
Computational Interpretations of Analysis
via Products of Selection Functions

Martı́n Escardó1 and Paulo Oliva2

1 University of Birmingham
2 Queen Mary University of London

Abstract. We show that the computational interpretation of full comprehension
via two well-known functional interpretations (dialectica and modified realizabil-
ity) corresponds to two closely related infinite products of selection functions.

1 Introduction

Full classical analysis can be formalised using the language of finite types in Peano
arithmetic PAω extended with the axiom schema of full comprehension (cf. [11])

CA : ∃fN→B∀nN(f(n)↔ A(n)).

As ∀nN(A(n) ∨ ¬A(n)) is equivalent to ∀nN∃bB(b ↔ A(n)), full comprehension, in
the presence of classical logic, follows from countable choice over the booleans

ACN
B : ∀nN∃bBA(n, b)→ ∃f∀nA(n, fn).

Finally, the negative translation of ACN
B follows intuitionistically from ACN

B itself to-
gether with the classical principle of double negation shift

DNS : ∀nN¬¬A(n)→ ¬¬∀nA(n),

where A(n) can be assumed to be of the form3 ∃yBN (n, y). Therefore, full classical
analysis can be embedded (via the negative translation) into HAω+ACN

B +DNS, where
HAω is Heyting arithmetic in the language of all finite types. It then follows that a com-
putational interpretation of theorems in analysis can be obtained via a computational
interpretation of the theory HAω + ACN

B +DNS. The fragment HAω + ACN
B , excluding

the double negation shift, has a very straightforward (modified) realizability interpre-
tation [15], as well as a dialectica interpretation [1, 10]. The remaining challenge is to
give a computational interpretation of DNS.

A computational interpretation of DNS was first given by Spector [14], via the
dialectica interpretation. Spector devised a form of recursion on well-founded trees,
nowadays known as bar recursion, and showed that the dialectica interpretation of DNS
can be witnesses by such recursion. A computational interpretation of DNS via realiz-
ability only came recently, first in [2], via a non-standard form of realizability, and then
in [3, 4], via Kreisel’s modified realizability. The realizability interpretation of DNS
makes use of a new form of bar recursion, termed modified bar recursion.

3 BN being the (Gödel-Gentzen) negative translation of B.

2 Martı́n Escardó and Paulo Oliva

In this article we show that both forms of bar recursion used to interpret classical
analysis, via modified realizability and the dialectica interpretation, correspond to two
closely related infinite products of selection functions [9].

Notation. We use X,Y, Z for variables ranging over types. Although in HAω one does
not have dependent types, we will develop the rest of the paper working with types such
as Πi∈NXi rather than its special case Xω , when all Xi are the same. The reason for
this generalisation is that all results below go through for the more general setting of
dependent types. Nevertheless, we hesitate to define a formal extension of HAω with
dependent types, leaving this to future work. We often write ΠiXi for Πi∈NXi. Also,
we write Πi≥kXi for ΠiXk+i, and 0 for the constant functional 0 of a particular finite
type. If α has type Πi∈NXi we use the following abbreviations

[α](n) ≡ 〈α(0), . . . , α(n− 1)〉, (initial segment of α of length n)

α[k, n] ≡ 〈α(k), . . . , α(n)〉, (finite segment from position k to n)

α, n ≡ 〈α(0), . . . , α(n− 1),0,0, . . .〉, (infinite extension of [α](n) with 0’s)

ŝ ≡ 〈s0, . . . , s|s|−1,0,0, . . .〉. (infinite extension of finite seq. s with 0’s)

If x has type Xn and s has type Πn−1
i=0 Xi then s ∗ x is the concatenation of s with x,

which has type Πn
i=0Xi. Similarly, if x has type X0 and α has type Π∞i=1Xi then x ∗ α

has type Πi∈NXi. Finally, by qs or εs we mean the partial evaluation of q or ε on the
finite string s : Πn−1

i=0 Xi, e.g. if q has type Π∞i=0Xi → R then qs : Π∞i=nXi → R is the
functional qs(α) = q(s ∗ α).

Acknowledgements. The second author gratefully acknowledges support of the Royal
Society (grant 516002.K501/RH/kk).

