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Computational interfacial rheology
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A B S T R A C T

Fluid–fluid interfaces, laden with polymers, particles or other surface-active moieties, often show a rheologically complex response to deformations, in particular
when strong lateral interactions are present between these moieties. The response of the interface can then no longer be described by an isotropic surface tension
alone. These ‘‘structured’’ soft-matter interfaces are found in many industrial applications, ranging from foods, cosmetics and pharmaceuticals, to oil recovery.
Also many biomedical applications involve such interfaces, including those involving lung surfactants and biofilms. In order to understand, design and optimize
processes in which structured interfaces are present, flow predictions of how such multiphase systems deform are of the utmost importance, which is the goal of
‘‘computational interfacial rheology’’, the main topic of this review. We start by rigorously establishing the stress boundary condition used in the computation of
multi-phase flows, and show how this changes when the interface is rheologically complex. Then, constitutive models for the extra stress in interfaces, ranging from
2D generalized Newtonian to hyperelastic and viscoelastic, are reviewed extensively, including common pitfalls when applying these models. This is followed
by an overview of different approaches to measure interfacial rheological properties, and a discussion of advanced numerical implementations for deforming
interfaces. We conclude with an outlook for this relatively young and exciting field.

1. Introduction

Describing multiphase materials or multiphase material flows in-
variably involves making constitutive assumptions about the propensity
of the interface to transmit stress [1–3]. Interfaces can be ‘‘simple’’ and
be described by a constant interfacial tension. A first complexity arises
when the concentration of surface-active species, which directly control
interfacial tension, is changed as a function of time, necessitating a
description of the transport phenomena, coupled to the deformation of
the interface and the bulk and/or disturbance flows [4]. Further and
intrinsic complexity arises when the interface becomes structured, due
to an increased dense packing of those objects at the interface or due to
lateral interactions between the surface-active moieties which can lead
to (transient) network structures [5–10]. Such structured, or complex,
soft-matter interfaces respond with extra stresses to a deformation, and
linear and nonlinear viscoelastic or viscoplastic rheological properties
then emerge which lead to the field of interfacial rheology [3,11,12].

Application areas are broad and diverse, ranging from aerated
or multiphase food products [13–17], consumer care products [18],
materials in biomedical applications as for example in lung surfactants
[19–21], bacterial biofilms [22–24] or in drug delivery applications
with monoclonal antibodies [25], and materials in the energy sector
such as asphaltenes [26,27] and CO2 storage [28] and finally polymeric
materials (foams and blends) [29–31]. Goals of interfacial design are to
stabilize products against coalescence [32] or Ostwald ripening [33],
to control the morphology of disperse systems and polymeric blends
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[29], to stabilize multiphase materials [34] or thin film flows [35,36]
and to design unit operations such as flotation, foaming, blending and
emulsification or - rather the opposite - separations.

In order to understand, design and optimize processes in which
structured interfaces are present, flow predictions of how such mul-
tiphase systems deform are of the utmost importance, which is the
goal of ‘‘computational interfacial rheology’’. Computational interfacial
rheology can contribute to the application areas mentioned above with
substantial impact, either societal or economically. For example, a
better understanding of the hydrodynamics in the presence of struc-
tured interfaces can help further optimizing unit operations. Combined
computational and experimental studies can contribute to a better
understanding of the role of the stress boundary conditions on thin film
behavior and breakup, to improve the understanding of coalescence,
breakup and rupture processes in population balance modeling [37,38].
Most drop or bubble deformation studies could be extended to concen-
trated systems to better understand effects such as avalanches [39] or
visco-elastic emulsification [40]. An interplay between processing flows
and interfacial rheology can be used to process materials such that non-
equilibrium shapes can be locked into designer architectures, and use
this in encapsulation or bicontinuous structures [32,41]. Computational
rheometry will also be a field that can largely contribute, in particular
when analyzing area changing flows, to better underpin the properties
measured in, for example, an oscillatory pendant drop experiment [42].

The stability of thin films plays a role in many biological processes
as well, which is of unfortunate timely relevance due to the current
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Fig. 1. Some examples of areas where computational interfacial rheology can have significant impact, in societal (top left), industrial (top right) and rheometric (bottom) settings.

COVID-19 pandemic. A prime example is the stability of the lungs and
the lung collapse where a Laplace instability is suggested to occur,
which is associated with acute respiratory distress syndrome [21].
Better understanding of these phenomena under dynamic conditions,
crucial for improved treatments, would benefit from a computational
modeling approach. The same holds true for better understanding of
aerosol formation in breathing or sneezing, where the surfactant film
in the lungs plays an important role in the production of submicron
droplets [43]. Computational interfacial rheology could aid in pre-
dicting the size distribution of these droplets and help in designing
mitigation strategies. There are many more problems where computa-
tional interfacial rheology could have significant impact; to whet the
reader’s appetite, some examples are given in Fig. 1.

The measurement of the equations of state and rheological material
functions has a long history, going back to iconic scientists such as
Ben Franklin, Lord Rayleigh, Agnes Pockels, Joseph Plateau and Irving
Langmuir (see the book by Tanford for a historical overview [44]).
Methods to measure the linear and non-linear rheological functions at
constant surface area have been developed for shear and extensional
deformations, as will be reviewed below [45,46], and experiments
with clean kinematics and a rigorous separation of bulk and interfacial
contributions have been developed, benchmarked and there is clarity
on the operating windows where reliable and accurate data can be
obtained [47]. The study of the rheological properties in compression
or dilation is more challenging as the interplay between the changes
in thermodynamic properties, due to changes in surface concentration,
and intrinsic compressional viscoelasticity is difficult to deconvolute
[48]. Many commercial instruments, such as the popular pendant drop
instrument, analyze the response to deformations as if only a surface
or interfacial tension is present. As a consequence, the intrinsic ma-
terial functions are not readily obtained. This calls for computational

interfacial rheometrical methods, combining such experiments with
computational efforts to deconvolute the effects.

In our opinion, a ‘‘perfect storm’’ is brewing for generating even
more broad advances using computational interfacial rheology and
fluid mechanics. This review aims to provide firm footing for such
progress, starting by laying out the basic assumptions commonly used
in interfacial rheology in Section 2, followed by the theoretical descrip-
tion concerning how to set up the boundary conditions for rheologically
complex interfaces in Section 3. Whereas the development of con-
stitutive interfaces still allows for further progress, frame invariant
descriptions of Newtonian, non-Newtonian, elastic and viscoelastic as
well as basic viscoplastic equations are now available; the state of the
art for these interfacial constitutive models is reviewed in Section 4.
This is followed by a brief introduction to differential geometry in
Section 5, which is crucial for the proper mathematical description of
interfaces. Then, methods for interfacial rheometry, where numerical
methods play an important role in extraction the rheological parame-
ters of the interface, are reviewed in Section 6. Initial results on the
simulation of deforming droplets and bubbles as well as drainage and
thinning flows are discussed in Section 7, and we end this review with
some open problems and an outlook in Section 8.

2. Basic assumptions

In interfacial rheology, the treatment of interfaces is typically done
using a continuum approach, where the flow in the bulk of each
liquid is described by conservation equations for mass, momentum
and energy, and appropriate coupling conditions are employed at the
liquid–liquid or liquid–fluid interface. In this ‘‘sharp-interface’’ frame-
work, pioneered by Gibbs, the interface is considered a 2D dividing
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Fig. 2. Schematic plot of the density � (blue), bulk concentration C (red) and excess
concentration � (orange) as a function of position x, crossing the interface. The location
of the sharp interface is depicted by the dotted line. The inset is a zoomed-in view
at the scale of the interfacial thickness, where it can be seen that the surface excess
concentration is defined by the difference between the area under the actual curve that
describes C and the curve created by extrapolating the bulk values up to the location
of the sharp interface, i.e. the orange area under the red curve. In the zoomed-out
view, the interface is described by a 2D dividing surface embedded in 3D space, and
the excess concentration is described by a field that lives on that surface. In this figure,
the location of the sharp interface was chosen such that the excess density equals zero.

surface embedded in 3D space which is located between the two bulk
liquids [49]. As explained in Fig. 2, bulk properties are extrapolated
up to this surface, and any ‘‘excess’’ quantity that is not accounted
for by the bulk is assigned to the interface. The choice of the location
of the dividing surface is not unique, which in turn has consequences
for the excess quantities, such as the excess density �s [50]. The most
obvious approach to fix the location, or ‘‘gauge’’, of the interface, is
by assuming �s = 0, yielding an unambiguous set of equations [51,52].
Other gauges have also been proposed, which, for example, ensure that
all surface excess mass densities are positive [53]. Although important
from theoretical point of view, in many problems in interfacial rheol-
ogy the macroscopic length scale is much larger than the interfacial
thickness, and the location of the interface is typically chosen using a
pragmatic approach, with the properties of the interface as described
in this review. It will become an issue when, coupled to the momentum
equations, mass or heat transfer also needs to be considered [51,52].

At the interface, the existence of a Cauchy surface stress tensor �s
is then assumed, which is given by [46,54]

�s = �(� , T )I s + � , (1)

where �(� , T ) is the interfacial or surface tension, which is a state
variable which depends only on the excess concentration � and temper-
ature T , I s = I − nn is the surface unit tensor, where n is the normal
of unit length to the interface, and � is the surface extra stress. For
simplicity, in this review we only consider isothermal problems and
spatial variations of the surface tension are thus only due to variations
of the excess concentration. The surface stress tensor is a 2D second-
order tensor embedded in 3D space, and is symmetric and tangential,
i.e., it maps tangential vectors to tangential vectors and it maps normal
vectors to the zero vector [2]. Due to its symmetry, the surface stress
tensor can be uniquely described by two orthogonal principal directions
and two principal stresses, where the principal directions are tangential
to the surface. Interfaces that have non-zero, possibly deviatoric, extra
stresses will be referred to as ‘‘complex’’. In the literature, ‘‘fully’’
tangential tensors are sometimes defined separately from tangential
tensors [55], which we will not do here, since the two definitions
coincide for symmetric surface tensors.

To describe the surface extra stress, interfacial constitutive models
are needed. Paraphrasing Pozrikidis [56], there are generally three
approaches for deriving models that link surface stresses to deforma-
tions: (1) the interface is described as a 3D continuum, often assumed
incompressible [57], and constitutive equations are derived in the limit
of zero thickness, (2) the interface is described as a 3D continuum,
and assumptions are made concerning the deformation and stresses
in normal direction, possibly yielding non-tangential surface stresses,
and (3) the thickness direction is disregarded from the outset, and
the interface is described as a 2D surface embedded in 3D space. For
many of the interfaces considered in interfacial rheology, it does not
seem appropriate to describe interfaces as 3D continua since they are
only a few molecules or particles in thickness. We therefore prefer
the third approach, which also fits nicely within the framework of
Gibbs. Moreover, we mainly treat models that split the constitutive
response in an area-preserving part and a distortional part, since these
offer much freedom for, e.g. fitting experimental data [58], and using
experimentally observable material functions to predict the behavior
during flow or deformation.

