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Abstract

Title of Dissertation: Computational Investigation of Micro-Scale

Coaxial Rotor Aerodynamics in Hover

Vinod K. Lakshminarayan, Doctor of Philosophy, 2009

Dissertation directed by: Dr. James D. Baeder

Department of Aerospace Engineering

In this work, a compressible Reynolds-Averaged Navier Stokes (RANS) solver

is extended to investigate the aerodynamics of a micro-scale coaxial rotor con-

figuration in hover. This required the following modifications to the solver:

implementation of a time-accurate low Mach preconditioner, implementation of

a sliding mesh interface boundary condition, improvements in the grid connec-

tivity and parallelization of the code.

First, an extensive validation study on the prediction capability of the solver

is performed on a hovering micro-scale single rotor, for which performance data

and wake characteristics have been measured experimentally. The thrust and

power are reasonably well predicted for different leading and trailing geometries.

Blunt leading edge geometries show poorer performance compared to the sharp

leading edge geometries; the simulations show that this is mainly because of

the large pressure drag acting at the blunt front. The tip vortex trajectory and

velocity profiles are also well captured. The predicted swirl velocities in the wake



for the micro-rotor are found to be significantly larger as compared to those for

a full-scale rotor, which could be one of the reasons for additional power loss in

the smaller scale rotors. The use of twist and taper is studied computationally

and is seen to improve the performance of micro-rotor blades.

Next, the solver is applied to simulate the aerodynamics of a full-scale coax-

ial rotor configuration in hover, for which performance data is available from

experiments. The global quantities such as thrust and power are predicted rea-

sonably well. In the torque trimmed situation, the top rotor shares significant

percentage of the total thrust at lower thrust levels, which decreases to about

55% of the total thrust at higher thrust values. The simulations reveal that the

interaction between the rotor systems is seen to generate significant impulses in

the instantaneous thrust and power. The characteristic signature of this impulse

is explained in terms of the blade thickness effect and loading effect, as well as

blade-vortex interactions for the bottom rotor (wake effect).

Finally, the RANS solver is applied to investigate the aerodynamics of a

micro-scale coaxial rotor configuration in hover. The overall performance is well

predicted. The interaction between the rotor systems is again seen to generate

3–8% fluctuation in the instantaneous thrust and power. The wake effect in the

simulation is seen to be very prominent and the phasing of the impingement of

the tip vortex from the top rotor upon the bottom rotor plays a significant role

in the amount of unsteadiness on the bottom rotor. Interaction of the top rotor

vortex and inboard sheet with the bottom rotor results in significant shedding

on the bottom rotor blade, and this is believed to be caused by the of sharp

leading edge geometry. Significant blade-vortex and vortex-vortex interactions

are observed for coaxial systems.
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Chapter 1

Introduction

1.1 Micro Air Vehicles

The concept of Micro Air Vehicles (MAVs) was first introduced in 1992 in a

Defense Advanced Research Projects Agency (DARPA) workshop titled “Future

Technology Driven Revolutions in Military Operations”. MAVs, as defined in the

research program of DARPA, are inexpensive flying vehicles with no dimension

exceeding 6 inches (15 cm), with a weight of no more than 100 grams. The

endurance is encouraged to be one hour and the payload should include a camera

or other sensing device. Over the past decade, MAVs have received an increasing

amount of attention in military and civilian markets.

For the military, MAVs can provide stealthy surveillance into a complex and

possibly dangerous situations without much risk. Common environments for

usage include urban areas and inside buildings or in complex terrain such as

hills, mountains or inside caves. For civilian applications, MAVs can examine

an environment that is harmful due to structural, chemical, electrical, or other

hazardous concerns. MAVs can also be used for traffic monitoring.

While there is no perfect MAV for all situations, most of the small flying
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vehicles being developed can be divided into three categories. Just like for full

size aircraft, the two most successful MAV configurations are fixed-wing and

rotary-wing. The third configuration, which mimics nature, is a flapping wing

configuration.

Fixed-wing MAVs have so far been the most successful at achieving the

longest endurance and greatest speed and range. They are relatively simple,

fast, and efficient compared to other categories of MAVs and are well suited

for outdoor reconnaissance missions that do not require maneuvering in tightly

constrained spaces. However, for missions around or within buildings, hovering

vehicles have a clear advantage over fixed-wings configurations.

Both rotary-wing and flapping-wing MAVs provide hovering capabilities. The

ability to takeoff and land vertically gives operational flexibility by requiring

minimal takeoff and landing zones. Furthermore, perch and stare operations

can extend their useful life on station. In addition, the ability to rapidly change

flight direction is ideal for use in pursuit or search missions, where the flight path

is dynamic. However, due to their complex kinematics, hovering flapping-wing

vehicles have very poor mechanical efficiency. On the other hand, rotary-wing

vehicles can adapt some of the technology used in full-scale vehicles and require

simpler mechanics, thereby keeping the mechanical losses to a minimum. Finally,

most rotary-wing MAVs can also better withstand crosswind gusts that may

destabilize flapping-wing MAVs. These characteristics make the rotary-wing

configurations specially attractive for MAV applications. This thesis focuses on

the aerodynamics of rotary-wing MAVs.
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1.1.1 Current Capabilities of Rotary-Wing MAVs

Table 1.1 shows the performance, in terms of weight and endurance, of a series of

rotary-wing MAVs along with selected fixed-wing small-scale vehicles. It can be

clearly seen that the objective set by DARPA is far from being reached. Fixed-

wing vehicles meet size and weight constraints, but are lacking in endurance.

For rotary-wing vehicles, even with larger and heavier designs, endurance times

are shorter than for the fixed-wing configurations.

Table 1.1: Relative performance of various MAVs.

Name Type Weight (g) Endurance (min)

Micor UMD Rotary-wing 150 15

Commercial Electric Heli Rotary-wing 350 15

Kolibri Lutronix Rotary-wing 440 < 10

Honeywell iSTAR Rotary-wing 1800 15

Aerovironment Black Widow Fixed-wing 80 25

Lockhead-Sanders Microstar Fixed-wing 110 25

1.1.2 Limitations of Current Rotary-Wing Designs

The main difficulty in achieving a better performance with a rotary-wing ve-

hicle comes from the large hover power requirements. Hover is an intrinsically

high-power flight state with considerably larger energy requirements; this fact

is independent of scale. If hover extends for a significant fraction of the mis-

sion duration, hover efficiency becomes a key vehicle characteristic that must be

carefully addressed.

Hovering efficiency, which directly determines the endurance achieved, can
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be quantified analytically using Simple Momentum Theory [1], where the rotor

is assumed as an actuator disk and the flow is assumed to be steady and inviscid.

For a rotor producing thrust (T ), the minimum average induced velocity

through the plane of the rotor disk is given by:

videal =

√

T

2ρA
=

√

DL

2ρ
(1.1)

where DL is the disk loading (T/A), A is the area of the rotor and ρ is the

density.

The ideal power required to hover is then given by:

Pideal = Tvideal =
T 3/2

√
2ρA

(1.2)

The aerodynamic efficiency of a hovering rotor is measured in terms of the figure

of merit (FM), which is defined as the ratio of ideal power to actual power and

is given by:

FM =
Pideal

P
(1.3)

The total efficiency of a hovering rotary-wing vehicle can be quantified in

terms of effective power loading (PL), which is defined as the ratio of thrust

(equal to the vehicle weight) to power required to hover (T/P ). The figure of

merit can be rewritten in terms of power loading as

FM = PL

√

DL

2ρ
(1.4)
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Therefore,

PL =

√
2ρFM√
DL

(1.5)

where FM accounts for all sources of non-ideal losses including the profile losses

due to viscosity. This means that the best hovering efficiency is obtained when

the effective disk loading is a minimum and also when the FM is a maximum.

Therefore, the key to endurance for a rotary-wing MAV is to have a low effective

disk loading and have good aerodynamic efficiency.

However, currently available rotary MAVs have relatively poor aerodynamic

efficiency compared to full-scale vehicles. MAV rotors have achieved a maximum

FM around 0.6 while full-scale helicopters may have a maximum FM near 0.80 or

even slightly higher. This degraded performance for MAVs is due to the adverse

effects of the low Reynolds numbers at which the MAVs operate. Figure 1.1

shows Reynolds number vs. Mass for a wide range of aircraft. MAVs generally

fly in the Reynolds number range of 1,000 to 120,000 (whereas full size helicopters

and airplanes experience Reynolds numbers on the order of 107). Rotary-wing

MAVs generally fly in the 20,000 to 70,000 Reynolds number range, although

the smallest rotary-wing MAVs may fly at a Reynolds number below 10,000.

At these low Reynolds numbers, viscous effects in the flow are dominant

over the inertial ones, boundary layers are thick and undergo several complex

phenomena. Separation, transition, and reattachment can all occur within a

short chordwise distance, forming laminar separation bubbles that have a strong

adverse effect on the lifting surface characteristics. As a result of the poor airfoil

performance, small-scale rotors have lower efficiency than full-scale ones.
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Figure 1.1: Mass vs Reynolds number for animals and man-made vehicles [2].

1.2 Previous Work

Several studies have been done in the past to improve the aerodynamic efficiency

of MAV rotors. Primary focus has been on airfoil aerodynamics. For the MAV

rotors, the selection of airfoils is extremely important. A good airfoil choice for

MAVs will try to accomplish several goals: to delay the onset of the laminar

separation bubble and therefore flow separation, to achieve a high maximum lift

coefficient, and to keep profile drag at a minimum.

While good aerodynamic efficiency requires the design of blade airfoil sections

with low drag and high lift-to-drag ratios, another major source of performance

loss for a rotor is contained within the structure of its blade wake, i.e., the in-

duced losses. Therefore, it is very important to have a good understanding of the
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micro-rotor wake. Comprehensive rotor wake measurements and detailed com-

putational studies have been carried out to help understand the source of these

losses for rotors at larger scales. However, there is very limited experimental and

computational studies on MAV-scale rotors.

Previous studies on low Reynolds number aerodynamics and rotary-wing tip

vortex are detailed below.

1.2.1 Low Reynolds Number Aerodynamics

Experimental Studies

One of the most influential publications in the field was published by Schmitz [3]

in 1941. Schmitz performed his research in a wind tunnel with turbulence levels

similar to those found in free flight (0.1%). Under such flow conditions, he was

able to observe for the first time the hysteresis loops in the lift and drag of

airfoils at Reynolds numbers between 40,000 and 160,000. He also identified

the reduction in the Reynolds number at which flow transitions from laminar to

turbulent due to the added turbulence produced by placing a wire upstream of

the leading edge.

In 1980 a comprehensive airfoil catalog was published by Althaus [4]. The

measurements were made in a low turbulence wind tunnel. It consisted of lift

and drag coefficients as a function of angle of attack for 30 airfoils at Reynolds

numbers ranging between 40,000 and 250,000.

A comprehensive study on low Reynolds number flow physics and pre-1981

low Reynolds number data can be found in the work of Carmichael [5]. This ref-

erence also contains a good qualitative description of the flow physics in different

Reynold number flight regimes.
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Mueller [6–8] conducted extensive experimental studies on 2D and 3D flow

around flat plates and cambered airfoils at Reynolds numbers ranging from

60,000 to 200,000. The data showed that cambered plates offer better aerody-

namic performance characteristics than flat plates. Additionally, it was shown

that the trailing edge geometry has little effect on the lift and drag on thin wings

at low Reynolds numbers.

Selig has been working over the last 20 years on systematic wind tunnel test-

ing of more than 200 airfoils at Reynolds numbers between 40,000 and 500,000.

This set of data is especially valuable since all tests were performed at the same

facility with the same methodology, making quantitative comparison within the

set very accurate. Results have been compiled in a series of 3 volumes [9, 10].

Selig has also worked on inverse design methodologies and optimization of airfoils

at low Reynolds numbers [11, 12].

Results from Laitone [13, 14] suggest that a good airfoil for use in flow with

Reynolds numbers less than 70,000 should be a thin plate with 5% circular arc

camber. This type of airfoil had a better L/D at low Reynolds numbers compared

to a NACA 0012, and a reversed NACA 0012, among others. Additionally, the

thin, cambered airfoil geometry produced a higher total lift for all angles of

attack. Sharpening the leading edge resulted in the largest lift curve slope,

similar to the findings in [12].

Hein and Chopra [15], as well as Bohorquez [2], measured the performance

of a hovering rotor using different airfoils and showed that a thin circular arc

airfoil geometry improved the figure of merit of the rotor. Bohorquez also stud-

ied the effect of twist and tip taper on the performance. Performance gains were

obtained by introducing tip taper in a manner such that large negative twist

8



angles over short radial distances at the blade tips. Linear twist (negative) was

not found to be effective in increasing performance. A parametric study of var-

ious blade geometries resulted in maximum figures of merit of 0.65 as compared

to a value of 0.35 using NACA airfoil having rectangular planform. Following

this, Bohorquez explored the performance of coaxial micro-rotor at torque equi-

librium. These results form the basis for validating micro-scale coaxial rotor

simulations in this thesis.

Recently, Ramasamy et al. [29,30] obtained performance data for a hovering

rotor at a tip Reynolds number of 32, 400 at different blade collective settings.

Thin circular airfoils were used with different leading and trailing edge geometries

(sharp and blunt). It was found that sharpening the leading and trailing edge

improved the performance of the rotor. Ramasamy et al. also studied the effect

of twist and taper on these blades. It was found that, while twist improved the

performance, taper did not provide any benefit. In addition to the performance

data, high resolution flow-field data was also obtained in this study. As a result,

these results form the basis for validating micro-scale single rotor simulations in

this thesis.

Computational Studies

The following are some relevant studies that cover the development and use of

Computational Fluid Dynamics (CFD) tools in the low Reynolds number regime.

Singh et al. [16], performed computations using XFOIL [17] over several air-

foils at Re = 80, 000. XFOIL, which is a freeware program, is a two dimensional

panel method code. It can compute basic airfoil performance characteristics

with extension to viscous flows using a boundary layer method with a transition
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model. Results from Singh et al. showed that a thin, cambered airfoil (8.89%)

from Selig had the best lift and drag characteristics over thicker, less cambered

Wortmann and NACA symmetric airfoils.

Kellogg and Bowman [18] completed a parametric computational study us-

ing the thickness of MAV airfoils for the Reynolds numbers of 60,000, 100,000,

and 150,000 and found that decreasing the Reynolds number also decreased the

optimal thickness with respect to L/D. Thus, an airfoil designed for use in low

Reynolds number flow should be relatively thin.

Bohorquez [2] implemented a rotor design tool that integrated a BEMT rotor

model with a CFD calculated 2D airfoil database. The effect of spanwise twist,

taper and airfoil shape (restricted to circular arcs) on hover performance were

modeled. The model was able to predict the thrust within margins of exper-

imental error. However, the power predictions were not satisfactory, agreeing

with experiments only over a limited collective range.

Schroeder and Baeder [19,20] examined the use of TURNS [21] (modified to

include steady low Mach preconditioner [22]) in 2D and 3D around thin, highly

cambered airfoils commonly found on MAVs. The predictions agreed reasonably

well with experimental data for the static 2D lift and drag data for both an

Eppler 387 and the airfoil of Mueller. The predicted lift and drag curves for the

3-D wing of Mueller agreed extremely well with the experimental results. The

current studies will build upon the work of Schroeder and Baeder to develop

methodologies, which will aid in simulation of micro-scale rotors.
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1.2.2 Rotary-Wing Tip Vortex Studies

Experimental Studies

Comprehensive wake measurements have been carried out for various scales of

rotor. For rotorcraft, the scale is defined based on the radius of the rotor. Full-

scale rotors have radius ranging from approximately 9 − 60 feet, model-scale

rotors have radius ranging from approximately 3 − 6 feet, sub-scale rotors have

radius of approximately 1−2 feet and micro-scale rotors have radius on the order

of 0.25 feet or smaller.

Caradonna and Tung [23] performed hot wire velocity measurements in the

wake of a two bladed model-scale hovering rotor. The measured peak swirl

velocities were found to reach a maximum of 40% of the tip speed and the initial

vortex core radius was found to be around 4% of the blade chord. In addition,

pressure measurements were made on the blade surface.

Tangler et al. [24] conducted a comprehensive study of the effects of tip shape,

airfoil section, tip Mach number and collective pitch on the tip vortex structure

of a sub-scale hovering rotor. For the range of collective pitch that was tested,

the tip vortex swirl velocity was found to be of the order of 20%–50% of the tip

speed.

Thompson et al. [25] performed detailed measurements with a laser Doppler

velocimeter in the tip region and in the tip vortex core of a single-bladed sub-

scale rotor in hover. The data exhibited evidence of secondary structure inside

the rotational core of the vortex.

Martin and Leishman [26] measured the swirl and axial velocities in the

vortex system trailed from an isolated sub-scale blade in hover. The measured

data in select planes over one rotor revolution was corrected for wandering. The
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peak swirl velocity was found to decay at a rate that was much slower than that

for the measured axial velocity deficit. The effects of blade tip shape modification

were also evaluated.

Ramasamy & Leishman [27] and McAlister [28] measured velocity profiles

for an isolated sub-scale rotor in hover. They were able to show that the swirl

velocity and circulation profiles are approximately self-similar with wake-age.

As mentioned previously, Ramasamy et al. [29, 30] obtained high-resolution

flow visualization, performance data and particle image velocimetry (PIV) flow-

field data for a micro-scale rotor operating at a tip Reynolds number of 32,400.

It was seen that the vortex sheets trailing the rotor blades were much thicker

than their higher chord Reynolds number counterparts. Similarly, the viscous

core sizes of the tip vortices were relatively large as a fraction of blade chord

compared to those measured at higher vortex Reynolds numbers. The initial

core size was found to be 0.05c compared to 0.02c at higher Reynolds numbers.