1.1 Background: Selection functions and their binary product

In our recent paper [9] we showed how one can view any element of type (X → R)→
R as a generalised quantifier. The particular case when R = B corresponds to the
types of the usual logical quantifiers ∀,∃. We also showed that some generalised quan-
tifiers φ : (X → R) → R are attainable, in the sense that for some selection function
ε : (X → R)→ X , we have

φp = p(εp)

for all (generalised) predicates p. In the case when φ is the usual existential quantifier,
for instance, ε corresponds to Hilbert’s epsilon term. Since the types (X → R) → R
and (X → R) → X shall be used quite often, we will abbreviate them as KRX and
JRX , respectively. Moreover, since R will be a fixed type, we often simply write KX
and JX , omitting the subscript R. In [9] we also defined the following products of
quantifiers and selection functions.

Definition 1. Given a quantifier φ : KX and a family of quantifiers ψ : X → KY ,
define a new quantifier φ⊗ ψ : K(X × Y) as

(φ⊗ ψ)(pX×Y→R) R
:= φ(λxX .ψ(x, λyY .p(x, y))).

Computational Interpretations of Analysis via Products of Selection Functions 3

Also, given a selection function ε : JX and a family of selection functions δ : X → JY ,
define a new selection function ε⊗ δ : J(X × Y) as

(ε⊗ δ)(pX×Y→R) X×Y:= (a, b(a))

where b(x) := δ(x, λyY .p(x, y)) and a := ε(λxX .p(x, b(x))).

One of the results we obtained is that the product of attainable quantifiers is also
attainable. This follows from the fact that the product of quantifiers corresponds to the
product of selection functions, as made precise in the following lemma:

Lemma 1 ([9], lemma 3.1.2). Given a selection function ε : JX , define a quantifier
ε : KX as

εp := p(εp).

Then for ε : JX and δ : X → JY we have ε⊗ δ = ε⊗ λx.δx.

It is well known that the construction K can be given the structure of a strong
monad, called the continuation monad. We have shown in [9] that J also is a strong
monad, with the map (·) : J → K defined above playing the role of a monad morphism.
Any strong monad T has a canonical morphism TX × TY → T (X × Y) (and a
symmetric version). We have also shown in loc. cit. that for the monads T = K and
T = J the canonical morphism turns out to be the product of quantifiers and of selection
functions respectively. For further details on the connection between strong monads,
products, and the particular monads J and K, see [9]. In the following we explore
the concrete structure of J and K and their associated products considered as binary
versions of bar recursion, which are then infinitely iterated to obtain countable versions.

2 Two Infinite Products of Selection Functions

Given a finite sequence of selection functions, the binary product defined above can
be iterated so as to give rise to a finite product. We have shown that such construction
appears in a variety of areas such as game theory (backward induction), algorithms
(backtracking), and proof theory (interpretation of the infinite pigeon-hole principle). In
the following we describe two possible ways of iterating the binary product of selection
functions an infinite (or unbounded) number of times.

2.1 Explicitly controlled iteration

The first possibility for iterating the binary product of selection functions we consider
here is via an “explicitly controlled” iteration, which we will show to correspond to
Spector’s bar recursion. In the following subsection we also define an “implicitly con-
trolled” iteration, which we will show to correspond to modified bar recursion.

4 Martı́n Escardó and Paulo Oliva

Definition 2. Let ε : Πk∈N((Πj<kXj) → JXk) be a family of selection functions.
Define the explicitly controlled infinite product of the selection functions ε as

EPSs(ω)(ε)
J(Π∞i=|s|Xi)

=

{
0 if ωs(0) < |s|

εs ⊗ λxX|s| .EPSs∗x(ω)(ε) otherwise,

where s : Σk∈N(Πj<kXj). (Note that ωs(0) = ω(ŝ))

We refer to this infinite iteration of the product ⊗ as “explicitly controlled” because
we have an explicit test ωs(0) < |s| for when the iteration stops. As we will see in
Section 2.2 (next), we could also iterate the product without using the functional ω.

As with Spector’s bar recursion, we consider extensions of Gödel’s T with the EPS-
schema above. It is then natural to ask what are the models for the calculus of function-
als T+ EPS. It will follow from our result that EPS is primitive recursively equivalent
to Spector’s bar recursion, that EPS is validated both in the model of continuous func-
tionals [13] and in the model of strongly majorizable functionals [6]. The same will be
true for the functional IPS defined in Section 2.2. For further discussion on the models
validating EPS and IPS see [9].

Lemma 2. Let q : Π∞i=|s|Xi → R and ω : ΠiXi → N. EPS can be equivalently defined
as

EPSs(ω)(ε)(q)
Π∞i=|s|Xi

=

{
0 if ωs(0) < |s|

c ∗ EPSs∗c(ω)(ε)(qc) otherwise,

where c = εs(λx.qx(EPSs∗x(ω)(ε)(qx))).