Using non-equilibrium thermodynamics, tangential slip has been
identified as an entropy-producing mechanism for multi-phase systems
[52], and may occur for large molecules [59,60]. However, the au-
thors are not aware of reports of interfacial slip for small-molecular
systems, suggesting that its magnitude is small enough to be neglected
for practical purposes. Hence in most cases it can be assumed that
the tangential components of the velocity are continuous across the
interface. In addition, it assumed that there is no phase change across
the interface, thus only ‘‘material interfaces’’ are considered. The latter
assumption implies that the normal velocities are continuous as well,
i.e. the velocity vector v is continuous across the interface, and we
therefore do not introduce a separate interfacial velocity. The 3D
position vectors with respect to a chosen origin are denoted by x, and
the subset xs contains those position vectors that point to the interface.
A more formal definition of xs will be given in Section 7.1.

3. Momentum balance for complex interfaces

We start by investigating the momentum balance for interfaces, by
considering the conservation of the ‘‘excess momentum density’’. To
describe the transport of the surface excess quantities in the sharp-
interface framework, an expression for the interfacial conservation law
is needed. However, a straightforward generalization from the bulk
is complicated due to the possible motion of the interface through
3D space, and the idea of ‘‘fixed point on the interface’’ relying on
the non-unique manner of how we choose to describe the location
of the interface [51]. Following Slattery et al. we first introduce the
concept of ‘‘surface particles’’ as infinitesimal particles that are bound
to the interface, following its motion in 3D space [2]. It can be seen
that, by definition, the velocity v at the interface is the time deriva-
tive of the spatial location, keeping a surface particle constant. With
computational interfacial rheology in mind, we follow an approach
similar to the arbitrary Lagrangian Eulerian approach [61,62], where
the interface is described by a grid that does not necessarily move
with the surface particles. An interfacial grid velocity vg is introduced,
which is the time derivative of the spatial location, keeping a grid point
constant, for which the only requirement is that the grid follows the
shape of the interface. This requirement can be expressed as

vg ⋅ n = v ⋅ n, (2)

where we note that there are many choices possible for vg, and a
particular choice is generally motivated by the problem at hand [51].
We are now in the position to define an interfacial material derivative
Ds( )∕Dt as the time derivative from the ‘‘point of view’’ of an observer
on a fixed surface particle, which yields [2,63]:

Ds( )

Dt
=

)s( )

)t
+ (v − vg) ⋅ ∇s( ), (3)
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Fig. 3. A surface element A with contour C. The unit vector normal to the surface is
denoted by n and the unit vector that is both tangential to the surface and normal to
the contour is denoted by b. The fluid below the interface, or in −n direction, is called
fluid 1, and is endowed with a bulk stress tensor �1. The fluid above the interface, or
in n direction, is called fluid 2, and is endowed with a bulk stress tensor �2. Inside
the surface, the existence of a surface stress tensor �s is assumed.

where the partial derivative )s( )∕)t is for a constant grid point and
where ∇s = I s ⋅ ∇ is the surface gradient operator (where ∇ is the
gradient operator). The velocity v−vg, appearing in Eq. (3), is called the
intrinsic velocity [2] or deformational velocity [52], and is tangential
to the interface, ‘‘unaware’’ of the motion in 3D space.

To derive the momentum balance for interfaces, we proceed along
the lines of Leal [1], but we retain the possibility of the interface
having dynamical properties of its own and we consider changes in
excess momentum. A sketch of an interfacial element A is given in
Fig. 3, where we define the normal vector n and the tangential vector b.
Note that there are two different tangential vectors, but for brevity will
denote them both by b in this section. We assume that there is a bulk
fluid present both below and above the interface, with bulk Cauchy
stress tensor �1 and �2, respectively. Moreover, as discussed above, we
assume that there exists a tangential Cauchy surface stress tensor inside
the interface, which we denote by �s, and which is defined by ts = �s ⋅b,
where ts is the interfacial traction vector.

Collecting all the forces that act on the interfacial element A and
identifying them as sources of momentum, we obtain the following
excess momentum balance equation [2]:

d

dt

[

∬A

�sv dA

]
= ∬A

(�2 − �1) ⋅ n dA + ∫C �s ⋅ b dl. (4)

Note that Eq. (4) contains a time derivative over the, possibly time-
dependent, surface element A. Moreover, the second term on the right
hand side is an integral over the contour C. To rewrite Eq. (4) in a
more useful form, we invoke the surface Reynolds transport theorem
and the surface divergence theorem for tangential surface tensors to
obtain [2,63]:

∬A

�s
Dsv

Dt
dA = ∬A

(�2 − �1) ⋅ n dA +∬A

∇s ⋅ �s dA, (5)

where use was made of Ds�s∕Dt+�s(∇s ⋅v) = 0 [53]. The term on the left
hand side of Eq. (5) is associated with the inertia of the interface itself,
which is typically small, or this term is not even present in the gauge
fixed by �s = 0, and it is generally neglected [47]. Moreover, since
Eq. (5) is valid for an arbitrary surface element A, we can remove the
integrals. Substitution of the general expression for the surface stress
tensor, as given in Eq. (1), yields after rewriting:

(�1 − �2) ⋅ n = ∇s� − �(∇s ⋅ n)n + ∇s ⋅ � , (6)

where the first term on the right hand side represents Marangoni
stresses, the second term represents the jump in normal stress due to
the curvature of the interface (capillarity), and the last term is due
to the extra surface stress (interfacial rheology). To explicitly show
the dependence of Marangoni stresses on the equation of state and on
spatial variations of the surface excess concentrations, we note that the

first term on the right hand side of Eq. (6) can be rewritten for the
isothermal case as ∇s� = ()�∕)� )∇s� .

Inspired by the nomenclature as introduced by Venerus and Öttinger
[52], we will refer to Eq. (6) as the passivemomentum balance, whereas
Eq. (5) is the integral form of the active momentum balance, with the
difference being that the active case involves time-derivatives, which
arise due to the left hand side of Eq. (4), whereas the passive case is
purely a jump-condition. Similar nomenclatures can be introduced for,
e.g., the balance of excess mass or the balance of excess energy.

For deforming curved interfaces, the components of Eq. (6) are
most conveniently described in curvilinear coordinates that are not
necessarily orthogonal, as will be shown in Section 5. However, it is
instructive to investigate Eq. (6) further for a planar interface using
the standard Cartesian coordinates x, y and z. It is assumed that the
interface is located in the xy plane, yielding the tangential unit vectors
ex and ey and the normal n = ez. The velocity vector is given by
v = vxex + vyey + vzez, where we note that vz is zero at the interface
due to the planar assumption. Moreover, we assume that the fluids are
Newtonian, thus for the ith fluid the stress tensor reads �i = −pI+2�iD,
where p is the bulk pressure, �i is the bulk viscosity and D = (∇v +

(∇v)T )∕2 is the rate-of-deformation tensor. The stress balance in the
tangential direction given by ex reads:

�1
)vx

)z

||||1
− �2

)vx

)z

||||2
=

)�

)�

)�

)x
+

)�xx

)x
+

)�yx

)y
, (7)

where the notation |i means that the term is evaluated at the interface,
but on the side of the ith fluid. The stress balance in ey direction is
obtained by exchanging x and y in Eq. (7). The tangential stress balance
shows that the discontinuity of the slope of the tangential velocity
across the interface is due to a viscosity ratio, Marangoni stresses
or interfacial rheological properties, and thus expresses how ‘‘stress-
carrying’’ the interface is. In order to describe the interfacial stress
tensor �, constitutive models are needed that link (rate-of-)deformation
of the interface to the surface stress, which will be topic of the next
section.

4. Interfacial constitutive models

In this section we will review constitutive models for interfaces. The
extra surface stresses described by each model are identified with the
extra surface stress � in Eq. (6).

4.1. Boussinesq-Scriven model

One of the earliest constitutive equations employed for interfaces
was obtained by assuming a linear coupling between the interfa-
cial rate-of-deformation and the surface stress [64,65]. The resulting
‘‘Boussinesq–Scriven model’’, which can be regarded as the surface
equivalent of the compressible Newtonian model for bulk fluids, reads
in coordinate-free form [2,66]:

�v = 2�sD
d
s + �s(∇s ⋅ v)I s, (8)

where �s is the surface (or interfacial) shear viscosity, �s is the surface
(or interfacial) dilatation viscosity, v is the velocity vector on the
interface and Dd

s is the deviatoric part of the rate-of-deformation tensor
Ds = (∇sv ⋅ I s + I s ⋅ (∇sv)

T )∕2, thus Dd
s = Ds − tr(Ds)I s∕2. The

Boussinesq–Scriven model can also be derived by considering the fact
that the excess entropy production must be positive, and then seeking
for the simplest linear law which ensures this [52]. Note that for
some interfaces, shape changes are much easier than area changes,
e.g. biological membranes, which makes them effectively incompress-
ible [67]. These systems can also be described by including the surface
incompressibility condition ∇s ⋅ v = 0 as a constraint, in which case �s
becomes insignificant and � assumes the role of a Lagrange multiplier
[68]. Moreover, the presence of a surfactant can also strongly inhibit
compression or dilation of the interface since spatial variations in
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surface excess concentration yield interfacial stress gradients, through
the equation of state �(� , T ), that can oppose area changes [4]. Thus the
surface incompressibility constraint has been used for surfactant-laden
interfaces as well [69]. In this review, we generally allow for changes
in area, unless otherwise noted.

In the literature, a number of confusions have arisen concerning the
proper form of Eq. (8), which we would like to clarify here. The first is
that the velocity vector v as used in Eq. (8) should be the full 3D vector
and not only the tangential projection as was done in e.g. [70–74].
It is easy to show that using only the tangential projection cannot be
correct: if a sphere or cylinder is blown up by a purely normal velocity
at the interface, the interface is clearly deforming and the surface stress
should be non-zero. Note, that for planar interfaces, e.g. as studied
by Elfring et al., the normal component of the velocity vector at the
interface is assumed zero, so using the tangential velocity leads to the
correct result [71].

