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Abstract—The modeling of solar radiation for forecasting its
availability is a key tool for managing photovoltaic (PV) plants
and, hence, is of primary importance for energy production in
a smart grid scenario. However, the variability of the weather
phenomena is an unavoidable obstacle in the prediction of the
energy produced by the solar radiation conversion. The use of
the data collected in the past can be useful to capture the daily
and seasonal variability, while measurement of the recent past
can be exploited to provide a short term prediction. It is well
known that a good measurement of the solar radiation requires
not only a high class radiometer but even a correct management
of the instrument. In order to reduce the cost related to the
management of the monitoring apparatus, a solution could be
to evaluate the PV plant performance using data collected by
public weather station installed near the plant.

In this paper, two computational intelligence models are
challenged; two different ground global horizontal radiation
dataset have been used: the first one is based on the data collected
by a public weather station located in a site different to that one
of the plant, the second one, used to validate the results, is based
on data collected by a local station.

I. INTRODUCTION

Nowadays, in order to activate actions related to the respect

of Kyoto Protocol, some energetic scenarios are becoming

strategic and are object of study. The rational use of the

energetic resources, the study of the environmental impact

of pollutant emissions and the exhaustion of non-renewable

resources put the accent on sustainable energy production from

renewable sources. Photovoltaic (PV) systems can be consid-

ered one of the most widespread solutions to the generation

from renewable resources that are able to guarantee a low

environmental impact [1].

Today a large variety of photovoltaic generators, from low

power devices to large power plants, are in operation all over

the world. The most common applications of PV systems are

developed in industrial and domestic contexts. For this reason,

the penetration of photovoltaic sources as distributed grid-

connected power generation systems has increased dramati-

cally in the last decades.

The solar radiation is one of the most available energy

resources and the photovoltaic power conversion is an in-

teresting exploitation of this energy. Despite the practically

unlimited availability, the direct conversion in electric energy

is still characterized by a relatively low efficiency and high

cost. For this reason relevant efforts are performed in the

research fields and in the manufacturing processes in order

to achieve efficiency levels as high as possible. Like every

complex system, the efficiency of a photovoltaic plant results

from the combination of the efficiency of each component and

the bottle neck is the low efficiency of the panel.

In order to guarantee the correct level of efficiency, the

knowledge of solar radiation is mandatory. In fact, its knowl-

edge allows to realize two tasks that are very important in

a smart grid scenario. The first one, is represented by the

capability of the model system to predict the energy production

[2] and, the second one is represented by the capability of the

model system to assess the dependability of the plant [3].

It is well known that a good measurement of the solar

radiation requires not only a high class radiometer but even a

correct management of the instrument. In fact, the radiometer

has to be managed following a correct maintenance policy.

In order to reduce the cost related to the management of

the monitoring apparatus devoted to the acquisition of the

solar radiation, a solution could be to evaluate the PV plant

performance using data collected by public weather station

installed near the plant but in a different location. The use of

these data is attractive because they are often free and certified,

if the station belongs to a network of public bodies.

In this paper a novel approach to condition monitoring

technique has been proposed starting from the evaluation of

data collected by public weather stations. In previous works

[4][5], several models have been challenged in the task of

predicting the global horizontal illuminance, while in the

present work, instead the global horizontal radiation, will be



considered. In particular, a 3-year hourly dataset will be used

to model the time series of the global horizontal radiation.

The prediction operated by the two computational intelligence

models, namely the Support Vector Regression (SVR) and the

Extreme Learning Machine (ELM) will be compared with a

naı̈ve predictor, the persistence model, and a simple predictive

model, the k-Nearest Neighbor (k-NN) model.

II. THE PREDICTION MODELS

A time series is composed of a sequence of observation {xt}
sampled by a sequence of random variables {Xt}. Usually,

the ordering value is related to the time, the observation are

related to a phenomenon that varies with the time, and the

observations are taken in equally spaced instants.