On the other hand, the rate of core growth was found to be comparable to higher

Reynolds numbers. These results form the basis for validating micro-scale single

rotor simulations in this thesis.

Computational Studies

Compared to fixed-wing calculations, it is very difficult to come across numerical

validation of tip vortex structure with experiments for rotating blades.

Russell et al. [31, 32] have performed RANS simulations using the Baldwin-

Lomax turbulence model to validate the experimental hover measurements of

McAlister et al. [33]. Computed vortex velocity profiles are compared with mea-

surements at distances of 0.5 and 3 chord lengths behind the trailing edge. The
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axial velocity excess is overpredicted and the swirl velocity is underpredicted.

The computed core radius is seen to be larger by 60% compared to the measure-

ment at the 3 chord lengths downstream location.

Usta [34] used upto eighth order accurate symmetric TVD schemes [35] (for

inviscid terms) with the Spalart-Allmaras turbulence model to simulate the

Caradonna and Tung [23] 2 bladed hovering rotor. Though high order schemes

performed better than the low order schemes in predicting blade surface pres-

sures, numerical diffusion was found to reduce the vortex strength significantly.

Tang [36] used a high order accurate Euler solver with adaptive mesh re-

finement and compared the evolution of the peak swirl velocity with wake-age

for the isolated hovering rotor test case of Martin et al [26]. The use of high

order accuracy and mesh adaption was seen to reduce numerical dissipation. No

details of the vortex velocity profile were compared with experiments.

Recently, Duraisamy & Baeder [37, 38] used the high order accurate overset

RANS code, OVERTURNS, to simulate the same experiment. For the first time,

detailed validations of the swirl and axial velocities were achieved up to one full

revolution of the wake (roughly 60 chords of evolution). In addition, the aero-

dynamic loading was validated on single rotor systems. Duraisamy & Baeder, in

collaboration with Ramasamy & Leishman [39] also studied the formation and

rollup of a tip vortex for the hovering rotor test case in Ref. [27] and showed the

presence of secondary and tertiary vortices resulting from crossflow separations

near the blade tip. This thesis will build upon the methodologies developed by

Duraisamy & Baeder for capturing rotary-wing tip vortices in large scales and

extend it for the micro-scale rotors.
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1.3 Rotary MAV Conceptual Designs

Apart from improvements in blade/airfoil design for MAVs, various conceptual

designs of rotary MAVs have evolved over the period of time to meet the target

set by DARPA. These concepts differ mainly in their anti-torque mechanism.

One design is simply to scale down conventional helicopters (with a large main

rotor and a small tail rotor) such as the Precision Heli Micron V2 helicopter

[40]. The benefits of this conventional design are simplicity and familiarity in

construction and control. The tail rotor and boom, however, add to the vehicle

dimensions and are a detriment to the goal of compactness.

Figure 1.2: University of Maryland “Giant” [41].

To meet the goal of a compact and simple design, some MAVs utilize a single

rotor with vanes in the downwash to counteract the torque required by the main

rotor. As the main rotor torque and thrust increase, the anti-torque from the

vanes also increases due to the increased downwash. Three examples of vanes

used as a stable method of control and torque counteraction are the Honeywell

14



Figure 1.3: University of Maryland “TiShrov” [42].

iSTAR [43] and the Giant and the TiShrov at the University of Maryland [41,

42]. The Giant and the TiShrov, respectively shown in Figures 1.2 and 1.3, are

similar vehicles, but the TiShrov further utilizes a shrouded rotor. The shroud

has a curved inlet that increases aerodynamic efficiency by reducing tip losses

and providing additional thrust due to the accelerated airflow over the inlet.

However, the thrust benefits of the shroud have not yet exceeded the shroud’s

weight. The disadvantage of the current design of Giant’s vanes and TiShrov’s

shroud is that they cause more drag than a conventional rotor.

Another concept, which appears attractive because of its inherent compact-

ness, is the coaxial design. Coaxial rotors are a pair of counter-rotating rotors

mounted one above the other. Examples of coaxial MAVs are the Seiko Micro

Flying Robot [44] and the Micor [2], developed at the University of Maryland (as

seen in Figure 1.4). The disadvantages of this design include the aerodynamic in-

terference between the two rotors, mechanical complexity and the added weight

of a dual rotor system. However, because of their compactness, the current work

looks into the aerodynamics of MAVs that utilize a coaxial rotor design.
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Figure 1.4: University of Maryland Micor [2].

1.4 Coaxial Rotors

The concept of coaxial rotors has been used since the beginning of experiments

with helicopters in the nineteenth century. Contemporary sources [45,46] suggest

that at least 35 prototype helicopters that used coaxial rotors had been built

(but not necessarily flown successfully) prior to 1945. However, only the Kamov

company from Russia has been successful in placing coaxial rotor configurations

into production, starting with the Ka–6 and Ka-8 helicopters in the late 1940s

through to the Ka–50 (see Figure 1.5) in the 1990s. In recent years, there has

been renewed interest in the coaxial configuration in other countries as well.

Conceptually, the coaxial rotor configuration offers substantial design advan-

tages over the conventional main rotor tail-rotor configuration. Perhaps most

significantly, the additional power requirements and weight associated with the

tail rotor and transmission system may be reallocated for additional payload

capability. Additionally, the asymmetry of lift associated with a single rotor in
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Figure 1.5: Kamov Ka-50 [47].

forward flight is mitigated, offering the potential for a faster and more stable

vehicle. Another advantage of the conceptual coaxial configuration is the reduc-

tion in noise arising from interactions between the airflows from the main and

tail rotors.

From the perspective of MAV, the most attractive feature of a coaxial design

is the resulting compactness in the vehicle. Since two rotors produce the net

thrust, instead of a single rotor in the conventional design, the diameter of the

rotors can be reduced to carry the same amount of weight. Secondly, eliminating

the tail rotor results in a smaller and lighter vehicle. Additionally, since the

MAVs do not need to operate at high forward speeds, the horizontal and vertical

fins required for stability in full-scale helicopters can also be eliminated, making

it further compact.

However, the principal disadvantage of the coaxial rotor configuration is the

increased mechanical complexity of the rotor hub required to drive two rotor

discs in opposite directions. In addition, a long mast can result in high drag at

large forward flight speeds. However, since MAVs operate only at low speeds,

17



the drag due to mast may not be significant. Aerodynamically, the two rotors

and their wakes interact with each other, producing a more complicated flow

field than is found in a single rotor system. A major portion of the lower rotor

continually operates in the wake system of the upper rotor. This has a significant

effect on the inflow distribution of the overall system, and also on the boundary

layer of the lower rotor blades. This interacting flow can, in general, result in

a loss of net rotor system aerodynamic efficiency. Additionally, this can result

in an undesired unsteadiness in the flow-field, even under hovering conditions.

Therefore, a good understanding of the flow physics is required to analyse the

feasibility of such a system for MAVs.

1.5 Previous Studies on Coaxial Rotors

There has been very limited experimental or computational study, not only for

the MAV scale, but also for the full size helicopter scale, on coaxial rotor aero-

dynamics. A NASA report that gives a broad perspective of the aerodynamic

issues and state of the art of coaxial helicopters technology was published by

Coleman in [48]. His survey summarizes the main publications on the topic

from American, Russian, Japanese, British and German sources. Experimental

data and analysis that address rotor separation distance, load sharing between

the rotors, wake structure, solidity effects and the unique characteristics of the

coaxial configuration are presented.
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1.5.1 Experimental Studies

Few experimental measurements of coaxial rotor performance are available in

the literature. These include the full-scale tests performed by Harrington [49]

and Dingledein [50] in the Langley full-scale wind tunnel, and the data presented

by Nagashima in [51]. Harrington performed hover tests on two different rotors,

refered to as rotor-1 and rotor-2. The results of Harrington rotor-2 will form the

basis for validating full-scale coaxial rotors in hover for this work.

Recently, McAlister et al. [52] assessed the hover performance of a three-

bladed sub-scale tilt rotor. The study comprises of sweeps of varying rotor

spacing distance at constant rotor speed, and sweeps of varying ground distance

at constant rotor spacing. Performance degradation of the bottom rotor was

clearly identified in out of ground effect compared to single rotor. In ground

effect, the performance of the bottom rotor was seen to improve as the rotor

approached the ground.

As mentioned previously, at the University of Maryland, coaxial micro rotor

performance at torque equilibrium was explored by Bohorquez [2]. It was found

that the upper rotor was only marginally affected by the lower one at spacings

larger than 35% of the rotor radius, and that it produced about 60% of the

total thrust. These results form the basis for validating micro-scale coaxial rotor

simulations in this thesis.

1.5.2 Computational Studies

Various approaches that generally combine momentum theory, blade element

theory, vortex, and lifting line models have been implemented in an attempt to

calculate the power requirements of coaxial rotors. Generally a good predictive
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capability has been achieved. However, most of the algorithms require empirical

models of the wake geometry.

Leishman [1,53] derived the simple (global) momentum theory and the blade

element momentum theory (BEMT) for a coaxial rotor system in hover. The

BEMT was found to agree well with measured coaxial rotor performance of

Harrington rotors [49], and gave better results when compared to experiments

than the simple momentum theory alone. The results from the BEMT were

further validated using a free-vortex wake analysis of the coaxial rotor, also with

good agreement.

Griffiths and Leishman [54] studied the dual-rotor interference in ground

effect using the Free Vortex Method. Rotor performance was determined for

dual-rotor systems under different combinations of vertical and horizontal spac-

ing. The results showed that there was no substantial benefits for overlapping

rotors.

Recently, Syal [55] used simple momentum theory, blade element momentum

theory and a Free Vortex Method (FVM) to help design an aerodynamically

optimum coaxial rotor system starting from the Harrington rotor-1 [49] setup.

The effect of changes in inter-rotor spacing, blade twist and blade planforms

on both top and bottom rotors were studied. The results showed that the per-

formance of the coaxial rotor system can be improved significantly by having

different blade geometries on the top and bottom rotors. It was seen that, the

performance of both the top and the bottom rotors degrade due to interference

effects between the two rotors, and increasing inter-rotor spacing was found to

reduce these effects.

Kim and Brown [56] used the Vorticity Transport Model (VTM) to study the

20



coaxial rotor system. In this approach, the wake vorticity is determined from

a lifting line-based approach and is evolved in the flow-field using an Eulerian

solution of the inviscid, incompressible vorticity transport equations. The repre-

sentation of the wake is of a much higher quality, and as a result, very accurate

predictions of the performance of Harrington rotors were reported.

Lim et. al [57] applied the comprehensive analysis code, CAMRAD II to

the scaled coaxial rotor experimental setup of McAlister et al. [52]. In this

study, each rotor’s wake were modeled separately using a vortex lattice method.

The results compared reasonably well with the experimental hover performance

results. As a general trend, the thrust was overpredicted, while the power was

predicted correctly.

Recently, Ruzicka and Strawn [58] modeled the coaxial rotor setup of McAlis-

ter et al. [52] using the Reynolds-averaged Navier-Stokes solver, Overflow2. The

simulations did not use any low Mach preconditioner, even though the tip Mach

number is as low as 0.15. The performance results did not agree as well with

the experiments as the results from CAMRAD II [57] did with the experimental

data. The over-prediction in thrust was even more pronounced. But, the power

prediction was still reasonably good. The most important outcome of this work

is the observation of the unsteadiness in the performance data, whose frequency

is 6/rev (twice the number of blades per rev).

1.6 Motivation

CFD can be used to aid in the airfoil selection process for low Reynolds number

flows, where experiments are challenging. Past computational studies at low

Reynolds numbers are limited to 2D airfoils and 3D fixed-wings. However, in
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order to come up with a good overall rotor design, it is essential to account for

the three-dimensionality of the flow, which is typical in a rotor environment.

Additionally, significant variation of Reynolds number is found along the span

of rotors (typically a factor of 5, if 20% root cut-out). The airfoil characteristics

do not change much from root to tip when the scale is large. However, at the low

Reynolds numbers found in small scale rotors, the drag characteristics change

significantly with Reynolds number. Therefore, in order to design MAV blades

using 2D analysis, one now also needs to obtain airfoil data at different Reynolds

number, thus making it more challenging.

Further, as mentioned earlier, a major source of performance loss for a micro

rotor maybe contained within the structure of its blade wake. However, there

is very limited experimental and computational studies on MAV-scale rotors.

This lack of data is not only because of the experimental complexities associated

with measuring rotor flows at any scale, but also from the specific measurement

challenges that are unique at the MAV scale. This includes, but is not limited

to, the physical size of the flow structures that are present, which are often too

small to be sufficiently resolved with most types of flow diagnostic methods. Due

to these difficulties, accurate computational results are of critical importance for

MAV research.

As discussed before, coaxial configurations are particularly suited for MAVs.

However, a good understanding of the flow physics is required to improve the

aerodynamic efficiency of such a system. But, there has been very limited ex-

perimental or computational studies on coaxial rotor aerodynamics, not only for

the MAV scale, but also for the full size helicopter scale. Traditionally, for mul-

tiple rotor systems in full-scale, simple analyses that can provide a qualitative
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understanding of the phenomena have been used. Though the aforementioned

methods are efficient and are capable of predicting global performance results

reasonably well, the following limitations have been observed:

• A certain degree of empiricism is involved. For instance, in FVM, initial

core-radius size and vortex rollup position are required.

• These models are inviscid, and therefore, the drag information is required

and the vortex/wake decay is either ignored or modeled.

• Since the blade is represented as a lifting line, the surface information

is lost, and hence effects due to the blade thickness and vortex-surface

interaction cannot be captured. Furthermore, in general this requires 2D

tables of Cl, Cd and Cm as a function of angle of attack, Mach number and

Reynolds number.

CFD can be used to study the performance and flow physics of a coaxial rotor.

In this approach, the solution of the more fundamental fluid flow conservation

equations coupled with an accurate representation of the blade geometry can be

expected to provide further insight into the aerodynamics and performance of

the coaxial system.

1.7 Objectives

The main objective of this work is to develop a computational platform that

can be used to study the performance and flow physics of conventional and a

non-conventional (coaxial) micro-scale rotor configurations in hover. As a first

step, an existing solver will be extended for the analysis of low Mach num-

ber flows. The methodology will be used to obtain detailed understanding of

23



the flow physics of a micro-scale single rotor. Following this, a computational

methodology to handle coaxial rotor configuration will be developed, which will

be validated for a full-scale system. Finally, calculations will be done for a micro-

scale coaxial rotor, which will help in determining the feasibility of utilizing a

coaxial configuration for MAVs. Following are the detailed objectives of the

dissertation:

• Extend the applicability of a compressible Reynolds Averaged Navier-

Stokes (RANS) solver for analysis of the flow physics to the low Mach

number and low Reynolds number regime; a condition that has not been

studied adequately using CFD. To facilitate this, a low Mach precondition-

ing algorithm will be implemented for both the steady and the unsteady

Navier-Stokes equations.

• Verification and validation of the low Mach preconditioning will be done

in a rigorous manner. Initially, the performance of the preconditioner

will be investigated based on the numerical solution of a 2D isentropic

vortex convecting in a free-stream. The effectiveness of the preconditioner

will also be verified by applying it to 2D steady low speed flow over an

airfoil. This will be followed by validation using 3D fixed-wing predictions

at similar flow conditions. Finally, complete validation of the performance

and the flow-field will be done for a hovering micro-rotor. As part of this

validation, the effects of the leading edge and the trailing edge geometries

on performance will be detailed.

• Extend the applicability of a compressible RANS solver to study the per-

formance and flow physics of a coaxial rotor system. To achieve this, a
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sliding mesh boundary condition with high order interpolation will be im-

plemented. A coarse-grain parallelization of the solver will be performed

to handle the enormous grid size required to capture the wake accurately.

Improvements will also made to the grid connectivity for better transfer of

information between various overset meshes.

• Validation of the CFD model will be done by comparing the performance

of a full-scale hovering coaxial rotor system with experiments. A detailed

study of the flow physics will be done to understand the unsteadiness in

the flow-field.

• Finally, the methodologies developed for simulating a micro-scale single

rotor and a full-scale coaxial rotor will be combined to simulate a micro-

scale coaxial rotor. The performance predictions will be validated with

available experimental data. The flow physics will be studied in detail

and some of the key differences in flow-field between full-scale and micro-

scale coaxial systems will be identified. The effect of rotor spacing on the

unsteadiness will be investigated.

1.8 Contributions of the Thesis

The key contributions of this research include:

1. Extension of an existing compressible RANS solver to study low Mach

number and low Reynolds number flow by implementing time-accurate

low Mach preconditioner.

2. Improvements in grid connectivity methodology to allow better transfer of
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information between various overset meshes. This involves implementation

of an improved blanking methodology.

3. Validation of performance and wake data of micro-scale single rotor with

experiment for different leading and trailing edge geometries.

4. Validation of mean performance of full-scale and micro-scale coaxial rotor

with experimental data.

5. Understanding the effect of twist and taper for micro-rotors.

6. Detailed analysis of flow physics of the micro-scale single rotor, full-scale

coaxial rotor and micro-scale coaxial rotor.

7. Understanding the similarities and differences between full-scale and micro-

scale coaxial systems in terms of unsteadiness and effect of rotor spacing.

1.9 Scope and Organization of the Thesis

This thesis is focused on extending an existing computational methodology to

enable the simulation of a micro-scale coaxial rotor configuration and then an-

alyzing the resulting airloads and flow-field. This forms an important stepping

stone in the direction of the development of a computational platform that can

be used to study various rotary-wing MAV configurations, which in turn can

help build MAVs that meet the targets set by DARPA.

Chapter 2 describes the computational methodology for the solution of the

RANS equations. The improvements to an existing solver in terms of the imple-

mentation of low Mach preconditioning, sliding mesh interface condition, grid

connectivity approach and parallelization are detailed. It should be noted that
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although the current development of the CFD methodology is mainly driven by

MAV research, the methodologies are also valid for other diverse applications.