The second point of confusion in literature concerns the projection
operation which is applied on ∇sv and (∇sv)

T in the definition of Ds.
This operation is crucial since we define � as a tangential tensor, thus
the normal components of ∇sv and (∇sv)

T must be removed before
making a direct connection between � and Ds [75]. However, this
projection is absent in various works [42,57,69–73,76,77]. Whereas
for planar interfaces the projection is not necessary due to the velocity
being a tangential vector (and it can thus be omitted) [69,71,76,77],
for non-planar interfaces this needs to be considered. For certain ge-
ometries and situations including the projection might not always lead
to significantly different results [42,78,79], but it is recommended to
remove the normal components of ∇sv and (∇sv)

T .
Again, it is instructive to investigate Eq. (8) further for a planar

interface, as was done in Section 3 to emphasize the meaning of the
different terms. Substitution of the Boussinesq–Scriven model in the
tangential stress balance given by Eq. (7), yields:

�1
)vx

)z

||||1
=

)�

)�

)�

)x
+ �s

(
)2vx

)x2
+

)2vx

)y2

)
+ �s

)

)x

(
)vx

)x
+

)vy

)y

)
, (9)

where we assumed �2 = 0 for brevity. Introducing the velocity scale
V , length scale L, and characteristic surface excess concentration �c,
Eq. (9) can be written in dimensionless form as:

)v∗
x

)z∗

|||||1
= −Ma

)� ∗

)x∗
+Bq

(
)2v∗

x

)x∗2
+

)2v∗
x

)y∗2

)
+Bq�

)

)x∗

(
)v∗

x

)x∗
+

)v∗
y

)y∗

)
, (10)

where Ma = −�c()�∕)� )∕(V �1) is the Marangoni number where
()�∕)� ) will generally depend on � , but we treat it here as a constant
for simplicity, Bq = �s∕(L�1) is the Boussinesq number, � = �s∕�s is the
interfacial viscosity ratio. Asterisks denote non dimensional variables.
Eq. (10) elegantly shows the intricate coupling between interfacial
rheology, bulk rheology and transport phenomena. In addition, it shows
how the bulk can be regarded as a sink for momentum, with the
importance determined by Bq.

4.2. Generalized Newtonian interfaces

In the Boussinesq–Scriven model, as introduced in Eq. (8), it was
assumed that the surface viscosities were constant, which has limited
applicability for complex interfaces, where the viscosities are generally
a function of deformation-rate [80–84] and/or surface excess concen-
tration [4]. A straightforward improvement to the model can be made
by assuming that the surface viscosities are a function of the invariants
of rate-of-deformation tensor and of � [66]. To maintain the split into
an area-preserving part and a distortional part, we will make use of
the first principal invariant of Ds, defined as IDs = tr(Ds) = ∇s ⋅ v, and
the second principal invariant of the deviatoric part of Ds, defined as
II

Dds
= dets(D

d
s ), where dets is the surface determinant [2]. It is then

assumed that the surface viscosity functions can be written as

�s = �s(IIDds
, � ) and �s = �s(IDs , � ). (11)

The viscosity functions in Eq. (11), are similar to the bulk case [85],
such as a power-law or Carreau model, with shear-thinning or shear-
thickening behavior determined by the sign of the power-law exponent
[84]. Similarly they could be expressed as functions of the invariants
of the surface stress tensor.

For a planar interface, a simple shear flow with rate ̇ yields Ds =

(̇∕2)(exey + eyex), where ex and ey are the orthonormal tangential
unit tensors as introduced in Section 3. An isotropic flow with area
rate of change �̇ yields Ds = (�̇∕2)(exex + eyey), where � > 0 for
surface dilatation and � < 0 for surface compression. It can thus easily
be verified that the first invariant of Ds is the area rate of change,
whereas the second invariant of Dd

s is related to the rate of shear.

Using the invariants of Ds and Dd
s , other non-Newtonian behavior,

typically inspired by models for bulk rheology, can be carried over
to interfaces in a rather straightforward manner [66,82]. To illustrate
this, we present here, as an ansatz, the compressible Bingham model
for viscoplastic interfaces, which is based on the bulk counterpart of
this model [86–88], but maintaining the deviatoric–isotropic split. The
deviatoric surface stress is given by:

�dvp = 2�sD
d
s +

2Dd
s

|Dd
s |
�sy if |�dvp| > 2�sy,

Dd
s = 0 if |�dvp| ≤ 2�sy, (12)

where |Dd
s | =

√
2 tr(Dd

s ⋅D
d
s ) is the magnitude of the deviatoric rate-

of-deformation tensor, |�dvp| =
√

2 tr(�dvp ⋅ �
d
vp) is the magnitude of the

deviatoric surface extra stress tensor and where �sy is the shear yield
stress. Note that |Dd

s | and |�dvp| can also be expressed as functions of
the principal invariants introduced above. For the isotropic part of the
surface stress we obtain:

tr(�vp) = 2�s(∇s ⋅ v) +
2∇s ⋅ v

|∇s ⋅ v|
�iy if |tr(�vp)| > 2�iy,

∇s ⋅ v = 0 if |tr(�vp)| ≤ 2�iy, (13)

where �iy is the isotropic yield stress, i.e. the yield stress in compres-
sion/dilatation. Using the notation from the previous paragraph, the
model predicts in simple shear:

(�vp)xy = (�vp)yx = �ṡ +
̇

|̇|
�sy if |(�vp)xy| > �sy,

̇ = 0 if |(�vp)xy| ≤ �sy, (14)

where (�vp)xy = ex ⋅ �vp ⋅ ey, and similarly for the other components of
�vp. In dilatation/compression the model predicts:

(�vp)xx = (�vp)yy = �s�̇ +
�̇

|�̇|
�iy if |(�vp)xx| > �iy,

�̇ = 0 if |(�vp)xx| ≤ �iy. (15)

Similar to the bulk counterpart of the model, the yield stress can be
a function of, e.g., a structural parameter [87] or the surface concen-
tration [88]. Moreover, the yield criterion as used in Eq. (12) is a
‘‘von Mises-like’’ criterion for interfaces, whereas the yield criterion
in Eq. (13) depends on isotropic contributions and thus differs from
the von-Mises criterion [89]. Although the Bingham model for inter-
faces has been successfully used for area-preserving flows [82,90,91],
we are not aware of any other experimental/numerical work that
employs the Bingham model for interfaces with area-changing flows
in the form given here. Although conceptually quite different from,
e.g. the power law model, we categorized the interfacial Bingham
model as a generalized Newtonian model since the effective viscosity
is only a function of the instantaneous rate of deformation, albeit in
a discontinuous manner. Thorough investigations into thermodynamic
consistency, experimental validation and numerical stability, especially
for area-changing flows, will be crucial for it to be as successful as its
bulk counterpart [92].



Journal of Non-Newtonian Fluid Mechanics 290 (2021) 104507

6

N.O. Jaensson et al.

Besides the deformation rate, the surface excess concentration � can
affect the value of the viscosity [93–95]. This dependency is typically
described by an exponential relation between the viscosity and the
surface pressure, where the latter is defined by� = �0−�(� , T ), with �0
the interfacial tension of the clean interface. Depending on the system
under consideration, both�-thinning and�-thickening interfaces exist
[4]. To describe the distribution of � at the interface, an additional
interfacial balance equation is needed, which can be readily derived in
a similar manner as the momentum balance in Section 3. In the absence
of reactions, and assuming Fick’s law for diffusion at the interface,
conservation of mass yields the following surface-convection–diffusion
equation:

Ds�

Dt
+ � (∇s ⋅ v) = �s∇

2
s� + jn, (16)

where �s is the surface diffusion coefficient and jn is a source term
that describes adsorption/desorption from and to the bulk. Often, the
grid velocity is chosen equal to the normal velocity of surface particles,
which yields [96]:

)s�

)t
+ ∇s ⋅ (�vt) + � (∇s ⋅ n)vn = �s∇

2
s� + jn, (17)

where vt = I s ⋅ v is the tangential interface velocity and vn is the
magnitude of the normal velocity vn = nn ⋅ v.

Adsorption/desorption is mainly important for small-molecular sur-
face active agents, that typically do not exhibit interfacial rheological
behavior [95]. However, because changes in � lead to changes in
surface tension through the equation of state �(� , T ), a time-dependent
interfacial tension can exist for these systems. Historically, this effect
has often been described using a complex interfacial modulus [97]
which is readily obtained using an oscillatory pendant drop instrument.
We will not do that here, however, since the resulting parameters are
not rheological material functions, but they are related to transport
phenomena, as is clear from the fact that they are geometry dependent
[98,99]. From a computational perspective, the material parameters
that control this time dependence, and thus should be used as inputs in
the modeling, are the bulk diffusivities and energy barriers for adsorp-
tion (interaction potentials). Rheological material functions should only
relate stress to only strain or strain rate, and these are easily identified
for structured, yet passive interfaces. Reporting apparent interfacial
moduli, which arise due to time dependent properties and the diffusion
to/from an active interface, in terms of properties of a passive interface
have obfuscated the field of interfacial rheology and how to use any
experimental data in a predictive modeling efforts. Further discussion
on this topic can be found elsewhere [3,46,100].

4.3. Elastic interfaces

Elastic interfacial constitutive models can be constructed that cou-
ple the surface stress to the deformation with respect to some refer-
ence state. Although interfacial structure could in principle lead to
anisotropic interfacial elasticity, for simplicity only isotropic elasticity
is considered here, implying that the surface stress and surface strain
are coaxial [57]. We introduce the stretch ratio �, which describes the
change in length of a line dxs, tangential to the surface in the deformed
state, relative to a line dXs, tangential to the surface in the reference
state: � = (dxs ⋅dxs)

1∕2∕(dXs ⋅dXs)
1∕2, where xs and Xs are the position

vectors to the interface in the deformed and reference configuration,
respectively. For small deformations, the linear surface strain tensor
can be used to construct constitutive equations, which is defined by
U s = (∇su ⋅ I s + I s ⋅ (∇su)

T )∕2, where u is the 3D displacement vector
on the interface. For small deformations, the principal values of U s are
�1 = �1−1 and �2 = �2−1, where �1 and �2 are the two in-plane principal
linear strains and �1 and �2 are the two in-plane principal stretch ratios.
For linear elastic behavior, we can define a strain-energy area density
function of the form [57]

WH(�1, �2) = Gs(�
2
1
+ �2

2
) +

1

2
(Ks − Gs)(�1 + �2)

2, (18)

where Gs is the interfacial shear modulus and Ks is the interfacial
dilatational modulus. By taking the derivative of WH with respect to
the linear strain, we obtain the stresses acting on an infinitesimal patch
of the interface, similar to the approach in bulk [101]. The resulting
stresses can be written in tensor form to yield Hooke’s law for linear
elastic interfaces [76]:

�H = 2GsU
d
s +Ks(∇s ⋅ u)I s, (19)

where Ud
s is the deviatoric part of linear strain tensor: Ud

s = U s −

tr(U s)I s∕2. Alternatively, Eq. (19) can be written in terms of the inter-
facial Lamé constants, Young’s modulus or Poisson ratio [48,75,102].
Note, that Eq. (19) is sometimes written with additional 1∕� terms,
which arise due to the area change between the deformed and reference
state [103]. However, since Eq. (19) derives from the theory of linear
elasticity, it is only valid for infinitesimal deformations and, to first
order, no distinction is made between the deformed and reference state.
To go beyond the small deformation limit, finite strain tensors are
needed.