Although we will only need to work with EPS, it will be useful (for the sake of
clarity) to define also the explicitly controlled infinite product of quantifiers:

Definition 3. Let φ : Πk∈N((Πj<kXj) → KXk) be a family of quantifiers. The ex-
plicitly controlled infinite product of the quantifiers φ is defined as

EPQs(ω)(φ)
K(Π∞i=|s|Xi)

=

{
λq.q(0) if ωs(0) < |s|

φs ⊗ λxX|s| .EPQs∗x(ω)(φ) otherwise.

The following lemma explains why EPQ can be defined from EPS if we are working
with attainable quantifiers.

Lemma 3. Assuming ∀α∃n(ω[α](n)(0) ≤ n) we have EPQs(ω)(ε) = EPSs(ω)(ε).

2.2 Implicitly controlled iteration

The binary product of selection functions can also be infinitely iterated without the need
for the “control functional” ω as follows:

Definition 4. Let ε : Πk∈N((Πj<kXj)→ (JXk)) and s : Σk∈N(Πj<kXj). Define the
implicitly controlled infinite product of selection functions IPS as

IPSs(ε)
J(Π∞i=|s|Xi)

= εs ⊗ λxX|s| .IPSs∗x(ε),

where s : Σk∈N(Πj<kXj).

Computational Interpretations of Analysis via Products of Selection Functions 5

Again, by unwinding the definition of the binary product of selection functions (and
using course-of-values induction) one can show that IPS is equivalent to the following:

Lemma 4. Let q : Π∞i=|s|Xi → R. IPS can be equivalently defined as

IPSs(ε)(q)(n)
X|s|+n
= εs∗ts,n(λx

X|s|+n .qts,n∗x(IPSs∗ts,n∗x(ε)(qts,n∗x)))

where ts,n := [IPSs(ε)(q)](n).

The functional IPS generalises Escardó’s [7] construction that selection functions
for a sequence of spaces can be combined into a selection function for the product
space.

Proposition 1. IPS (with R = B and εs dependent only on |s|) is primitive recursively
equivalent to Escardo’s Π functional of [7]:

Π(ε)(q)(n)
Xn= εn(λx

Xn .qn,x(Π(λi.εn+i+1)(qn,x)))

where

qn,x(α
Π∞i=n+1Xi)

B
:= q

λi.

Π(ε)(q)(i) i < n

x i = n

α(i− n− 1) i > n


 .

Proof. For one direction we take

Π(ε)(q) := IPS〈 〉(ε)(q),

for the other

IPSs({εn}n∈N)(q) := Π({ε|s|+n}n∈N)(q).

We omit the details of the verification. 2

3 Dialectica Interpretation of Classical Analysis

We now show how EPS can be used to solve Spector’s equations (which arise from the
dialectica interpretation of full classical analysis).

Theorem 1 (cf. lemma 11.5 of [12]). Let q : Π∞i=0Xi → R and ω : Π∞i=0Xi → N and
ε : Π∞i=0JXi be given. Define

α := EPS〈 〉(ω)(ε)(q)

pn(x) := EPQ[α](n)∗x(ω)(ε)(q[α](n)∗x),

identifying εs with ε|s|. The functionals α and pn are a solution to Spector’s system of
equations, i.e. for n ≤ ω(α) we have

α(n)
Xn= εn(pn)

pn(α(n))
Y
= qα.

6 Martı́n Escardó and Paulo Oliva

Proof. First, let us show by induction that for all n the following holds:

(i) α = [α](n) ∗ EPS[α](n)(ω)(ε)(q[α](n)).

If n = 0 this follows by definition. Assume this holds for n we wish to show it for
n+ 1. Consider two cases.

(a) If ω(α, n) < n then EPS[α](n)(ω)(ε)(q[α](n)) = 0 and hence α (IH)
= α, n = α, n+ 1.

Therefore, ω(α, n+ 1) = ω(α, n) < n < n+ 1. So,

[α](n+ 1) ∗ EPS[α](n+1)(ω)(ε)(q[α](n+1)) = α, n+ 1 = α, n = α.