The verification and validation of the methodology developed is presented in

the third chapter. The performance and effectiveness of low Mach precondition-

ing is investigated using 2D model problems and a 3D fixed-wing calculation.

The advantages of improvements in grid connectivity is demonstrated using a

simplified 2D problem. The baseline methodology in the existing solver is vali-

dated using a full-scale hovering rotor simulation.

The investigation of micro-scale single rotor aerodynamics in hover is per-

formed in Chapter 4. The computational methodology is validated by comparing

the performance and flow-field data with those from experiments. The effect of

leading and trailing edge geometries is investigated by looking at blunt and

sharp profiles. Performance improvements due to change in planform shapes are

studied.

Chapter 5 presents the results for hovering full-scale coaxial rotor simulations.

Following the validation of the performance data with those from experiments,

the effects causing unsteadiness in the flow-field is identified. Detailed under-

standing of the flow physics is obtained.

The results for hovering micro-scale coaxial rotor are presented in Chap-

ter 6. Validation is again done by comparing the performance data with the

experimental results. The differences in the flow-field between full-scale and

micro-scale coaxial system are identified. A study on the effect of rotor spacing

on unsteadiness is conducted.

Conclusions and observations noted during the development, validation and

application of the methodologies developed are summarized in the final chapter.
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Chapter 2

Computational Methodology

In this chapter, the fundamental fluid dynamic equations along with the numeri-

cal solution algorithms are described. The chapter will initially identify the flow

domain that is being studied. Following this, the details of the mesh system

and the connectivity approach is discussed. Subsequently, the flow equations

and methodologies available in the existing flow solver are described. Next, the

deficiencies of some of these methodologies for the current problem are charac-

terized. Finally, specific improvements made in the solver for the present study

are detailed.

2.1 Flow Domain

The focus of the current work is to simulate the flow-field of hovering rotors.

The rotor consists of one or more blades, whose surfaces can be treated as a

solid wall. The far-field extent of the modeled domain is limited to a few rotor

radii from the blades in any direction, because of practical reasons. The size of

the domain is further reduced for multi-bladed hovering rotor systems because

of the inherent periodicity in the flow-field, which allows the simulation of the
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entire system using just one blade for each rotor.

Even within the finite domain of interest, the flow solution can be represented

only at finite locations. This is achieved by decomposing the flow domain into

smaller domains (cells) by generating a grid. The flow variables represented

at each of these grid points constitute the flow solution. The accuracy of the

solution is determined by the quality of the grid.

A common difficulty in simulating complex geometries is that a single, con-

tiguous grid will not be sufficient to represent the flow features well enough. For

hovering rotors, it is very difficult to obtain a single structured mesh which can

represent the blade surfaces and also preserve important off-surface flow features,

like tip vortices. In such cases, the common approaches used are unstructured

meshes, multiblock structured meshes or overlapping chimera structured meshes.

Unstructured meshes are generally considered to be easily adaptable to com-

plex configurations, but they require more memory and are less efficient com-

pared to structured meshes. Using block structured grids, the grid interfaces

have to be matched and this makes the grid generation process very compli-

cated. Overset structured grids have the advantage in that different grids can

be generated independent of each other and can be placed in the region of inter-

est without any distortion. Due to these advantages, the current work employs

overset meshes.

The penalty to pay however, is the additional work required in identifying

points of overlap between meshes and interpolation of the solution in this overlap

region. Additionally, there is a possibility of a loss of the conservation property

of the numerical scheme. However, the resulting errors can be minimized by

making sure discontinuous features like shocks and shear layers do not cross the
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overlap boundaries and furthermore, ensuring that the mesh cell sizes are of

commensurate size in the overlap region.

Details of the baseline grid generation/overset methodology are presented in

section 2.2. The improvements made in the current work to the connectivity

methodology is later provided in section 2.6.3.

2.2 Mesh Generation

To accurately represent blade surfaces, body conforming structured curvilinear

meshes are required. In this study, a hyperbolic mesh generation technique [59]

is used to generate 2D C-type meshes around the airfoil sections at the various

spanwise locations, shown in Fig. 2.1. The C-type meshes are free of a geomet-

rical singularity at the trailing edge, which is a major disadvantage of O-type

meshes. Also, the grid clustering at the trailing edge provides good resolution for

capturing the shed wake. The C-meshes obtained are stacked in the spanwise di-

rection. Near the root and the tip regions, the spanwise sections are rotated and

collapsed, thus defining a C-O topology, see Fig. 2.2. Details of the collapsing

technique are described in Ref. [37].

For rotor problems, the blade mesh is itself overset in one or more background

meshes, in order to resolve any tip vortices. In the current work, a background

mesh consists of identical planes that are rotated in the azimuthal direction. A

sample background mesh for a 2-bladed single rotor is shown in Fig. 2.3. Note

that, only one blade is simulated because of the periodicity. The structure and

placement of these meshes will be introduced for specific cases in Chapters 4, 5

and 6.
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(a) Spanwise 2D section

(b) Stacking in spanwise direction

Figure 2.1: Sample hyperbolic mesh.
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Figure 2.2: Near body C-O mesh at the blade root and tip.

2.2.1 Connectivity Approach (Baseline Methodology)

Once the overlapping meshes are generated, the chimera methodology involves

three distinct steps, namely: hole cutting, identification of hole fringe and

chimera boundary points and finally, finding donor cells and interpolation fac-

tors. For purposes of description, a simple geometry as shown in Fig. 2.4 will

be used. The inner circular mesh is the body mesh and the outer mesh is the

background mesh.

First, a hole-cutting technique is chosen and used to identify those points that

are inside a given hole region with any arbitrary shape (that describes the blade

surface geometry for example). These points are blanked out, i.e. identified in

an array iblank, which indicates the inside/outside status of all grid points for

all given hole regions. The flow equations are not solved at these points. The

points at the fringe of this initial minimum-size hole are not suitable to receive

hole boundary values because of the large differences in grid resolution. The hole
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(a) Azimuthal plane

(b) Top View

Figure 2.3: Sample background mesh.

is then expanded or re-sized so that a better grid overlap is achieved. The red

circles in Fig. 2.4 shows the hole points of the background grid in the vicinity of

the solid surface.

As mentioned before, for typical rotor simulations, a blade mesh is itself over-

set in a background mesh and hence the background mesh needs to be hole cut.
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Figure 2.4: Schematic of hole cutting. Red circles: Hole points. Blue circles:

Hole fringe points. Black circles: Chimera boundary points.

Instead of using a generalized method, the simplified geometry of the background

mesh is utilized. Knowing the approximate dimensions of the solid body, a box

enclosing the solid body is defined in the background grid. All the points inside

this box are checked as to whether they lie inside the overset grid and the points

that do not are labeled as hole points. Using the neighbor information, this hole

region is extended at least one layer outwards.

After obtaining the hole points, a list of hole fringe points that require infor-

mation from other grids to serve as boundary conditions can be easily extracted.

The number of fringe layers depends on the stencil of the spatial scheme. For

instance, if a third order upwind scheme (described later in section 2.4.1) is used,

at least two hole fringe layers are necessary. The blue circles in Fig. 2.4 show one

layer of hole fringe points. Chimera points are defined as those boundary points

on the body mesh that require information from the background mesh. These
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are usually explicitly specified by the user. The black circles in Fig. 2.4 shows

the chimera boundary points. The number of layers in the chimera boundary

again depends on the stencil of the spatial scheme.

After finding the hole fringe and chimera boundary points, donor cells of the

other grid are found and the information is interpolated using the interpolation

factors. Typically, linear interpolation is used. The donor cell is found using

the ”stencil walking” procedure [22]. In this procedure, the search is started at

an arbitrary donor cell and the next guess for the donor is made based on the

direction in which the boundary point lies, finally ending at the correct donor

cell. Once the donor cell is identified, the linear interpolation factors in the three

coordinate directions are found by using tri-linear mapping.

Figure 2.5: Sample overset grid in a hovering rotor simulation. Red: Blade mesh,

Green: Background mesh.

A sample overset grid with hole for a hovering rotor simulation is shown in

Fig. 2.5. Note that, the current work does not use the connectivity approach
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described in this section. Instead, an improved methodology called implicit hole

cutting (discussed later in section 2.6.3) is used. However, the concept of hole

points, fringe points and field points are retained along with chimera boundary

points and donor cells.

2.3 The Flow and its Mathematical Description

The flow-field information at each grid point is obtained by solving the equations

of fluid flow, which represent mathematical statements of the conservation laws

of physics

1. the conservation of mass,

2. the conservation of momentum, and

3. the conservation of energy.

These conservation laws can be gathered into a single system of partial dif-

ferential equations called the Navier-Stokes equations, which can be numerically

discretized and solved with necessary boundary conditions for the specified ge-

ometry. Additional algebraic or differential equations (e.g. equation of state,

Stokes hypothesis or turbulent eddy viscosity equation) may be required for

closure.

2.3.1 Navier-Stokes Equations

The strong conservation-law form of the 3-dimensional unsteady compressible

Navier-Stokes equations in Cartesian coordinates are given by:
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∂Q

∂t
+
∂Fi

∂x
+
∂Gi

∂y
+
∂Hi

∂z
=
∂Fv

∂x
+
∂Gv

∂y
+
∂Hv

∂z
+ S (2.1)

where Q is the vector of conserved variables, Fi, Gi, Hi are vectors representing

inviscid fluxes, Fv, Gv, Hv are vectors that represent the viscous fluxes, and S

represents the source terms that have to be included to account for the centrifugal

and Coriolis accelerations if the equations are formulated in a non-inertial frame

of reference. The vector of conserved variables is given by

Q =



















































ρ

ρu

ρv

ρw

e



















































(2.2)

where ρ is the density, (u, v, w) are the Cartesian velocity components and e is

the total energy per unit volume. The flux vectors are given by

Fi =



















































ρu

ρu2 + p

ρuv

ρuw

u(e+ p)



















































(2.3)
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Gi =
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ρvu

ρv2 + p

ρvw

v(e+ p)



















































(2.4)

Hi =



















































ρw

ρwu

ρwv

ρw2 + p

w(e+ p)



















































(2.5)

Fv =



















































0

τxx

τyx

τzx

uτxx + vτxy + wτxz − qx



















































(2.6)

Gv =



















































0

τxy

τyy

τzy

uτyx + vτyy + wτyz − qy



















































(2.7)
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Hv =



















































0

τxz

τyz

τzz

uτzx + vτzy + wτzz − qz



















































(2.8)

where qx, qy and qz are the thermal conduction terms, which can be represented

in terms of temperature (T ) and coefficient of thermal conductivity (k), given

by:

qi = −k ∂T
∂xi

(2.9)

The pressure (p) is determined by the equation of state for a perfect gas,

given by

p = (γ − 1)

{

e− 1

2
ρ(u2 + v2 + w2)

}

(2.10)

where γ is the ratio of specific heats, generally taken as 1.4. For a perfect

gas, T = p
ρR

, where R is the gas constant. With the assumption of Stokes’

hypothesis [60], the mean stresses can be represented by:

τij = µ

[(

∂ui

∂xj
+
∂uj

∂xi

)

− 2

3

∂uk

∂xk
δij

]

(2.11)

where µ is the laminar viscosity, which can be evaluated using simple algebraic

Sutherland’s Law [60].
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Non-dimensionalization of Navier-Stokes Equations

Equations of fluid motion are non-dimensionalized to achieve dynamic and ener-

getic similarity for geometrically similar situations. The solutions of such equa-

tions also should provide values on the order of one. Generally, a characteristic

dimension such as the chord of an airfoil is selected to non-dimensionalize the

length scale, while free-stream conditions are used to non-dimensionalize the de-

pendant variables. The non-dimensional variables (with superscript ∗) are given

below:

t∗ =
ta∞
c

x∗ =
x

c
y∗ =

y

c
z∗ =

z

c

µ∗ =
µ

µ∞

u∗ =
u

a∞
v∗ =

v

a∞
w∗ =

w

a∞

ρ∗ =
ρ

ρ∞
T ∗ =

T

T∞
p∗ =

p

ρ∞a2
∞

e∗ =
e

ρ∞a2
∞

(2.12)

where c is the chord of the airfoil, a is the speed of sound and subscript ∞

represents free-stream condition.

The non-dimensional parameters are defined as:

Reynolds Number : Re∞ =
ρ∞V∞c

µ∞

Mach Number : M∞ =
V∞
a∞

Prandl Number : Pr =
µCp

k
(2.13)

where Cp is the specific heat at constant pressure. For all computations in this

work, Pr = 0.72 is assumed. V∞ is the free-stream total velocity given by
√

u2
∞

+ v2
∞

+ w2
∞

.
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The Navier-Stokes equations in non-dimensional form can again be repre-

sented as eqn. 2.1, if the superscript ∗ is ignored. The non-dimensional inviscid

and viscous flux terms will also have identical form as before. Differences arise

in the non-dimensional stress and conduction terms, which now become a func-

tion of the non-dimensional parameters (Reynolds number and Prandtl number).

The non-dimensional mean stresses are given by:

τij =
µM∞

Re∞

[(

∂ui

∂xj
+
∂uj

∂xi

)

− 2

3

∂uk

∂xk
δij

]

(2.14)

And the non-dimensional thermal conduction terms are given by:

qi = − µM∞

Re∞Pr(γ − 1)

∂T

∂xi

(2.15)

Note that, all the variables in eqns. 2.14 and 2.15 are non-dimensional. The

superscript ∗ is purposefully neglected.

Rotating Reference Frame

For computation of unsteady flows involving moving bodies, the governing equa-

tions are usually solved in the inertial frame of reference. This requires compu-

tation of the metric terms and connectivity information of the overset grids (if

any) at every time-step. This additional cost can be avoided for hovering rotors

if the equations are solved in the rotating reference frame [21]. To account for

the non-inertial reference frame, the fluxes in eqn. 2.1 become:
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Fi =



















































ρ(u− ug)

ρu(u− ug) + p

ρ(u− ug)v

ρ(u− ug)w

(u− ug)(e+ p)



















































(2.16)

Gi =



















































ρ(v − vg)

ρ(v − vg)u

ρ(v − vg)v + p

ρ(v − vg)w

(v − vg)(e+ p)



















































(2.17)

Hi =



















































ρ(w − wg)

ρ(w − wg)u

ρ(w − wg)v

ρ(w − wg)w + p

(w − wg)(e+ p)



















































(2.18)

where, U = {u, v, w} is the vector of physical velocities in the inertial frame

and Ug = {ug, vg, wg} = Ω× r is the rotational velocity vector. Ω is the angular

velocity vector given by {0, 0,Ωz} for a hovering rotor, rotating about z-axis and

r is the relative position vector from the axis of rotation. Thus, for a hovering

rotor rotating about z-axis, Ug becomes {−Ωzy,Ωzx, 0}. In addition, the relative

acceleration terms have to be included as a source term vector S in eqn. 2.1; and

for the hovering rotor can be simplified to:
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S =



















































0

ρvΩz

−ρuΩz

0

0



















































(2.19)

Transformation to Generalized Curvilinear Coordinates

The governing equations can be expressed in strong conservation law form in

generalized body-conforming curvilinear coordinate system with the aid of the

chain rule of partial derivatives. In effect, the equations after being transformed

to the computational coordinates ξ, η, ζ are as follows:

∂Q̂

∂t
+
∂F̂

∂ξ
+
∂Ĝ

∂η
+
∂Ĥ

∂ζ
= Ŝ (2.20)

where,

Q̂ =
1

J
Q (2.21)

F̂ =
1

J
[ξtQ+ ξx(Fi − Fv) + ξy(Gi −Gv) + ξz(Hi −Hv)] (2.22)

Ĝ =
1

J
[ηtQ+ ηx(Fi − Fv) + ηy(Gi −Gv) + ηz(Hi −Hv)] (2.23)

Ĥ =
1

J
[ζtQ+ ζx(Fi − Fv) + ζy(Gi −Gv) + ζz(Hi −Hv)] (2.24)

Ŝ =
1

J
S (2.25)

where J is the Jacobian of the coordinate transformation (i.e., J = det
(

∂(ξ,η,ζ)
∂(x,y,z)

)

)
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2.3.2 Reynolds Averaged Navier-Stokes Equations

The solution of the governing equations, eqn. 2.20, do not raise any fundamental

difficulties in the case of inviscid or laminar flows. However, all the flows en-

countered in engineering practice are turbulent. Turbulent flow is characterized

by chaotic motion of molecules, leading to increased momentum and energy ex-

change between various layers of fluid and also between the fluid and the wall.

Although these chaotic fluctuations of the flow variables are of deterministic

nature, the number of grid points needed for sufficient spatial resolution of all

the scales of these fluctuations present a significant problem. Despite the per-

formance of modern supercomputers, a direct simulation of turbulence by the

time-dependent Navier-Stokes equations eqn. 2.20, called Direct Numerical Sim-

ulation (DNS), is still possible only for rather simple flow cases at low Reynolds

numbers.

A first level of approximation of turbulence is achieved using the Large-

Eddy Simulation (LES) approach. The development of LES is founded on the

observation that the small scales of turbulent motion possess a more universal

character than the large scales, which transport the turbulent energy. Thus,

the idea is to resolve only the large eddies accurately and to approximate the

effects of the small scales by a relatively simple subgrid-scale model. Since LES

requires significantly less grid points than DNS, the investigation of turbulent

flows at much higher Reynolds numbers becomes feasible. But because LES is

inherently three-dimensional and unsteady, it remains computationally still very

demanding. Thus, LES is still far from becoming an engineering tool.