In the literature, isochoric ‘‘Mooney–Rivlin’’ or ‘‘neo-Hookean’’
models are often derived by assuming that the membrane has a finite
thickness and adding the assumption that the membrane deformation
is volume-preserving [104]. The strain-energy volume density function,
together with the isochoric condition �1�2�3 = 1, where �3 is the
stretch ratio in the normal direction, yields hyperelastic interfacial
models. However, these models generally have limited usefulness,
mainly because they lack an independent parameter to describe the
constitutive response to dilatational/compression of the interface [57].
Moreover, the assumption of a continuum in the thickness direction is
questionable for systems that only consist of one to a few molecules or
particles in thickness direction [56].

Alternatively, the thickness direction can be neglected completely,
and the membrane elasticity can be formulated in terms of a strain-
energy area density function. Here, we give two of such models which
are particularly useful since they both employ a split in the isotropic
and shear response. Both models can be written in terms of the left
Cauchy–Green interfacial strain tensor Bs = F sF

T
s , where F s is the 2D

interfacial deformation gradient tensor given by F s = )xs∕)Xs. Note
that Bs is symmetric and tangential to the surface in the deformed state.
Furthermore, J is the relative area deformation, which can be written
as J = dets(F s) = �1�2. The first is the Evans–Skalak model, which
is often used for the modeling of bio-membranes, and for which the
strain-energy area density function with respect to the reference state
is given in terms of the principal stretch ratios as [105]:

WES(�1, �2) =
Gs

2

[
�2
1
+ �2

2

J
− 2

]
+

Ks

2
(J − 1)2, (20)

where J = �1�2 is the relative area deformation. More recently, a
new constitutive equation was derived by Pepicelli et al. [58], with
the notable difference that a Hencky strain measure is used for the
isotropic deformation, which is known to be able to describe moderate
non-linearities and has the additional advantages that it is symmetric
in dilation/compression and additive [48]:

WNH(�1, �2) =
Gs

2

[
�2
1
+ �2

2

J
− 2

]
+

Ks

2
(ln J )2. (21)

From the strain area density functions, the surface stresses can readily
be calculated [58]. For the strain area density function as given by
Eq. (21) this yields the neo-Hookean model for compressible interfaces,
which reads in coordinate-free form [58]:

�NH =
Gs

J
B̄
d
s +Ks

ln(J )

J
I s, (22)

where B̄
d
s = B̄s − tr(B̄s)I s∕2 is the deviatoric part of the left-Cauchy–

Green interfacial strain tensor at constant area, which is given by B̄s =

Bs∕J . For the Evans–Skalak model as given by Eq. (20), the deviatoric
part of the surface stress is similar to Eq. (22), but the isotropic part
is given by Ks(J − 1)I s. A comparison of different strain measures for
describing the isotropic deformation of the interface is shown in Fig. 4.
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Fig. 4. Comparison of different strain measures for describing the isotropic deformation
of the interface. Here A denotes the current surface area and A0 denotes the surface
area in the reference state.

4.4. Viscoelastic interfaces

Similar to bulk rheology, linear viscoelasticity of interfaces can be
introduced by integrating the rate of deformation over all past times
multiplied with decaying relaxation moduli [106]. The deviatoric and
isotropic parts of the linear viscoelastic surface stress can then be
written as [107]:

�dlve = ∫
t

∞

2G(t − �)Dd
s (�) d�, tr(� lve) = ∫

t

∞

2K(t − �) tr(Ds(�)) d�,

(23)

where �dlve denotes the deviatoric part of the linear viscoelastic surface
stress and where G(t) and K(t) are the relaxation moduli for shear
and dilation/compression, respectively. The constitutive relations given
by Eq. (23) are the general linear viscoelastic model for interfaces,
which can be used to, e.g., define the complex interfacial viscosity
of the interface, in a similar way as their bulk counterparts [108].
The relaxation moduli can be estimated using the Maxwell model as
exponentially decaying functions:

G(t) = G0e
−t∕�s , K(t) = K0e

−t∕�d , (24)

where G0 and K0 are the instantaneous shear and bulk moduli, re-
spectively, and �s and �d are the relaxation times in shear and di-
lation/compression respectively. Extension of this model to multiple
relaxation processes is straightforward, and can be done by including
multiple modes [106]. Similar to bulk rheology, this general linear
viscoelastic model can be used to describe small-strain experiments
such as creep recovery and stress relaxation after step strains. The latter
approach was used to verify the Boltzmann superposition principle, one
of the pillars of linear viscoelasticity, for a polymer multilayer at the
air–water interface under isotropic compression, where the extra stress
was more important compared to the thermodynamic one [109] (see
Fig. 5). Other constitutive models, based on linear viscoelasticity, such
as the linear Kelvin–Voigt and Jeffreys models, can be readily derived
[107], and also simple thixotropy responses have been described in this
framework [110].

However, it is important to emphasize that the model as given by
Eq. (23) is not material frame indifferent and should only be used at
small strains. A straightforward way to obtain non-linear viscoelastic
solid interfacial constitutive models, which are valid for large defor-
mations, is the superposition of the Boussinesq–Scriven model as given
by Eq. (8), and a hyperelastic model for the interface, such as the one
given by Eq. (22), yielding a quasi-linear Kelvin–Voigt type model for
viscoelastic solid interfaces. This type of modeling was successfully ap-
plied in the description of biomembranes [111–113], and more recently

Fig. 5. Boltzmann superposition principle in 2D: Normalized surface pressure versus
time for isotropic step compression experiments on PVP/PMAA multilayers at the
air–water interface with three incremental Hencky strains of −2%. Experimental and
modeling results of a large step of −6% is also included. The dashed red lines are
the theoretical predictions and the black solid lines the experimental data. The lighter
colored lines indicate the response to a single step strain of −6%.
Source: Reprinted with permission from [109].
© 2019 The Society of Rheology.

to the surface viscoelastic behavior of graphene oxidesheets at the air–
water interface [77,114]. An advantage of this approach is that it can
be readily implemented in simulations [42,72,115,116]. Alternatively,
non-linear viscoelastic liquid interfacial constitutive models can be de-
rived following typical approaches from bulk-rheology, leading, e.g., to
the surface upper-convected Maxwell (SUCM) model, which describes
the evolution of the deviatoric viscoelastic stress, denoted by �dve, by
the following evolution equation [53,107,117]:

�s

∇

�dve + �dve + �s(∇sv ∶ �dve)I s = 2�sD
d
s , (25)

where the surface upper convected derivative is defined as

∇

( ) =
Ds( )

Dt
− (∇sv)

T
⋅ ( ) − ( ) ⋅ ∇sv. (26)

Note that the surface upper convected derivative, as we define it here,
is different from the one found often in the literature, which includes
additional projection operations [53,107,117,118]. In Appendix, we
show that the form including the additional projections is not frame
invariant, whereas the form given in Eq. (26) is frame invariant, thus
we believe the latter to be correct. Moreover, the third term on the left
hand side of Eq. (25) is absent in the original presentation of the SUCM
model [107,117], but it is added to ensure that �dve remains traceless
[53,119–121]. The evolution of the isotropic part of �ve can be written
as [107]:

�d
Ds(tr(�ve))

Dt
+ tr(�ve) = 2�str(Ds), (27)

where �s is the surface (or interfacial) dilatation viscosity. The SUCM
model presented here is in a convenient form due to the split between
the deviatoric and isotropic parts. However, similar to the case of bulk
viscoelasticity [120], other variants of the SUCM could be constructed
as well, that treat the isotropic part in different ways. Moreover,
extensions can be made to this model to include, e.g., shear-thinning,
yielding the interfacial Giesekus model [53,107]. Despite their success
for bulk rheology, there is, as far as the authors know, no experimental
literature using these non-linear viscoelastic models, and numerical
work is scarce and often uses the incorrect form of the SUCM model
[118].
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4.5. Interfaces with resistance to bending

Bending stresses are important for biological membranes [122],
but recently have also been shown to play a role for particle-laden
interfaces, since they can have non-zero bending moduli, as observed in
e.g. graphene oxide sheets [114], microparticles [123] or nanoparticles
[124]. To describe the resistance against bending, the starting point
is typically the Helfrich Hamiltonian, which assumes that the bending
energy is quadratic in the mean curvature minus the spontaneous
curvature and linear in the Gaussian curvature [125]:

FH = ∬A

2B(Hm −H0)
2 dA +∬A

BGHG dA, (28)

where B and BG are the bending moduli, Hm = ∇s ⋅ n∕2 = (�1 + �2)∕2

is the mean curvature, where �1 and �2 are the principal curvatures,
H0 is the mean spontaneous curvature and HG = �1�2 is the Gaussian
curvature. Variational procedures lead to a force density of the form
[126,127]:

fb = 2B
[
∇s ⋅ ∇s(Hm −H0) + 2(Hm −H0)(H

2
m −HG +H0Hm)

]
n

+ 2B∇s([Hm −H0]
2), (29)

where it was assumed that no topological changes occur, thus, due to
the Gauss–Bonnet theorem, the second term in Eq. (28) is a constant
which does not lead to a force density. The tangential term in Eq. (29)
is often neglected, but, for e.g. red blood cells in flow, its magnitude is
small compared to the tangential elastic stress, or it can be absorbed
in the surface pressure if the interface is incompressible [126]. The
force density as given by Eq. (29) can be readily incorporated in
numerical simulations, i.e. it is added to Eq. (6) as a jump in traction
[126,128,129]. Moreover, fb can be written as the surface divergence
of a surface stress tensor �b, which can be added to the surface stress �
[57,122,130]. We note, however, that care should be taken when using
the latter approach within our framework, since the bending stress
tensor is not tangential (i.e. �b ⋅ n ≠ 0), which has consequences for,
e.g., the surface divergence theorem [2], and thus the force balance
given in Eq. (6). Since bending stresses act normal to the interface,
this model can be readily combined with one of the other proposed
constitutive models for tangential interfacial stress.

