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Abstract—Computational intelligence has been used in many 

applications in the fields of health sciences and epidemiology. 

In particular, owing to the sudden and massive spread of 

COVID-19, many researchers around the globe have devoted 

intensive efforts into the development of computational intelli-

gence methods and systems for combating the pandemic. 

Although there have been more than 200,000 scholarly articles 

on COVID-19, SARS-CoV-2, and other related coronaviruses, 

these articles did not specifically address in-depth the key issues 

for applying computational intelligence to combat COVID-19. 

Hence, it would be exhausting to filter and summarize those 

studies conducted in the field of computational intelligence 

from such a large number of articles. Such inconvenience has 

hindered the development of effective computational intelli-

gence technologies for fighting COVID-19. To fill this gap, this 

survey focuses on categorizing and reviewing the current prog-

ress of computational intelligence for fighting this serious 
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disease. In this survey, we aim to assemble and summarize the 

latest developments and insights in transforming computational 

intelligence approaches, such as machine learning, evolutionary 

computation, soft computing, and big data analytics, into prac-

tical applications for fighting COVID-19. We also explore 

some potential research issues on computational intelligence 

for defeating the pandemic.

I. Introduction

C
OVID-19 is an infectious disease caused by a novel 

coronavirus and has been declared by the World 

Health Organization (WHO) as a pandemic in 

March 2020. Since this disease was first identified in 

December 2019, it has become a global pandemic and has 

caused infections in millions of people. The coronavirus 

death toll surpassed 687,000 worldwide as of the end of 

July 2020, and the number of infections and deaths contin-

ues to rise. Such an extremely serious situation has led to 

high threat in healthcare systems worldwide and severe 

damage in the global economy being. To combat COVID-

19, many countries are working to develop novel and effec-

tive mechanisms to overcome this disaster. Governments, 

industry leaders, and academics alike are devoting substan-

tial resources and effort into mitigating the effects of the 

pandemic. Over the past few months, various emerging 

solutions and systems for combating COVID-19 have been 

developed and deployed. For example, fast screening meth-

ods utilizing different types of clinical data, including 

X-rays, computed tomography (CT) scans, and vital signs, 

have enabled timely diagnosis and disease monitoring. 

Computer systems are also being designed for risk profiling, 

patient surveillance, contact tracing, or propagation model-

ing by using social media data.

Owing to the advancement of computational intelligence, 

numerous integrations of computational intelligence mecha-

nisms with various devices and systems have already achieved 

considerable success in dealing with the underlying challenges 

of epidemic diseases such as new influenzas [1], SARS [2], 

and MERS [3]. As a result, many systems and solutions for 

combating COVID-19 have adopted computational intelli-

gence, and the design of proper computational intelligence 

mechanisms plays a crucial role in building such solutions. 

Since the integration of computational intelligence mecha-

nisms with var ious devices and systems under different 

application conditions would require different types of com-

putational intelligence techniques, including data analytics, 

computational modeling, high-performance computing, arti-

ficial intelligence, and in particular its subfield of machine 

learning, many researchers have devoted their efforts to devel-

oping systems of computational intelligence specifically for the 

fight against COVID-19.

By the end of July 2020, more than 200,000 scholarly arti-

cles were published regarding COVID-19, SARS-CoV-2, and 

other related coronaviruses [4]. However, these articles did not 

address in-depth the key issues in applying computational 

intelligence to combating the COVID-19 pandemic. Thus, it 

would be exhausting to filter and summarize studies related to 

computational intelligence from such a large number of arti-

cles. In light of the above observations, now is the time to sys-

tematically categorize and review the current progress of 

research on computational intelligence. Accordingly, this survey 

aims to assemble and summarize the highlights of the latest 

developments and insights in applying computational intelli-

gence approaches, such as machine learning, evolutionary com-

putation, soft computing, and big data analytics, to practical 

applications used to combat COVID-19.

The remainder of this paper is organized as follows. In Sec-

tion II, we briefly survey the history of computational intelli-

gence. In Sections III through VII, we categorize computational 

intelligence into its five principles and determine the urgent 

issues concerning COVID-19, which have been, or can be, 

resolved using computational intelligence approaches. We then 

review the current computational intelligence studies that have 

attempted to address these urgent issues based on these five 

principles. Then, in Section VIII, we review some current sys-

tems or applications for combating COVID-19 that have 

employed principles of computational intelligence. Finally, in 

Section IX, we conclude the article and discuss recommenda-

tions for future studies.

II. Overview

Computational intelligence techniques have already been suc-

cessfully integrated into various systems for dealing with the 

underlying challenges of epidemic diseases. Before we intro-

duce the specific issues which computational intelligence can 

be used to solve to fight COVID-19, we should first under-

stand the history and various categories of this method. Based 

on the principles of computational intelligence, we can further 

clarify what types of issues can be dealt with when battling 

COVID-19 with computational intelligence.

A. Brief Introduction to Computational Intelligence

Computational intelligence was formally defined by Bezdek 

in 1994 [5] [6] such that a system is called “computationally 

intelligent” if the system deals with data on a basic level 

(such as pixels of an image), contains a module of pattern 

recognition, and does not utilize prior knowledge in the 

sense of artificial intelligence. According to Bezdek’s defini-

tion, computational intelligence is one branch of artificial 

intelligence. Actually, the goals of both artificial intelligence 

and computational intelligence are the same, which is to 

realize general intelligence. Marks [7] clarified the difference 

between artificial intelligence and computational intelligence 

by claiming that the former is made from hard computing 

technologies, whereas the latter is made from soft comput-

ing technologies.

Therefore, we can presume that two types of machine intel-

ligence exist: 1) artificial intelligence, which is developed by the 

concept of hard-computing and 2) computational intelligence, 

which is developed by the concept of soft-computing. 
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Compared to the hard-computing-based artificial intelligence, 

computational intelligence can adapt to many different condi-

tions via the benefits of the concept of soft-computing. Hard 

computing techniques are designed using a Boolean logic 

based only on true or false values that information engineering 

relies on. One critical issue in Boolean logic is that Boolean 

values are unable to interpret natural language easily. However, 

based on fuzzy logic, soft computing techniques can deal with 

uncertain cases. This type of logic is one proprietary aspect of 

computational intelligence, and by aggregating data into partial 

facts, it is approximated to the manner in which the human 

brain acts [7].

B. Categorization of Computational Intelligence

As mentioned above, the notion of computational intelligence 

has been around for 30 years. During this period, new concepts 

have been constantly added to the field, thereby reinforcing the 

discipline. Today, we can broadly divide computational intelli-

gence techniques into five categories: neural networks, fuzzy 

logic, evolutionary computation, computational learning theo-

ry, and probabilistic methods.