Both the SVR and the ELM paradigms can model an

mapping between an input and an output space, from only

a finite set of input-output pairs (possibly affected by error),

called training set. Time series can be modeled as a mapping

between some previously observed values and the value to be

predicted. For instance, when using a two-dimensional input

space, the training dataset will be composed by triples of

the form (xt−2, xt−1, xt), where x̂t = f(xt−2, xt−1) will

be assumed to approximate xt. The two paradigms uses a

linear combination of basis functions (usually Gaussians) to

modeling the mapping:

f(x) =

L∑

i=1

βi G(x; µi, σi) + b (1)

where L is the number of basis functions, G is the Gaussians

function, µi, σi, and βi are respectively the center, the width

and the coefficient of the i-th Gaussian, and b is an optional

bias. Despite the similarity of their mathematical description,

SVR and ELM differ for the learning algorithm, i.e. for the

procedure that allow to obtain the parameters (L, {µi}, {σi},

{βi}, b) from the training set.

A. Support Vector Regression

Support Vector Machines (SVM) is a powerful method for

classification [6][7] and regression [8]. In the latter domain, the

method is usually named Support Vector Regression (SVR).

In its original formulation, the regression function is obtained

as the linear combination of some samples, called Support

Vectors (SV), but it can be extended to non-linear mapping

through the use of suitable functions called kernels. The

solution to the regression problem is obtained as the mini-

mization of a suitable loss function, which can be chosen such

that the optimization problem results to be convex. The loss

function is ruled by three hyperparameters: the accuracy, ǫ,
that represents the accepted distance between the training data

and the solution; the trade-off, C, that balance the closeness

of the solution to the training data and the robustness of the

solution; and the width of the Gaussians used as kernels, σ,

which in the basic SVR algorithm are constrained the have

the same width. The convexity of the problem guarantees that

the optimal solution (which identifies the SVs, {µi}, and the

corresponding coefficients, {βi}) is unique.

B. Extreme Learning Machines

Neural networks constitutes a very variegated class of

models for classification and function approximation [9][10].

Among these, the Radial Basis Function (RBF) networks

are very used, because of their simplicity and approximation

power. In fact, they enjoy the universal approximation property

(i.e., for every continuous function, exists an RBF network

that approximates the considered function arbitrarily well).

The Extreme Learning Machine (ELM) is a RBF with a fixed

architecture and randomly assigned hidden nodes parameters

[11][12]. In particular, with the model described in (1), the

parameters {µi} and {σi} are randomly chosen with a given

probability distribution. Given the training set {(xj , yj) |xj ∈
R

D, yj ∈ R, j = 1, . . . , N}, the output of the ELM network

(1) give rise to N equations that can be expressed in matricial

notation as:

Hβ = Ŷ (2)

where H is a N × L matrix such that Hj,i = G(xj ;µi, σi),
β = [β1 · · · βL]

T , and Ŷ = [ŷ1 · · · ŷN ]T . Given the training

dataset and the hidden neurons parameters, the weights β are

the only unknown of the linear system described in (2), and,

under mild conditions, they can be computed as:

β̂ = (HTG)−1HT Ŷ = H†Ŷ (3)

where H† = (HTH)−1HT denotes the Moore-Penrose

pseudo-inverse of the matrix H .

The ELM learning paradigm exploits the robustness of the

solution with respect to the optimal value of the parameters

of the neurons, and instead of spending computational time

for exploring the parameters’ space, choose them by sampling

a suitable distribution function (which encode the a-priori

knowledge on the problem), and compute the weights as the

solution of the above described linear system. It can be shown

that the solution β̂ in (3) is an optimal solution in the least

square sense, and has the smallest norm among the least square

optimal solutions.