The next level of approximation is represented by the so-called Reynolds-

Averaged Navier-Stokes equations (RANS). This approach, which was presented
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by Reynolds in 1895, is based on the decomposition of the flow variables into

mean and fluctuating parts. The motivation behind this is that in most engi-

neering and physical processes, one is only interested in the mean quantities.

Therefore, any flow variable, φ, can be written as:

φ = φ̄+ φ′ (2.26)

where φ̄ is the mean part and φ′ is the fluctuating part. The mean part, φ̄, is

obtained using Reynolds averaging given by

φ̄ =
1

χ̄
lim

∆t→∞

1

∆t

∫ ∆t

0

χφ(t)dt (2.27)

where χ = 1, if φ is density or pressure and χ = ρ, if φ is other variables such as

velocity, internal energy, enthalpy and temperature. By definition, the Reynolds

average of the fluctuating part is zero.

The decomposed variables are then inserted into the Navier-Stokes equations

(eqn. 2.20) and the equations are Reynolds averaged to obtain the mathemat-

ical description of the mean flow properties. If the overbar on the mean flow

variables is dropped, the resulting equations are identical to the instantaneous

Navier-Stokes equations with the exception of additional terms in the momen-

tum equation and the energy equation (not present if heat transfer is neglected).

The extra terms in the momentum equation accounts for the additional stress

due to turbulence and are called the Reynolds-stress tensor. These stresses

add to the viscous stress terms given in eqn. 2.11 and are given by:

τR
ij = −ρu′iu′j (2.28)
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However, with the introduction of Reynolds-stress terms, we obtain six ad-

ditional unknowns in the Reynolds-averaged momentum equations. In order to

close the RANS equation, the Reynolds stress terms are approximated using a

turbulence model. Details of turbulence modeling will be briefly discussed in

section 2.4.4.

2.3.3 Initial and Boundary Conditions

The governing equations described in the previous section are very generic and

do not change from one problem to another. Therefore, apart from these con-

servation equations, we need additional criteria, namely initial and boundary

conditions to define a problem.

Initial conditions are specified by assigning the density, flow velocities and

pressure everywhere in the solution region before the start of the solution pro-

cedure. Typically for a hovering rotor simulation, the initial conditions are set

such that the density and pressure are freestream values and the flow velocities

are zero.

The two common boundary conditions for an external flow are the wall

boundary condition and the far-field boundary condition. Wall boundaries are

natural boundaries of the physical domain which arise from the wall surfaces

being exposed to the flow. For a viscous fluid which passes a solid wall, the

relative velocity between the surface and the fluid directly at the surface is zero.

The truncation of the physical domain or system for the purpose of numerical

simulation leads to artificial far-field boundaries, where certain physical quan-

tities have to be prescribed. The far-field boundary condition has to fulfill two

basic requirements. First, the truncation of the domain should have no notable
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effects on the flow solution as compared to the infinite domain. Second, any

outgoing disturbances must not be reflected back into the flow-field.

Additional boundaries become manifest in the numerical simulation due to

the mesh system and grid topology, namely, wake-cut boundary, periodic bound-

ary, boundary between blocks, chimera boundary etc. All of these boundaries

are numerical in nature rather than physical.

The numerical implementation of both the physical and numerical boundary

conditions will be discussed in section 2.4.5.

2.4 Numerical Solution (Baseline Algorithm)

The baseline flow solver is the Transonic Unsteady Rotor Navier-Stokes (TURNS)

research code which has been applied to a variety of helicopter rotor prob-

lems [21]. The TURNS code solves the compressible RANS equations on 2 or 3

dimensional single block structured grids. The differential eqn. 2.20 is discretized

in space and time in a finite volume approach. In this approach, fictitious vol-

umes are created around each grid point. A fictitious volume is created around

a point using the midpoints of the lines joining the adjacent grid points to the

grid point. The faces of this new volume lie exactly in the middle of two grid

points. This volume is treated as a control volume and fluxes are evaluated at

the faces of the volume, resulting in conservation equations for the volume.

The semi-discrete conservative approximation of eqn. 2.20 can be written as:

∂Q̂

∂t
= −

F̂j+ 1

2

− F̂j− 1

2

∆ξ
−
Ĝk+ 1

2

− Ĝk− 1

2

∆η
−
Ĥl+ 1

2

− Ĥl− 1

2

∆ζ
+ Ŝj,k,l (2.29)

where, (j, k, l) are the indices corresponding to the (ξ, η, ζ) directions in the

47



j − 1 j j + 1

k − 1

k

k + 1

F̂j+1
2

F̂j−1
2

Ĝk+1
2

Ĝk−1
2

Figure 2.6: Schematic showing computational cell.

transformed coordinate system and (j ± 1
2
, k± 1

2
, l± 1

2
) define the cell-interfaces

of the control volumes as shown in Fig. 2.6 (2D cell shown for simplicity). The

spatial discretization (consisting of the inviscid and viscous fluxes) reduces to

evaluating the interfacial fluxes F̂j+ 1

2

, Ĝk+ 1

2

, Ĥl+ 1

2

for every cell (j, k, l) in the

domain.

2.4.1 Inviscid Terms

The inviscid part of the interfacial flux is computed using upwind schemes [61].

Upwind schemes have the advantage that the wave propagation property of the

inviscid equations is accounted for (albeit approximately) in the flux calculation.

To evaluate the interfacial fluxes, the Monotone Upstream-Centered Scheme for

Conservation Laws (MUSCL) [61] approach is used. This procedure involves two

steps.

The first step is the evaluation of the left state and the right state at each

interface, as shown in Fig. 2.7. It can be seen from the figure that left and right

states are calculated at the interface (j + 1/2) using the reconstruction in cell j
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and j + 1. The order of accuracy of the evaluation of the left and right states

is governed by the stencil used (number of neighboring points). Piecewise cubic

reconstruction with Koren’s limiter [62] is used in the baseline TURNS.

q̄j−1

q̄j q̄j+1

qL
j+1

2

qR
j+1

2

ξ

Figure 2.7: Schematic of one dimensional piecewise reconstruction.

After evaluation of the left and right states at the cell interface, the next

step is to calculate the fluxes at the interface. The left and right states can be

used to define a local Riemann problem and the interfacial flux can be obtained

using any flux splitting scheme. The baseline TURNS code uses the Roe flux

difference splitting [63] in which, the interfacial flux is given by:

F (qL, qR) =
F (qL) + F (qR)

2
− |Â(qL, qR)|q

R − qL

2
(2.30)

where Â is the Roe-averaged Jacobian matrix.

Third Order Differencing using Koren’s Limiter

Koren’s differentiable limiter [62] is used to limit the high order reconstruction,

so that the resulting scheme is third order accurate in smooth regions and is

49



progressively lower order accurate (down to first order at a solution discontinu-

ity) in high gradient regions. Given cell averaged values {q̄i+1, q̄i, q̄i−1}, the cell

reconstruction is such that the interface value qL
i+1/2 and qR

i−1/2 are given by:

qL
i+1/2 = q̄i + φi

[

1

3
(q̄i+1 − q̄i) +

1

6
(q̄i − q̄i−1)

]

(2.31)

qR
i−1/2 = q̄i − φi

[

1

3
(q̄i+1 − q̄i) +

1

6
(q̄i − q̄i−1)

]

(2.32)

where, φ is the differentiable limiter which is defined by:

φi =
3∆q̄i∇q̄i + ǫ

2(∆q̄i −∇q̄i)2 + 3∆q̄i∇q̄i + ǫ
(2.33)

where, ǫ is a small number used to prevent division by zero and ∆ and ∇ are

forward and backward difference operators defined by ∆q̄i = (q̄i+1 − q̄i) and

∇q̄i = (q̄i − q̄i−1).

2.4.2 Viscous Terms

Typically, in the baseline TURNS code, the Thin-layer approximation is used

while discretizing the viscous terms. In this approximation, only the terms that

have a very strong dependence on the derivative in the wall-normal direction

are considered. The basis for this argument is the fact that for attached flows,

the boundary layer is very thin and the streamwise and spanwise gradients are

much smaller than the wall-normal gradients. This approximation is valid in

the near-wall region for high Reynolds number attached flows. However, for

low Reynolds number small-scale flows where there are thick boundary layers

and massive separation, the thin layer assumption fails and one has to consider
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the full viscous terms. A complete listing of the viscous terms after coordinate

transformation can be found in [64]. Numerical discretization of these terms

involve expressions of the form:

∂

∂ξ

(

α
∂β

∂η

)

(2.34)

These terms are computed using second order accurate central differencing.

Thus, the above expression will be discretized as:

1

∆ξ

([

αj+ 1

2
,k

βj+ 1

2
,k+1 − βj+ 1

2
,k

∆η

]

−
[

αj− 1

2
,k

βj− 1

2
,k − βj− 1

2
,k−1

∆η

])

(2.35)

where

δj+ 1

2
,k =

δj,k + δj+1,k

2
, (δ = α, β) (2.36)

2.4.3 Time Integration

Once, the right hand side (RHS) of the eqn. 2.29 is evaluated (including vis-

cous fluxes and source terms), the conservative variables, Q are evolved in time.

There are mainly two types of methods to evolve the solution in time, explicit or

implicit. The explicit methods only use information at the previous time step to

calculate the conservative variables at the new time step, where as the implicit

methods indirectly use information at the new time step and require matrix in-

version of large sparse matrices. Explicit methods have restrictions on time step

size based on the mesh size and flow quantities. However, most implicit methods

do not have such restrictions. Hence, implicit methods are preferred for RANS
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calculations with fine meshes at the wall surfaces. The baseline TURNS code

uses the implicit Lower Upper Symmetric Gauss Siedel Scheme (LUSGS) [65,66]

along with Newton sub-iterations [67] in order to remove factorization errors and

to fully recover time accuracy.

If an index for time step is included in eqn. 2.29, an implicit scheme can be

written as the following.

∂Q̂n+1

∂t
= −

F̂ n+1
j+ 1

2

− F̂ n+1
j− 1

2

∆ξ
−
Ĝn+1

k+ 1

2

− Ĝn+1
k− 1

2

∆η
−
Ĥn+1

l+ 1

2

− Ĥn+1
l− 1

2

∆ζ
+ Ŝn+1

j,k,l (2.37)

In the equation above, all the quantities are desired at the new time step (n+1),

but the fluxes are not known at the (n+1) time step, so there is a need for them

to be linearized and expressed in terms of fluxes and conservative variables at

step (n). The nonlinear terms are linearized in time about Q̂n by Taylor Series

as:

F̂ n+1 = F̂ n + Â∆Q̂n +O(h2) (2.38)

Ĝn+1 = Ĝn + B̂∆Q̂n +O(h2) (2.39)

Ĥn+1 = Ĥn + Ĉ∆Q̂n +O(h2) (2.40)

where Â = ∂F̂
∂Q̂

, B̂ = ∂Ĝ
∂Q̂

and Ĉ = ∂Ĥ
∂Q̂

. The source terms can also be linearized

with respect to the conservative variables. Note that the linearization are second

order accurate and so if a second order time scheme is chosen (typically used in

TURNS), the linearization would not degrade the time accuracy.

If the linearized fluxes are substituted in eqn. 2.37 along with assuming first

order Euler implicit time discretization (∂tQ̂
n+1 = ∆Q̂n

∆t
), the equation can be

written in ’delta form’ as:
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[

I + ∆t(δξÂ
n + δηB̂

n + δζĈ
n)
]

∆Q̂n = −∆t
[

δξF̂
n + δηĜ

n + δζĤ
n − Ŝn

]

(2.41)

which is simplified as

LHS ∆Q̂n = −∆t RHS (2.42)

The right hand side (RHS) captures the physics, while, the left hand side (LHS) is

numerics, which determines the rate of convergence. It can be easily shown that

the implicit algorithm produces a large banded system of algebraic equations.

The matrix is sparse, but it would be very expensive to solve the algebraic system

in order to obtain a solution for ∆Qn. Further approximations to the LHS are

necessary for ease of inversion of the matrix, but the penalty comes in some loss

in the speed of convergence.

One such approximation is made in the LUSGS algorithm. In the LUSGS

algorithm, the LHS is factorized by grouping together terms depending upon

whether they lie in the lower portion, along the diagonal, or in the upper portion

of the unfactored LHS. By treating the left hand side using first order split flux

Jacobians and neglecting the viscous contribution, one obtains:

L = ∆t(−Â+
j−1,k,l − B̂+

j,k−1,l − Ĉ+
j,k,l−1) (2.43)

D = I + ∆t(Â+
j,k,l − Â−

j,k,l + B̂+
j,k,l − B̂−

j,k,l + Ĉ+
j,k,l − Ĉ−

j,k,l) (2.44)

U = ∆t(Â−

j+1,k,l + B̂−

j,k+1,l + Ĉ−

j,k,l+1) (2.45)

Now, one can write the resulting LUSGS scheme as a lower-upper splitting that

takes the following form:
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[L+D + U ]∆Q̂n = D[D−1L+ I +D−1U ]∆Q̂n

≈ D[I +D−1L][I +D−1U ]∆Q̂n

= [D + L]D−1[D + U ]∆Q̂n

= −∆t [RHSn] (2.46)

This can be solved by a forward and a backward sweep using a two-factor scheme

that can be written as:

[D + L]∆Q̄ = −∆t[RHS]

[D + U ]∆Q̂ = D∆Q̄ (2.47)

Additional simplifications are made by approximating the split flux Jacobians

(e.g., Â+ and Â−) in terms of spectral radius (e.g., σξ) as Â+ = 1
2
(Â + σξ) and

Â− = 1
2
(Â− σξ). This reduces D to a diagonal matrix and the matrix inversion

reduces to a scalar inversion. Note that, the above derivation is strictly valid

for Euler equations. The contribution of viscous fluxes can be approximated by

adding a scalar term to the spectral radius (e.g. σξ + σv
ξ ), where

σv
ξ =

2µ
(

ξ2
x + ξ2

y + ξ2
z

)

ρ
(2.48)

Approximation of the LHS results in factorization errors. In order to re-

move these factorization errors and to fully improve time accuracy, the baseline

TURNS performs Newton sub-iterations at each physical time step. Details are

provided in section. 2.6.1. It should be mentioned that, the LUSGS scheme can

be easily extended to 2nd order backward difference in time (BDF2) by substi-

tuting ∂tQ̂
n+1 = 3Q̂n+1

−4Q̂n+Q̂n−1

2∆t
, the scheme employed in TURNS.
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2.4.4 Turbulence Modeling

The turbulence modeling problem is to close the RANS equation by approximat-

ing the Reynolds stress term (eqn. 2.28). With the assumption of isotropic

eddy viscosity, the Reynolds stresses can be represented by:

τR
ij = µt

[(

∂ui

∂xj

+
∂uj

∂xi

)

− 2

3

∂uk

∂xk

δij

]

(2.49)

where µt is the turbulent viscosity. The evaluation of turbulent viscosity is

not trivial. Various turbulence models, which aim at obtaining the turbulent

viscosity field have been developed in the past. The models range from zero

equation algebraic turbulence models (Baldwin-Lomax [68]), four equation tur-

bulence models (ν2−f model [69]) to Reynolds Stress models. The zero equation

model developed by Baldwin and Lomax calculates the turbulent viscosity as an

algebraic function of the conservative variables. On the other hand, the ν2 − f

model by Durbin solves four differential equations to obtain four scalar field

variables (k, ǫ, ν2 and f). The turbulent viscosity is obtained as an algebraic

function of these four variables. Apart from the possible increase in stiffness of

the differential equations, it is imperative from the above discussion that the

additional computational time to obtain the solution of turbulent viscosity will

be extremely high in the four equation model as opposed to the zero equation

algebraic model.

The baseline TURNS code uses the algebraic Baldwin-Lomax [68] turbu-

lence model. The applicability of this model, is however restricted to steady

and attached flows (as seen, for instance in [70]). However, in practice it is a

reasonable first approach even when these conditions are not strictly achieved.

Another option in the baseline code is the one equation model of Spalart and
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Allmaras [71]. Though relatively recent, the Spalart-Allmaras (SA) model has

gained enormous popularity in the aerospace flow problems as it was developed

with such applications in mind. As a result, the SA model is used in all the

computations in this work.

Spalart-Allmaras (SA) Turbulence Model

In the SA model, the Reynolds stresses are related to the mean strain by the

isotropic relation, u′iu
′

j = −2νtSij , where νt is the turbulent eddy viscosity,

which is obtained by solving a PDE for a related variable (ν), given by:

∂ν

∂t
+ V.(∇ν) =

1

σ

[

∇.((ν + ν)∇ν) + cb2(∇ν)2
]

+ cb1Sν − cw1fw

[

ν

d

]2

(2.50)

The eddy viscosity νt is related to by the relation,

νt = νfv1 (2.51)

where fv1 is a function of ν and the molecular viscosity ν and is defined as:

fv1 =
χ3

χ3 + c3v1

(2.52)

with χ = ν
ν

and cv1 = 7.1. The left hand side of equation 2.50 accounts for the

convection of the working variable at the mean flow velocity V . The first term

on the right hand side represents the diffusion, followed by the production and

destruction terms. Further details and expressions for S, d, σ, cb1, cb2, cw1 and

fw are provided in Ref. [37].
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2.4.5 Boundary Conditions

There are several types of boundary conditions commonly encountered in the

solution of the Navier-Stokes equations. Physical boundary conditions arising

during the solution procedure were described in section 2.3.3. Apart from these,

the grid topology presents additional numerical boundary conditions. This sec-

tion describes the numerical treatment of both types of these boundary condi-

tions. Note that this section only includes boundary conditions from the baseline

TURNS code and does not include those implemented as a part of the current

work.

