowledge

that has the highest value. Some problems have more than

1000 features and only a few hundred, or even few dozen,

samples. If the original features are only weakly correlated

with the classes, feature selection methods may not be very

helpful. Aggregating input features is done by an MLP2LN

neural architecture (Fig. 4), but finding an optimal combina-

tion of many input features is difficult, so simpler aggrega-

tion methods are needed.

Automatic construction of hierarchical systems that can

deal with data containing many missing values is still diffi-

cult. Such need arises for example in medicine, where data

records frequently contain different features for different pa-

tients, since many tests are not performed if initial hypoth-

esis is confirmed. Combining these records into one dataset

with common attributes leads to a large number of missing

DUCH et al.: COMPUTATIONAL INTELLIGENCE METHODS FOR RULE-BASED DATA UNDERSTANDING 801

features. Representation of knowledge in terms of vectors in

feature spaces becomes too restrictive.

A vector space representation is also not sufficient to rep-

resent dynamic, evolving structural objects [154]. Bench-

mark and real-world data that require first-order logical rules

are not that common. It could be of great importance to for-

mulate clear challenges in these fields and provide more data

for empirical tests. Algorithms that treat objects of complex

structure already exist [25], [26], [155]. However, there is a

balance between generality and efficiency of algorithms for

analysis of complex objects, and much more work in this di-

rection is needed to find an optimal balance.

Going beyond propositional logic and simple linguistic

variables is of great importance for many applications, such

as chemistry, pharmacology, or bioinformatics. One example

of such relational rules has been provided here for an ap-

proximation problem (mileage prediction). In data mining,

relational data are frequently encountered, but extraction of

relational logical rules is still not that common. The UCI ML

repository [118] has played an important role in the empirical

analysis of learning algorithms, but it contains very few re-

lational databases. The lack of simple relational benchmark

problems, together with higher difficulty of such problems,

contributes to relatively low activity in this area.

Animal brains are very good at making sense data that are

important for their survival. An analysis of behavioral pat-

terns, starting from game-playing strategies to analysis of

patterns of human interactions requires novel approaches to

understanding data. Intelligent robots have to analyze and

understand such data, coming as signals from video cam-

eras, microphones and other data sources. Searching for rules

in multimedia data requires ingenious filters of relevant in-

formation and sophisticated data preprocessing techniques.

New types of data are being collected and created with a fast

pace. Computational intelligence methods are likely to play

an important role in these new fields.

ACKNOWLEDGMENT

The authors would like to thank Dr. A. Gaweda from the

School of Medicine, University of Louisville, Louisville, KY,

for his contribution to this paper.

REFERENCES

[1] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical

Learning. New York: Springer-Verlag, 2001.
[2] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2nd

ed. New York: Wiley, 2001.
[3] T. Oates and D. Jensen, “Large datasets lead to overly complex

models: An explanation and a solution,” in Proc. 4th Int. Conf.

Knowledge Discovery and Data Mining, 1998, pp. 294–298.
[4] R. Andrews, J. Diederich, and A. B. Tickle, “A survey and critique

of techniques for extracting rules from trained artificial neural net-
works,” Knowl.-Based Syst., vol. 8, pp. 373–389, 1995.

[5] R. Michalski, “A theory and methodology of inductive learning,”
Artif. Intell., vol. 20, pp. 111–161, 1983.

[6] I. Roth and V. Bruce, Perception and Representation, 2nd
ed. Maidenhead, U.K.: Open Univ. Press, 1995.

[7] J. Tukey, Exploratory Data Analysis. Menlo Park, CA: Addison-
Wesley, 1977.

[8] M. Jambu, Exploratory and Multivariate Data Analysis. Boston,
MA: Academic, 1991.

[9] W. Duch, “Coloring black boxes: Visualization of neural network
decisions,” in Proc. Int. Joint Conf. Neural Networks, vol. I, 2003,
pp. 1735–1740.

[10] M. Jordan and T. J. Sejnowski, Eds., Graphical Models: Foundations

of Neural Computation. Cambridge, MA: MIT Press, 2001.
[11] W. Duch, R. Adamczak, and K. Grabczewski, “A new methodology

of extraction, optimization and application of crisp and fuzzy logical
rules,” IEEE Trans. Neural Networks, vol. 12, pp. 277–306, Mar.
2001.

[12] T. Fawcett, “Using rule sets to maximize ROC performance,” in
Proc. IEEE Int. Conf. Data Mining, 2001, pp. 131–138.