1) Neural Networks

Based on biological neural networks, an artificial neural net-

work (called “neural network” for short) is designed as a net-

work of artificial neurons or nodes. Artificial neural networks 

can be used for regression or classification modeling for pre-

diction and automatic control. A large number of simulation 

data using limited data sets. This structure is the foundation of 

deep learning, which is good at representation learning. 

Accordingly, artificial neural networks process and learn infor-

mation from data via the systems of distributed information 

processing [8]. By doing so, one of the crucial properties of 

artificial neural networks is fault tolerance, which is approxi-

mately modeled on the manner in which the human brain 

operates [6]. Based on these characteristics, neural networks 

have been widely applied to data analytics, clustering, classifi-

cation, and automatic control engineering. In real-world 

applications, such methods aim to analyze and classify medical 

data, recognize human faces, detect computer fraud, and deal 

with the nonlinearity of a system for better process control [9]. 

Furthermore, neural network techniques can incorporate 

fuzzy logic concepts.

2) Fuzzy Logic

Fuzzy logic [10] can be seen as a formulation 

defined by multi-valued logic. Meanwhile, the 

true value of a variable’s formulation can be 

any real number between, but not limited to, 

0 and 1. It is often utilized to solve the prob-

lem of uncertainty, where the truth value may 

not be all true or all false. As a result, fuzzy 

logic has been successfully applied in the field 

of clinical realms, including a continuous 

blood glucose prediction system and a tuber-

culosis diagnosis platform based on chest 

X-ray, among other devices. We can also see this in use of a 

video camera to help stabilize an image endoscope. Other 

areas such as household appliances, business decision making, 

and financial analysis are also examples of applications of this 

principle [6]. A main application of fuzzy logic is approximate 

reasoning. However, the methods of fuzzy logic reasoning usu-

ally lack learning abilities, which are necessary for a multitude 

of tasks.

3) Evolutionary Computation

Evolutionary computation (EC) is global optimization method 

inspired by biological evolution [6]. It is a family of algorithms 

and is a branch of computational intelligence and natural com-

puting. EC systems solve problems via populations, error and 

success, meta-heuristics, or stochastic optimization. An initial 

set of candidate solutions is generated and updated iteratively, 

such as the removal of less-desired solutions and the insertion 

of noise. A population of solutions is subject to natural selection 

or artificial selection and mutation, and therefore evolves and 

adapts—i.e., increases fitness (function quantizes how adapted/

desired the solution is). EC is popular in computational intelli-

gence because it results in near-optimal solutions in a wide 

spectrum of contexts [11] where there are many variants and 

extensions for specific data structures and problems.

4) Computational Learning Theory

Computational learning theory (referred to as learning theory 

for short) is a sub-field of artificial intelligence mainly for the 

research and development of learning strategies for machine 

learning. Computational learning theory is one of the principal 

methods in computational intelligence, which seeks for a way 

to achieve reasoning that recapitulates human rezoning humans. 

In psychology, learning is the process of enhancing or changing 

knowledge, skills, values, and world views through cognition 

and experience [6]. Inspired by psychology, computational 

learning theory is utilized to actualize the process of experience 

and decision making according to previous experiences.

5) Probabilistic Methods

A probabilistic method is a nonconstructive approach used to 

prove the existence of specified types of mathematical objects. 

It operates by showing that if one randomly selects an object 

from a specified category, the probability that the result will 

Based on our observations, there are several urgent 

issues related to COVID-19 that must be combatted. 

These issues can be categorized into five topics: 

tracking and predicting virus propagation (TPVP), 

characterization of symptoms of virus infections (CSVI), 

treatment design (TrD), precaution development (PD),  

and public health policy making (PHPM).
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become the specified type is strictly greater than zero. Although 

probabilistic methods are designed based on the probability 

theories, the results are determined with certainty and with-

out any possible errors. Probabilistic methods were first 

introduced as the main foundation of fuzzy logic by Erdos 

and Spencer [6]. To evaluate the outcomes of a system based 

on computational intelligence, probabilistic methods are 

mostly defined by randomness [12]. Accordingly, probabilistic 

methods can provide proper solutions to problems based on 

prior knowledge.

C. Issues on Fighting COVID-19

Based on our observations, there are several urgent issues relat-

ed to COVID-19 that must be combatted. These issues can be 

categorized into five topics: tracking and predicting virus prop-

agation (TPVP), characterization of symptoms of virus infec-

tions (CSVI), treatment design (TrD), precaution development 

(PD), and public health policy making (PHPM). The issues of 

each topic are listed below:

1) Tracking and Predicting Virus Propagation (TPVP)

• Surveillance and tracking of COVID-19-infected 

patients.

• Modeling and predicting virus propagation and path-

ways.

• Visual analytics techniques and applications for propa-

gation modeling and monitoring.

2) Characterization of Symptoms of Virus Infections (CSVI)

• Discovery of early markers/symptoms of viral infec-

tions.

• Personalized and group-based risk profiling and predic-

tion.

• Real-time and early alerting systems for hazardous and 

forefront outbreaks.

• Fast and accurate diagnosis of COVID-19 through ana-

lytics and modeling using various biomedical data, e.g., 

images, vital signs, genome, etc.

3) Treatment Design (TrD)

• Treatment optimization and care planning for the best 

care of patients.

• Prognosis and outcome prediction for patients for 

effective resource allocation.

• Drug discovery and repurposing through big data ana-

lytics approaches.

4) Precaution Development (PD)

• Vaccine design through machine learning approaches.

• Intelligent analysis of social media and networks for 

contact tracing and safety control.

• Integrations of intelligent computing mechanisms with 

information technology systems and the internet of 

things (IoT) for smart care in COVID-19.

5) Public Health Policy Making (PHPM)

• Secure and privacy-preserving analysis of data in public 

health emergencies.

• Public health policy making through big data analytics 

and model simulations.

To overcome these issues, researchers are actively conduct-

ing research to obtain various outcomes, and many have adopt-

ed computational intelligence. Since there are so many studies 

that address the issues associated with COVID-19, this survey 

focuses on studies designed using computational intelligence 

were selected for discussion in the following sections.

III. Neural Networks for Combating COVID-19

As mentioned earlier, an artificial neural network applies the 

principle of deep learning and achieves a high level of repre-

sentation learning. Representation learning is a learning meth-

od that can automatically learn representations from data. 

Learning algorithms do not require humans to help them 

extract features. Accordingly, neural networks can be easily uti-

lized for extracting important representations of virus propaga-

tion and the characteristic symptoms of a viral infection, among 

other factors. However, deep neural networks can extract useful 

knowledge mostly if the amount of data is sufficient, which 

means they can hardly deal effectively with incompleteness or, 

most importantly, data with missing values in the processing 

model. Fortunately, many countries have established a series of 

COVID-19 data collection mechanisms. As a result, building an 

effective deep neural network to fight COVID-19 is possible. 