C. Persistence

The persistence is a naı̈ve predictor that assumes that the

next value of the time series, xt will be equal to the last known,

xt−1, i.e., fP(xt) = xt−1. It is obviously inappropriate for

long-term prediction of time-series of interest in real cases,

but it can be used as a baseline forecast: any other model is

supposed to perform better than the persistence model.

D. k-Nearest Neighbor Interpolator

The k-Nearest Neighbor (k-NN) model is a instance-based

or lazy learning paradigm used both for function approxima-

tion and classification [13]. It is used to predict the value of

a function, f , in unknown points, given a sampling of the

function itself (training data), {(xi, yi) | yi = f(xi)}. For

an unknown point, x, the value of f(x) is estimated from

the value of its k nearest neighbors, for a given k, using

a suitable voting scheme or an average. The most simple

scheme, often used in classification, estimates f(x) as the most
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Fig. 1. One year (a) and one week (b) of the measured global horizontal
radiation. Note the trend in the year and in the day, but also the strong
variability in the intraday values.

common output value among its neighbors, while in function

approximation the average output value is often used. More

complex schemes, such as the use of weighted averaging, or

a sophisticated norm for computing the distance can be used

as well. The k-NN can be used in time series prediction using

some previously observed values for composing the input

vectors.

III. EXPERIMENTAL ACTIVITY

For the experiments described in the present paper, two

datasets collected by ARPA Lombardia [14] between October

2005 and September 2008 has been used. The datasets contain

the hourly measurement of the global radiance in two sites

(Lambrate and Rodano, Italy) separated by about 10 km.

Subsets of the available samples are reported in Fig. 1,

where Fig. 1a describes the global radiation measured in the
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Fig. 2. The average global radiation for each day of the year and hour have
been is plotted as a surface. The roughness of the surface is due to variability,
although a clear trend of the phenomenon can be acknowledged.

year 2006, while in Fig. 1b only one week is reported (the first

week of June). Regularities are apparent both in the yearly and

in the daily scale, but also large deviations from the average

behavior are possible, due to meteorological variability.

As shown by surface reported in Fig. 2, the global horizontal

radiation varies both on daily and seasonal basis. The surface

has been obtained by averaging the samples acquired in the

same hour of the same day of the year. A clear trend is

apparent, but the variability of the global horizontal radiation

(which depends also by fast changing meteorological phenom-

ena) makes the surface very wrinkled.

Figure 3, instead shows the relation between the global

horizontal radiation acquired at two consecutive hours at the

two sites. In particular, in Fig. 3a the distribution of the points

along the identity line supports the use of the persistence

predictor. However, the maximum of the prediction error of

the persistence can be considerably high: in fact, it can be

estimated as the length of the vertical section of the cloud
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Fig. 3. The persistence predictor uses the global radiation value measured one
hour earlier as predicted value. Panel (a) shows the relationship between the
two measurements of the global horizontal radiation performed at Lambrate
and that performed at Rodano one hour later. The samples are evidently
distributed along the identity line. In panel (b), the estimated probability
density function of the variation (which standard deviation is 127).

of points, whose thickness is at least 350. The histogram in

Fig. 3b resembles a mixture of two normal distributions with

the same mean. This is due to the fact that in the early and

the late daylight hours, the global radiation is almost the same

(especially in the winter). Hence, the consecutive samples

acquired in those period of time are quite similar, while the

other moments of the day show a larger variability.

A. Dataset Pre-Processing

Since our work require the corresponding values of the two

sites, each database has been purged of the samples that do

not have a matching sample in the other database measured

at the same time of the same day. After this operation, the

datasets are composed of 22961 samples which have been

used for composing the input vectors for the prediction as

described in Sect. II. In particular, we tried to predict the

global radiation in Rodano from measurements in Lambrate.