5. Differential geometry basics

For interfaces that do not deform, often a coordinate system can be
chosen where iso-surfaces of one of the coordinates correspond to the
shape of the interface, i.e. Cartesian coordinates for planar interfaces
or spherical coordinates for spherical drops/bubbles. However, for
interfaces that deform, a general description in terms of curvilinear
coordinates is crucial, which will be introduced in this section. A more
extensive introduction to the broad field of differential geometry can be
found elsewhere [2,66,131,132]. Unless otherwise noted, we will make
use of the Einstein summation convention, where Latin symbols (i, j,
etc.) are used to indicate that the index runs until two, whereas Greek
symbols (�, �, etc.) are used to indicate that the index runs until three.

A general description of interfaces can be obtained by a pair of
coordinates, �1 and �2, which provide a unique mapping of each point
on the interface to its position in 3D space (see Fig. 6(left)):

xs = xs(�
1, �2), (30)

where xs is the position vector for each point on the interface. In
Fig. 6(right), we show that the curvilinear coordinates can be identified
with the parametric coordinates, as used as in e.g. FEM, which will be
shown useful in a later section.

The natural basis vectors are obtained by varying only one coordi-
nate, while keeping the other constant:

gi =
)xs

)�i
, (31)

where we should note that g1 and g2 form a basis that is not necessarily
orthogonal, nor are their lengths necessarily normalized. The dual basis
vectors gj are defined by

gi ⋅ g
j = �

j

i
, (32)

where �
j

i
is the Kronecker delta. Any vector or tensor that is tangential

to the surface, denoted by a and A respectively, can thus be written as

a = aigi = aig
i, (33)

A = Aijgigj = Aijg
igj , (34)

where ai and aj are the contravariant and covariant components of
the vector a, respectively, and Aij and Aij are the contravariant and
covariant components of the tensor A, respectively. Moreover, the
surface gradient operator can be written as

∇s = gi
)

)�i
. (35)

And finally, we can write for the surface unit tensor

I s = gijgigj = gijg
igj = gjg

j = gigi, (36)

where the metric matrix gij = gi ⋅ gj and the dual metric matrix
gij = gi ⋅ gj were introduced.

To describe the velocity v and position of the interface xs, we make
use of the standard Cartesian basis, thus v = v�e� and xs = x�e� , where
the index is identified with the Cartesian coordinates x, y and z. For
example the surface gradient of the velocity can be written as [133]:

∇sv ⋅ I s = gij
)v�

)�i

)x�

)�j
(gk ⋅ e )(g

k
⋅ e� )e�e , (37)

and for the surface divergence of the velocity:

∇s ⋅ v = tr(∇sv) =
)v�

)�i
(gi ⋅ e�). (38)

The expressions in Eqs. (37) and (38) are particularly useful since
they show how the surface operations can be written in terms of the
Cartesian components of the velocity, natural/dual basis vectors and
position vector, and can thus be incorporated in any standard numerical
method for 3D bulk flow.

Orthogonal curvilinear coordinates

We conclude our brief treatment of differential geometry by inves-
tigating the special, but very important case of orthogonal curvilinear
coordinates, where we have by definition:

gi ⋅ gj = 0, for i ≠ j. (39)

It is often more convenient to normalize the natural basis vectors:

ei = ℎigi (no summation), (40)

where ℎi = (gi ⋅gi)
−1∕2 (no summation) are the scale factors, also known

as the metrical coefficients [66]. Note that the normalized natural basis
vectors coincide with the normalized dual basis vectors, and we thus do
not distinguish between contravariant and covariant components when
using orthonormal basis vectors. The set of unit tangential vectors e1
and e2 and unit normal vector n forms a useful basis for interfacial
rheology, and the resulting components of vectors/tensors are referred
to as the physical components [2]. Moreover, the surface gradient
operator can be written as:

∇s =
∑

i=1,2

ei

ℎi

)

)�i
, (41)

which allows one to write the surface derivative operations in a more
convenient form [66]. The scale factors for standard coordinate systems
such as cylindrical- and spherical coordinates are well-documented, see
e.g. [108,131,134], and are useful for cases where the interface does
not deform and coincides with one of the coordinate surfaces, as we will
show in the next section. Clearly, for the Cartesian coordinate system,
all the scale factors are one, and the basis vectors are constant in space.
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Fig. 6. The curvilinear coordinates �1 and �2, e.g. as used in FEM, provide a one-to-one mapping from real space (left) to parametric space (right).

6. Methods for interfacial rheometry

Due to the inherent hydrodynamic coupling of the interface with
the bulk, as shown by Eq. (6), it is generally not possible to obtain
directly a universal rheometric flow at the interface, i.e. a flow with
a known surface (rate-of-)deformation tensor. The bulk fluids act as
a sink for the interfacial momentum, with the ratio between the bulk
and interfacial transport depending exactly on the a priori unknown
interfacial rheological properties. Analytical and numerical methods
are therefore crucial for calculating the flow field in a given geometry,
and thus the velocity field at the interface. With the deformation rates
at the interface known, rheological properties of the interface can be
inferred by investigating the response of the probe, e.g. displacement
or force/torque [46]. A large range of experimental setups is available
for interfacial rheometry, a complete overview of which is beyond the
scope of the current review. Extensive reviews are available in the
literature [3,46,135]. The methods in this section have in common
that they assume that the interface retains a fixed shape, allowing for
a description in orthonormal coordinates, as introduced in Section 5.
Moreover, by benefitting from symmetries occurring naturally in the
problem, the governing equations and numerical methods for solving
them are simplified considerably.

6.1. Interfacial shear flows

Several experimental setups are available for the generation of an
interfacial shear flow, without the effects of compression/dilatation;
here we will discuss a number of them. Among the first proposed
geometries, were ones where an interfacial shear flow was generated by
lowering a disk or bicone geometry into an interface, and rotating the
cup that held the fluids [136]. Torques on the disk could be measured
using, e.g., a torsion wire. For these geometries, Oh and Slattery [136]
applied the Boussinesq–Scriven model for the surface stress and the
Stokes equation for the bulk flow, neglecting effects from inertia. An
implicit solution was obtained for the velocity field, and an iterative
numerical scheme was applied to calculate the interfacial viscosity
based on the measured torque on the probe in steady shear. This
approach was later extended for sinusoidal deformations [137], and
linear surface viscoelasticity can be investigated in the same geometries
by [138] and [139], by assuming that the viscosity in the Boussinesq–
Scriven model was complex. Erni et al. extended the analysis of Oh
and Slattery, and proposed a bicone fixture that could be used in
standard rotational rheometers [140]. Moreover, they introduced an
improved numerical scheme that allowed for the calculation of the
velocity field for a given torque, which can be used to infer interfacial
properties, but fluid inertia was still neglected. A recent analysis of the
bicone geometry was provided by Tajuelo et al., who used a finite-
difference scheme to numerically calculate the flow in the bulk and at
the interface and which does take inertia into account [141]. The same
group later made the code, called BiconeDrag, freely available [142].

However, accurate measurements using the disk or bicone geome-
tries are limited to interfaces with high interfacial viscosities as com-
pared to the bulk viscosity [47]. This becomes immediately clear when
defining a macroscopic Boussinesq number as [46,143,144]:

Bq =
�s

V

Ls
Ps

�
V

Lb
Ab

=
�sLbPs

�LsAb
=

�s

�a
, (42)

where V is a characteristic velocity, Ls and Lb are the characteris-
tic length scales at which the velocity decays at the interface and
in the bulk phase, respectively, Ps is the contact perimeter between
the rheological probe and the interface, and Ab is the contact area
between the probe and the bulk phase. The parameter a = LsAb∕(LbPs)

has units of length, and shows how the Boussinesq number can be
effectively increased by, e.g., increasing the perimeter of the probe or
decreasing its surface area in contact with the bulk. A geometry with
a smaller value of a, thus an increased sensitivity, is the double wall
ring (DWR) setup, which was proposed by Vandebril et al. [145]. In
their analysis, the Navier–Stokes equation was solved in the bulk and
coupled to the flow at the interface, using finite-differencing schemes
on 2D meshes, which was made possible by the radial symmetry
of the problem. This approach included effects of inertia, and the
response of the interface was described using the Boussinesq–Scriven
model with real or complex viscosities. Interfacial viscosities could
be inferred by matching boundary conditions between the simulations
and the experiments in an iterative manner. The numerical codes
were made freely available [145]. Another approach for decreasing a,
thus increasing the sensitivity, is using a ‘‘knife edge geometry’’, and
similar numerical approaches to take the bulk flow into account for this
geometry, typically using finite differencing methods, are published in
the literature [83,146,147].

Another geometry for shear interfacial rheology consists of a (mi-
cro)needle at an interface, which is moved by a known magnetic force,
as proposed by Brooks et al. [143]. With this setup, which is commonly
called the interfacial shear rheometer (ISR), the interfacial viscosity
can be calculated from the displacement of the needle, for example for
sinusoidal oscillations of the force. Brooks et al. assumed that Bq ≫ 1,
such that a linear velocity profile is generated at the surface, i.e. all
the dissipation occurs in the interface. To allow for measurements at
lower values of Bq, Reynaert et al. proposed a numerical calculation
of the flow field for linear-elastic interfaces, which takes the full flow
in the bulk, including effects of inertia, into account [148]. In this
manner, measurements at lower values of Bq became accessible, also
for the ISR. This approach was later verified by Verwijlen et al. using
a point force solution at the interface [144]. The accuracy of the
ISR can be improved by decreasing the needle size, thus decreasing
the value of a [149]. Finally, we note that more advanced numerical
approaches have become available for the ISR, such as a boundary
element method [150], who reported results in good agreement with
previously mentioned works (see Fig. 7).

The high aspect ratio of the (micro)needle used in the ISR ensures
that end effects play a negligible role. Disk-shaped interfacial probes
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Fig. 7. Component of surface velocity in phase (left) and out of phase (right) with needle velocity in the ISR. The full numerical solution (BEM) and large Bq theory are compared
to the small R! theory and experiments. Bq = 2.39 (denoted by Bo!), R! = 0.159 (scaled needle radius) and b = 5.76 (scaled wall distance).
Source: Reprinted with permission from [150].
© 2019 The Society of Rheology.

can be used to generate an interfacial shear flow by rotation inside
the interface, for example by magnetically applying a torque to a
ferromagnetic ‘‘microbutton’’ [93,151–154]. Translation of probes with
an aspect ratio of (1) at planar interfaces induces a mixed flow field,
which makes the analysis significantly more difficult; these will be
discussed in Section 6.3.