Typical boundaries found in the solution of the Navier-Stokes equations can

be shown on a schematic C-mesh, Fig. 2.8. They include wall boundary, far-field

boundary and wake cut boundary. Additionally, a periodic boundary is very

commonly used in hovering rotor simulations. A brief numerical description of

these boundaries are given below:

Body surface

Wake cut

Far−field boundary

Far−field boundary

Far−field boundary

Figure 2.8: C-mesh topology.
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Wall Boundary Condition

In this work, all the solid walls are treated as viscous wall. Therefore no-slip

condition is applied, which requires the fluid velocity at the wall be equal to

the surface velocity. At the solid wall, the density (ρ) is extrapolated (zeroth

order) from the interior of the domain. The pressure (p) is then obtained from

the normal momentum equation.

Far-field Boundary Condition

Ideally, the far-field boundaries should be placed far enough (typically 20 − 30

chord lengths) from body surfaces such that the prevailing conditions are very

close to free-stream, so that no spurious wave reflections occur at the bound-

ary. To determine the boundary conditions, characteristic-based Riemann invari-

ants [72] are used. In this approach, based on the direction of the velocity vector

and the sonic velocity, the corresponding Riemann invariants are extrapolated

either from the interior or from the free-stream.

For a hovering rotor, the wake vortices stay under the blade at all times and

the resulting induced velocities can be expected to be significant at distances

of a few rotor radii. For computational efficiency, the far-field boundaries are

held to less than five rotor radii away from the blade surface. In this case, the

linearized characteristic free-stream boundary condition cannot be used since

the flow velocities are large. In this work, the point-sink boundary condition

approach of Srinivasan et. al. [21] is used. A schematic of this approach is shown

in Fig. 2.9. It is well known from momentum theory [1] that the asymptotic

contraction of the vortex wake of a hovering rotor is approximately R/
√

2 and

the non-dimensional downwash velocity, resulting from the thrust of the rotor,
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at such a downstream section is approximately 2
√

CT/2. As shown in the figure,

this is used as the outflow velocity in the region marked ”Outflow” in the far-field

boundary.

Inflow

Outflow

Sink

Figure 2.9: Schematic of point-sink boundary condition.

In order to satisfy global mass conservation, the rest of the far-field boundary

is then assumed to be an inflow, the velocities of which are assumed to be induced

by a point sink placed on the rotor hub. The magnitude of this spherically

symmetric induced velocity is given by:

Vinduced

ΩR
=

1

4

√

CT

2

(

R2

x2 + y2 + z2

)

(2.53)

where, x, y, z is the position vector relative to the placement of the sink. Lin-

earized Riemann invariants are then used to determine the conserved variables

at the boundary.
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Note that for a coaxial rotor simulation, the sink is placed on the hub of

the top rotor. Even though this is not fully correct, this does not create any

additional error considering the fact that the sink-outflow boundary condition is

just an approximation of the actual physics.

Wake Cut Boundary Condition

At the wake cut region, grid planes collapse on to each other. Along these

planes, an explicit simple average of the solution from either side is used. Similar

boundaries are present at the root and tip of a C-O grid and are treated in the

same manner.

Periodic Boundary Condition

The hovering rotor calculation can be simplified by assuming periodicity, thereby

performing the entire calculation by simulating just one blade. The interaction

with the remaining blades is enforced via rotational periodic boundary condi-

tions. The periodic boundary condition is implemented by creating dummy cells

at the boundary, where the vector quantities are prescribed using coordinate

rotation and the scalar quantities are set identical.

2.5 Limitations of Current Methodology

The baseline methodology has certain limitations when applied to micro and

coaxial rotors. These limitations are described in this section.

60



Micro Rotors

Micro-scale rotors typically operate at low rotational tip Mach numbers. It is

well known that classical numerical methods for the simulation of compressible

viscous flows from the solution of the Reynolds Averaged Navier-Stokes (RANS)

equations perform in a satisfying way for most flow regimes, from medium sub-

sonic flow to hypersonic flow. However, in the low subsonic flow regime these

methods give poor results in terms of convergence rate to steady state (or within

a time step for unsteady flows) and solution accuracy.

The difficulty in convergence of the compressible equations for low Mach

numbers are associated with the large ratio between the acoustic wave speeds

and the material waves convected at the fluid speed. The time step size for the

solver is restricted by the stability limit imposed by the acoustic wave. However,

the material waves travel a very short distance compared to the acoustic waves

for the same time step size. To obtain a converged solution, all the waves should

travel to the boundary (in reality, they also need time for any reflections to settle

down). Since the material waves move very slowly, they result in it taking a long

time for the solution to converge.

The other issue with compressible flow solvers for low Mach numbers is the

solution inaccuracy. At low Mach numbers, the Roe scheme presents an excess

of artificial viscosity and as a result leads to excess dissipation. Roe flux splitting

was given in eqn. 2.30. It can be shown that the dissipation for the Roe scheme

is proportional to |Â|, while the fluxes are proportional to Â, where Â is the

Roe-averaged Jacobian matrix.

After manipulating terms of |Â| and Â in one-dimension for low Mach num-

bers (M → 0), along with having flow velocity and density of order 1, one
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obtains:

Â ∼













0 O(1) 0

O(1) O(1) O(1)

O( 1
M2 ) O( 1

M2 ) O(1)













(2.54)

|Â| ∼













O(1) O(M) O(M)

O( 1
M

) O( 1
M

) O(M)

O( 1
M

) O( 1
M

) O( 1
M

)













(2.55)

It can be noted that several terms in |Â| have different order of Mach number

from terms in Â. This difference in order of Mach number leads to large dissi-

pation terms (evident from the momentum equation, where Â has O(1), and |Â|

has O(1/M); in the energy equation the dissipation terms are too small) for low

Mach number flows and is a major source of inaccuracy in such flow regimes.

Coaxial Rotors

A major difficulty in RANS-based CFD simulations of coaxial rotor computa-

tions is the enormous computational cost required to handle the counter-rotating

system. Additionally, in order to capture the blade-vortex and vortex-vortex in-

teractions correctly, it is important to accurately represent the formation and

evolution of the wake. Hence, along with using accurate numerical schemes and

reliable turbulence models, we need to have sufficient grid resolution to resolve

the details of the flow physics. This requires months of computational time with

the existing solver and therefore makes it impractical.

An additional difficulty in coaxial rotor simulations arise in the information

transfer between the blade and the background mesh. It is preferred not to
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overlap the blade meshes of the two rotor systems due to two main reasons.

Firstly, the current connectivity routine in OVERTURNS requires one mesh to

be completely embedded in the other, which will not hold true here. Secondly,

even if the connectivity routine could handle overlapping meshes, this will re-

quire determining connectivity information dynamically, which will increase the

computational time. As a result, the extent of the outer boundary of the blade

meshes is limited by the inter-rotor spacing. Typically, the spacing between

the rotors is about 1 − 5 chords, which means the extent of outer boundary of

the blade meshes is limited to half that value. Additionally, we also want to

ensure that the blade mesh is not stretched too rapidly in the wall normal di-

rection. As an outcome of this, the grid spacing at the outer boundary of the

blade mesh ends up being much smaller than the grid spacing in the background

mesh. Information transfer between unequal sized meshes can lead to severe

loss of accuracy. This problem can be solved by using a finer intermediate back-

ground mesh to transfer information from the blade to the outer background

mesh. The resulting overset system will be a 3-mesh overset system. However,

the current overset methodology implemented in OVERTURNS can handle only

overset system consisting of two meshes and therefore, does not permit the use

of intermediate background mesh.

2.6 Improvements

To extend the capability of the baseline TURNS solver to simulate flow over small

scale hovering coaxial rotors, several modification and additions are made to the

flow solver. These modifications along with the limitations with the baseline

methodology are tabulated in table 2.1. In order to remove the limitations
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Table 2.1: Limitations of baseline methodology and improvements made in the

current work to overcome these limitations.

Limitations of baseline method-

ology

Improvements made in current

work

Convergence and accuracy of low

Mach number flow calculations

Implementation of time-accurate low

Mach preconditioner

Handling counter-rotating systems Implementation of sliding mesh

boundary condition

Large computational time for fine

mesh calculations

Coarse-grain parallelization of the

solver

Solution inaccuracy in overset

methodology (mainly for coaxial

rotor simulations)

Use of implicit hole-cutting method

and implementation of improved

blanking method

imposed by low Mach numbers, low Mach preconditioning is implemented. To

allow coaxial rotor simulation, a sliding mesh interface condition is implemented

which allows simulation of multi-bladed rotor systems using just one blade from

each rotor system. The code is also parallelized to a certain extent, which enabled

performing simulations using fine meshes in a reasonable amount of time. Finally,

a few improvements are made in grid connectivity to ensure better transfer of

solution from one mesh to another. All of the improvements are discussed in

detail below:
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2.6.1 Low Mach Preconditioning

Low Mach preconditioning has become the most popular methods to alleviate the

issues associated with local low Mach compressible flows. Many of the low Mach

number preconditioning methods have been summarized by Turkel [73–75]. The

present work implements a preconditioned dual-time scheme in the diagonalized

approximate factorization framework, described by Buelow et al. [76] and Pandya

et al. [77]. The preconditioning is based on the one developed by Turkel [73].

To put into effect the low Mach preconditioning, the diagonalized algorithm and

dual time-stepping is implemented.

Diagonalized Algorithm (DADI)

The diagonalized algorithm developed by Pulliam Chaussee [78] forms an alter-

native to LUSGS for implicit time inversion. In this algorithm, the left hand

side of eqn. 2.41 is rewritten as given by Beam and Warming [79] for first order

implicit in time:

[

I + ∆t(δξÂ+ δηB̂ + δζĈ)
]

∆Q̂ =
[

I + ∆tδξÂ
] [

I + ∆tδηB̂
] [

I + ∆tδζĈ
]

∆Q̂

(2.56)

The computational work can be decreased by introducing a diagonalization of

the blocks in the implicit operators as developed by Pulliam and Chaussee [78].

The eigensystem of the flux Jacobians Â, B̂ and Ĉ are used in this construction.

The inviscid flux Jacobians Âi, B̂i and Ĉi each have real eigenvalues and a

complete set of eigenvectors. Therefore, the inviscid flux Jacobian matrices can

be diagonalized as:
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Λξ = T−1
ξ ÂiTξ

Λη = T−1
η B̂iTη

Λζ = T−1
ζ ĈiTζ (2.57)

where Tξ is the left set of eigenvectors of matrix Âi and T−1
ξ is the right set of

eigenvectors of matrix Âi. Similarly, Tη and Tζ are matrices corresponding to

matrices B̂i and Ĉi, respectively. The set of eigenvalues of matrix Âi are given

in matrix Λξ. Similarly, Λη and Λζ contain eigenvalues of B̂i and Ĉi.

Ignoring the viscous contribution on the LHS, eqn. 2.41 can be rewritten as:

[

TξT
−1
ξ + ∆tδξ(TξΛξT

−1
ξ )
]

[

TηT
−1
η + ∆tδη(TηΛηT

−1
η B̂)

]

[

TζT
−1
ζ + ∆tδζ(TζΛζT

−1
ζ )
]

∆Q̂n

≈ Tξ [I + ∆tδξΛξ]T
−1
ξ Tη [I + ∆tδηΛη]T

−1
η Tζ [I + ∆tδζΛζ ]T

−1
ζ ∆Q̂n

= −∆t[RHSn] (2.58)

The approximation assumes the eigenvectors of matrices Âi, B̂i and Ĉi to be

constant spatially in the neighborhood of (j,k,l). The diagonal algorithm re-

duces the block tridiagonal inversion to 5 × 5 matrix multiplications and scalar

tridiagonal inversions.

The diagonal algorithm as presented above is really only rigorously valid for

the Euler equations. This is because we have neglected the implicit linearization

of the viscous fluxes. The viscous flux Jacobians are not simultaneously diago-

nalizable with the inviscid flux Jacobians and therefore an approximation to the

viscous Jacobian eigenvalues have to be used and is given by:

66



λv(ξ) = µJ−1
(

ξ2
x + ξ2

y + ξ2
z

)

Jρ−1

λv(η) = µJ−1
(

η2
x + η2

y + η2
z

)

Jρ−1

λv(ζ) = µJ−1
(

ζ2
x + ζ2

y + ζ2
z

)

Jρ−1 (2.59)

The new form of diagonal algorithm is given by:

Tξ [I + ∆t(δξΛξ − δξξλv(ξ))]T
−1
ξ Tη [I + ∆t(δηΛη − δηηλv(η))]T

−1
η

Tζ [I + ∆t(δζΛζ − δζζλv(ζ))]T
−1
ζ ∆Q̂n = −∆t[RHSn] (2.60)

The first derivatives on the LHS of the above equation are discretized using

upwind differencing and the second derivative are discretized using central dif-

ferencing.

Dual Time-Stepping

Approximation of the LHS results in factorization errors. To remove these factor-

ization errors and to recover time accuracy, one must perform sub-iterations at

each physical time step. To carry out these iterations, eqn. 2.20 can be modified

to consider a term that also contains a fictitious pseudo time (τ).

∂Q̂

∂τ
+
∂Q̂

∂t
+
∂F̂

∂ξ
+
∂Ĝ

∂η
+
∂Ĥ

∂ζ
= Ŝ (2.61)

Convergence of the pseudo-time(sub-iterations) at each physical time step is

important for obtaining an accurate transient solution. Discretizing eqn. 2.61

with first order finite difference for both artificial and physical time results in:
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Q̂k+1 − Q̂k

∆τ
+
Q̂k+1 − Q̂n

∆t
+ ∂ξF̂

k+1 + ∂ηĜ
k+1 + ∂ζĤ

k+1 = Ŝk+1 (2.62)

where k is the pseudo-iteration counter and n is is the time step counter. After

linearization one gets:

[

1

∆τ
+

1

∆t
+ δξÂ

k + δηB̂
k + δζĈ

k

]

∆Q̂k = −
[

δξF̂
k + δηĜ

k + δζĤ
k − Ŝk +

Q̂k − Q̂n

∆t

]

(2.63)

Defining h = ∆t
1+(∆t/∆τ)

and rearranging the above equation, one obtains:

[

I + h(δξÂ
k + δηB̂

k + δζĈ
k)
]

∆Q̂k = −h
[

δξF̂
k + δηĜ

k + δζĤ
k − Ŝk +

Q̂k − Q̂n

∆t

]

(2.64)

The above equation has similar form as eqn. 2.41 and therefore can be solved

either using LUSGS or DADI scheme. The unsteady residual at each time step

is given by:

δξF̂
k + δηĜ

k + δζĤ
k − Ŝk +

Q̂k − Q̂n

∆t
(2.65)

This term should approach zero as the solution converges during the sub-iterations.

Typically, a drop in the unsteady residual on the order of one to two orders of

magnitude may be considered to be sufficient to ensure that the iteration error

is less than the other remaining discretization errors.

If the pseudo time size is made very large (∆τ → ∞), then h → ∆t and

we obtain a Newton sub-iteration scheme. Furthermore, if one doesn’t do any
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sub-iterations then one recovers the traditional Euler implicit method described

in eqn. 2.41. Similarly, dual time-stepping can be applied with 2nd order back-

ward difference in time (BDF2) by substituting ∂tQ̂
k+1 = 3Q̂k+1

−Q̂n+4Q̂n−1

2∆t
into

eqn. 2.61, the scheme employed in TURNS.

Preconditioned Dual-Time Algorithm

In the preconditioned dual-time algorithm, the pseudo-time term in eqn. 2.61 is

written in terms of the primitive variable vector, Q̂p, and the preconditioning

matrix, Γp, and is given by:

Γp
∂Q̂p

∂τ
+
∂Q̂

∂t
+
∂F̂

∂ξ
+
∂Ĝ

∂η
+
∂Ĥ

∂ζ
= Ŝ (2.66)

Primitive variable vector, Q̂p, is given by (p, u, v, w, T )/J , where p is the pressure,

u,v and w are velocity components in x, y and z directions, respectively and T

is the temperature. The preconditioning matrix, Γp, is defined as:

Γp =



























ρ′p 0 0 0 ρT

uρ′p ρ 0 0 uρT

vρ′p 0 ρ 0 vρT

wρ′p 0 0 ρ wρT

(ρhp + h0ρ
′

p − 1) ρu ρv ρw ρhT + h0ρT



























(2.67)

where ρ′p = 1
ǫpa2 , a is the speed of sound, h is the enthalpy and h0 is the stagnation

enthalpy. Here ǫp =
M2

p

1+(γ−1)M2
p

and Mp is the preconditioning parameter, which

is typically chosen to be a value close to the freestream Mach number.

Discretizing eqn. 2.66 with first order finite difference for both artificial and

physical time and linearizing with primitive variables gives:
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[

Γp

∆τ
+

Γe

∆t
+ δξÂ

k
p + δηB̂

k
p + δζĈ

k
p

]

∆Q̂k
p = −

[

δξF̂
k + δηĜ

k + δζĤ
k − Ŝk +

Q̂k − Q̂n

∆t

]

(2.68)

where Âp, B̂p and Ĉp are flux Jacobians with respect to Q̂p, and Γe = ∂Q
∂Qp

.

The key step in the derivation of a diagonalized scheme rests in combining the

pseudo-physical time-derivative terms on the left hand side into a single matrix.