[13] N. Kasabov, Foundations of Neural Networks, Fuzzy Systems and

Knowledge Engineering. Cambridge, MA: MIT Press, 1996.
[14] V. Kecman, Learning and Soft Computing. Cambridge, MA: MIT

Press, 2001.
[15] B. Kosko, Neural Networks and Fuzzy Systems. Engelwood Cliffs,

NJ: Prentice-Hall, 1992.
[16] L. A. Zadeh, “Fuzzy sets,” Inf. Control, vol. 8, pp. 338–353, 1965.
[17] T. Bilgiç and I. B. Türkşen, “Measurements of membership func-

tions: Theoretical and empirical work,” in Fundamentals of Fuzzy

Sets, D. Dubois and H. Prade, Eds. Boston, MA: Kluwer, 2000,
vol. 1, pp. 195–232.

[18] W. Duch and K. Grudziński, “Prototype based rules—new way to
understand the data,” in Proc. Int. Joint Conf. Neural Networks,
2001, pp. 1858–1863.

[19] Z. Pawlak, Rough Sets—Theoretical Aspects of Reasoning About

Data. Boston, MA: Kluver, 1991.
[20] S. K. Pal and A. Skowron, Rough Fuzzy Hybridization: A New Trend

in Decision-Making. New York: Springer-Verlag, 1999.
[21] L. I. Kuncheva, “How good are fuzzy if-then classifiers?,” IEEE

Trans. Syst., Man, Cybern. B, vol. 30, pp. 501–509, Aug. 2000.
[22] O. Sourina and S. H. Boey, “Geometric query model for scientific

and engineering databases,” Int. J. Inf. Technol., vol. 2, pp. 41–54,
1996.

[23] W. Duch and G. H. F. Diercksen, “Feature space mapping as a
universal adaptive system,” Comput. Phys. Commun., vol. 87, pp.
341–371, 1995.

[24] T. Mitchell, Machine Learning. New York: McGraw-Hill, 1997.
[25] A. F. Bowers, C. Giraud-Carrier, and J. W. Lloyd, “Classification

of individuals with complex structure,” in Proc. 17th Int. Conf. Ma-

chine Learning (ICML 2000), pp. 81–88.
[26] J. R. Quinlan and R. M. Cameron-Jones, “Induction of logic pro-

grams: FOIL and related systems,” New Gener. Comput., vol. 13,
pp. 287–312, 1995.

[27] W. E. Combs and J. E. Andrews, “Combinatorial rule explosion
eliminated by a fuzzy rule configuration,” IEEE Trans. Fuzzy Syst.,
vol. 6, pp. 1–11, Feb. 1998.

[28] M. K. Güven and K. M. Passino, “Avoiding exponential parameter
growth in fuzzy systems,” Trans. IEEE Fuzzy Syst., vol. 9, pp.
194–199, Feb. 2001.

[29] W. Duch, R. Adamczak, and K. Grabczewski, “Neural optimization
of linguistic variables and membership functions,” in Proc. Int. Conf.

Neural Information Processing, vol. 2, 1999, pp. 616–621.
[30] D. Hand, H. Mannila, and P. Smyth, Principles of Data Mining.

Cambridge, MA: MIT Press, 2001.
[31] D. Dougherty, R. Kohavi, and M. Sahami, “Supervised and unsu-

pervised discretization of continuous features,” presented at the Ma-
chine Learning 12th Int. Conf., San Mateo, CA, 1995.

[32] R. C. Holte, “Very simple classification rules perform well on most
commonly used datasets,” Mach. Learn., vol. 11, pp. 63–91, 1993.

[33] U. M. Fayyad and K. B. Irani, “Multi-interval discretization of con-
tinuous valued attributes for classification learning,” presented at the
13th Int. Joint Conf. Artificial Intelligence, San Mateo, CA, 1993.

[34] R. Kohavi and M. Sahami, “Error-based and entropy-based
discretization of continuous features,” in Proc. 2nd Int. Conf.

Knowledge Discovery and Data Mining, 1996, pp. 114–119.
[35] S. Monti and G. F. Cooper, “A latent variable model for multivariate

discretization,” presented at the Uncertainty 99: The 7th Int. Work-
shop Artificial Intelligence and Statistics, Fort Lauderdale, FL, 1999.

[36] H. Liu and R. Setiono, “Dimensionality reduction via discretiza-
tion,” Knowl.-Based Syst., vol. 9, pp. 67–72, 1996.

[37] K. Grabczewski and W. Duch, “A general purpose separability crite-
rion for classification systems,” in Proc. 4th Conf. Neural Networks

and Their Applications, 1999, pp. 203–208.
[38] W. Duch, R. Adamczak, and N. Jankowski, “Initialization of adap-

tive parameters in density networks,” in Proc. 3rd Conf. Neural Net-

works, 1997, pp. 99–104.

802 PROCEEDINGS OF THE IEEE, VOL. 92, NO. 5, MAY 2004

[39] , “New developments in the feature space mapping model,” in
Proc. 3rd Conf. Neural Networks, 1997, pp. 65–70.

[40] W. Duch and N. Jankowski, “A survey of neural transfer functions,”
Neural Comput. Surv., vol. 2, pp. 163–213, 1999.