Hence, each input vector has been composed by D consecutive

samples from Lambrate, for D ∈ {1, . . . , 10}, taken at time

{t−D, . . . , t−1}, which has been related to the sample from

Rodano at the time t. Besides, also the temporal information

of t (hour of the day and day of the year) has been provided

as input. The data has been randomly partitioned in training,

validation, and testing set (using a proportion of 50-25-25%,

respectively). In order to assign the same importance to all

the components, the data have been normalized using the

maximum of the measurement in the training set for the global

radiation components, 23 for the hour of the day, and 364 for

the day of the year.

B. Performance Evaluation

For the evaluation of the performances, only the daylight

hours data (from 8 to 19) has been considered. Besides, since

the solar radiation cannot be negative, all the negative values

predicted by the models are set to zero.

The prediction error has been evaluated as the average of

the absolute error achieved on the testing data:

Err(f) = E(|xt − f(xt)|) (4)

where f(xt) is the value for xt predicted by the model f .

C. Prediction through k-NN Models

Since the k-NN predictor does not requires other training

process than just storing the training values, all the hyperpa-

rameters of a k-NN predictor operate in the prediction stage.

In particular, the behavior of the k-NN predictor is ruled by the

number of neighbors, k; the number of dimension of the input

space, D, which corresponds to the number of previous values

used for the prediction; the weighting scheme, i.e., the law to

assign the weights for the weighted averaging prediction. The

following values for the hyperparameters has been challenged:

k ∈ [1, 30] and D ∈ [1, 10] (5)

Three weighting schemes have been tried: equal weight,

weight proportional to the inverse of the neighborhood rank,

and weight proportional to the inverse of the distance.

D. Prediction through ELM models

In order to train an ELM neural network as a time series

predictor, the hyperparameters that regulate the optimization

procedure (i.e., the probability distribution of the neuron

parameters, µi and σi, the input space dimension, D, and the

number of the neurons, L), have to be set to the proper value.

The dimensionality of the input training data, D has been

chosen in [1, 10] (5), while networks of several sizes, L, have

been challenged:

L ∈ {10, 25, 50, 100, 250, 500, 1000, 2000, 3000} (6)

Since the Gaussian has a meaningful output only in a neigh-

borhood of its center, the distribution of the centers, µi, here

indicated as the random variable A, is usually derived from

the position of the input training data. In particular, three

distributions have been tried for A: A1, uniform distribution



in the bounding box of the input training data; A2 and A3,

respectively sampling with and without replacement from the

input training data. The width of the Gaussian, σ, regulates

the extent of its influence region (in regions further then 3σ
from µ, the output is negligible). Since when the dimension-

ality of the input space increases the data become sparse (a

problem often referred to as curse of dimensionality), for fairly

comparing the effects of the dimensionality, we chosen a set

of relative values for the width, r, that are then customized

to the actual value of D. This is realized assigning to σ the

relative width, r, multiplied by the diagonal of the bounding

box of the input training data. The value challenged for r are:

r ∈ {0.01, 0.05, 0.1, 0.5, 1} (7)

Once the proper value of σ has been computed for the

considered dimensionality, the width of the neurons, {σi} are

sampled from B ∼ N(σ, σ/3) (i.e., {σi} are distributed as a

normal with mean σ and standard deviation σ/3).
Since the parameters of the network are chosen by chance,

five trials with the same combination of the hyperparameters

has been run and the performance of the parameter combina-

tion has been averaged.

E. Prediction through SVR

In order to train a SVR predictor, the hyperparameters that

regulate the optimization procedure, have to be set to the

proper value. Since the optimal values cannot be estimated

a-priori, several combinations have to be tried and their

effectiveness have to be assessed by cross validation.

The hyperparameters values that we challenged are:

• the input dimensionality, D: [1, 10], as in (5);

• the accuracy, ε: {0.01, 0.1, 0.5, 1};

• the regularization trade-off, C: {0.1, 1, 10, 100};

• the width, σ: similarly to the ELM case, the proportion-

ality factor r in (7) has been experimented for setting σ
depending on D.