Accordingly, we define Sp = Γp + ∆τ
∆t

Γe. Eqn. 2.68 can be rewritten as:

[

Sp + ∆τ(δξÂ
k
p + δηB̂

k
p + δζĈ

k
p )
]

∆Q̂k
p = −∆τ

[

δξF̂
k + δηĜ

k + δζĤ
k − Ŝk +

Q̂k − Q̂n

∆t

]

= Rk (2.69)

Multiplying through by ΓeS
−1
p and converting back to the conservative system,

we get

[

I + ∆τΓeS
−1
p δξÂ

k + ∆τΓeS
−1
p δηB̂

k + ∆τΓeS
−1
p δζĈ

k
]

∆Q̂k = ΓeS
−1
p Rk (2.70)

Applying approximate factorization,

[

I + ∆τΓeS
−1
p Âkδξ

] [

I + ∆τΓeS
−1
p B̂kδη

] [

I + ∆τΓeS
−1
p Ĉkδζ

]

∆Q̂k = ΓeS
−1
p Rk

(2.71)

Now, the scheme can be diagonalized similar to eqn. 2.58 to obtain

ΓeXξ

[

I + ∆τδξΛ̃ξ

]

X−1
ξ Xη

[

I + ∆τδηΛ̃η

]

X−1
η Xζ

[

I + ∆τδζΛ̃ζ

]

X−1
ζ Γ−1

e ∆Q̂k = ΓeS
−1
p Rk

(2.72)
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where Xξ and Λ̃ξ are respectively, the eigenvector matrix and the eigenvalue

matrix of S−1
p Âp. The eigenvalue matrix (Λ̃ξ) is given by

Λ̃ξ =



























λ1 0 0 0 0

0 λ2 0 0 0

0 0 λ3 0 0

0 0 0 λ4 0

0 0 0 0 λ5



























λ1,2,3 = bU

λ4,5 =
b

2

[

U (1 + β ′) ±
√

U2 (1 − β ′)2 + 4a2β ′

]

(2.73)

where β ′ =
M2

p

b−M2
p (b−1)

, a is the speed of sound and b = ∆t/∆τ
1+∆t/∆τ

The values of M2
p and b control the behavior of the preconditioner. The pa-

rameter b switches the behavior of the preconditioner from unsteady to steady.

For steady flows, b = 1 and β ′ = M2
p . Using Mp = 1 switches off the precondi-

tioner. It should be noted that when β ′ is close to the local Mach number, the

eigenvalues are of similar magnitude and therefore the preconditioning provides

improved convergence. Note that, characteristic boundary conditions also have

to be modified to account for the modified eigenvalues, refer [73].

Due to preconditioning, the Roe flux scheme described in eqn. 2.30 gets

modified to:

F (qL, qR) =
F (qL) + F (qR)

2
− P−1|PÂ(qL, qR)|q

R − qL

2
(2.74)

where P = ΓeS
−1
p . The dissipation term for the scheme is now proportional to

P−1|PÂ|. In the limits of low Mach number, this is given by:
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P−1|PÂ| ∼













O(1) O(1) 0

O(1) O(1) O(1)

O( 1
M2 ) O( 1

M2 ) O( 1
M2 )













(2.75)

The order of terms as a function of Mach number is similar to order of terms

in Â matrix (eqn. 2.54). This characteristic of the dissipation matrix keeps the

terms bounded even at low Mach numbers, improving the accuracy of the system

for low Mach number flows.

2.6.2 Sliding Mesh Boundary Condition

Sliding mesh boundary condition is implemented to allow handling of counter-

rotating system. With this, each rotor system of the coaxial system is simulated

using its own blade and background mesh overset system. The outer back-

ground mesh of each rotor system is allowed to slide past each other and the

information between the outer background meshes are exchanged using a one-

dimensional interpolation. Because of its low cost, higher order can be used for

the interpolation.

Further, for hovering coaxial rotor, complete simulation can be done using

just one blade mesh in each rotor system by utilizing the periodicity of the flow-

field. Figure 2.10 shows a schematic of the blade surfaces and the blade and

background mesh boundaries. The solid lines show the meshes for the simulated

blade and the dotted lines depict periodicity. The sliding boundary condition

for the simulated background mesh of any of the two rotors is implemented

by exchanging information with either the simulated background mesh or the

periodic mesh of the other rotor. This type of interface condition, though novel

72



in helicopter calculations, is routinely used in simulations of gas turbine rotor-

stator flow-fields. Since, the solution transfer between the sliding meshes is

one-dimensional,

BC
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Bottom Rotor

Mesh
Background

Blade Mesh

Blade Mesh

Blade
Top Rotor

Mesh
Background

BC
Periodic

BC

Periodic

Periodic
BC

Sliding mesh BC

Periodic

Figure 2.10: Schematic of the mesh system and the boundary condition for a

2-bladed coaxial rotor.

2.6.3 Improvements in Grid Connectivity

The hole-cutting technique used in the baseline OVERTURNS is a simplified

algorithm, which can handle two overset meshes (blade and background) and

requires the blade mesh to be completely embedded in the background mesh.

The algorithm involves cutting a hole by specifying a box around the blade and

extracting a list of hole fringe points that require information from other grids

to serve as boundary conditions. Refer section 2.2.1 for more details.

There are many difficulties associated with this approach. First of all, the

algorithm can handle only two overset meshes and requires one mesh to be com-
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pletely embedded in the other. This poses severe restrictions on the type of

meshes used, especially when the problem gets complicated (as in coaxial rotor

simulation). Secondly, in order to cut the hole, the box around the body has to

be specified explicitly. This is particularly challenging when the body surface

is not well defined. Note that, this problem is common to all traditional hole-

cutting techniques. Additionally, defining an arbitrary box around the body

has the undesirable effect of cutting the hole at the same location regardless of

possibly large differences in grid resolution. This could, in some cases, poten-

tially result in hole fringe points interpolating from donors whose cell volumes

are drastically different from those of the receivers, thus deteriorating the accu-

racy of the interpolation. In more complicated algorithms, an optimum hole is

determined by marching the hole away from the body till the grid sizes become

comparable. However, this comes with additional computational cost. Finally,

in order to utilize the increasing number of available computational nodes with

time, CFD codes need to have parallel capability. Load balancing in the parallel

execution of traditional overset connectivity codes is much harder than that of

the flow solver due to the unknown number of fringe points and the amount of

work needed to find all donor cells. Researchers have found that a partitioning

strategy that gives optimal parallel performance in the flow solution does not

necessarily give optimal performance in the connectivity solution, and vice-versa

and one must derive alternative parallel implementation approaches to attain

scalable performance on large numbers of processors (see Ref. [80–83]).

The Implicit Hole Cutting (IHC) approach for overset grids developed re-

cently by Lee and Baeder [84] alleviates some of the problems faced by traditional

connectivity algorithms. The primary advantage for the current work being, the
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ability to use intermediate background mesh for better transfer of information

from the blade mesh to the outer background mesh in coaxial rotor simulation.

Additionally, in the IHC approach, the inter-grid boundary points list and iblank

arrays can be obtained without explicitly knowing where the holes are, cutting

them out and expanding them. The IHC method routes through every point in

the grid system to test and select the best quality cells in multiple overlapped

regions, leaving the rest as hole points. In other words, at any point, the so-

lution is computed on the cell having the smallest volume and interpolated at

other points. The presence of the body is felt either by the progressively smaller

cell sizes towards the wall or by the grid topology (for example, if all walls are

located at k = 1). Since the hole cutting is determined by cell size, the resultant

hole from the IHC algorithm is automatically optimum. Also, load balancing in

a parallel implementation of IHC is considerably simpler. Since the two main

loops in IHC are over grids, the work load can be distributed grid-by-grid just

as in the coarse-grain parallelization of the flow solver. For a more detailed

discussion, see Ref. [84].

Because of these advantages, all the connectivity in this work is done using

the IHC approach. Minor modifications were made to the original IHC code

developed by Lee and Baeder [84] to handle C-O type meshes. Further, iblank

array is handled in a novel way, which will be described below:

In traditional hole-cutting techniques, in order to avoid contamination of the

solution due to the invalid hole points, an array of integers (iblank) is defined

corresponding to the grid points. iblank is set as 0 for hole points and hole

fringe/chimera points, and as 1 for the field points. The solution is not updated

by the solver, when a point is blanked out. On the other hand, the original
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implementation of IHC does not require an iblank array. It relies on having thick

enough hole fringe layers so that they completely enclose the body to prevent

contamination from invalid points. However, it is not always possible to ensure

sufficiently thick fringe layers. Furthermore, the original implementation of IHC

then requires a large number of interpolations. Therefore, the current work

borrows the idea of an iblank array from the traditional hole-cutting technique

to be used along with the IHC technique.

However, the conventional blanking technique is not fully correct. Apart from

preventing contamination from invalid points, traditional blanking technique also

prohibits the use of valid solutions from the blanked out hole fringe/chimera

points in the flux calculations. Instead, if the hole fringe/chimera points are

not blanked out, the solution gets contaminated during an implicit time update.

During this step of the solution procedure, the variables are not yet interpolated

from other grids onto the inter-grid boundary points and therefore, the solution

at these points are incorrect. As a result, the inaccuracies can spread to other

grid points during the line inversion procedure.

This problem can be resolved by blanking out hole fringe/chimera points

during implicit inversion and by including them while calculating the fluxes. This

is achieved by setting the iblank array to −1 at these points. The hole points and

the field points have similar iblank values as before. In the solution procedure, a

function of the iblank array is multiplied to the time step corresponding to each

grid point (for e.g., h in eqn. 2.64). The time step in the LHS of the equation is

multiplied by max(iblank, 0) and that in the RHS is multiplied by abs(iblank).

As a result of this, the contribution of the hole points is blanked out in both

the LHS and RHS, while that of hole fringe and chimera boundary points are
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blanked out only in the LHS. This prevents the propagation of inaccuracies from

the hole points to the flow solution.

2.6.4 Parallelization

With the requirement to resolve tip vortex formation and evolution accurately for

single and coaxial hovering systems, the mesh sizes can become very large. Severe

limitations on the mesh sizes can be imposed by the available memory. Even if a

reasonable mesh is made which meets the memory limitation, restrictions come

from limited processing speed. Using a single processor, a typical hovering rotor

calculation takes several weeks to complete. Such a limitation is undesirable

and therefore, in this work, the TURNS/OVERTURNS code is parallelized to a

certain extent.

The message passing interface system (MPI) is used to perform parallel com-

putations and communications between processors. Solution for the entire do-

main, is obtained by solving the smaller sub-domain problems collaboratively

and ”patching together” the sub-domain solutions. This numerical method is

known as the domain decomposition method. The partitioning of the domain

is done by splitting each grid into equal number of sub-grids along one direc-

tion. Load balancing is achieved by having similar sizes of sub-grids for different

meshes in the overset system. Typically, the blade meshes are split along the

spanwise direction and the background meshes are split in the vertical direction.

Figure 2.11 shows an example of domain partitioning, where the blade mesh is

divided into four along the spanwise direction. Note that, sufficient overlap is

ensured between the split meshes to maintain the spatial accuracy. An artificial

internal boundary condition is created in the overlap region, where the solution
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from one domain is directly copied to the other.

(a) Sample blade mesh

(b) Split blade meshes

Figure 2.11: Sample domain partitioning for parallel computation.
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The current parallelization method is limited to the flow solver. Parallel

execution of the connectivity routine is not yet implemented. As a result, the

current code does not provide any benefit when the meshes in the overset sys-

tem move relative to each other with time. However, when there is no relative

motion between various overset meshes (which is true for all the simulations in

this work), the connectivity has to be done only once at the beginning and the

solution can be interpolated at each time step between various meshes using

this information. Therefore, the code can provide parallel capability with addi-

tional communication of chimera interpolation data at each time step, which is

described below.

The connectivity information for each grid (or sub-grid) is stored in the for-

mat (FORTRAN77 code) given below [85]:

write(1) nfringe,ndonor,iieptr,iisptr

write(1) (idonor(n,1),n=1,ndonor),(idonor(n,2),n=1,ndonor),

(idonor(n,3),n=1,ndonor),(frac(n,1),n=1,ndonor),

(frac(n,2),n=1,ndonor),(frac(n,3),n=1,ndonor)

write(1) (imesh(n,1),n=1,nfringe),(imesh(n,2),n=1,nfringe),

(imesh(n,3),n=1,nfringe),(ibc(n),n=1,nfringe)

write(1) (((iblank(j,k,l),j=1,jmax),k=1,kmax),l=1,lmax)

where nfringe is the number of chimera/hole fringe boundary points in this

grid, and ndonor is the number of interpolation points (or stencils) in this grid,

used by chimera/hole fringe boundary points in any other grid. iisptr and iieptr

give start and end pointers for interpolated data from this grid into the global

qbc array. (idonor(n, 1), idonor(n, 2), idonor(n, 3)) gives the three coordinates

of the donor cell for interpolation data with (frac(n, 1), frac(n, 2), frac(n, 3))
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as linear weights between idonor(n, 1) and idonor(n, 1) + 1, etc. The result of

these interpolations gets stored into qbc elements iisptr through iieptr. The

three coordinates of the boundary point which receives interpolated data from

qbc element ibc are given by (imesh(n, 1), imesh(n, 2), imesh(n, 3)). The iblank

array was described before in sections 2.2.1 and 2.6.3.

At every iteration (or sub-iteration) during parallel runs, each processor cal-

culates the interpolated data required by the other processors using idonor and

frac and sends it to the first processor. The first processor collects this in-

formation and updates the qbc array. Subsequently, all the processors request

appropriate interpolated data from the first processor based on ibc array. Fol-

lowing, the solution is updated based on the imesh array.

2.7 Summary

In this chapter, the computational methodology for the solution of the RANS

equations was presented. The improvements to an existing solver in terms of

implementation of low Mach preconditioning, sliding mesh interface condition,

grid connectivity approach and parallelization were detailed.
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Chapter 3

Verification and Validation

Before applying the newly implemented methodology to the actual MAV ro-

tor problems, it is necessary first to apply them to simpler problems to gain

confidence in the solution algorithm. The current chapter is focused on this

issue of verification and validation. Firstly, the performance of the low Mach

preconditioning algorithm is evaluated based on the numerical solution of a two-

dimensional vortex convection. The effectiveness of the preconditioner is further

verified by applying it to two-dimensional steady flow over an airfoil. Following

this, the algorithm is validated for a steady 3D finite-span wing by comparing

predicted vortex velocity profiles with the experimental data. This is then fol-

lowed by the demonstration of the advantages of implicit hole-cutting and the

new blanking technique. Finally, the baseline methodology in OVERTURNS

with the addition of the use of implicit-hole cutting, is validated for rotors by

comparing the performance data obtained for a full-scale single rotor simulation

with those from experiments.
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3.1 Low Mach Preconditioning

3.1.1 Convection of a 2D Isentropic Vortex

In this section, the performance of the low Mach preconditioning is evaluated for

the numerical solution of vortex convection in terms of convergence and accuracy.

The model problem involves the isentropic convection of a two dimensional vortex

in a uniform inviscid flow-field [35]. The initial conditions are set up such that:

• The spatial entropy gradient is zero,

• The velocity, pressure and density fields correspond to an exact solution

to the 2D Euler equations,

The exact solution to the above problem would then be the pure advection

of the vortex at the free-stream velocity without any decay. Hence, the effects

of numerical diffusion and dispersion can be evaluated.

A 41 × 41 uniform grid is used in a domain of 0 ≤ x ≤ 10, 0 ≤ y ≤ 10.

Periodic conditions are assumed on all four grid boundaries. This is done in

order to remove any effects of boundary inaccuracies and also to keep the domain

small. Perturbations are added to the free-stream such that there is no entropy

gradient in the flow-field.

Free-stream conditions are ρ = 1, u = u∞, v = 0 and p = 1. The perturba-

tions are given by:

(δu, δv) =
β

2π
e

1−r2

2 (−(y − y0), (x− x0)) (3.1)

ρ =

[

1 − (γ − 1)β2

8γπ
e1−r2

]
1

γ−1

(3.2)

p = ργ (3.3)
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where, β, set as u∞, is the vortex strength and r is the distance from the vortex

center (x0, y0) = (5, 5).

Two cases, corresponding to u∞ of 0.1 and 0.001, are studied. The corresponding

free stream Mach numbers are respectively 0.0845 and 0.000845. The domain

and initial pressure contours for the case of u∞ = 0.1 are shown in Fig. 3.1. In

Pandya et al. [77], an unsteady scale which depends on the unsteady length scale

is used to define the preconditioning parameter. However, the unsteady length

scale is quite arbitrary and cannot be defined easily for a practical problem.

Therefore, in the present work, a different approach is used to control the pre-

conditioning parameter, which is done by changing the pseudo time step (∆τ). It

was shown in section 2.6.1 that ∆τ → ∞ is equivalent to no-preconditioning. As

the value of ∆τ is decreased, the effect of the preconditioning increases. However,

a smaller value of ∆τ would require a sufficiently large number of sub-iterations

to converge. Therefore, an appropriate value of ∆τ has to be chosen.

To study the performance of the scheme with and without preconditioning,

the sub-iteration convergence is studied for two different physical time steps.

The time step is characterized by CFLu = u∆t
∆x

, where u is the speed of prop-

agation, ∆t is the physical time step and ∆x is the grid size. Figure 3.2 shows

the residual convergence for the case of M∞ = 0.0845 for two different time

steps. For the preconditioning case, results are obtained for four different val-

ues of ∆τ . For CFLu = 0.1, the no-preconditioning case shows the best con-

vergence. The preconditioning cases show improving convergence as ∆τ is in-

creased and for ∆τ = 100 ∆t the convergence becomes very similar to that of

the no-preconditioning case. For the larger physical time step (CFLu = 1.0), the

preconditioning cases with higher ∆τ (10 ∆t, 100 ∆t) show better convergence
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Figure 3.1: Computational domain and initial pressure contours for isentropic

vortex convection.

compared to the no-preconditioning case.

Figure 3.3 shows similar plots for the case of M∞ = 0.000845; the advantages

of the low Mach preconditioning can be clearly seen at the speed of u∞ = 0.001.

For this case, the no-preconditioning case shows very poor convergence for both

the physical time steps. In fact, for CFLu = 1.0, the no-preconditioning case

fails to converge. On the other hand, the preconditioning cases show good con-

vergence. As a general trend, higher pseudo time step shows better convergence.