[41] J. R. Quinlan, “Induction of decision trees,” Mach. Learn., vol. 1,
pp. 81–106, 1986.

[42] , C4.5: Programs for Machine Learning. San Mateo, CA:
Morgan Kaufman, 1993.

[43] K. Grabczewski and W. Duch, “Heterogenous forests of decision
trees,” in Lecture Notes in Computer Science, Artificial Neural

Networks. London, U.K.: Springer-Verlag, 2002, vol. 2415, pp.
504–509.

[44] C. E. Brodley and P. E. Utgoff, “Multivariate decision trees,” Mach.

Learn., vol. 19, pp. 45–77, 1995.
[45] D. Heath, S. Kasif, and S. Salzberg, “Learning oblique decision

trees,” in Proc. 13th Int. Joint Conf. Artificial Intelligence, 1993,
pp. 1002–1007.

[46] S. Murthy, S. Kasif, S. Salzberg, and R. Beigel, “OC1: Randomized
induction of oblique decision trees,” in Proc. AAAI Conf., 1993, pp.
322–327.

[47] O. L. Mangasarian, R. Setiono, and W. Wolberg, “Pattern recogni-
tion via linear programming: Theory and application to medical di-
agnosis,” in Large-Scale Numerical Optimization, T. F. Coleman and
Y. Li, Eds. Philadelphia, PA: SIAM, 1989, pp. 22–30.

[48] R. Setiono and H. Liu, “A connectionist approach to generating
oblique decision trees,” IEEE Trans. Syst., Man, Cybern. B, vol. 29,
pp. 440–444, June 1999.

[49] L. Breiman, J. H. Friedman, R. A. Oslhen, and C. J. Stone, Classifi-

cation and Regression Trees. Belmont, CA: Wadsworth, 1984.
[50] L. Breiman, “Bias-variance, regularization, instability and stabi-

lization,” in Neural Networks and Machine Learning, C. Bishop,
Ed. New York: Springer-Verlag, 1998.

[51] R. S. Michalski, “On the quasiminimal solution of the general
covering problem,” in Proc. 5th Int. Symp. Information Processing,
1969, pp. 125–128.

[52] R. S. Michalski and K. A. Kaufman, “Data mining and knowledge
discovery: A review of issues and a multistrategy approach,” in
Machine Learning and Data Mining: Methods and Applications,
R. S. Michalski, I. Bratko, and M. Kubat, Eds. New York: Wiley,
1997.

[53] P. Clark and T. Niblett, “The CN2 induction algorithm,” Mach.

Learn., vol. 3, pp. 261–283, 1988.
[54] W. W. Cohen, “Fast effective rule induction,” in Proc. 12th Int. Conf.

Machine Learning, 1995, pp. 115–123.
[55] T. M. Mitchell, “Generalization as search,” Artif. Intell., vol. 18, pp.

203–226, 1982.
[56] N. Lavrac and S. Dzeroski, Inductive Logic Programming:

Techniques and Applications. Chichester, U.K.: Ellis Horwood,
1994.

[57] H. Lu, R. Setiono, and H. Liu, “Effective data mining using neural
networks,” IEEE Trans. Knowledge Data Eng., vol. 8, pp. 957–961,
Dec. 1996.

[58] R. Setiono and H. Liu, “Symbolic representation of neural net-
works,” IEEE Computer, vol. 29, pp. 71–77, Mar. 1996.

[59] R. Setiono, “Extracting M -of-N rules from trained neural net-
works,” IEEE Trans. Neural Networks, vol. 11, pp. 306–512, Mar.
2001.

[60] R. Setiono and W. K. Leow, “FERNN: An algorithm for fast extrac-
tion of rules from neural networks,” Appl. Intel., vol. 12, pp. 15–25,
2000.

[61] A. B. Tickle, R. Andrews, M. Golea, and J. Diederich, “The truth will
come to light: Directions and challenges in extracting the knowledge
embedded within trained artificial neural networks,” IEEE Trans.

Neural Networks, vol. 9, pp. 1057–1068, Nov. 1998.
[62] K. Saito and R. Nakano, “Medical diagnostic expert system based

on PDP model,” in Proc. IEEE Int. Conf. Neural Networks, vol. 1,
1988, pp. 255–262.

[63] S. Gallant, Neural Network Learning and Expert Systems. Cam-
bridge, MA: MIT Press, 1993.

[64] S. Thrun, “Extracting rules from artifcial neural networks with
distributed representations,” in Advances in Neural Information

Processing Systems 7, G. Tesauro, D. Touretzky, and T. Leen,
Eds. Cambridge, MA: MIT Press, 1995.