For example, many researchers have built deep neural network 

models for characterizing viral infections by using CT chest 

images, as shown in Fig. 1, or X-ray images [23], [24]. Table I 

summarizes the issues that have been addressed by existing 

neural network methods. Owing to their excellent ability to 

extract important representations, most applications involving 

neural networks have addressed the issue of CSVI, as shown 

in Table I.

Roy et al. [14] proposed the application of artificial neural 

networks for analyzing lung ultrasonography (LUS) images. 

FIGURE 1 Example of computed tomography (CT) image [13].
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They collected a new fully-annotated LUS image dataset from 

several hospitals in Italy, and the labels indicate the severity of 

the disease at the frame, video, and pixel levels (segmentation 

masks). Using these data, several artificial neural network mod-

els have been developed to solve the tasks related to the auto-

matic analysis of LUS images. To predict the severity of the 

disease associated with an input frame, an extension of spatial 

transformer networks was proposed, which can provide local-

ization of the diseased area in a weakly supervised manner. To 

conduct scoring at the video level, an effective frame score 

aggregation function was proposed, and three artificial neural 

networks, vanilla U-Net [25], U-Net++ [26], and Deeplabv3+ 

[27], have been adopted for the segmentation of COVID-19 

imaging biomarkers at the pixel level.

Wang et al. [15] proposed a CNN-based model, COVID-

Net, for detecting COVID-19 infected patients from a dataset 

of chest radiography images. The dataset is an open dataset con-

sisting of 13,800 images collected from 13,725 patients. COV-

ID-Net utilizes a novel lightweight residual block, the 

projection-expansion-projection-extension (PEPX), to improve 

representational capacity while maintaining reduced computa-

tional complexity. Furthermore, COVID-Net is designed to 

make predictions using a qualitative analysis method called 

GSInquire, to obtain deeper insight into crucial features related 

to COVID-19 infected patients, which can assist clinicians in 

efficient and precise diagnosis.

Han et al. [16] presented an attention scheme involving 

deep 3D multiple instance learning called AD3D-MIL to learn 

a detection model from 3D chest CTs. With the attention 

scheme AD3D-MIL, not only can it accurately predict an indi-

vidual category of disease such as COVID-19, common pneu-

monia, or no pneumonia, but it also produces interpretability 

of results. During the learning process, users will not receive a 

set of labeled instances, but each bag contains many instances, 

and each bag has a label rather than separately labeled sets of 

instances. The idea behind AD3D-MIL is to treat all CT imag-

es of an individual patient as the instances of a labeled bag. 

Meanwhile, a fully 3D convolutional neural network is used to 

produce the feature map of each instance, and an attention-

based MIL pooling is designed to select and combine the fea-

ture maps into a bag representation. Finally, the bag re   presentation 

is fed into a typical fully-connected neural network to make 

the final predictions.

Panwar et al. [17] developed a deep learning-based COVID-19 

detection model that can detect a COVID-19 positive patient 

within 5 seconds using X-ray images. The proposed model 

extends VGG-16 by adding five custom layers as the head lay-

ers, of which the first layer is an average pooling 2D layer. 

Unlike max pooling, this average pooling layer uses the average 

value of all the pixels with a pool size of (4, 4) to down-sample 

the images. The second layer is a flattened layer that transforms 

a two-dimensional tensor into a vector as an input of a fully 

dense connected layer (i.e., the third layer). Meanwhile, the 

activation function of the fully dense connected layer is ReLU. 

The fourth layer is a dropout layer that ignores half of the units 

of the fully dense connected layer. The fifth layer is the output 

layer, which uses two units to produce the confidence values 

for the infected and uninfected, respectively. Based on a pre-

trained VGG-16 with the five layers added, the proposed model 

was able to achieve a 97.62% true-positive rate with a limited 

amount of data, consisting of 142 images of uninfected and 192 

images of infected people.

The training of neural networks with limited training sam-

ple sizes is key to applying deep learning to address the issues 

regarding COVID-19. To deal with the limited data size, Oh et 

al. [18] developed a neural network for COVID-19 diagnosis 

that is suitable for training with limited X-ray images. An 

extended fully convolutional neural network called (FC)-

DenseNet103 [28] was adopted for lung image segmentation. 

The results of the lung image segmentation from the segmen-

tation networks are utilized for masking the pre-processed 

images. To classify the masked images, ResNet-18 [29] was 

adopted to build a classification model. Meanwhile, the classifi-

cation model was implemented with two different contexts: 

global appearance and zooming in a partial area. To consider 

the view of global appearance, each masked image is resized to 

224 × 224 so that each input is a complete X-ray image. Oh et 

al. utilized this approach as a baseline network for experimental 

evaluation. To consider zooming in a partial area of an X-ray 

image, each masked image is cropped randomly to produce 

several 224 × 224 images so that a masked image may produce 

several input images. Although the overall accuracy of this 

approach is 91.9%, slightly lower than that of COVID-Net [15] 

(92.4%), the model size of this approach (11.6 M parameters) is 

much smaller than that of COVID-Net (116.6 M parameters). 

In other words, this approach requires much less data to train 

the model.

Apostolopoulos et al. [19] examined the significance of the 

extracted features and utilized MobileNet V2 [30] to train a 

TABLE I Issues addressed by existing neural  
network methods.

TPVP CSVI TRD PD PHPM

ROY ET AL.’S  
STUDY [14] 

COVID-NET [15] 

HAN ET AL.’S  
STUDY [16] 

PANWAR ET AL.’S 
STUDY [17] 

OH ET AL.’S  
STUDY [18] 

APOSTOLOPOULOS 
ET AL.’S STUDY [19] 

WANG ET AL.’S  
STUDY [20] 

AYYOUBZADEH  
ET AL.’S STUDY [21]  

VAID ET AL.’S  
STUDY [22] 
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classification model using 3,905 X-ray images for classification 

of six similar diseases, including COVID-19. As the symptoms 

shown in the X-ray images of the five diseases are very similar 

to those of COVID-19, the idea behind the training scheme is 

to use similar cases to extract reliable features. The proposed 

model, trained based on MobileNet V2, achieved 99.18% accu-

racy in detection of COVID-19, but the overall accuracy of the 

seven classes, including six diseases and one normal group, was 

about 88%. This phenomenon may suggest that vital biomark-

ers of COVID-19 can be brought to light by using the pro-

posed model trained on MobileNet V2.