It has to be mentioned here that for all cases when the pseudo time step is made

very large, the convergence is similar to that of the no-preconditioning case (when

no-preconditioning converges). Therefore, from the convergence point of view,
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∆τ = 100 ∆t seems to be a good choice. However, practical computations do

not require that the sub-iterations be converged to machine zero. Typically, the

residue is converged to 3 to 4 orders of magnitude or the number of sub-iterations

is fixed to a value, typically 20 or less. By looking only at the convergence of

various cases in the first 20 sub-iterations, it can be seen that the precondition-

ing cases with ∆τ = ∆t, 10 ∆t and 100 ∆t show equally good results, with the

residues dropping by 3 to 4 orders of magnitude for all the cases. Therefore, the

choice of ∆τ cannot be determined just by looking at the convergence.

Figure 3.4 shows the vertical velocity profile along a line cut through the

center of the vortex at t = 10. The results are obtained with a time step of

CFLu = 0.1 and using 20 sub-iterations for both free-stream speeds. The plot

also shows the exact solution. For both the speeds, the preconditioning with

smaller ∆τ has lower dissipation. However, for the choice of ∆τ = 0.1 ∆t, the

solution is not converged sufficiently for both the cases. The no-preconditioning

case is more dissipative compared to the preconditioning cases for u∞ = 0.1. For

u∞ = 0.001, the no-preconditioning case does not converge and therefore is not

plotted. Clearly, ∆τ = ∆t is seen to give the best result and therefore can be

considered the optimum choice. Therefore, for all the calculations to be shown

in this thesis, the value of ∆τ = O(∆t) will be used.
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Figure 3.2: Comparison of residual convergence for M∞ = 0.0845 for isentropic

vortex convection.
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Figure 3.3: Comparison of residual convergence forM∞ = 0.000845 for isentropic

vortex convection.
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3.1.2 Steady Low Speed Flow Over 2D Airfoil

Effectiveness of the low Mach preconditioning in a steady flow is demonstrated by

simulating the flow over a NACA 0006 airfoil at 5◦ angle of attack at low speeds.

The Reynolds number is set as 3 × 106. Table 3.1 compares the calculated lift

and drag coefficients at free-stream Mach numbers of 0.3, 0.2, 0.1 and 0.05,

with and without using low Mach preconditioning. It can be seen that at M =

0.3, results obtained for the preconditioned and non-preconditioned cases are

identical. However, at lower Mach numbers, the results are seen to be different;

the non-preconditioned case predicts lower lift coefficient and much larger drag

coefficient compared to the preconditioned case.

Table 3.1: Comparison of coefficient of forces for NACA 0006 airfoil at different

Mach numbers, with and without low Mach preconditioning

No Preconditioning Preconditioning

Mach Number Cl Cd Cl Cd

0.30 0.551 0.0128 0.551 0.0128

0.20 0.538 0.0131 0.537 0.0124

0.10 0.525 0.0148 0.530 0.0120

0.05 0.508 0.0178 0.529 0.0118

The differences in the solution can be identified by looking at the pressure

contours near the leading edge of the airfoil for the M = 0.05 case, see Fig. 3.5.

The pressure contours are smoother with the application of preconditioning as

compared to the case without the preconditioner. This clearly shows that the

difference in results obtained using preconditioned and non-preconditioned cases

arise due to inaccuracy in the solution of the non-preconditioned case. The
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(a) No preconditioning (b) With preconditioning

Figure 3.5: Pressure contours for flow over NACA 0006 airfoil at M = 0.05.

accuracy of the preconditioned case is further confirmed by the fact that the

predicted forces approximately scale by the Prandl-Glauert compressible factor

as the Mach number changes.

Figure 3.6: Comparison of residue with and without the use of preconditioning

for flow over NACA 0006 airfoil at M = 0.05.
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Improvements in convergence due to preconditioning can be studied by look-

ing at the residue plot. Figure 3.6 shows the plot of residue versus iteration

number at M = 0.05 for both preconditioned and non-preconditioned cases.

The residues for both the cases drop to machine precision by the end of the

simulation, however, the preconditioned case clearly shows a much faster and

smoother convergence rate.

3.1.3 Low Speed Fixed-Wing Validation

The low Mach preconditioning algorithm is validated in the finite-span case

using measurements made by Zuhal [86] on a NACA 0012 wing of aspect ratio

4.61 (span of 41.91 cm and chord of 9.1 cm) with a rectangular tip. Vortex

velocity profiles were obtained using 2 and 3-component PIV techniques at x

= 1, 2, 3 and 4 chords downstream of the trailing edge. Experiments were

conducted at a Reynolds number of 9040, Mach number of 0.004 (free-stream of

1.5 m/s) and at angles of attack ranging from α = 0o through 10o. For these

lower Reynolds numbers, the viscous forces become significant and Batchelor’s

analysis [87] shows that the viscous head loss term can overpower the inviscid

acceleration mechanism and lead to an axial velocity deficit. In the present

validation, the Zuhal experimental data shows the expected core axial velocity

deficit in all cases. Computations are performed on a mesh of 369 × 121 × 111

streamwise, spanwise and normal points, respectively (Fig. 3.7). To help ensure

an accurate, stable and efficient simulation, OVERTURNS was run at a Mach of

0.05 rather than the lower experimental value. Since the Mach numbers involved

in these studies are well within the incompressible limit, it is expected that small

variations in Mach number will not have a significant effect on the final results.
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Figure 3.7: Computational mesh used for validation with Zuhal experiments [86]

As mentioned previously, because of the increased tendency for flow separa-

tion, MAV usually employ thin airfoil sections. Thus, as one might expect with

the relatively thick NACA 0012, regions of flow separation exist along much of

the span, especially at low angles of attack. Spanwise shedding interacts with the

developing tip vortex causing it to deform, resulting in some of the oscillations

in the velocity profiles shown in Fig. 3.8. At high angles of attack, the strength

of the tip vortex is sufficient to generally overweigh the effect of these interac-

tions. However, at angles of attack near 4o and below, the computed strength

of the forming vortex is of the same order of magnitude as the spanwise shed

vorticity. This causes a significant delay in the formation of a coherent vortex to

streamwise locations of up to 3 chords downstream. Because the experimental

profiles are obtained by an ensemble average of instantaneous velocities, closer to

the wing, these unsteady interactions are probably not accurately represented.

For the purposes of validation, only the instantaneous profiles of the relatively
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steady tip vortex at angles of attack greater than 4 degrees are presented here.

The computed axial and swirl velocity profiles in the tip vortex at x/c = 1

are given for α = 6, 8 and 10 degrees in Fig. 3.8. Similar plots at x/c = 4 are

shown in Fig. 3.9. In general, the computed axial velocity profiles show good

agreement with the experiment aside from a tendency to slightly overpredict the

magnitude of the axial velocity deficit. There is also an overprediction of the

effect of a secondary structure as can be seen on the inboard side (r/c < 0) of the

axial velocity profiles at the x/c = 1 stations. Although especially pronounced

for the 8 and 10 degree cases, these disturbances weaken by x/c = 4 producing

smooth profiles between r/c = −0.1 to r/c = −0.2 for all angles of attack.

Note the relatively large core radius sizes resulting from the low Reynolds

number. A typical core radius for a moderate Reynolds number of 200, 000 may

be on the order of 0.04c [88]. As seen in Fig. 3.8, the core radius is significantly

larger (r ≈ 0.1c) at the x/c = 1 station. The core radius and peak swirl velocities

are notably underpredicted at 6 degrees angle of attack, however the core radius

is captured well at 8 degrees and both the swirl and radius size are in good

agreement with the experiment at 10 degrees. The underpredictions may result

from underresolving the vortex formation region at the blade tip. Although

the magnitude of the swirl velocities is underpredicted outside of the core flow

region, it is worth noting that the velocity gradients in this zone are predicted

quite well in all cases. Again, the trend of improving results with increasing

angle of attack may be attributed to the increasing margin between the strength

of the tip vortex and the strength of the spanwise shedding.
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Figure 3.8: Swirl and axial velocity profile comparison with experimental

data [86] at x/c = 1, Re = 9040 .
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Figure 3.9: Swirl and axial velocity profile with experimental data [86] at x/c =

4, Re = 9040.
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3.2 Grid Connectivity

3.2.1 Conventional Hole-cutting versus Implicit Hole-

cutting

The advantages of implicit hole-cutting over conventional hole-cutting are demon-

strated in 2D using an airfoil and a Cartesian background mesh in Fig. 3.10. The

conventional hole-cutting technique, which is implemented in OVERTURNS,

cuts a hole that is defined by a rectangular box, whereas implicit hole-cutting

choses the appropriate cell based on its size. The advantages of implicit hole-

cutting become more apparent when the background mesh is coarsened, keeping

the blade mesh the same (see Fig. 3.11). It can be seen that the hole defined

by the conventional hole-cutting technique is fixed in location, while the fringe

points obtained using implicit hole-cutting changes appropriately. With the

conventional hole-cutting technique, the solution is calculated in certain areas

using the coarser background mesh even while the finer blade mesh oversets the

regions, which could lead to solution inaccuracy.

3.2.2 Verification of Improved Blanking Technique

To demonstrate the improvements due to the changes in blanking technique, flow

over a NACA 0012 airfoil is simulated using two different mesh systems - one with

a single airfoil mesh (327 × 85) and another with a two mesh system consisting

of an airfoil mesh (267 × 65) and Cartesian background mesh (151 × 151). The

meshes are shown in Fig. 3.12. The Mach number for the simulation is 0.3, the

angle of attack is 10◦ and the Reynolds number is 3 × 106.
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(a) Conventional hole-cutting

(b) Implicit hole-cutting

Figure 3.10: Comparison of grid connectivity in 2D using a fine background

mesh.
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(a) Conventional hole-cutting

(b) Implicit hole-cutting

Figure 3.11: Comparison of grid connectivity in 2D using a coarse background

mesh.

98



(a) Single mesh system (327 × 85)

(b) Two mesh system (267×65 airfoil mesh and 151×151 back-

ground mesh

Figure 3.12: Mesh system used for verification of new blanking technique.
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Figure 3.13 shows the grid connectivity using the baseline implicit hole-

cutting. Blue and black regions respectively, show the fringe/chimera points

for the airfoil and background meshes. The green region represents the field

points of the background mesh. Since implicit hole-cutting does not use iblank

array, there is a small region of field points within the airfoil. The solution in this

region is not accurate. Any contamination from this region is prevented by the

thick fringe layer (blue region). Figure 3.14 compares the pressure contours near

the airfoil for both the single and the two mesh systems. The black lines show

the contours for the single mesh system, red and green lines, respectively show

the contours for the airfoil and background meshes of the two mesh system. The

contours for the two mesh system are almost identical to that of the single mesh

(away from the airfoil surface), thus validating the baseline implicit hole-cutting

methodology.

However, it is seen that the number of fringe points in the baseline im-

plicit hole-cutting can become very large, especially for 3D problems, which can

severely increase the communication time when the code is run in parallel. This

can be prevented, if the fringe layer thickness is kept small enough to just main-

tain the spatial order of accuracy. However, if the thickness of the fringe layer

is reduced, then the solution can get corrupted by the invalid points, if iblank

array is not used. This is shown in the following case, where a few layers of fringe

points near the airfoil are manually removed. The new connectivity is plotted

in Fig. 3.15. Figure 3.16 shows the pressure contours using this connectivity in-

formation. Note that, the solution is computed without any use of iblank array.

The plot clearly shows the contamination in the solution.
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Figure 3.13: Connectivity using baseline implicit hole-cutting methodology.

blue: fringe points of background mesh; black: fringe points of airfoil mesh;

green: field points of background mesh.
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Figure 3.15: Connectivity obtained by manually removing fringe points from

baseline IHC methodology. blue: fringe points of background mesh; black: fringe

points of airfoil mesh; green: field points of background mesh.
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Figure 3.16: Comparison of pressure contours for single mesh and two mesh
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Figure 3.17: Comparison of pressure contours for single mesh and two mesh

system using smaller fringe layer thickness and iblank = 0 for fringe points.

black line: single mesh; red line: airfoil mesh, green line: background mesh.

The connectivity shown in Fig. 3.15 is identical to one obtained using a

conventional hole-cutting technique with an optimal hole. The only difference is

in the use of iblank array. In conventional hole-cutting techniques, the invalid

hole points are blanked out by assigning an iblank value of 0. The field points are

assigned a value of 1, where as the fringe points are assigned a value of either 0 or

1. The same blanking technique can be adapted to implicit hole-cutting method

to avoid having very thick fringe layers. Pressure contours obtained using iblank

array are plotted in Figs 3.17 and 3.18. In Fig. 3.17, the iblank value for the

fringe points are set as 0, whereas in Fig. 3.18, it is set as 1. Clearly, both the

contours correlate better to the single grid contour compared to that obtained

without any iblank array. However, the contours still show some inaccuracy in

the form of wiggles near the interpolation points. The reason for this inaccuracy
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was discussed before in section 2.6.3. Note that, such a problem is present even

when using a conventional hole-cutting technique.
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Figure 3.18: Comparison of pressure contours for single mesh and two mesh

system using smaller fringe layer thickness and iblank = 1 for fringe points.

black line: single mesh; red line: airfoil mesh, green line: background mesh.

As discussed before in section 2.6.3, this problem can be solved by treating

fringe points as field points in the RHS of the solution procedure and as hole

points in the LHS. This is achieved by assigning iblank = −1 for the fringe points.

Contours obtained using this new blanking method are shown in Fig. 3.19. Now,

the contours obtained using the single mesh and the two mesh system are almost

indistinguishable, thus proving the correctness of the new blanking technique.

The results from the various blanking methods can be better compared by

looking at the force coefficients, see table 3.2. From the table, it can be seen that

the results obtained using the baseline implicit hole-cutting compares reasonably

well with the single mesh results. However, the implicit hole-cutting method
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Figure 3.19: Comparison of pressure contours for single mesh and two mesh

system using smaller fringe layer thickness and iblank = −1 for fringe points.

black line: single mesh; red line: airfoil mesh, green line: background mesh.

Table 3.2: Comparison of coefficient of forces for NACA 0012 airfoil using dif-

ferent blanking techniques.

Method Cl Cd Cm

Single mesh 1.123 0.0172 0.00726

Baseline implicit hole-cutting (IHC) 1.129 0.0176 0.00686

IHC with less fringe points (IHCfr) 1.132 0.0194 0.00562

IHCfr with the use of iblank array

iblank = 0 for fringe points 1.127 0.0186 0.00570

iblank = 1 for fringe points 1.129 0.0178 0.00634

iblank = −1 for fringe points 1.125 0.0169 0.00722

with a smaller fringe layer predicts incorrect results, especially, for the moment

coefficients (∼ 20% error). The results gets better with the use of iblank array.
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The current implementation of blanking technique shows the best comparison

(less than 2% error in Cd and less than 0.5% error in Cl and Cm). Reduction in

the number of fringe points for the cases with the use of iblank array results in

a corresponding reduction in the communication and interpolation costs.

3.3 Full-Scale Single Rotor Validation

In order to validate the baseline methodology in OVERTURNS in combination

with the implicit hole-cutting method, the full-scale single rotor experimental

setup of Harrington [49] (referred to as Rotor-2) is simulated. The experimental

setup consists of a two-bladed rigid rotor with an aspect ratio of 8.33. The

diameter of the blade is 25 feet and the blade chord is 18 inches. The blade uses

a NACA airfoil with a linearly varying thickness of 27.5% at 0.2R to 15% at R.

The tip speed of the rotor is 392 ft/sec. The corresponding tip Reynolds number

is 3.5 × 106 and the tip Mach number is 0.352. Collective pitch settings from

2◦ to 12◦ were used to obtain the variation of thrust with power. A two mesh

overset system with a body-conforming blade mesh and a cylindrical background

mesh are used for all the cases. The periodicity of the flow-field is utilized

and hence, only half the computational domain is simulated. The blade mesh

has 267 × 78 × 56 points in the streamwise, spanwise and normal directions,

respectively and the background cylindrical mesh has 127 × 116 × 118 points

in the azimuthal, radial and vertical directions, respectively (see Figure 3.20).

Performance quantities were found to be insensitive to further mesh refinement

for the isolated rotor.

Figure 3.21(a) shows the computed performance along with the experimental

results and those from momentum theory [89]. All three results show excellent
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(a) Blade meshes

(b) Cylindrical meshes with blade mesh boundaries

Figure 3.20: Computational mesh for Harrington single rotor-2 [49].

agreement at all thrust levels. Figure 3.21(b) shows the variation of Figure of

Merit (FM) with thrust obtained using both the experiment and computations.

The agreement can be seen to be very good (within 3%) and therefore, clearly

107



establishes the reliability of the code. It should be noted that with the old hole-

cutting method and old blanking technique, the agreement was only fair (∼ 20%

difference at lower thrust coefficient levels), see Fig. 3.22.

CQ

C
T

0 0.0002 0.0004 0.0006 0.0008
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

Experimental
Computational

Momentum Theory

(a)

CT

F
M

0 0.002 0.004 0.006 0.008
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Experimental
Computational

(b)

Figure 3.21: Performance comparison for Harrington single rotor-2 [49].
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Figure 3.22: Performance comparison for Harrington single rotor-2 [49] with old

hole-cutting method and old blanking technique.
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3.4 Summary

In this chapter, improvements made to the computational methodology for the

solution of the RANS equations are verified and validated. The baseline method-

ology in OVERTURNS is also tested with implicit hole-cutting and improved

blanking method. Specifically, the following observations are noted:

• Best overall results for the dual-time stepping preconditioner are obtained

for ∆τ = O(∆t), in terms of accuracy and convergence. This is used

throughout this work.

• The use of low Mach preconditioner increases accuracy near stagnation

points, increases the convergence rate, and results in lift coefficients that

scale with the Prandtl-Glauert compressible factor for the steady 2D flow

over an airfoil.