(b) If, on the other hand, ω(α, n) ≥ n, then

α
(IH)
= [α](n) ∗ EPS[α](n)(ω)(ε)(q[α](n)) = [α](n) ∗ c ∗ EPS[α](n)∗c(ω)(ε)(q[α](n)∗c),

where c = α(n). Hence α = [α](n+ 1) ∗ EPS[α](n+1)(ω)(ε)(q[α](n+1)).

Now, let n := ω(α). We argue that (ii) ω(α, n) ≥ n. Otherwise, assuming ω(α, n) =
ω[α](n)(0) < n we would have, by (i), that α = α, n. Hence4, n > ω[α](n)(0) =
ω(α) = n, a contradiction.

Then, it follows easily that, if n ≤ ω(α),

α(n)
(i)
= EPS[α](n)(ω)(ε)(q[α](n))(0)

(ii)
= (εn ⊗ λx.EPS[α](n)∗x(ω)(ε))(q[α](n))(0)

= εn(λx.q[α](n)∗x(EPS[α](n)∗x(ω)(ε)(q[α](n)∗x)))

= εn(λx.EPS[α](n)∗x(ω)(ε)(q[α](n)∗x))

= εn(λx.EPQ[α](n)∗x(ω)(ε)(q[α](n)∗x)) = εn(pn).

For the second equality, we have

pn(α(n)) = EPQ[α](n+1)(ω)(ε)(q[α](n+1))

= EPS[α](n+1)(ω)(ε)(q[α](n+1))

= q[α](n+1)(EPS[α](n+1)(ω)(ε)(q[α](n+1)))

= q([α](n+ 1) ∗ EPS[α](n+1)(ω)(ε)(q[α](n+1)))
(i)
= q(α).

That concludes the proof. 2

Remark 1. The theorem above has a very natural game theoretic reading. Following
the nomenclature of [9], each εn can be viewed as the selection function defining an

4 Note that a limited amount of extensionality is used here, which, nevertheless, can be avoided
(cf. [12]). We recall that the dialectica interpretation does not validate the axiom of extension-
ality. We are obviously allowed, however, to appeal to extensionality when verifying that the
dialectica interpretation of a certain principle (e.g. DNS) is correct.

Computational Interpretations of Analysis via Products of Selection Functions 7

outcome quantifier for round n. The functional q is the outcome functional, mapping
infinite plays (in ΠiXi) to the outcome of the game (in R). The construction used in
the theorem for α and pn calculates an infinite play α of the game which is optimal up
to the point n = ω(α). If ω is thought of as deciding when the game is terminated, then
we have in fact an optimal play in the game.

Remark 2. Note that we are only using EPQ for the sake of clarity. As shown in Lemma
3, any use of EPQ above can be replaced by an instance of EPS. Therefore, the recursion
schema EPS alone can be used to solve Spector’s equations.

3.1 Relation to Spector’s bar recursion

As we have shown above, EPS solves the computational interpretation of classical anal-
ysis via the dialectica interpretation. Spector, however, describing the recursion schema
used in his solution, formulated first the general “construction by bar recursion” as

BRs(ω)(φ)(g)
R
=

{
g(s) if ωs(0) < |s|

φs(λx
X|s| .BRs∗x(ω)(φ)(g)) otherwise.

Then, Spector explicitly says that only a “restricted form” of this is used. It is this
restricted form that we shall from now on call “Spector’s bar recursion”:

Definition 5. Let R = Π∞i=0Xi and εs : JX|s| and ω : Π∞i=0Xi → N. Spector’s bar
recursion [14] is the following recursion schema

SBRs(ω)(ε)
R
=

{
ŝ if ωs(0) < |s|

SBRs∗c(ω)(ε) otherwise,

where c
X|s|
= εs(λx.SBRs∗x(ω)(ε)).

We showed above how EPS can be used to solve Spector’s equations. In fact, we
have:

Proposition 2. EPS and SBR are primitive recursively equivalent.

4 Realizability Interpretation of Classical Analysis

We have seen (Section 3 above) that EPS solves the dialectica interpretation of classical
analysis. In this section we show that when interpreting DNS via modified realizabil-
ity, an unrestricted iterated product of selection functions naturally arises. Assuming
continuity5, for instance, one may say that the infinite iterated product is implicitly con-
trolled, by the continuity of q.

As discussed in the introduction, only a restricted form of DNS is used for the
interpretation of full comprehension, namely, DNS for formulas A ≡ ∃yBN (n, y). For
such formulas we have that ⊥→ ∀nA(n), and hence this restricted form of DNS is
equivalent to

5 By continuity of q : ΠiXi → R we mean that for all α : ΠiXi there exists a point n (called
‘point of continuity’) such that the value q(α) is determined by [α](n), i.e. for any β extending
[α](n) we have qα = qβ.