In addition to building a deep neural network model for 

characterizing viral infections using CT or X-ray images, Wang 

et al. [20] developed a deep learning system to fully automati-

cally diagnose and prognose COVID-19. This system consists 

of three parts: 1) automatic lung segmentation, 2) non-lung 

area suppression, and 3) COVID-19 diagnostic and prognostic 

analysis. For automatic lung segmentation, DenseNet121 [31] 

was developed and combined with feature pyramid networks 

(FPN) [32] to produce a lung-ROI, which contains the whole 

lung and all inflammatory tissues and eliminates most areas 

outside the lung. Therefore, the lung-ROI would contain some 

non-lung tissues. A non-lung area suppression operation was 

proposed to decrease the luminance of non-lung areas inside the 

lung-ROI. Finally, a novel neural network called COVID-19-Net 

was proposed for diagnostic and prognostic analyses.

Google Trends has previously been used to accurately pre-

dict the outbreak of a new flu. Ayyoubzadeh et al. [21] imitated 

Google Trend’s method of analysis for the prediction of inci-

dence of COVID-19 in Iran. Two types of machine learning 

methods, i.e., linear regression and a recurrent neural network 

with long short-term memory (LSTM), were adopted to build 

the prediction model. The effectiveness of the linear regression 

model achieved 7.562 ± 6.492 in terms of RMSE, while the 

model utilizes factors such as previous day incidence, hand 

sanitizer, antiseptic topics, and the frequency of searches for 

handwashing. The effectiveness of the LSTM model only 

reached only 28.487±20.705 in terms of RMSE. In addition, 

the LSTM model showed a fluctuating performance and a low 

training loss, which might have been caused by overfitting. 

The reason why a linear regression outperforms an LSTM 

might be that the data size of the daily incidence of COVID-19 

in Iran is quite small, whereas the capacity of the deep learn-

ing model, such as the LSTM, is too high for such limited 

data. Therefore, the LSTM model overfits the limited number 

of training data easily.

To overcome the problem of a limited amount of training 

data, Vaid et al. [22] developed a transfer learning approach to 

build a deep learning model by transferring pre-trained CNNs. 

Structural abnormalities are key to uncover hidden patterns. 

Based on the transfer learning approach, a pre-trained detection 

model from anterior-posterior radiographs of the chest of 

patients was transferred to detect structural abnormalities and 

disease categorization. Publicly available datasets consisting of 

patient information from multiple countries were used to 

refine the pre-trained model and improve the accuracy. The 

experimental results showed an extremely high accuracy, of 

96.3%, and a low loss, of 0.151, in terms of binary cross-entro-

py. Meanwhile, the proposed model was able to accurately 

identify 74 true negatives and 32 true positives while incorrect-

ly identifying three false-positives and one false-negative.

According to the papers we surveyed in this section, several 

insightful findings can be gleaned:

1) Most existing studies on neural networks have focused on 

dealing with the problem of characterization of symp-

toms of virus infections. The primary reason for this 

might be that many LUS images have been produced and 

collected, and many pre-trained CNNs can be retrieved 

from open sources. Accordingly, many works straightfor-

wardly utilized pre-trained CNNs to extract vital bio-

markers of COVID-19 from LUS images. The variants of 

neural networks are numerous and varied, which can be 

utilized for addressing various issues. For example, recur-

rent neural network (RNN) and its variants are suitable 

for time series analysis. As more and more patients are 

cured, many treatment records will be produced. Such 

treatment records could be viewed as a set of time series 

data. Therefore, we believe a hybrid model that combines 

the aforementioned CNN-based works with RNN-based 

mechanisms is a promising research direction to address 

the issues on treatment design (TrD).

2) Since datasets are very limited, using a pretrained model is 

a promising way to quickly produce accurate results. Pan-

war et al. [17] achieved the highest performance using this 

approach (97.62% true-positive rate). However, using pre-

trained CNNs for the extraction of vital biomarkers of 

COVID-19 usually requires labeled LUS images, and this 

motivates [18], [19] to consider building a lightweight 

model from small datasets. However, the design for a 

lightweight model may limit the applicability of these 

existing works: they may be effective for only a small 

group of patients who have the same symptoms as shown 

in the training images.

3) More and more countries have been utilizing the IoT 

technologies for smart care in COVID-19. Massive data 

collected from the IoT devices may benefit the effective-

ness and applicability of the artificial neural network 

model. Based on the data collected from IoT devices, inte-

grations of intelligent computing mechanisms with these 

existing works, such as Ayyoubzadeh et al.’s study [21], may 

be applied to address the issue on precaution development 

(PD) and the prediction of virus propagation.

IV. Fuzzy Logic for Combating COVID-19

Fuzzy logic is one of the main principles of computational 

intelligence and enables measurements and process modeling 

for complex processes in real life. Unlike artificial intelli-

gence, which requires precise knowledge, fuzzy logic may be 

used with incomplete and even incorrect data applied in a 

process model. That is, fuzzy logic can easily be used for an 
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 uncertainty-based analysis of limited data. Most of the issues in 

the fight against COVID-19 can be inherently dealt with using 

fuzzy logic. For example, when characterizing viral infections, 

we can find that different patients may have different symp-

toms, which makes COVID-19 difficult to be diagnosed 

without virus testing. Table II shows the issues addressed by 

existing fuzzy logic methods.

Dhiman and Sharma [33] utilized six input factors to build 

a fuzzy inference system to diagnose COVID-19. By using the 

proposed fuzzy inference system, the severity level of the 

infected patients can be presented with three linguistic cate-

gories: low, medium, and high. Through a series of training 

and optimizations, the model learned the following three 

fuzzy rules:

1) When the atmospheric temperature is medium, if a patient 

takes a high volume of ethanol and has a slight body tem-

perature, the patient may have a medium severity level.

2) When the atmospheric temperature is low, if a patient 

takes a low volume of ethanol, has a medium body tem-

perature and suffers from a cough, then the patient may 

have a low severity level.

3) If a patient takes a low volume of ethanol and has high 

breath shortness and a sneezing problem, then the patient 

may have high severity level.

We can see that these rules are reasonable, and thus the pro-

posed inference system can be utilized to accelerate the prelim-

inary diagnosis of COVID-19-infected patients.

The transfusion of blood plasma of recovered COVID-19 

patients has been recognized as one possible treatment method. 