[65] C. A. Jensen, R. D. Reed, R. J. Marks II, M. A. El-Sharkawi, J.-B.
Jung, R. T. Miyamoto, G. M. Anderson, and C. J. Eggen, “Inversion
of feedforward neural networks: Algorithms and applications,” Proc.

IEEE, vol. 87, pp. 1536–1549, Sept. 1999.

[66] C. Hernández-Espinosa, M. Fernández Redondo, and M.
Ortiz-Gómez, “Inversion of a neural network via interval arithmetic
for rule extraction,” in Lecture Notes in Computer Science, Artificial

Neural Networks and Neural Information Processing, 2003, vol.
2714, pp. 670–677.

[67] S. H. Huang and H. Xing, “Extract intelligible and concise fuzzy
rules from neural networks,” Fuzzy Sets Syst., vol. 132, pp. 233–243,
2002.

[68] L. M. Fu, “Rule learning by searching on adapted nets,” in Proc. 9th

Nat. Conf. Artificial Intelligence, 1991, pp. 590–595.
[69] , “Knowledge-based connectionism for revising domain

theories,” IEEE Trans. Syst., Man, Cybern., vol. 23, pp. 173–182,
Jan.–Feb. 1993.

[70] , Neural Networks in Computer Intelligence. New York: Mc-
Graw-Hill, 1994.

[71] , “Rule generation from neural networks,” IEEE Trans. Syst.,

Man, Cybern., vol. 28, pp. 1114–1124, Aug. 1994.
[72] R. Setiono, “Extracting rules from neural networks by pruning and

hidden-unit splitting,” Neural Comput., vol. 9, no. 1, pp. 205–225,
1997.

[73] I. K. Sethi and J. H. Yoo, “Symbolic approximation of feedforward
neural networks,” in Pattern Recognition in Practice, E. S. Gelsema
and L. N. Kanal, Eds. New York: North-Holland, 1994, vol. 4.

[74] G. Towell and J. Shavlik, “Extracting refined rules from knowledge-
based neural networks,” Mach. Learn., vol. 13, pp. 71–101, 1993.

[75] Y. Hayashi, “A neural expert system with automated extraction of
fuzzy if-then rules,” in Advances in Neural Information Processing

Systems, R. Lippmann, J. Moody, and D. Touretzky, Eds. San
Mateo, CA: Morgan Kaufmann, 1991, vol. 3, pp. 578–584.

[76] G. Towell and J. Shavlik, “Knowledge-based artificial neural net-
works,” Artif. Intell., vol. 70, pp. 119–165, 1994.

[77] C. McMillan, M. C. Mozer, and P. Smolensky, “Rule induction
through integrated symbolic and subsymbolic processing,” in
Advances in Neural Information Processing Systems, J. Moody,
S. Hanson, and R. Lippmann, Eds. San Mateo, CA: Morgan
Kaufmann, 1992, vol. 4, pp. 969–976.

[78] J. A. Alexander and M. C. Mozer, “Template-based algorithms for
connectionist rule extraction,” in Advances in Neural Information

Processing Systems, G. Tesauro, D. Touretzky, and T. Leen,
Eds. Cambridge, MA: MIT Press, 1995, vol. 7, pp. 609–616.

[79] R. Setiono and H. Liu, “Understanding neural networks via rule ex-
traction,” in Proc. 14th Int. Joint Conf. Artificial Intelligence, 1995,
pp. 480–485.

[80] M. Ishikawa, “Rule extraction by succesive regularization,” in Proc.

1996 IEEE Int. Conf. Neural Networks, 1996, pp. 1139–1143.
[81] P. Géczy and S. Usui, “Rule extraction from trained neural net-

works,” Behaviormetrika, vol. 26, pp. 89–106, 1999.
[82] W. Duch, R. Adamczak, and K. Grabczewski. (1996) Extraction of

logical rules from training data using backpropagation networks.

Proc. 1st Online Workshop Soft Computing [Online], pp. 25–30.
Available: http://www.bioele.nuee.nagoya-u.ac.jp/wsc1/

[83] M. W. Craven and J. W. Shavlik, “Using sampling and queries to
extract rules from trained neural networks,” in Proc. 11th Int. Conf.

Machine Learning, 1994, pp. 37–45.
[84] E. Pop, R. Hayward, and J. Diederich, “RULENEG: Extracting

rules from a trained ANN by stepwise negation,” Neurocomputing
Res. Centre, Queensland Univ. Technol., Brisbane, Qld., Aust.,
QUT NRC Tech. Rep., 1994.

[85] S. Sestito and T. Dillon, Automated Knowledge Acquisition. Upper
Saddle River, NJ: Prentice-Hall, 1994.

[86] M. J. Healy and T. P. Caudell, “Acquiring rule sets as a product of
learning in a logical neural architecture,” IEEE Trans. Neural Net-

works, vol. 8, pp. 461–474, May 1997.
[87] A.-H. Tan, “Rule learning and extraction with self-organizing neural

networks,” in Proc. 1993 Connectionist Models Summer School, pp.
192–199.