8 Martı́n Escardó and Paulo Oliva

∀n((A(n)→⊥)→ A(n))→ (∀nA(n)→⊥)→ ∀nA(n).

Moreover, since the negative translation brings us into minimal logic, falsity ⊥ can be
replaced by an arbitrary formula6 R. In practice, however, because we will require a
continuity assumption we restrict R to be a Σ0

1 formula. As such, recalling that JRA ≡
(A→ R)→ A, the resulting principle we obtain is what we shall call J-shift

J-shift : ∀nJRA(n)→ JR∀nA(n),

where A(n) is an arbitrary formula and R is a Σ0
1 formula.

Theorem 2 (cf. [3], theorem 3). IPS〈 〉 modified realizes J-shift.

Proof. Let

εn mr (A(n)→ R)→ A(n)

q mr ∀nA(n)→ R.

As in [3], we shall assume continuity of q. We show ∀s ∈ S ∀nP (s, n) by relativised
bar induction (see [3] for precise formulation), where

P (s, n) ≡ (s ∗ IPSs(ε)(qs))(n)mrA(n)

and the predicate used in the relativisation is

s ∈ S ≡ ∀n< |s| (snmrA(n)).

We write α ∈ S as an abbreviation for ∀n([α](n) ∈ S). We now prove the two assump-
tions of the bar induction:

(i) ∀α∈S ∃k∀t� [α](k)∀nP (t, n), where t � s means that t is an extension of the
finite sequence s. Given α we pick k to be a point of continuity of q on α. The result
follows simply unfolding the definition of IPS.

(ii) ∀s∈S(∀t, x(s ∗ t ∗ x∈S → ∀nP (s ∗ t ∗ x, n))→ ∀nP (s, n)). Fix s ∈ S and as-
sume

(a) ∀t, x(s ∗ t ∗ x∈S → ∀nP (s ∗ t ∗ x, n)).

We prove ∀nP (s, n) by course-of-values induction. Assume ∀k<nP (s, k), i.e.

(b) ∀k<n ((s ∗ IPSs(ε)(qs))(k)mrA(k)).

We want to show (s ∗ IPSs(ε)(qs))(n)mrA(n). If n < |s| we are done, since in this
case (s ∗ IPSs(ε)(qs))(n) = sn (and s ∈ S). Assume n ≥ |s|. Then, our goal becomes

εn(λx
Xn .qs∗ts,n∗x(IPSs∗ts,n∗x(ε)(qs∗ts,n∗x)))mrA(n),

where ts,n = [IPSs(ε)(qs)](n− |s|). That follows from

λxXn .qs∗ts,n∗x(IPSs∗ts,n∗x(ε)(qs∗ts,n∗x))mrA(n)→ R

6 This is known as the (refined)A-translation [5], and is useful to analyse proofs ofΠ0
2 theorems

in analysis.

Computational Interpretations of Analysis via Products of Selection Functions 9

which, by definition, is
∀xXn(xmrA(n) → qs∗ts,n∗x(IPSs∗ts,n∗x(ε)(qs∗ts,n∗x))mrR).

Fix x such that xmrA(n). By our assumption (b) we have that s ∗ ts,n ∗ x ∈ S. And
by assumption (a) we get (s ∗ ts,n ∗ x ∗ IPSs∗ts,n∗x(ε)(qts,n∗x))mr ∀nA(n). The proof
is then concluded by the assumption that qmr ∀nA(n)→ R. 2

Remark 3. We analyse the J-shift in more detail in the companion paper [8], where a
proof translation based on the construction JX is also defined.

4.1 Relation to modified bar recursion
We now show that IPS and modified bar recursion are in fact primitive recursively inter-
definable. Modified bar recursion [3], when generalised to the language of dependent
types, can be formulated as

MBRs(ε)(q)(n)
Xn=

{
sn if n < |s|

εs(λx
X|s| .q(MBRs∗x(ε)(q)))(n− |s|) otherwise,

where εs : (X|s| → R) → Πj≥|s|Xj . The following lemma says that MBR is equiva-
lent to a variant which can make use of any value bar recursively computed, and not just
the immediate children s ∗ x of the node s. We are assuming that types are restricted so
that finite sequences of Xk’s can be coded as single elements.