The development of a donation system that can distinguish 

whether donors have undergone COVID-19 infection is 

extremely important. However, some infected people have no 

symptoms, and performing mass testing on all donors is unreal-

istic. Nazarov [34] used statistical data to construct a fuzzy 

model to evaluate the quality of blood from donor systems in 

the Sverdlovsk region in Russia. The evaluation of factors 

reflects not only the number of donors who have experienced 

COVID-19 but also the general statistics of donation based on 

region, age, gender, regularity of blood donation, and the num-

ber of donors per 1000 people. The system uses 12 input vari-

ables to estimate three output variables according to three rule 

blocks. By doing so, the problem of evaluating the quality of 

blood from donor systems in each region can be solved.

Tinh [35] utilized a fuzzy time series model combined with 

particle swarm optimization to forecast the trend in the num-

ber of confirmed cases of COVID-19 in Vietnam. Unlike a 

conventional fuzzy logic model, the proposed fuzzy model uses 

fuzzy relationship groups, instead of a fuzzy relationship matrix, 

in the building of the fuzzy forecasting model. To learn the 

fuzzy rules for constructing fuzzy logical relationship groups, a 

particle swarm optimization algorithm was designed to deter-

mine the proper number of intervals and to refine the length of 

each interval. The basic idea behind fuzzy logical relationship 

groups is that the fuzzy logical relationships, which have the 

same precedence, can be grouped together into a fuzzy logical 

relationship group. This approach can deal with the problem of 

time-series forecasting based on limited data. Accordingly, the 

best performance achieved 2.85% MAPE based on setting a 

fifth-order fuzzy time series with an interval number of 16.

Yang et al. [36] defined the new form of a spherical normal 

fuzzy set (SpNoFS) that could be used to generate operational 

rules. Based on the operational rules, a decision support algo-

rithm was designed for optimization of antivirus mask selec-

tion. Owing to the complementary use of the Bonferroni 

mean operator, the new information aggregation operators that 

can evaluate the utility of antivirus mask selection were formed 

via the operational rules of SpNoFS. Since the Bonferroni 

mean operator has two types (Bonferroni mean and weighted 

Bonferroni mean), there are two kinds of aggregating operators. 

One is the operator formed by the spherical normal fuzzy rules 

using the Bonferroni mean (SpNoFBM), and the other is the 

operator formed by the spherical normal fuzzy rules made 

using the weighted Bonferroni mean (SpNoFGBM). Based on 

the SpNoFBM and SpNoFGBM operators, a multi-criteria 

decision-making method can be realized to reasonably select 

suitable antivirus masks during the COVID-19 pandemic.

Ren et al. [37] adopted the Dempster–Shafer theory to 

design a multi-criterion decision-making method and the con-

cept of generalized Z-numbers to select medicine for patients 

with mild symptoms of COVID-19. Meanwhile, the idea 

behind the medicine selection based on generalized Z-numbers 

was extended with the expression of human habits, inspired by 

the concept of a hesitant fuzzy linguistic term set. To avoid 

ambiguity in the expression form of the generalized Z-num-

bers, the identification framework in the Dempster–Shafer 

theory was employed to describe the expression form of gener-

alized Z-numbers. For medicine selection, the basic probability 

assignment of the evidence could be derived by the expression 

form of the generalized Z-numbers, and all evaluations of each 

delivered medicine could be integrated by using the synthetic 

rules in the Dempster–Shafer theory.

Several insightful findings have been gleaned from the 

papers surveyed in this section:

1) Fuzzy logic is good at reasoning by analyzing uncertainty 

from limited data. Therefore, we can see that most kinds 

of issues we mentioned have been addressed by the fuzzy 

TABLE II Issues addressed by existing fuzzy logic methods.

TPVP CSVI TRD PD PHPM

DHIMAN AND  
SHARMA’S  
STUDY [33] 

NAZAROV’S  
STUDY [34]  

TINH’S STUDY [35] 

YANG ET AL.’S  
STUDY [36] 

REN ET AL.’S  
STUDY [37] 
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logic models we surveyed. This may imply that we can 

combine fuzzy logic and neural networks so that the 

hybrid system can be applied for almost all issues relevant 

to COVID-19.

2) Since the main advantage of the fuzzy logic methods is to 

produce fuzzy rules that can deal with the uncertainty 

from limited data, the findings from fuzzy rules are 

expected to be shown in the literature. However, most rel-

evant existing works [35]–[37] did not provide such dis-

cussions. One relevant work [34] only briefly introduced 

the fuzzy rules without deep discussion. This has led to 

the low applicability of these works. This is noteworthy 

for future studies on fuzzy logic.

V. Evolutionary Computation for Combating COVID-19

Evolutionary computation initially creates a set of candidate 

solutions and refines the set iteratively. The set of candidate 

solutions at each iteration is called the population. By stochasti-

cally removing the less-desired solutions and putting small ran-

dom changes in the current generation, the next generation is 

produced. In biological terms, a set of solutions undergoes nat-

ural selection (or manual selection) and mutation. As a result, 

the population incrementally increases in fitness. The fitness 

function of the algorithm determines the goal of learning. 

Evolutionary computation techniques can produce highly 

optimized solutions for various problems. Many variants and 

extensions have been designed for group-based risk profiling, 

and they are suitable for analysis of the possible impacts of 

COVID-19 and forecasting how COVID-19 will behave in 

the future. Table III shows the issues addressed by existing evo-

lutionary computation methods.

Yousefpour et al. [38] combined Susceptible, Exposed, 

Infectious, and Recovered (SEIR) [43] with a multi-objec-

tive genetic algorithm that focuses on epidemic prevention 

and economic concerns to estimate the early transmission 

dynamics of COVID-19. Besides, Yousefpour et al. utilized 

the estimation results to find the best decision rules. Two 

cost functions were designed and involved in the multi-

objective genetic algorithm. The first cost function repre-

sents epidemic prevention:

 ,J E t A t1 = +/ ^ ^h h  (1)

where E t^ h indicates the number of exposed people at time t, 

and A t^ h indicates the number of asymptomatic infected 

 people at time t. The second cost function represents eco-

nomic concerns:

 ,J c c qf2 1 0 2h h=- + +^ h  (2)

where c0  denotes the contact rate at the initial time, c f  

denotes the minimum contact rate under the current control 

strategies, and q denotes the quarantined rate of exposed indi-

viduals. Based on [38], the optimal policies were designed and 

showed that treating infection control as an optimization 

problem can protect countries against both disease outbreaks 

and economic breakdown.

Niazkar et al. [39] adopted the multi-gene genetic program-

ming (MGGP) to predict COVID-19 outbreaks. Since the 

numbers of daily confirmed cases fluctuate, predicting a 

COVID-19 outbreak is a challenging task. MGGP was origi-

nally designed for behavioral modeling, which is suitable for 

modeling series with high fluctuations. The proposed method 

based on MGGP showed very promising results. More specifi-

cally, the predicted number of confirmed cases of COVID-19 

approximated the observations in the seven countries consid-

ered in their study. Therefore, the MGGP-based approach has 

been suggested to be appropriate for the estimation of 

COVID-19 outbreaks.