[88] A. Ultsch, “Knowledge extraction from self-organizing neural
networks,” in Information and Classification, O. Opitz, B. Lausen,
and R. Klar, Eds. Berlin, Germany: Springer-Verlag, 1993, pp.
301–306.

[89] D. Michie, D. J. Spiegelhalter, and C. C. Taylor, Machine Learning,

Neural and Statistical Classification. London, U.K.: Ellis Hor-
wood, 1994.

[90] A. B. Tickle, M. Orlowski, and J. Diederich, “DEDEC: Decision
detection by rule extraction from neural networks,” Neurocomputing
Res. Centre, Queensland Univ. Technol., Brisbane, Qld., Aust., QUT
NRC Tech. Rep., 1994.

DUCH et al.: COMPUTATIONAL INTELLIGENCE METHODS FOR RULE-BASED DATA UNDERSTANDING 803

[91] M. W. Craven and J. W. Shavlik, “Extracting tree-structured
representations of trained networks,” in Advances in Neural

Information Processing Systems, D. Touretzky, M. Mozer, and
M. Hasselmo, Eds. Cambridge, MA: MIT Press, 1996, vol. 8,
pp. 24–30.

[92] J.-S. R. Jang and C. T. Sun, “Functional equivalence between
radial basis function neural networks and fuzzy inference sys-
tems,” IEEE Trans. Neural Networks, vol. 4, pp. 156–158, Jan.
1993.

[93] V. Tresp, J. Hollatz, and S. Ahmad, “Network structuring and
training using Rule-based knowledge,” in Advances in Neural

Information Processing Systems, J. Moody, S. Hanson, and R.
Lippmann, Eds. San Mateo, CA: Morgan Kaufmann, 1993, vol.
4, pp. 871–878.

[94] W. Duch, “Floating Gaussian mapping: A new model of adaptive
systems,” Neural Netw. World, vol. 4, pp. 645–654, 1994.

[95] R. Andrews and S. Geva, “Rules and local function networks,”
presented at the Rule Extraction From Trained Artificial Neural
Networks Workshop, R. Andrews and J. Diederich, Eds., Brighton,
U.K., 1996.

[96] , “Refining expert knowledge with an artificial neural network,”
in Proc. Int. Conf. Neural Information Processing, vol. 2, 1997, pp.
847–850.

[97] , “Rule extraction from a constrained error back propagation
MLP,” in Proc. 5th Aust. Conf. Neural Networks, 1994, pp. 9–12.

[98] P. Langley, H. A. Simon, G. L. Bradshaw, and J. M. Zytkow, Sci-

entific Discovery: Computational Explorations of the Creative Pro-

cesses. Cambridge, MA: MIT Press, 1987.
[99] J. J. Mahoney and R. J. Mooney, “Combining neural and symbolic

learning to revise probabilistic rule bases,” in Advances in Neural

Information Processing Systems, S. J. Hanson, J. D. Cowan, and C.
L. Giles, Eds. San Mateo, CA: Morgan Kaufmann, 1993, vol. 5,
pp. 107–114.

[100] D. Nauck, F. Klawonn, and R. Kruse, Foundations of Neuro-Fuzzy

Systems. Chichester, U.K.: Wiley, 1997.
[101] D. Nauck, U. Nauck, and R. Kruse, “Generating classification

rules with the neuro-fuzzy system NEFCLASS,” presented at the
Biennial Conf. North Amer. Fuzzy Information Processing Soc.
(NAFIPS’96), Berkeley, CA.

[102] S. K. Halgamuge and M. Glesner, “Neural networks in designing
fuzzy systems for real world applications,” Fuzzy Sets Syst., vol. 65,
pp. 1–12, 1994.

[103] J. M. Żurada and A. Łozowski, “Generating linguistic rules from
data using neuro-fuzzy framework,” in Proc. 4th Int. Conf. Soft Com-

puting, vol. 2, 1996, pp. 618–621.
[104] H. Surmann and M. Maniadakis, “Learning feed-forward and recur-

rent fuzzy systems: A genetic approach,” J. Syst. Architect., vol. 47,
pp. 649–662, 2001.

[105] W. Duch, R. Adamczak, and K. Grabczewski, “Extraction of logical
rules from backpropagation networks,” Neural Process. Lett., vol. 7,
pp. 1–9, 1998.

[106] J. M. Żurada, Introduction to Artificial Neural Systems. St. Paul,
MN: West, 1992.

[107] D. J. MacKay, “A practical Bayesian framework for backpropaga-
tion networks,” Neural Comput., vol. 4, pp. 448–472, 1992.

[108] C. Bishop, Neural Networks for Pattern Recognition. Oxford,
U.K.: Clarendon Press, 1995.