IV. RESULTS AND DISCUSSION

The persistence, k-NN, and ELM predictors have been

coded in Matlab, while for the SVR models we used the

SVMlight [15], and their performances evaluated using the

prediction error, Err(f), described in (4). Since the persistence

predictor configuration does not need any hyperparameters,

the whole dataset described in Section III-A has been used

to assess its performances. Instead, the training of the k-

NN, the ELM and SVR models are regulated by a pool of

hyperparameters. Hence, the training set has been used to

estimate the model’s parameters for each combination of the

hyperparameters, then the validation dataset has been used to

identify the best model (i.e., the one that achieved the lowest

prediction error on the validation dataset) and the prediction

error of that model on the testing set has been used to measure

the performance of the class of the predictors.

As reported in Table I, the persistence predictor has achieved

an error Err(fP) = 95.4. This value should also be compared

to the persistence measured at each site, which is 89.9 for

TABLE I
TEST ERROR ACHIEVED BY THE PREDICTORS.

Predictor Err(f) (std) Err(f∗)
Persistence 95.4 (84.2) —

k-NN 41.4 (57.0) 53.1
ELM 42.7 (57.0) 58.5
SVR 40.5 (59.3) 57.2

TABLE II
TEST ERROR ACHIEVED BY THE ELM PREDICTOR.

#trial Err(fELM)
1 42.9

42.7 (0.322)
2 42.9
3 42.2
4 43.0
5 42.6

Lambrate and 83.6 for Rodano. The fact that the these three

values are quite similar supports our working hypothesis, i.e.,

the data from one site can be used to predict the measurement

on the other site.

In fact, as shown in Table I, all the models have been able

to halve the prediction error. In particular, the k-NN achieved

an error Err(fk-NN) = 41.4, for D = 2, k = 9, and using the

inverted distance weighting scheme.

The best ELM model, which achieved an error of

Err(fELM) = 42.7, resulted the one trained using the following

combination of hyperparameters: D = 2 r = 0.1, L = 500,

and using the A2 distribution for choosing the centers position.

The performance achieved in each of the five trials for this

model is reported in II, with their average and standard

deviation. This last value witnesses the stability of the learning.

The lowest error has been obtained by the best SVR model,

which achieved an error of Err(fSVR) = 40.5, using L = 3853
support vectors. The training has been realized with D = 2,

r = 0.1, ǫ = 0.01, and C = 1.

The distribution of the test error with respect to the hour

of the day and the period of the year for the ELM and SVR

models are reported in Fig. 4 and 5, respectively. Since the test

set does not include all the possible time combinations, the

error have been reported averaging those of seven consecutive

days. It can be noticed that both the distribution are very

similar (although the SVR distribution is slightly smoother);

the error is reasonably low in the most of the domain, with

few noticeable exceptions.

For the sake of comparison, we challenged the predictor

on datasets purged of temporal references. The performance

achieved in this situation have been reported in Table I, as

Err(f∗). It can be noticed that the error significantly improves.

Moreover, the dimension of the input space also increases

(D = 7, for all the models).

Although all the models achieve a similar accuracy (espe-

cially if the error is compared with the maximum of the global

radiation that is about 1000), if the computational cost is taken

into consideration, the predictors show different properties:

since the k-NN stores all the training data, it requires 5711

parameters, while the ELM 500, and SVR 3853.
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Fig. 4. ELM test error distribution. In panel (a), the average test error
achieved in all the trials is reported with respect to the day of the year and the
hour. The error is almost uniform on the domain, although it slightly follows
the seasonal and daily variability. In panel (b), the estimated probability
density function of the test error (which standard deviation is 52.0).

V. CONCLUSIONS

All the models challenged (k-NN, ELM, and SVR) have

achieved a similar testing error, with also a similar distribution.

SVR seems to offer the best compromise between the accuracy

and the computational cost in term of space, although the

computational time required for its training has been larger

than the other models.
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