Salgotra et al. [40] proposed a prediction model by develop-

ing genetic programming (GP) which analyzes the possible 

impact of COVID-19 in India and predicts the future behavior. 

The developed GP predicted the number of confirmed cases 

and numbers of death cases in the three most affected states in 

India. The fitness function was designed with respect to the 

mean squared error. To validate the evolved models, statistical 

parameters and metrics were used to evaluate the fitness. Fur-

thermore, the proposed GP-based models were lined with each 

other by using simple linkage functions for gene size greater 

than 1. The experimental results showed that the proposed GP-

based models are significantly reliable for predicting the num-

bers of confirmed and death cases in India.

To expand the contributions of GP for predicting the possi-

ble impact of COVID-19 in India, Salgotra et al. [41] further 

applied their GP to build a prediction model for forecasting the 

potential effects of COVID-19 in the 15 most affected coun-

tries in the world. The prediction model estimated that the 

daily confirmed cases and daily death count would result in a 

negative value in China. Besides the results in China, the over-

all prediction results are listed in Table IV. We can find that 

Brazil had the highest daily increase in the COVID-19 repro-

duction rate. This prediction was made at the end of May, and 

Brazil’s situation did fall into its worst in June. This indirectly 

proves the applicability of Salgotra et al.’s study.

TABLE III Issues addressed by existing evolutionary 
computation methods.

TPVP CSVI TRD PD PHPM

YOUSEFPOUR  
ET AL.’S STUDY [38]  

NIAZKAR ET AL.’S 
STUDY [39]  

SALGOTRA ET AL.’S 
STUDY [40]  

SALGOTRA ET AL.’S 
STUDY [41]  
(EXTENSION  
OF [40])  

DILBAG ET AL.’S 
STUDY [42] 
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Dilbag et al. [42] proposed a multi-objective differential 

evolution algorithm to optimize the hyperparameters of the 

regular CNN that was trained from CT images for classifica-

tion of COVID-19-infected patients. A multi-objective fitness 

function was designed according to both the sensitivity and 

specificity of classifications of COVID-19-infected patients. 

According to Dilbag et al.’s experiments, the proposed model 

slightly outperformed state-of-the-art models, such as a regular 

CNNs, an adaptive neuro-fuzzy inference system, and an artifi-

cial neural network. The overall improvement in terms of accu-

racy was 1.9789%.

According to the papers we surveyed in this section, several 

insightful observations can be made:

1) Since evolutionary computation was designed for the 

optimization of parameters, we can see that most works, 

like [38]–[40], utilize evolutionary computation to pre-

dict virus propagation. Meanwhile, some of these works 

[38], [39] adopted the concept of multi-objective genetic 

algorithm to estimate the number of confirmed cases and 

tackle other properties such as economic concerns. The 

prediction results can also address other issues such as pre-

caution development.

2) Although multi-objective genetic algorithm could be uti-

lized for solving multi-objective problems, the works [37], 

[38] only adopted them straightforwardly without any 

modifications. Since the application scenarios of the works 

of [37], [38] are different from that of multi-objective 

genetic algorithms, their effectiveness is not significant in 

supporting their reliability and applicability. We believe 

these works could be further improved. For example, the 

interaction among the multiple fitness functions could be 

included to adjust for the process of optimization.

VI. Computational Learning Theory for  

Combating COVID-19

Computational learning theory has many implementations. 

Based on different assumptions, various inference principles can 

be deduced. As a result, the deduced inference principles are 

utilized to design different computational learning theory 

approaches. These approaches can usually be categorized into 

six types: 1) exact learning; 2) probably approximately correct 

learning, which is a machine learning framework based on 

mathematical analysis; 3) Vapnik–Chervonenkis theory, which is 

a learning process explained by a statistical point of view; 4) 

Bayesian inference, which is a statistical inference based on 

Bayes’ theorem; 5) algorithmic learning theory, which is a 

machine learning theory explained by an algorithmic point of 

view; and 6) online machine learning, which is a sort of 

machine learning method for continuously updating data. 

Although its primary goal is to understand learning in an 

abstract manner, through the development of learning theory, 

we can design various practical learning algorithms. For exam-

ple, Bayesian inference is the foundation of the concept of belief 

networks. Because the concept of belief networks is the founda-

tion of the deep neural networks introduced in the previous 

section, we will introduce the remaining approaches in this sec-

tion, which are designed based on belief networks except deep 

neural networks. Table V shows the issues that have been 

addressed by existing computational learning theory methods.

Duffey and Zio [44] proposed a computational learning 

theory that can learn a prediction model from the prediction 

errors in the recovery time from the outbreak of the COVID-19 

pandemic. This approach uses the exponential Universal Learn-

ing Curve to estimate the trend in the infection rates of the 

COVID-19 pandemic. The key to the proposed approach is to 

treat the infection rate as a measure of false prediction results 

and time as a measure of experience/knowledge or risk expo-

sure to allow learning. The results of Universal Learning Curve, 

which was learned from China, South Korea, and other 

nations, show a decreasing trajectory after a peak. The reason 

might be that countermeasures are effective for controlling the 

spread of the virus.

Wang et al. [45] proposed a novel noise-robust learning 

framework called COPLE-Net based on the self-ensemble of 

convolutional neural networks [50], [51], a sort of semi-super-

vised learning mechanism. Unlike conventional semi-supervised 

learning mechanisms that use the exponential moving average 

of a model to adjust standard model, Wang et al. [45] developed 

two designs to address the issue on noisy labels. The first design 

is a dynamic adjustment that can reduce the impact of the 

exponential moving average of a model while the training loss is 

decreased. The second is an adaptive learner that enables the 

standard model to learn from the expo-

nential moving average of a model. The 

proposed COPLE-Net outperforms 

state-of-the-art models in terms of the 

average Dice similarity (80.29%) and 

the average 95-th percentile of Haus-

droff distance (18.72 mm).

Barstugan et al. [46] presented an 

early phase detection method for 

COVID-19 using a support vector 

machine classifier. The classifier was 

trained from four extensive datasets, 

which were produced by fetching patches 

with sizes of 16 × 16, 32 × 32, 48 × 48, 

TABLE IV Prediction results of Salgotra et al.’s study [41].