[109] W. Duch and K. Grabczewski, “Searching for optimal MLP,” in
Proc. 4th Conf. Neural Networks and Their Applications, 1999, pp.
65–70.

[110] M. Kordos and W. Duch, “Multilayer perceptron trained with
numerical gradient,” in Proc. Int. Conf. Artificial Neural Networks

(ICANN) and Int. Conf. Neural Information Processing (ICONIP),
2003, pp. 106–109.

[111] , “Search-based training for logical rule extraction by multi-
layer perceptron,” in Proc. Int. Conf. Artificial Neural Networks

(ICANN) and Int. Conf. Neural Information Processing (ICONIP),
2003, pp. 86–89.

[112] L. Kanal and V. Kumar, Eds., Search in Artificial Intelligence. New
York: Springer-Verlag, 1988.

[113] W. Duch, N. Jankowski, K. Grabczewski, and R. Adamczak, “Opti-
mization and interpretation of rule-based classifiers,” in Advances

in Soft Computing. Berlin, Germany: Physica-Verlag, 2000, pp.
1–13.

[114] W. Duch, R. Adamczak, and K. Grabczewski, “Optimization of log-

ical rules derived by neural procedures,” presented at the Int. Joint

Conf. Neural Networks, Washington, DC, 1999, paper no. 741.

[115] J. A. Hanley and B. J. McNeil, “The meaning and use of the area

under a receiver operating characteristic (ROC) curve,” Radiology,

vol. 143, pp. 29–36, 1982.

[116] S. K. Pal and S. Mitra, Neuro-Fuzzy Pattern Recognition. New

York: Wiley, 1999.

[117] R. J. Marks, II, S. Oh, P. Arabshahi, T. P. Caudell, J. J. Choi, and

B. J. Song, “Steepest descent adaptation of min-max fuzzy if-then

rules,” presented at the Int. Joint Conf. Neural Networks, Beijing,

China, 1992.

[118] UCI repository of machine learning databases, J. Mertz and P. M.

Murphy. [Online]. Available: http://www.ics.uci.edu/pub/machine-

learning-data-bases

[119] D. Nauck, U. Nauck, and R. Kruse, “Generating classification

rules with the neuro-fuzzy system NEFCLASS,” presented at the

Biennial Conf. North Amer. Fuzzy Information Processing Soc.

(NAFIPS’96), Berkeley, CA.

[120] S. K. Halgamuge and M. Glesner, “Neural networks in designing

fuzzy systems for real world applications,” Fuzzy Sets Syst., vol. 65,

pp. 1–12, 1994.

[121] C. Browne, I. Düntsch, and G. Gediga, “IRIS revisited: A com-

parison of discriminant and enhanced rough set data analysis,” in

Rough Sets in Knowledge Discovery, L. Polkowski and A. Skowron,

Eds. Heidelberg, Germany: Physica-Verlag, 1998, vol. 2, pp.

345–368.

[122] I. Jagielska, C. Matthews, and T. Whitfort, “The application of neural

networks, fuzzy logic, genetic algorithms and rough sets to auto-

mated knowledge acquisition,” in Proc. 4th Int. Conf. Soft Com-

puting, vol. 2, 1996, pp. 565–569.

[123] N. Kasabov, R. Kozma, and W. Duch, “Rule extraction from lin-

guistic rule networks and from fuzzy neural networks: Propositional

versus fuzzy rules,” in Proc. 4th Int. Conf. Neural Networks and

Their Applications, 1998, pp. 403–406.

[124] J. Teghem and M. Benjelloun, “Some experiments to compare

rough sets theory and ordinal statistical methods,” in Intelligent

Decision Support: Handbook of Applications and Advances of

Rough Set Theory, R. Słowiński, Ed. Dordrecht, The Netherlands:

Kluwer, 1992, vol. 11, System Theory, Knowledge Engineering and

Problem Solving, pp. 267–284.

[125] W. Duch, R. Adamczak, K. Grabczewski, M. Ishikawa, and

H. Ueda, “Extraction of crisp logical rules using constrained

backpropagation networks—comparison of two new approaches,”
in Proc. Eur. Symp. Artificial Neural Networks (ESANN’97), pp.

109–114.

[126] S. M. Weiss and C. A. Kulikowski, Computer Systems That

Learn. San Mateo, CA: Morgan Kauffman, 1990.

[127] R. S. Michalski, I. Mozetic, J. Hong, and N. Lavrac, “The multi-pur-

pose incremental learning system AQ15 and its testing application

to three medical domains,” in Proc. 5th Nat. Conf. Artificial Intelli-

gence, 1986, pp. 1041–1045.

[128] M. Tan and L. Eshelman, “Using weighted networks to represent

classification knowledge in noisy domains,” in Proc. 5th Int. Conf.

Machine Learning, 1988, pp. 121–134.