Rheometers that probe different deformation modes, typically in-
spired by bulk rheometers, have also been proposed. For example, the
Cambridge Interfacial Tensiometer [155,156] is a 2D equivalent of
a filament stretching rheometer. Although this device would ideally
operate at constant surface area, the numerical/experimental analysis
by Verwijlen et al. showed that the interfacial flow field contains
dilational, shear and extensional components, depending on the ratio of
the material parameters [157]. They conclude that these type of ‘‘mixed
flows’’ contain a wealth of rheological information, but are typically
difficult to analyze, limiting their accuracy. In a follow-up work, similar
conclusions were drawn for the interfacial rheometer consisting of a
ring-like fixture for the DWR with undulations that produces a more
controlled mixed flow field ‘‘by design’’ [158]. A typical feature of such
a mixed flows, is that the flow field is dominated by the ‘‘cheapest’’
deformation mode, i.e. the one for which the viscosity is lowest, which
inherently leads to a low sensitivity [158].

6.2. Area-changing flows

Whereas the experimental and numerical methods for flows at
constant surface area are well-established, the development of dila-
tional/compressional rheometry is not as far. The main difficulty lies
in obtaining a truly isotropic deformation of the interface, without
any effects of shear [46]. Historically, the drop-shape analysis of a
pendant drop is the technique that is most often used to investigate
the response of the interface to dilation/compression. Note that the
same analysis also applies to rising bubbles, but for brevity we will
only talk about pendant drops in this section. With the pendant drop
setup, the surface tension is obtained by fitting the Young–Laplace
equation to the shape of the drop, which can be easily obtained from
Eq. (6) by assuming only hydrostatic contributions to the bulk stress
and in the absence of deviatoric surface stresses. Therefore, the Young–
Laplace equation assumes an isotropic and constant surface stress, and
small capillary- and inertial relaxation times such that the shape is
in equilibrium. Moreover, the deformation of the drop due to gravity
must be large enough in order to obtain an accurate value of the
surface tension [159]. By oscillating the volume of the drop, the in-
terface deforms in a complex, mixed manner which includes shear and
dilation/compression, as shown in the FEM simulations by Balemans
et al. [42] and reproduced in Fig. 8. The surface deformation yields
a change in the surface excess concentration � , and thus the surface
tension through the equation of state �(� , T ). This effect is commonly
called Gibbs elasticity, but its origin is generally different then, e.g., the

origin of hyper- and viscoelasticity as introduced in Sections Section 4,
which arise due to lateral interactions between surface-active moieties
[48]. The response of the interfacial tension for systems with small
molecular surfactants is often time-dependent, which is due to the
relaxation processes as visible in Eq. (16): in plane convection/diffusion
and transport normal to the interface [160]. Since these processes are
geometry-dependent [98,99], the time-dependency measured for these
type of systems is due to transport phenomena, as opposed to being a
true material parameter [3].

To make drop-shape analysis suitable for complex interfaces, one
should (1) ensure that the measured quantity is indeed a material
property, e.g. by repeating the measurement with different drop sizes,
and (2) allow for anisotropic surface stresses, the occurrence of which is
now well-established by different groups [48,109,161–167]. Estimating
the surface stresses for complex interfaces can be aided greatly by
including a measurement of the pressure inside the drop and obtaining
the curvature locally, instead of a global fit of the Young–Laplace
equation [48,166]. With the surface stresses known, iterative numerical
procedures can be used to find the constitutive parameters of the
interface, an approach generally called elastometry [48]. Alternatively,
the constitutive equations can be applied directly to obtain the material
parameters from the shape [103,164,167], which is a more straightfor-
ward, but seems to be a less accurate approach, as discussed in detail
by Nagel et al. [48].

A closely related setup for measuring dilational properties of in-
terfaces is the capillary pressure tensiometer (CPT), which combines
a measurement of the radius of small drops, typically 10 to 100 μm,
with a pressure measurement [168,169]. With the pressure inside the
drop known, accurate measurements of the isotropic surface stress can
be performed without the need for deformation due to gravity. In fact,
smaller drops are preferred in the CPT, due to the higher signal to
noise ratio of the pressure measurement, and the shorter capillary-
and inertial relaxation times, allowing for measurements at higher
frequencies [170]. In addition, the effect of shear becomes smaller for
smaller drops, which have a shape closer to spherical [171], which
can be exploited in the CPT to obtain interfacial deformations that
are close to isotropic. As shown by the theoretical analysis by Kotula
and Anna, the CPT can indeed be applied to complex interfaces in
the presence of extra stresses [172]. Although the CPT is a large step
forward in obtaining more isotropic deformations of interfaces, it can
only be applied to interfaces of high curvature, due to the constraint of
a spherical droplet shape.

Recently, a new experimental setup was proposed, called the radial
through, which can apply truly isotropic deformations to a planar
interface by moving an elastic band that is held in place by 12 ‘‘fingers’’
[58]. Due to the isotropic deformation, the stress state will be isotropic
even for complex interfaces. This setup was later successfully applied
to investigate surface viscoelasticity of a polymer multilayer at an air–
water interface, and values were obtained that were consistent with
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Fig. 8. Non-uniform strain from simulations of a pendant water drop that is inflated to a volume of 2 mm3 in 1 s, obtained by Balemans et al. using the finite element method
[42]. Results are for a quasi-linear Kelvin–Voigt interface with �s = �s = 1μNs∕mm, Ks = Gs = 1μN∕mm. The isotropic surface tension was � = 20 μN∕mm in (a) and (c) and
� = 50 μN∕mm in (b) and (d). The radius at the fixed attachment point was 0.35 mm.
Source: Reproduced from [42] under the terms of the Creative Commons CC BY license.

measurements using the rising bubble setup [109]. Moreover, it was
shown for the first time that for these type of complex interfaces,
concepts from bulk linear rheology, such as the Boltzmann superposi-
tion principle, indeed carry over to interfacial rheology (see Fig. 5). A
miniaturized, 3D printable, version of the radial trough was developed
by Kale et al., which allows for simultaneous dilatational deformation
and interfacial microscopy [173].

6.3. Particle translating at a planar interface

Particles at complex interfaces are important for a variety of rea-
sons. For example, they can be used to improve the stability of emul-
sions/foams [33], and the diffusion of particles at interfaces can give
insights into the rheological properties of the interface [135,174].
Moreover, they can be used as idealized model system for the under-
standing of, e.g. the diffusion of proteins in biomembranes [175]. In the
limit of Bq → ∞, the hydrodynamic problem of a particle translating
at a viscous interface in an unbounded domain is closely related to the
Stokes’ paradox, which states that there is no creeping flow solution
for a cylinder of infinite length translating perpendicular to its axis,
which is due to the logarithmic decay of the disturbance velocity field
[175,176]. Indeed, the slow decay of the velocity autocorrelation func-
tion leads to the inability of defining a surface viscosity, or diffusion
coefficient, for such systems [177]. In the seminal work of Saffman and
Delbrück, the logarithmic decay is cut short by including the subphases
as ‘‘sinks for momentum’’, and the mobility of a disk of radius R at an
incompressible, viscous planar interface of finite thickness is derived
[178]. The solution given by Saffman and Delbrück is valid for � =

�R∕�s ≪ 1, where � is the bulk viscosity and �s is the surface shear
viscosity [179]. This model was later extended to all values of � [180],
and for finite depths of the subphase [179].

Although the assumption of surface incompressibility seems to hold
for many types of interfaces, e.g. biomembranes, this assumption does
not hold in general for interfaces with other types of surface-active
moieties, see e.g. [58]. Moreover, particles protruding into the bulk
phases might not be accurately approximated by a flat disk embed-
ded in the interface. Danov et al. presented a numerical model for
a spherical particle embedded in a planar interface with both effects
from shear and dilation/compression present, but in the absence of
Marangoni forces [181]. In a later work, effects from Marangoni forces
were included up to first order, but without the coupling to flow in the
bulk [182]. In the work of Fischer et al., a spheroid at an incompressible
interface between two infinite bulk domains is considered [69]. They
rationalize the surface incompressibility of the interface by assuming

that the Marangoni effects are large. This, assumption, however, might
break down for interfaces at low surface coverage, or with a weak slope
with respect to � in the equation of state �(� , T ).

A particle translating through an interface will under most circum-
stances generate a complex disturbance velocity field. This was assessed
experimentally by using needles of different aspect ratios and a using
broad range of relevant non-dimensional numbers (Ma, Bq and the ratio
between shear and dilatational �s∕�s) [183]. Drag coefficients for a
probe in an incompressible interface are not expected to depend on
probe aspect ratio, suggesting effects of compressibility or Marangoni
stress related effects play a role. Elfring et al. investigated theoretically
this interplay between interfacial rheology, Marangoni stresses and cou-
pling with the bulk assuming a thin subphase, allowing for a lubrication
approach [71], see Fig. 9. They reached the same conclusion that a par-
ticle translating at an interface is not always ideal for characterizing the
shear rheological properties interfaces, due to the possible occurrence
of a mixed flow field (dilation/compression and shear) and the tangled
effects of Marangoni stresses and interfacial rheology. Methods with
clean kinematics are recommended to determine interfacial shear and
dilational properties, as outlined in the previous sections.

Since a full overview of the field of the hydrodynamics of particles
at interfaces is beyond the scope of the current review, we will conclude
this section by referring to two recent reviews for further reading
[4,135].

6.4. Wrinkle analysis

We conclude this section with methods aimed at recovering the
bending modulus of the interface, which are based typically based
on the analysis of wrinkles occurring during compression. Wrinkling
(also called ‘‘buckling’’) occurs since, for low enough bending moduli,
out-of-plane deformations can be a cheaper mode of deformation than
in-plane compression. The resulting wave-length of the wrinkles can
be used as a direct measure of the bending resistance of the interface.
This analysis is typically done by assuming uniaxial compression of the
interface, which allows for a 1D treatment, i.e. assuming invariance in
the direction perpendicular to the compression, which is superimposed
on a planar or curved shape. Starting point is the beam equation, which
is given by [123]:

B
)4ℎ

)x4
+ T

)2ℎ

)x2
+ ��gℎ = 0, (43)

where B is the bending modulus, ℎ is the vertical deflection of the
interface, T is the compressive force per unit length, �� is the density
difference between the subphases and g is the acceleration due to
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Fig. 9. Vector plot of the leading-order velocity field (a,c,e) and Marangoni flow field
(b,d,f) overlaid on the leading-order concentration field (a,c,e) and concentration field
perturbation (b,d,f). (a,b) Nearly inviscid interface Bq = 0.01, � = �s∕�s = 1; (c,d)
low shear and large dilatational viscosity Bq = 0.01, � = 104; (e,f) large shear and no
dilatational viscosity Bq = 10, � = 0.
Source: Reproduced from [71] with permission from Cambridge University Press.

gravity. Eq. (43) can also be derived as a linearized form using the
Helfrich bending energy as introduced in Section 4.5 [184]. Moreover,
the surface stress T can be calculated using the in-plane elastic con-
stitutive models as introduced in Section 4.3 [164,184]. The beam
equation has a sinusoidal solution for ℎ, with the wave length given
by � = (B16�4∕(��g))1∕4 [123]. The bending modulus can be further
expressed as function of bulk linear elastic parameters and a third-order
dependency on the thickness of the interface [123], but we will not do
that here due to the concerns of regarding the interface as a continuum
in thickness direction, as raised in Section 2 of this review. From the
wave length of wrinkles as observed in experiments, the bending mod-
ulus can be calculated. This approach has been successfully applied to
graphene oxide sheets [114], and a number of complex interfaces in the
pendant drop/rising bubble setup [103,164]. Non-linear calculations,
based on the Helfrich model, are presented by [184], yielding a range
of interesting deformation modes of the interface.