COUNTRY

DAILY  
CONFIRMED 
CASES

DAILY 
DEATH 
COUNT COUNTRY

DAILY  
CONFIRMED 
CASES

DAILY 
DEATH 
COUNT

USA 20,972 1358 TURKEY 1,071 17

BRAZIL 28,822 1076 CANADA 717 103

RUSSIA 6,928 270 SPAIN 321 148

MEXICO 4,121 466 GERMANY 271 23

UK 3,759 204 ITALY 247 178

IRAN 1,652 57 FRANCE 191 50

SOUTH AFRICA 1,895 60 SINGAPORE 68 0.05
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and 64 × 64 from 150 CT images. To increase the classification 

performance, the feature extraction process was performed on 

each patch. Five computational learning theory algorithms were 

adopted and utilized as feature extraction methods: a gray level 

co-occurrence matrix (GLCM), a gray level run length matrix 

(GLRLM), a local directional pattern (LDP), a discrete wavelet 

transform (DWT), and a gray-level size zone matrix (GLSZM). 

To avoid an overfitting problem, k-fold cross validation was per-

formed during training. With GLSZM and 10-fold cross-valida-

tion, the classifier achieved the best accuracy (99.68%).

Randhawa et al. [47] proposed a method of using computa-

tional learning theory for genome analyses. This method com-

bines decision trees with digital signal processing to construct a 

model for classification of the COVID-19 virus sequences and 

can identify intrinsic viral genomic signatures. To validate the 

results of identifications, Spearman’s rank correlation coefficient 

analysis was adopted. The proposed method can be used to ana-

lyze large datasets containing more than 5,000 unique viral 

genomic sequences. In this dataset, there are 29 COVID-19 

viral sequences, implying an imbalanced data issue (29: 5000). 

The proposed method achieved a 100% accuracy. Furthermore, 

the proposed method uses only raw DNA sequence data to dis-

cover the most relevant relationships between more than 5,000 

viral genomes within minutes from scratch. This shows that, for 

new viral and pathogen genome sequences, unmatched 

genome-wide machine learning methods can provide reliable 

real-time courses of action for taxonomic classification.

Mei et al. [48] developed an ensemble model to identify 

COVID-19 infections, which can allow early identification of 

COVID-19 patients at an early stage based on the initial chest 

CT scans and related clinical information. This model com-

bines a deep convolutional neural network with three classifi-

ers: random forest, support vector machine, and multilayer 

perceptron. The deep convolutional neural network is utilized 

for imaging the characteristics of COVID-19 patients, and the 

three classifiers form an ensemble model to classify COVID-19 

patients based on extracted characteristics of COVID-19 and 

other clinical information. This ensemble model showed signif-

icant performance in terms of sensitivity (84.3%), specificity 

(82.8%), and AUC (0.92).

Apostolopoulos et al. [49] extended their previous work 

[19] by using transfer learning to train deep CNNs since 

there are many pre-trained models that can be retrieved from 

open sources, such as VGG-19 [52], MobileNets V2 [30], 

Inception V4 [53], and Xception [54]. Unlike their previous 

work [19], which straightforwardly utilized MobileNets V2 

to build an image recognition model for classifying COVID-

19 patients, Apostolopoulos et al. [49] applied transfer learn-

ing on the pre-trained models and used a dataset that consists 

of 224 chest CT images of patients with COVID-19, 700 

chest CT images of confirmed common bacterial pneumo-

nia, and 504 chest CT images of no diseases to fine-tune the 

pre-trained models.

Based on the papers surveyed in this section, some insightful 

findings can be made:

1) Although deep learning has become the most popular 

notion recently, some classical computational learning 

theory approaches, such as support vector machine, ran-

dom forest, and decision tree, could still be useful while 

the amount of data is limited. The studies [46]–[48] reveal 

that the shallow learning method can be utilized as an 

initial model for building a classification model to distin-

guish COVID-19 patients.

2) With a bigger dataset, the concept of model ensembles can 

be used to combine initial models with some deep learning 

methods. The work in [45] and [47] provides possible solu-

tions for model ensembles. Besides model ensemble, the 

concept of domain adaptation is a possible solution to com-

bine two models. The transfer learning techniques utilized in 

Apostolopoulos et al.’s study [48] are also a possible solution.

VII. Probabilistic Methods for Combating COVID-19

In computational intelligence, a probabilistic method is applied 

by calculating the expected value of a random variable. The 

probabilistic method is typically used for analysis of the risk 

factors correlated with COVID‐19 and explains why they are 

crucial. Table VI shows the issues that have been addressed by 

probabilistic methods.

Cássaro and Pires [55] assume that the number of infected 

patients grows exponentially over the time. As a result, the prob-

abilistic model can be formulated as

 ,I t I t e
rt

0=^ ^h h  (3)

TABLE VI Issues addressed by existing probabilistic 
methods.

TPVP CSVI TRD PD PHPM

CÁSSARO AND 
PIRES’S STUDY [55] 

ZHANG ET AL.’S 
STUDY [57] 

KUCHARSKI ET AL.’S 
STUDY [56] 

TABLE V Issues addressed by existing computational 
learning theory methods.

TPVP CSVI TRD PD PHPM

DUFFEY AND ZIO’S 
STUDY [44] 

WANG ET AL.‘S 
STUDY [45] 

BARSTUGAN ET AL.’S 
STUDY [46]  

RANDHAWA ET AL.’S 
STUDY [47] 

MEI ET AL.’S  
STUDY [48] 

APOSTOLOPOULOS 
ET AL.’S STUDY [49] 
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where I(t) is the number of diagnosed infections over time, t0  is 

initial time, and r is the growth rate, which can be determined 

through learning from the time-series data of diagnosed infec-

tions by minimizing the mean absolute error. Cássaro and Pires 

[55] utilized the time-series data of diagnosed infections col-

lected from eight countries (Greece, Italy, Spain, Germany, 

France, Netherlands, the UK, and the USA) to learn the 

growth rate, r. The prediction results show that the exponential 

model can accurately predict the number of confirmed cases 

within 14 days when the first infection is observed; however, it 

is unable to make long-term predictions.

Zhang et al. [57] proposed a logistic growth probabilistic 

model that considers both the power law and the exponential 

law to estimate the number of infected patients. Unlike the 

exponential model that can only deal with the estimation of 

uncontrolled prevalence, the logistic growth probabilistic model 

is initially approximated to the exponential law, but the upper 

bound of the model is set and used to reduce the growth rate. 

Accordingly, the logistic growth probabilistic model is formu-

lated as

 ,I t
e

N

1 b c t t0
=
+

- -
^ ^h h  (4)

where I(t) is the number of diagnosed infections over time, N 

is the predicted upper bound, b and c are the fitting coeffi-

cients that can be learned from the dataset, and t0  is the time 

when the first infection is observed. The prediction results 

show that the logistic growth probabilistic model can make 

long-term predictions that have a low prediction error within 

3 months.