Lemma 5 ([3], lemma 2). MBR is primitive recursively equivalent to

MBR0
s(ε)(q)(n)

Xn=

{
sn if n < |s|

εs(λr
Πj−1

k=|s|XkλxXj .q(MBR0
s∗r∗x(ε)(q)))(n− |s|) otherwise.

The next theorem essentially says that MBR is also equivalent to a variant which
makes use of course-of-values recursion to access values previously computed, i.e. in
order to define the point n of the infinite sequence MBR1

s(ε)(q) we are allowed to use
MBR1

s(ε)(q)(k) for k < n.

Lemma 6. MBR0 is primitive recursively equivalent to

MBR1
s(ε)(q)(n)

Xn=

{
sn if n < |s|

εs(rs,n, λr
η, xXj .q(MBR1

s∗r∗x(ε)(q)))(n− |s|) otherwise,
(1)

where rs,n := MBR1
s(ε)(q)[|s|, n− 1] and η = Πj−1

k=|s|Xk.

Corollary 1. MBR primitive recursively defines IPS.

Theorem 3. IPS primitive recursively defines MBR.

Corollary 2. The equation defining IPS has a solution in the type structureM of the
strongly majorizable functionals.

Proof. This follows from the result in [4] that MBR lives in the modelM. 2

We have also recently shown the following:

Theorem 4. The iterated product of selection functions
⊗

defined in [9] (which is
clearly a particular case of IPS) is primitive recursively equivalent to IPS.

10 Martı́n Escardó and Paulo Oliva

References

1. J. Avigad and S. Feferman. Gödel’s functional (“Dialectica”) interpretation. In S. R. Buss,
editor, Handbook of proof theory, volume 137 of Studies in Logic and the Foundations of
Mathematics, pages 337–405. North Holland, Amsterdam, 1998.

2. S. Berardi, M. Bezem, and T. Coquand. On the computational content of the axiom of choice.
The Journal of Symbolic Logic, 63(2):600–622, 1998.

3. U. Berger and P. Oliva. Modified bar recursion and classical dependent choice. Lecture
Notes in Logic, 20:89–107, 2005.

4. U. Berger and P. Oliva. Modified bar recursion. Mathematical Structures in Computer
Science, 16:163–183, 2006.

5. U. Berger and H. Schwichtenberg. Program extraction from classical proofs. In D. Leivant,
editor, Logic and Computational Complexity Workshop (LCC’94), volume 960 of Lecture
Notes in Computer Science, pages 77–97. Springer, Berlin, 1995.

6. M. Bezem. Strongly majorizable functionals of finite type: a model for bar recursion con-
taining discontinuous functionals. The Journal of Symbolic Logic, 50:652–660, 1985.

7. M. H. Escardó. Infinite sets that admit fast exhaustive search. In Proceedings of LICS, pages
443–452, 2007.

8. M. H. Escardó and P. Oliva. The Peirce translation and the double negation shift. In F. Fer-
reira, B. Lowe, E. Mayordomo, and L. M. Gomes, editors, Computability in Europe 2010,
LNCS. Springer, 2010.

9. M. H. Escardó and P. Oliva. Selection functions, bar recursion, and backward induction.
Mathematical Structures in Computer Science, 20(2):127–168, 2010.

10. K. Gödel. Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes. Di-
alectica, 12:280–287, 1958.

11. U. Kohlenbach. Higher order reverse mathematics. In Stephen G. Simpson, editor, Reverse
Mathematics 2001, volume 21 of Lecture Notes in Logic, pages 281–295. ASL, A K Peters,
2005.

12. U. Kohlenbach. Applied Proof Theory: Proof Interpretations and their Use in Mathematics.
Monographs in Mathematics. Springer, 2008.

13. D. Normann. The continuous functionals. In E. R. Griffor, editor, Handbook of Computabil-
ity Theory, chapter 8, pages 251–275. North Holland, Amsterdam, 1999.

14. C. Spector. Provably recursive functionals of analysis: a consistency proof of analysis by
an extension of principles in current intuitionistic mathematics. In F. D. E. Dekker, editor,
Recursive Function Theory: Proc. Symposia in Pure Mathematics, volume 5, pages 1–27.
American Mathematical Society, Providence, Rhode Island, 1962.

15. A. S. Troelstra. Metamathematical Investigation of Intuitionistic Arithmetic and Analysis,
volume 344 of Lecture Notes in Mathematics. Springer, Berlin, 1973.