Finally we note that thermal fluctuations of vesicles are often used
to probe the bending resistance of membranes [185–187]. Moreover,
active particles can be included inside vesicles to act as local forces,
inducing ‘‘active fluctuations’’ and yielding a large range of shapes that
do not exist in equilibrium systems, as shown recently by Vutukuri
et al. [188]. The large deformations, induced by the local forces,
allow for an even more complete probing of the membrane mechanics,
including the role of membrane (visco)elasticity and local changes in
lipid concentration.

7. Flows with deforming complex interfaces

The approach of computational interfacial rheology follows the
same lines as computational bulk rheology [189]: constitutive models
are tested and calibrated in simple flows, as shown in the previous

section, which can then be used to predict and benchmark the flow
in increasingly complex flow scenarios. The latter is the topic of the
current section of this review. For computational interfacial rheology,
the complexity mainly arises due to the deformation of the interface,
possibly leading to highly curved interfaces, thin fluid films and break-
up and coalescence events. Since our focus is on continuum models,
many of the numerical techniques available in the literature are based
on the ‘‘classical’’ methods for bulk computational rheology, such as
the finite difference method (FDM) [72], finite volume method (FVM)
[190] and the finite element method (FEM) [42]. Moreover, the bound-
ary element method (BEM), coupled to e.g. FDM or FEM for the surface
computations, has been successfully applied as well [133,191].

7.1. Numerical approaches

Three main issues need to be addressed for the simulation of multi-
phase flows with deforming, rheologically complex interfaces: (1) de-
scribing the location of the interface, (2) evaluating the surface dif-
ferential operators as introduced in Section 5 and (3) coupling the
interfacial constitutive equation to the bulk flow. These issues are
generally addressed by either interface capturing (IC) or interface tracking
(IT) methods (see Fig. 10), which we will briefly review here.

In IC, the location is described in an implicit manner, typically by
introducing a continuous function � = �(x, t), which is defined in the
entire 3D domain, and the location of the interface is, by definition,
the zero levelset of this function: �(xs) = 0. Assuming that � remains
constant for a fixed material point yields in the Eulerian description:

)�

)t
+ v ⋅ ∇� = 0, (44)

which can evaluated in the entire domain using standard methods. The
normal to the surface can be obtained from n = ∇�∕|∇�|, which can
in turn be used to evaluate the surface operations from the definitions
I s = I − nn and ∇s = I s ⋅ ∇. Coupling to the bulk solution of,
e.g. the velocity, can be done by approximating the interface with a
small thickness, effectively converting the surface operations to volume
operations, and using the model in the sharp-interface limit [192,193].
Alternatively, the interface can be reconstructed by a triangulation of
the zero-levelset, and approaches similar to the extended finite element
method (XFEM), where the solution space is enriched by allowing for
discontinuities within elements, can be applied [194–196]. A major ad-
vantage of IC methods is that all equations can be solved on stationary
Eulerian meshes, and that break-up and coalescence events are handled
relatively easily, but they are generally less accurate than IT methods
[197]. Variants of the IC method that have been used for interfaces
with surface viscosity are the volume-of-fluid (VOF) method, where the
phases are described by volume fraction in the cells [190], and phase-
field/diffuse-interface methods, that typically have a sound physical
basis to describe the interface with a finite thickness [193,198].

In the IT method, a surface mesh, i.e. a 2D mesh embedded in
3D space, is introduced that describes the interface. Both structured
and unstructured 2D meshes, of varying interpolation order, have been
used in the literature; a comprehensive overview is given by Barthès–
Biesel [57]. The surface mesh is identified with the grid as introduced
in Section 3, and the mesh velocity is thus identified with vg. The
normal velocity of the mesh is determined by Eq. (2), but the choice
of the tangential velocity is arbitrary, which can be used to, e.g., make
sure that the elements of the surface mesh remain evenly spaces and/or
do not deform significantly [199]. Within the IT framework, evaluation
of the surface differential operations is relatively straightforward due to
the availability of the surface mesh, and can be done by e.g., identifying
the curvilinear coordinates with the reference coordinates of the ele-
ment as shown in Eqs. (37) and (38), and in Fig. 6. The coupling to the
bulk depends on how the volume is discretized. Often, an ‘‘immersed
boundary’’ approach is used, where the surface mesh is embedded
in a stationary Eulerian grid, and forces are calculated in the nodes
close to the interface, e.g. by using a smoothed delta function [72].
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Fig. 10. (left) Interface tracking, where the interface location xs is parameterized explicitly and (right) interface capturing, where the interface location is described implicitly as
the zero levelset of the function �.

This approach has the advantage that no boundary-fitted meshes have
to be generated, but the solution close to the interface, i.e. within
one volume element, is not accurate. Alternatively, meshes can be
generated that are boundary fitted to the interface, such as the one
shown in Fig. 10(left), yielding very accurate solution close to the
interface, but requiring regular remeshing [42]. Lastly, a combination
between the FEM for the solution on the surface mesh and the BEM for
the solution in the bulk have been proposed, with the advantage that
the full flow field in the bulk is obtained, without the need for a volume
mesh [133].

7.2. Drops and bubbles in shear flow

An important goal of computational interfacial rheology is the
simulation of drops and bubbles, endowed with complex interfaces, in
flow. Due to the coupling between the flow field, interfacial properties
and transport equations, the governing equations allow for analytical
solutions only under the simplest circumstances. For full 3D flows, large
deformations and/or interactions between multiple drops and bubbles,
numerical approaches are invaluable. Although simulations exist for
drops and bubbles with complex interfaces in several flow scenarios,
such as the oscillating pendant drop [42,116], freely rising bubbles
[195] and Poiseuille flow [195,200], we will focus here on simple shear
flow as it serves as a stepping stone for more complex flows.

The dynamics of drops and bubbles with rheological interfaces in
simple shear flow can give insight into the bulk rheology and stability
of emulsions and foams, and is therefore relevant from both fundamen-
tal and practical point of view. In addition, understanding the flow
conditions for which breakup of drops/bubbles occurs is important
for predicting, e.g. the droplet size distribution after processing of the
material. Finally, the rheometric bulk flow conditions allow for com-
parisons to experiments on suspended drops with soft-matter interfaces
[201,202], e.g. by investigating their equilibrium shape.

The transient dynamics of a single, isolated droplet depend on the
shear rate and the material parameters of the drop, the suspending
fluid and the interface. Generally, three scenarios are possible: the drop
can (1) elongate and break up into smaller drops, (2) exhibit periodic
deformations that can persist for long times or even indefinitely, or
(3) attain a steady-state shape with the interface continuously moving
around the drop in a process called ‘‘tank-treading’’ [203]. If a steady-
state is reached, the drop typically takes on an ellipsoidal shape for
smaller deformations, with the major axis tilted with respect to the
shear flow direction, described by the inclination angle �. The defor-
mation of the drop is quantified by the Taylor deformation parameter
D = (a − b)∕(a + b), where a and b are the major and minor axes of the
ellipse, respectively. For larger deformations, or for example in the case
of confined shear flow, the steady-state shape of the drop significantly
deviates from an ellipsoidal shape and it is often useful to use the length
of the drop to quantify the amount of deformation [204].

As early as the 1950s, Oldroyd derived an expression for the vis-
cosity of a dilute emulsion of spherical drops endowed with viscous
interfaces [205]. This analysis was later extended by Danov to in-
clude the effects of Marangoni stresses and Gibbs elasticity [206].
The influence of surface viscosity on the deformation of an isolated
drop in shear flow was investigated by Flumerfelt using a first-order
perturbation analysis, valid for small deformations [207], and the first
full numerical simulations were presented by Pozrikidis, which were,
however, limited to surface viscosity ratios of unity [191]. A complete
3D numerical analysis of the steady state of drops with viscous inter-
faces, including the separate effects of shear and dilational viscosity,
was presented by Gounley et al. who used the BEM, coupled to the FEM,
to investigate the behavior of drops endowed with Boussinesq–Scriven
interfaces in shear flow [133], see Fig. 11. Their analysis revealed that
D increases with surface shear viscosity, whereas it decreases with
surface dilational viscosity. Since an increase in D can lead to droplet
breakup, this analysis can have implications for the stability of foams
and emulsions during flow, e.g. material processing. Similar conclusion
were reached by Luo et al., who investigated the coupled effect of a
�-dependent surface viscosity and Marangoni stresses, assuming an
insoluble surfactant [8]. They conclude that the coupling between
surfactant transport, interfacial rheology and Marangoni stresses yield
non-trivial and non-negligible alternations to the droplet dynamics.

Numerical simulations of droplets encapsulated by a (visco)elastic
membrane in simple shear have been mainly motivated by research into
biological systems, with the goal of mimicking e.g. red blood cells dur-
ing flow. The systems under consideration can be broadly categorized
as (1) vesicles, where the membrane consists of a ‘‘liquid-like’’ incom-
pressible lipid bilayer with bending elasticity, (2) red blood cells, which
are vesicles with an additional protein network attached to the bilayer
to give it surface shear elasticity and (3) capsules, which is a generic
term often used for droplets encased in a synthetic (e.g. polymer)
compressible membrane [208]. Although biological systems are outside
the scope of this review, the overlap with computational interfacial
rheology is significant, so we will give a very brief overview here. More
extensive reviews for the flow of vesicles and capsules are available in
the literature [57,208].