[129] G. Cestnik, I. Konenenko, and I. Bratko, “Assistant-86: A knowl-

edge-elicitation tool for sophisticated users,” in Progress in Machine

Learning, I. Bratko and N. Lavrac, Eds. Wilmslow, U.K.: Sigma,

1987, pp. 31–45.

[130] J. W. Grzymała-Busse and T. Soe, “Inducing simpler rules from re-

duced data,” in Proc. Workshop Intelligent Information Systems VII,

1998, pp. 371–378.

[131] F. Zarndt, “A comprehensive case study: An examination of ma-

chine learning and connectionist algorithms,” M.Sc. Thesis, Dept.

Comput. Sci., Brigham Young Univ., Provo, UT, 1995.

[132] K. P. Bennett and O. L. Mangasarian, “Robust linear programming

discrimination of two linearly inseparable sets,” Optim. Methods

Softw., vol. 1, pp. 23–34, 1992.

[133] R. Setiono, “Generating concise and accurate classification rules for

breast cancer diagnosis,” Artif. Intell. Med., vol. 18, pp. 205–219,

2000.

[134] B. Ster and A. Dobnikar et al., “Neural networks in medical

diagnosis: Comparison with other methods,” in Proc. Int. Conf.

EANN’96, A. Bulsari et al., Eds., pp. 427–430.

[135] N. Shang and L. Breiman, “Distribution based trees are more ac-

curate,” in Proc. Int. Conf. Neural Information Processing, vol. 1,

1996, pp. 133–138.

804 PROCEEDINGS OF THE IEEE, VOL. 92, NO. 5, MAY 2004

[136] B. D. Ripley, Pattern Recognition and Neural Networks. Cam-

bridge, U.K.: Cambridge Univ. Press, 1996.

[137] N. Jankowski and V. Kadirkamanathan, “Statistical control of

RBF-like networks for classification,” in Proc. 7th Int. Conf.

Artificial Neural Networks, 1997, pp. 385–390.

[138] Ghostminer software, W. Duch, N. Jankowski, K.

Grabczewski, A. Naud, and R. Adamczak. [Online]. Available:

http://www.fqspl.com.pl/ghostminer/

[139] S. M. Weiss and I. Kapouleas, “An empirical comparison of

pattern recognition, neural nets and machine learning classification

methods,” in Readings in Machine Learning, J. W. Shavlik and T.

G. Dietterich, Eds. San Mateo, CA: Morgan Kauffman, 1990.

[140] W. Schiffman, M. Joost, and R. Werner, “Comparison of optimized

backpropagation algorithms,” in Proc. Eur. Symp. Artificial Neural

Networks, 1993, pp. 97–104.

[141] W. Duch, R. Adamczak, K. Grabczewski, and G. Żal, “Hybrid

neural-global minimization method of logical rule extraction,” Int.

J. Adv. Comput. Intell., vol. 3, pp. 348–356, 1999.

[142] Y. Hayashi, A. Imura, and K. Yoshida, “Fuzzy neural expert system

and its application to medical diagnosis,” in Proc. 8th Int. Congr.

Cybernetics and Systems, 1990, pp. 54–61.

[143] S. Mitra, R. De, and S. Pal, “Knowledge based fuzzy MLP for clas-

sification and rule generation,” IEEE Trans. Neural Networks, vol.

8, pp. 1338–1350, Nov. 1997.

[144] Y. Hayashi, R. Setiono, and K. Yoshida, “A comparison between

two neural network rule extraction techniques for the diagnosis of

hepatobiliary disorders,” Artif. Intell. Med., vol. 20, pp. 205–216,

2000.

[145] W. Duch, R. Adamczak, K. Grabczewski, G. Żal, and Y. Hayashi,

“Fuzzy and crisp logical rule extraction methods in application to

medical data,” in Fuzzy Systems in Medicine, P. S. Szczepaniak,

P. J. G. Lisboa, and J. Kacprzyk, Eds. Berlin, Germany: Physica-

Verlag, 2000, pp. 593–616.

[146] W. Duch, R. Adamczak, and Y. Hayashi, “Neural eliminators and

classifiers,” in Proc. 7th Int. Conf. Neural Information Processing

(ICONIP 2000), S.-Y. Lee, Ed., pp. 1029–1034.

[147] J. N. Butcher and S. V. Rouse, “Personality: Individual differences

and clinical assessment,” Annu. Rev. Psychol., vol. 47, pp. 87–111,

1996.

[148] W. Duch, R. Adamczak, and K. Grabczewski, “Neural methods for

analysis of psychometric data,” in Proc. Int. Conf. Engineering Ap-

plications of Neural Networks (EANN’99), pp. 45–50.

[149] R. R. Yager and D. Filev, “Relational partitioning of fuzzy rules,”
Fuzzy Sets Syst., vol. 80, pp. 57–69, 1996.