Kucharski et al. [56] designed a stochastic transmission 

dynamic model to estimate the variation in transmission over 

time during January and February of 2020. A dataset that con-

sists of the COVID-19 population in or from Wuhan was col-

lected. The transmission was modelled as a geometric random 

walk. Based on the proposed stochastic transmission dynamic 

model, the probability of outbreak in other areas was estimated. 

To train the proposed stochastic transmission dynamic model, 

the model was fitted into four publicly available datasets: 1) 

daily numbers of new global confirmed cases beginning Janu-

ary 26, 2020; 2) daily numbers of new confirmed cases in 

Wuhan between December 1, 2019 and January 1, 2020; 3) 

daily numbers of new confirmed cases in China between 

December 29, 2019, and January 23, 2020; and 4) proportions 

of confirmed cases on evacuation flights between January 29, 

2020 and February 4, 2020.

VIII. Real-World Systems and Tools Using 

Computational Intelligence for Combating COVID-19

Many industries and nonprofit organizations have been utiliz-

ing computational intelligence to develop systems or tools for 

combating COVID-19. According to the report published by 

the Organization for Economic Co-operation and Develop-

ment (OECD) [58], these real-world systems and tools for 

combating COVID-19 can be utilized to support decision 

makers, the medical community, and society to manage every 

stage of the COVID-19 crisis; these stages consist of detection, 

prevention, response, and recovery. Based on the OECD’s 

report, several AI-powered tools, including BlueDot [59], 

EpiRisk [60], CRUZR robot [61], Canada’s COVID-19 chat-

bot [62] and Satellites Monitor [63], can be used for combat-

ing COVID-19. However, the details of these systems and 

tools were not stated in the report or other relevant literature. 

In fact, their results are still worth introducing and promoting 

to the community of computational intelligence. Instead of 

introducing how they work, in this section, we focus on what 

they have done.

BlueDot [59] is a software that evaluates the outbreak risk 

of infectious diseases caused by over 150 different pathogens, 

toxins, and syndromes. In fact, COVID-19 is the most crucial 

disease whose outbreak risk is detected by BlueDot. The main 

technique behind BlueDot is a crawler that can scan over 

100,000 official and mass media sources in 65 languages per 

day. Based on the data crawled, natural language processing and 

text mining are applied to extract important information for 

the evaluation of outbreak risk of infectious diseases. Although 

BlueDot is recognized by the OECD’s report to support deci-

sion makers at the detection stage, it provides a user-centric 

view that can also be utilized to calculate an individual’s proba-

bility of infection (i.e., issues at the prevention stage). Unlike 

BlueDot, EpiRisk [60] is a web-based application that calcu-

lates an individual’s probability of infection based on a topology 

structure of airline transportation networks. Since the data 

source of EpiRisk is quite narrow and might miss some crucial 

data, the evaluation results are doubtful, even if it is very conve-

nient to use. For example, as shown in Fig. 2, EpiRisk shows 

that the probability of infection in Taipei is higher than 45%, 

which is completely untrue, with zero new confirmed domes-

tic cases over the past 80 days in Taiwan.

When the outbreak began, how to effectively isolate infec-

tion was a key issue. The operating site might be divided into FIGURE 2 A snapshot of EpiRisk.
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two parts: hospital and home. To isolate suspected infections in 

hospitals, many hospitals have been utilizing robots to serve 

patients that arrive. For example, at Antwerp University Hospi-

tal, Cruzr Health [61] takes patients’ body temperatures and 

checks whether they are wearing masks when patients arrive. If 

the patients are wearing masks and their body temperatures are 

within the normal range, Cruzr Health leads them to their 

appointment. To take care of home isolation, Canada developed 

a chatbot [62] that provides information for home isolation and 

reminders for those who are suspected to be infected. As shown 

in Fig. 3, we can see that the chatbot provides information on 

COVID-19 symptoms at users’ requests.

At the end of the pandemic, the most important task for 

every country would be economic recovery. However, the tim-

ing of enforcing policies for economic recovery is a difficult 

problem. Researchers at WeBank [64], a private Chinese neo-

bank, collected data from satellites, GPS, and social media to 

detect the hot spots of actual steel manufacturing inside the 

factories in China [63]. They believe that the detection results 

may reflect economic recovery in China. Although this system 

was built for internal use, the data from satellites, GPS, and 

social media can be crawled easily, implying that computa-

tional intelligence researchers can build a model according to 

this concept.

IX. Conclusions

In this survey, we reviewed several critical issues on combating 

COVID-19 that have been or can be resolved using computa-

tional intelligence techniques. Computational intelligence is 

classified into five different principles: neural networks, fuzzy 

logic, evolutionary computation, computational learning theo-

ry, and probabilistic methods. Our survey found that most 

research studies have been designed based on neural networks 

for addressing the issues on characterization of the symptoms 

of viral infections. Meanwhile, Panwar et al. [16]’s method 

achieved the highest performance (97.62% true-positive rate), 

which means that using deep neural networks to detect symp-

toms from CT images is well-developed, and we may devote 

our efforts to other issues.

Theoretically, all issues we listed in Section II can be solved 

by at least one of the principles of computational intelligence. 

Unfortunately, based on our survey, many COVID-19 pandemic 

issues have not yet been addressed in computational intelligence 

studies. On the contrary, most reported studies have focused only 

on specific issues, such as the characterization of the symptoms of 

viral infection. This may be because computational intelligence is 

a data-driven technique that can work well mostly when the 

amount of data is sufficient. Currently, the data that we can 

most easily crawl is chest CT images. Therefore, existing works 

have focused on discovering the characteristics of COVID-19 

patients based on their chest CT images to build classification 

models. As more and more patients are cured, many treatment 

records will be produced. Such treatment records could be 

viewed as a set of time series data. Many computational intelli-

gence techniques could be then applied to analyze treatment 

records. To address the issues on TrD and PD, future works can 

combine time-series analysis mechanisms with previous works. 

For example, if we obtain COVID-19 patients’ CT images for 

each stage, the characteristics at each stage can be modeled and 

utilized for treatment design.

Finally, we observe that some existing works, such as [42], 

[46]–[48], utilized more than two principles to design hybrid 

models that can balance the strengths and weaknesses of two 

principles so that the applicability of these works could be 

improved. For example, evolutionary computation could be 

used to optimize the hyperparameters of deep learning models 

so that some deep learning models might be built from limited 

data. We believe, in the near future, the computational intelli-

gence community will invent new algorithms by combining 

multiple principles to address the critical issues described in this 

survey using limited data or under strict conditions, such as 

visual analytics techniques and applications for propagation 

modeling and monitoring, vaccine design or drug reposition-

ing, as well as IoT for smart care in COVID-19.
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