In a series of papers [209–211], Pozrikidis and coworkers inves-
tigated the simulated capsules and vesicles in shear flow using a
boundary element method (BEM) [212]. Following this work, different
groups have successfully performed simulations of vesicles and capsules
in shear flow using the BEM [68,213–218]. Moreover, other numerical
methods have been proposed as well, such as the phase-field method
[219], the level-set method [220], spectral BEM [221], boundary fitted
FEM [222] and immersed boundary FEM [223,224]. The majority of
the cited literature above focuses on either purely viscous or purely
elastic membranes, whereas membrane viscoelasticity has received
much less attention. Viscoelasticity of the membrane has been incor-
porated in simulations mainly by using the quasi-linear Kelvin–Voigt
model as introduced in Section 4.4, thus by assuming that the surface
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Fig. 11. Influence of surface viscosity on the deformation of droplets in simple shear flow. For both cases the viscosity ratio is � = 1 and the capillary number Ca = 0.3. (a) Bq = 0

and (b) Bq = 10 and � = 1 [133].
Source: Reproduced from [133] with permission from Cambridge University Press.

stress is given by a superposition of a viscous surface stress, as given by
the Boussinesq–Scriven model, and an appropriate hyperelastic surface
stress. Diaz et al. used BEM simulations to investigate the behavior of
a capsule with a viscoelastic membrane in an elongation flow [225].
The influence of membrane viscoelasticity of a capsule in shear flow
was investigated by Yazdani and Bagchi [115]. A similar approach
was taken by Gounley and Peng, using an immersed lattice Boltzmann
method [226], which was also recently used for the simulation of
red blood cells [227]. Benchmark solutions for a drop, endowed with
a Boussinesq–Scriven or Kelvin–Voigt interface, in shear flow were
presented by Carrozza et al. [228]. Carrozza et al. extensively vali-
dated their boundary-fitted FEM implementation using the method of
manufactured solutions, and showed higher order spatial and temporal
convergence.

Immersed FDM approaches that include viscoelastic membranes
have been introduced recently by Li and Zhang [72,73]. In many
of the above-mentioned works, it has been observed that a direct
implementation of the Kelvin–Voigt model is unstable and therefore
a standard linear solid (SLS) model is often used for the viscoelastic
surface stress [72,115,226,227]. The SLS model can be interpreted as
an elastic element in parallel with a viscoelastic Maxwell element, and
thus by choosing the modulus in the Maxwell element large, the Kelvin–
Voigt model is recovered. Finally, we note that particle-based method
have been used as well for the simulation of viscoelastic membranes,
where the membrane is modeled as a network of viscoelastic springs
[229].

We conclude this section by briefly mentioning that capsules and
vesicles in simple shear can exhibit buckling/wrinkling instabilities
due to compressive stresses, similar to the buckling as introduced in
Section 6.4. This phenomenon has been as observed experimentally
[230] and in simulations [115,214], and more information on this topic
can be found elsewhere [231].

7.3. Drainage and thinning flows

Drainage and thinning flows are important since they play a major
role in the stability of emulsions and foams [46,232] and coating op-
erations [233,234]. Due to the coupling between capillarity, transport
phenomena and interfacial rheology, it is often difficult to predict
drainage times for all but the simplest systems. Moreover, due to an in-
consistent separation of material- and transport parameters, especially
for area-changing flows, a clear link between stability and interfacial
rheology has been established for only a limited number of systems,
e.g. [33,235]. Numerical and analytical approaches are thus crucial
in elucidating this complex problem. Often, drainage problems are
understood in terms of mobility of the interface, which is a measure
for the magnitude of the tangential surface velocity. An alternative
interpretation, which is particularly useful for rheologically complex
interfaces, is to consider the ability of the interface to ‘‘carry stress’’, as
expressed by Eq. (7). Interfaces with solely surface tension effects can
also be ‘‘rigidified’’ by Marangoni stresses, as shown by Champougny
et al. [233], and reproduced in Fig. 12. Since the films that are
considered are generally much thinner than their lateral length scale,
lubrication approaches can be applied which simplify the numerical

Fig. 12. Numerical results for the film thickness in a pulled soap film (Frankel
configuration) as a function of capillary number Ca and Marangoni number Ma. The
dashed line is the limiting case of a rigid interface, which is approached as Ma is
increased, i.e. the interface is ‘‘rigidified’’. See [233] for definitions of the symbols
used here. Used with permission of Royal Society of Chemistry, from [233]; permission
conveyed through Copyright Clearance Center, Inc.

methods considerably [1]. This approach allows for rewriting the gov-
erning equations in terms of the unknown height of the film, and by
assuming radial symmetry, solutions can be sought on 1D meshes, often
using simple FDM or FEM approaches.

The effect of interfacial viscosity and Marangoni stresses on the
drainage between two drops was studied by Zapryanov et al., assum-
ing the interface remained planar, thus the problem could be solved
in a single point [236]. They concluded that, within the range of
parameters included in their work, Marangoni stresses play a more
important role in immobilizing the interface than interfacial rheology.
Li studied the coalescence between two spherical bubbles being forced
together, where the surface stress is given by the Boussinesq–Scriven
model and a first-order effect of the Marangoni stresses is included
[237]. Deformation of the interfaces was allowed, and dimples were
observed, significantly altering the drainage behavior. Results were
obtained that could explain experimental observation, but the anal-
ysis assumed no deviatoric stress inside the bubbles, and can thus
not be extended to the drainage between drops. Chatzigiannakis and
Vermant recently defined criteria how film rupture depends on the
hydrodynamic conditions where a competition between the charac-
teristic timescales of drainage and rupture has been experimentally
determined. [238,239]. Comprehensive numerical modeling is needed
here that accounts for drop deformation dynamics, film drainage until
the point of rupture including the random evolution of propagating
fluctuations. Already for systems with a constant interfacial tension or
surfactant transport this has been shown to be extremely challenging
[240,241]. In a series of recent papers, the drainage between drops
was studied by Ozan and Jakobsen, whose boundary integral approach
does solve for the flow inside the drops [242]. They considered the
coupled effect of surfactant transport, Marangoni stresses and a surface
excess concentration-dependent surface viscosity [243]. Finally, they
included non-linear surface viscoelasticity based on the SUCM model
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[118], which is, to the best of our knowledge, the first numerical work
that includes a full solution of the SUCM model for drainage between
drops. However, the simulations by Ozan and Jakobsen are based on
the incorrect SUCM model, which is not frame invariant and does
not preserve the zero trace of the deviatoric tensor, as explained in
Section 4.4.

Numerical analyses of other problems have been performed in a
similar fashion. In the work of Hermans et al., a hemispherical dome
was risen against into an air–water interface laden with different types
of lung-surfactant replacements and the drainage of the film was inves-
tigated [54]. From numerical solutions of the drainage equation, which
include the effects from both Marangoni stresses and surface rheology,
experimental observations could be rationalized. Similar numerical
approaches have been taken to describe the stability of antibubbles
[244,245] and the classical Landau–Levich–Derjaguin (LLD) dip coating
problem [234]

8. Open problems and outlook

From this review it is evident that quantitatively describing mul-
tiphase materials and in particular the role of a complex interface
between the different components is a challenging task from both a
computational and rheological point of view. Some of the challenges
are quite similar as in the bulk flow of complex fluids; predictive
constitutive models are essential that are valid not only in well-defined
deformations such as shear, extension and compression/dilatation, but
also in mixed flows. In this review several prototypical flows were
discussed with a strong interplay between bulk flow and interfacial
properties and despite all progress in literature, many challenges still
need to be addressed. In particular, in systems where all length and
time scales of bulk and interfaces are coupled and need to be resolved
simultaneously. For example in drop–drop interaction up to five to six
orders of magnitude in length scales are fully coupled and coalescence
time scales are determined by the drainage of the liquid in the film,
which is strongly dependent on interfacial transport and rheology. Even
for well-designed smooth problems this is a very challenging (but also
very relevant) problem to solve. Advanced computational methods that
are accurate and efficient, such as full monolithic solvers, need to
be developed for solving stiff numerical problems where all degrees
of freedom are coupled. Also from a mathematical perspectives there
are many open questions. Coupling different bulk and interfacial dis-
cretizations might give rise to (finite element) compatibility constraints
and call might for stabilization techniques similar to the ones used to
resolve the high Weissenberg number problem in bulk, such as the
log-conformation approach [246,247]. Computational challenges also
arise when interfacial phenomena or films reach a length scale well
below those where continuum mechanics is still assumed to be valid.
One could think of linking continuum bulk descriptions with molecular
dynamics models for interfaces.

In addition to computational challenges also from a rheological
point of view the scientific field is still wide open. For example in
many industrial processes temperature plays an essential role which
calls for experimental, theoretical and numerical methods to deal with
temperature-dependent interfacial constitutive behavior. If coefficients
in models, like a dilatational viscosity or modulus, are made tempera-
ture dependent one could argue if these type of constitutive relations
are thermodynamically consistent. Other challenges are found when
electrostatic charges become relevant or systems with a phase change
across and at the interface. Also polymer crystallization at liquid–liquid
interfaces is a process that simultaneously is influenced by interface
chemistry and dynamics, and rheology.

To conclude, much progress has already been made in the field
of computational interfacial rheology, but also many opportunities for
further progress are present. An abundance in problems of both societal
and industrial relevance could potentially benefit from this relatively
young and exciting field, which offers a whole range of interesting
numerical and theoretical challenges, waiting to be tackled.
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Appendix. Frame invariance of the surface upper convected
derivative

We consider a frame rotation given by Q(t), and denote quantities in
the rotated frame with an asterisk, e.g. n in the original frame becomes
n∗ in the rotated frame. The rotation tensor Q is orthogonal, thus

QT
⋅Q = I . (45)

Proceeding in a similar manner as for the bulk [248], it can be verified
that the following transformations are valid:

I∗
s = Q ⋅ I s ⋅Q

T , (46)

�∗
s = Q ⋅ �s ⋅Q

T , (47)

∇∗
s = Q ⋅ ∇s, (48)

L∗
s = Q ⋅Ls ⋅Q

T +Ωs (49)

where Ls = (∇sv)
T is the interfacial velocity gradient tensor and

Ωs = Q̇ ⋅ I s ⋅Q
T describes the rate of rotation, where ̇( ) has been used

as a short-hand notation for the surface material derivative, i.e. the
time derivative in a frame that translates with a surface particle. An
alternative expression for the surface unit tensor in the rotated frame
is I∗

s = I∗ − n∗n∗. Using the relations given in Eqs. (45) to (49), and
using symmetry of the surface stress tensor, it can be shown that

�̇∗
s −L∗

s ⋅ �
∗
s − �∗

s ⋅ (L
∗
s )

T = Q ⋅

(
�̇s −Ls ⋅ �s − �s ⋅L

T
s

)
⋅QT , (50)

thus the surface upper convected derivative given in Eq. (26) is frame
invariant. Likewise, it can be shown that

�̇∗
s −I∗

s ⋅L
∗
s ⋅�

∗
s −�∗

s ⋅ (L
∗
s )

T
⋅I∗
s ≠ Q ⋅

(
�̇s − I s ⋅Ls ⋅ �s − �s ⋅L

T
s ⋅ I s

)
⋅QT ,

(51)

which shows that the surface upper convected derivative appearing in,
e.g. [53,107,117,118], is in fact not frame invariant.
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