[150] A. E. Gaweda and J. M. Zurada, “Fuzzy neural network with

relational fuzzy rules,” in Proc. Int. Joint Conf. Neural Networks

(IJCNN’00), vol. 3, pp. 1–2.

[151] , “Data-driven linguistic modeling using relational fuzzy rules,”
IEEE Trans. Fuzzy Syst., vol. 11, pp. 121–134, Feb. 2003.

[152] J. C. Bezdek, Pattern Recognition With Fuzzy Objective Function

Algorithms. New York: Plenum, 1981.

[153] J.-S. R. Jang, C.-T. Sun, and E. Mizutani, Neuro-Fuzzy and Soft-

Computing. Upper Saddle River, NJ: Prentice-Hall, 1997.

[154] L. Goldfarb, J. Abela, V. C. Bhavsar, and V. N. Kamat, “Can a vector

space based learning model discover inductive class generalization

in a symbolic environment?,” Pattern Recognit. Lett., vol. 16, pp.

719–726, 1995.

[155] P. Frasconi, M. Gori, and A. Sperduti, “A general framework for

adaptive processing of data structures,” IEEE Trans. Neural Net-

works, vol. 9, pp. 768–786, Sept. 1998.

[156] R. Hayward, C. Ho-Stuart, J. Diederich, and E. Pop, “RULENEG:

Extracting rules from a trained ANN by stepwise negation,” Neuro-

computing Res. Centre, Queensland Univ. Technol., Brisbane, Qld.,

Aust., QUT NRC Tech. Rep., 1996.

Włodzisław Duch received the M.Sc. degree in
physics, the Ph.D. degree in quantum chemistry,
and the D.Sc. degree from the Nicolaus Coper-
nicus University, Toruń, Poland, in 1977, in 1980
in 1986 .

From 1980 to 1982, he was a Postdoctoral
Fellow at the University of Southern California,
Los Angeles. From 1985 to 1987, he was an
Alexander von Humboldt Fellow with the Max
Planck Institute of Astrophysics, Munich, Ger-
many. From 1986 to 1997, he was an Associate

Professor at the Nicolaus Copernicus University, and in 1997 was granted
the title of full Professor. He is currently Head of the Department of
Informatics, an independent, interdisciplinary unit within the Faculty of
Physics and Astronomy, Nicolaus Copernicus University. He has also
been a Visiting Professor in Japan, Canada, Germany, France, and the
United States. In 2003, he spent his sabbatical at Nanyang Technological
University, Singapore. He has written three books and over 250 papers,
and coauthored and edited four books. He is on the Editorial Boards of
ten scientific journals. His previous research interests were computational
methods of physics and chemistry through foundations of physics. His
current research interests are artificial intelligence, neural networks, and
cognitive science.

Rudy Setiono (Senior Member, IEEE) received
the B.S. degree from Eastern Michigan Uni-
versity, Ypsilanti, in 1984 and the M.Sc and
Ph.D. degrees from the University of Wisconsin,
Madison, in 1986 and 1990, respectively.

Since 1990, he has been with the National
University of Singapore, and he is currently
an Associate Professor in the School of Com-
puting. His research interests include linear
programming, nonlinear optimization, and
neural networks. He is a and

Dr. Setiono is an Associate Editor of IEEE TRANSACTIONS ON NEURAL

NETWORKS.

Jacek M. Żurada (Fellow, IEEE) is the Samuel
T. Fife Alumni Professor of Electrical and Com-
puter Engineering at the University of Louisville,
Louisville, KY. He was the Coeditor of Knowl-

edge-Based Neurocomputing (Cambridge, MA:
MIT Press, 2000), the author of Introduction to

Artificial Neural Systems (St. Paul, MN: West,
1992), a contributor to the 1994 and 1995 vol-
umes of Progress in Neural Networks (Norwood,
NJ: Ablex), and Coeditor of Computational

Intelligence: Imitating Life (Piscataway, NJ:
IEEE Press, 1994). He is an Associate Editor of Neurocomputing.

Dr. Żurada has received a number of awards, including the 1993
Presidential Award for Research, Scholarship and Creative Activity. He
received the University of Louisville President’s Distinguished Service
Award for Service to the Profession in 2001. In 2003, he was conferred
the Title of the Professor by the President of Poland. He is the President
of the IEEE Neural Networks Society for 2004–2005 and a Distinguished
Speaker of the society. From 1998 to 2003, he was the Editor-in-Chief of
IEEE TRANSACTIONS ON NEURAL NETWORKS. He was also an Associate
Editor of IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, Parts I and II,
and a Member of the Editorial Board of the PROCEEDINGS OF THE IEEE.

DUCH et al.: COMPUTATIONAL INTELLIGENCE METHODS FOR RULE-BASED DATA UNDERSTANDING 805