• The ability to capture the tip vortex formation and evolution is verified

for the experimental configuration of Zuhal at low Mach and Reynolds

number.

• The new blanking technique for dealing correctly with the fringe points on

both the left hand side and right hand side of implicit time marching meth-

ods is seen to maintain accuracy of thick fringes while having the reduced

communication time and interpolation costs of optimally thin fringes on a

steady 2D airfoil flow.

• The use of implicit hole-cutting and improved blanking results in improved

performance predictions for the Harrington single rotor-2 as compared to

previous predictions.
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Chapter 4

Computational Investigation of

Micro-Scale Single Rotor Aerodynamics

in Hover

In this chapter, computations are performed on a hovering micro-scale single

rotor. The performance data is validated with experimental results for different

leading and trailing edge profiles. Subsequently, detailed analysis of the flow

physics is performed and the differences obtained from the various leading and

trailing edge profiles are examined and explained. Finally, a preliminary study

of the effect of twist and taper on MAV blades is conducted.

4.1 Rotor Configuration

With validation of the predictive capability of OVERTURNS for a low Mach

number and Reynolds number 3D fixed-wing case (shown in Chapter 3), the

extension is made to the rotor case by exploring the experimental results obtained

by Ramasamy et al. [29] on a two-bladed hovering rotor having a radius of 86
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mm and a blade chord of 19 mm, resulting in an aspect ratio of 4.52. The

rotor was operated at rotational frequency of 50 Hz. The corresponding tip

speed is 27 m/s, tip Reynolds number is 32, 400 and tip Mach number is 0.08.

The The resulting rotor solidity is 0.145. The untwisted rectangular blades use

a 3.3% curvature circular arc airfoil with a thickness of 3.7%. The baseline

section has a blunt leading as well as trailing edge. Experiments were also

performed on sections which were slightly different from the baseline section. One

of them is the baseline section with sharpened leading edge (SLE) and the other

is the baseline section with sharpened leading edge and trailing edge (SLTE).

Performance data is available at various collective angles. High resolution flow

visualization and particle image velocimetry (PIV) flow-field data are available

for the case with a collective angle of 12◦ using the baseline sectional profile.

Computations are performed on rotor blades with four different sectional

profiles, see Fig. 4.1, listed below:

1. Blunt leading and trailing edge (BLTE)

2. Sharp leading edge and blunt trailing edge (SLE)

3. Blunt leading edge and sharp trailing edge (STE)

4. Sharp leading and trailing edge (SLTE)

The modeled geometries are mostly similar to the corresponding experimental

geometries. Minor modifications are made to the geometries to allow simulation

using a C-type grid. The geometries with sharp leading edge are modeled using

a slightly rounded leading edge and the geometries with blunt trailing edge are

modeled with marginally smoothed trailing edge. Figure 4.2 shows a close up of

a mesh near a sharp leading edge and a blunt trailing edge. It should be noted
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(a) Blunt leading and trailing edge (BLTE)

(b) Sharp leading and blunt trailing edge (SLE)

(c) Blunt leading and sharp trailing edge (STE)

(d) Sharp leading and trailing edge (SLTE)

Figure 4.1: Computational sectional profiles for micro-scale single rotor.

that the differences in the modeled geometry are so small that it is not expected

to have any significant influence on the solution.
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(a) Leading edge

(b) Trailing edge

Figure 4.2: C-mesh near sharp leading edge and blunt trailing edge.
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4.2 Mesh System

A two mesh overset system with a body conforming blade mesh and a cylindri-

cal background mesh is used for the computations. A hole-cutting technique is

used to blank out the portion of the background mesh that overlaps with the

blade mesh. Information is exchanged from one grid to the other by means of

interpolation. For 12◦ collective setting cases, where the flow-field is compared

with the experiments, computations are performed on a fine mesh with the blade

mesh having 267×185×99 points in the streamwise, spanwise and normal direc-

tions respectively and the background cylindrical mesh having 127 × 186 × 198

points in the azimuthal, radial and vertical directions respectively, see Fig. 4.3.

Thus, the total number of mesh points used is about 10 million. A spacing of

2.5 × 10−4c is used in the wall normal direction, which corresponds to y+ value

of around 0.5. In the most refined regions, the background mesh has a grid

spacing of 0.02 chords in both the radial and the vertical directions. Along the

azimuthal direction, a grid plane is spaced every 1.5◦. For all the other collective

settings, where only performance data is compared, computations are performed

on a coarser mesh obtained by leaving out every other point in the spanwise and

normal direction. The chosen time-steps correspond to 0.125◦ of azimuth for the

fine mesh and 0.25◦ of azimuth for the coarse mesh calculations. At each time

step, 6 sub-iterations are used in the dual-time procedure. In the fine mesh, the

calculations take about 20 days when run in parallel on 8 Intel Xeon 3.20GHz

processors. The coarse mesh calculations take one-eighth of the time taken for

the fine mesh calculations.
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(a) Blade mesh (267 × 195 × 99)

(b) Cylindrical mesh (127× 195× 198) with blade mesh

boundary

Figure 4.3: Computational mesh for micro-scale single rotor calculation.
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4.3 Performance Comparison

Figure 4.4 compares the computed performance with the experimentally mea-

sured values [29]. Note that the computed performance data showed 1 − 2%

RMS fluctuation due to flow separation. The results shown here are the mean

values obtained by averaging the thrust and power over one revolution. It can be

seen that the computed performance for all geometries (BLTE, SLE and SLTE)

show good agreement with the experimental results. At higher thrust levels, the

power is under-predicted by about 4 − 5% for the SLE and SLTE geometries

and over-predicted by 1− 2% for the BLTE geometry. The differences at higher

thrust values can be more clearly seen in figure of merit (FM), see Fig. 4.5,

where the predicted maximum FM is slightly higher in comparison with ex-

perimental measurements for the sharp leading edge geometries and marginally

lower for the BLTE geometry. However, the overall comparison between the

computational and the experimental results is reasonably good and, therefore,

demonstrate the capability of the current computational study to provide good

performance predictions.

Comparing the performance of various geometries, it can be seen that the

profiles with a blunt leading edge show degraded performance at all thrust levels

compared to a geometry with a sharp leading edge. Also, interestingly, sharp-

ening the trailing edge is seen to improve the performance of the geometry with

blunt leading edge, but not for the geometry with a sharp leading edge. Looking

at the computational results, it can be seen that while the BLTE and STE ge-

ometries achieve a maximum FM of about 0.48 and 0.52, respectively, the sharp

leading edge profiles attain a maximum FM greater than 0.55. The maximum

FM is achieved at a thrust coefficient level of about 0.015 − 0.02 for the blunt
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Figure 4.4: Performance comparison (CT vs CQ) with experimental data [29] for

micro-scale single rotor.
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Figure 4.5: Performance comparison (FM vs CT ) with experimental data [29]

for micro-scale single rotor.

leading edge geometries and at a thrust coefficient level greater than 0.02 for the

sharp leading edge geometries. The reason for the differences in performance

will be studied in detail in the following sections.

It should be noted that the performance results obtained using the fine mesh

for the 12◦ collective setting are comparable to the coarse mesh results and,

therefore, shows grid convergence in the performance data.

4.4 Blade Surface Streamlines

Separation patterns on the blade surfaces are used to highlight and gain insight

into some of the differences resulting from the various cross-section geometries.

Figure 4.6 shows the surface streamlines on the blades for 12◦ collective setting

for all four geometries. The results shown are obtained for the fine mesh cal-
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culations. Most of the flow is attached for the sharp leading edge geometries,

especially the one with a blunt trailing edge. For the profile with a sharp trailing

edge, the flow separates near the trailing edge at about 80% chord position. The

inboard stations show a small portion of leading edge separation which reat-

taches with fairly strong radial cross-flow. In contrast, the blunt leading edge

geometries result in a leading edge separation that increases in chordwise extent

as one goes towards the tip, with the flow completely separating at the tip. The

reattachment downstream of the leading edge separation bubble then seems to

extend to almost the same positions as for the geometries with sharp leading

edge with identical trailing edge profile. It should be noted that, the predicted

length of separation bubble and amount of separation may not be very accurate

in the present calculations, because of the limitations in the Spalart-Allmaras

turbulence model. However, the results can be expected to be qualitatively cor-

rect, especially since the performance is predicted reasonably well. Transition

modelling might be required to provide a better quantitative prediction of the

separation pattern.
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(a) BLTE geometry

(b) SLE geometry

Figure 4.6: Blade surface streamlines for various geometries at 12◦ collective

setting, micro-scale single rotor.
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(c) STE geometry

(d) SLTE geometry

Figure 4.6: Blade surface streamlines for various geometries at 12◦ collective

setting, micro-scale single rotor. (cont’d)
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4.5 Spanwise Loading Distributions

The differences in the performance of various geometries can be better under-

stood by looking at the spanwise loading distributions. Figure 4.7(a) shows the

spanwise thrust distribution for 12◦ collective setting for all four geometries.

The distribution for the geometries with identical trailing edge profile are com-

parable through most of the span except near the tip (outboard of 0.9R). For

geometries with identical leading edge, the blunt trailing edge profiles produce a

smaller thrust distribution compared to that with sharp trailing edge throughout

the span (and thus a smaller overall total thrust). Comparing the power for the

geometries with identical trailing edge, see Fig. 4.7(b), the spanwise distribution

is similar only in the inboard regions (inboard of ∼ 0.75R). Blunt leading edge

geometries result in a higher power distribution at most of the span locations as

compared to sharp leading edge geometries with the same trailing edge profile

(and thus a larger total power). The differences are more clearly highlighted in

the spanwise distribution of sectional L/D for the blunt and sharp leading edge

geometries (with blunt trailing edge), shown in Fig. 4.8. The blunt leading edge

geometry clearly has lower sectional L/D through most of the span.

Comparing the power for geometries having identical leading edge profile in

Fig. 4.7(b), sharp trailing edge geometries are seen to have higher spanwise power

distribution as compared to blunt trailing edge geometries. This could be misin-

terpreted that sharpening the trailing edge results in performance degradation.

However, it should be noted that the results are compared at different thrust

levels and it was seen previously in Figs. 4.4 and 4.5 that sharpening the trailing

edge improves the overall performance of the blunt leading edge geometry, while

it does not affect the performance of the sharp leading edge geometry.
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Figure 4.7: Spanwise thrust and power distributions for micro-scale single rotor,

12◦ collective setting.

Isolating the power into components due to viscous forces (viscous power,

CQv
) and pressure forces (pressure power, CQp

) can provide a better under-
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Figure 4.8: Sectional L/D distributions for BLTE and SLE geometry of micro-

scale single rotor, 12◦ collective setting.

standing of the reason for the disparities between the power distributions of the

blunt and sharp leading edge geometries. Figure 4.9(a) and Fig. 4.9(b), respec-

tively show the spanwise distribution of viscous and pressure power. From the

figures, it is seen that in contrast to the total power, the viscous power distri-

bution resulting from the blunt leading edge geometry cases are lower than that

from the sharp leading edge geometries at all span locations. The reason for this

is that when there is separated flow, the skin friction is actually in the upstream

direction, which lowers the skin friction drag. The distribution of the pressure

component of power can be seen to be very similar to that of the total power.

Since the viscous component of power is about an order of magnitude smaller

than the pressure component, the disparities in the total powers of various ge-

ometries arises mainly from the differences in the pressure components and the

reason for this dissemblance will be understood better when looking at the blade
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Figure 4.9: Spanwise distributions of components of power for micro-scale single

rotor, 12◦ collective setting.

pressure distributions at various spanwise stations.
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4.6 Blade Pressure Distributions

A better understanding of the spanwise distributions of thrust and power can be

obtained by looking at surface pressure plots at selected spanwise stations. Fig-

ure 4.10 shows the chordwise surface pressure distribution for all four geometries

at 12◦ collective setting at four spanwise locations. The chordwise distributions

for the sharp leading edge geometry cases do not show much variation with span,

whereas those for the blunt leading edge geometries vary significantly with span,

especially in the outboard regions because of the leading edge separation. The

effect of the laminar separation bubble can be seen at the 0.6R and 0.8R span

locations for the blunt leading edge geometries, where the pressure distributions

become relatively constant near the leading edge. At the 0.95R span location,

where the flow is completely separated, the pressure distribution on the upper

surface is wavy and was seen to be quite unsteady.

Comparing the chordwise pressure distributions resulting from the blunt lead-

ing edge geometries with those for the sharp leading edge geometries having

identical trailing edge profile, especially at the inboard locations, one observes

that the distributions are different near the leading edge, whereas they are com-

parable near the trailing edge. The blunt leading edge geometries result in a

larger suction peak which occurs at an earlier chordwise location compared to

that for the sharp leading edge geometries.

Comparing the chordwise pressure distributions resulting from the blunt trail-

ing edge geometries with those for corresponding sharp trailing edge geometries,

it can be seen that the distributions are similar on the bottom surface of the air-

foil. However, on the top surface of the airfoil, the blunt trailing edge geometries

cause higher pressure through most of the chord. As a result, the blunt trailing
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Figure 4.10: Blade pressure distributions at different spanwise location for micro-

scale single rotor, 12◦ collective setting.

edge geometries have lower thrust compared to those from the corresponding

sharp trailing edge geometries.
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Figure 4.10: Blade pressure distributions at different spanwise location for micro-

scale single rotor, 12◦ collective setting. (cont’d)

Figure 4.11 shows the variation of surface pressure along the vertical direc-

tion at the same four spanwise locations for all four geometries at 12◦ collective
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setting. The surface pressures proceed in a clockwise manner around all geome-

tries at all four spanwise locations, except right near the suction peaks at the

leading edge (both at the top and bottom for the blunt leading edge geometries

case). The area enclosed by the curve gives the sectional pressure drag coeffi-

cient. Clearly, the pressure drag for the blunt leading edge geometries are higher

than that for the sharp leading edge geometries and the difference mainly oc-

curs near the maximum z/c location which corresponds to the regions near the

leading edge. The high pressure region created near the leading edge due to stag-

nating flow generates significant amount of pressure drag for the blunt leading

edge geometry case. A small contribution to the pressure drag also comes from

the reduction in suction peak due to the leading edge laminar separation bubble.

It can also be seen that the pressure drag for the blunt trailing edge geometries

are smaller compared to the corresponding sharp trailing edge geometries.
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Figure 4.11: Blade pressure distributions at different spanwise location for micro-

scale single rotor, 12◦ collective setting.
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Figure 4.11: Blade pressure distributions at different spanwise location for micro-

scale single rotor, 12◦ collective setting. (cont’d)
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4.7 Two-Dimensional Analysis

Simple design tools like Blade Element Momentum Theory and Vortex Filament

Method rely on two-dimensional CFD data. The applicability of these analy-

ses to micro-rotor problems is determined by performing 2D computations for

the flow conditions corresponding to one particular section in BLTE and SLTE

blade and comparing the chordwise pressure contours with those obtained from

the 3D analysis. The chosen section on the blade is 0.6R. The corresponding

Reynolds number is 19, 440 and Mach number is 0.048. The local angle of attack

is determined by using the inflow distribution (shown in Fig. 4.30) and is found

to be approximately 3◦ at 0.6R, when the collective setting is 12◦ for both the

geometries.

Figure 4.12 shows the chordwise pressure distribution for 2D calculation at

3◦ angle of attack as well as that for the 3D calculation done at 12◦ collective

setting, at 0.6R span location for both BLTE and SLTE geometry. The dis-

tributions are seen to compare fairly well. There is slight discrepancy on the

upper surface distribution, which arises because of the discrepancy in determin-

ing the correct effective local angle of attack. Additional discrepancy on the

upper surface of the 2D calculation for the BLTE geometry arise because of dif-

ference in separation prediction near the leading edge. Nevertheless, the overall

prediction from 2D calculation is reasonably good, suggesting that simple tools

can indeed provide reasonably good performance prediction when the flow is

attached. However, the two-dimensional analyses are not capable of predicting

the highly three-dimensional flow-field found near the tip of the BLTE geometry

and therefore, can lead to inaccuracies in the performance prediction, when the

flow is separated.
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Figure 4.12: 2D and 3D pressure distributions for conditions found at 0.6R span

location for micro-scale single rotor at 12◦ collective setting.

Figure 4.13 shows lift to drag ratio versus angle of attack for various leading

and trailing edge geometries. At 3◦ angle of attack, the L/D ratio for various

134



geometries is seen to be close to maximum (∼ 15). Note that the L/D ratio

for the 2D calculation is much larger compared to what was seen in 3D (∼ 5),

see Fig. 4.8. The reason for this is because of the difference in the direction

in which drag is determined. In 3D calculations, the local free-stream direction

is not known apriori and therefore, the drag is measured along the rotational

direction. However, in 2D computations the drag is measured along the free-

stream direction. To provide proper comparison, the component of drag along

the local free-stream direction needs to be taken in 3D and doing so would

provide good comparison of L/D ratio with those obtained from 2D.
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Figure 4.13: L/D versus angle of attack for various geometries using 2D calcu-

lation.

Having established the reliability of 2D calculation in the attached flow re-

gions, the 2D analysis is used to provide further understanding of the differences

between blunt and sharp leading edge geometries for a range of angles of at-

tack. It is observed in Fig. 4.13 that, blunt leading edge geometries have slightly
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higher L/D ratio compared to sharp leading edge geometries with identical trail-

ing edge at lower angles of attack. However, the L/D ratio for the blunt leading

edge geometries is seen to rapidly decrease beyond 5◦ angle of attack, while the

sharp leading edge geometries have a much more gradual drop. As a result,

sharp leading edge geometries have better L/D ratio at higher angles of attack.

In 3D calculations, high local angles of attack were found in outboard region at

moderate collective settings and through most of the span at higher collective

settings. As a result, blunt leading edge geometries show slightly degraded per-

formance at moderate collective settings and significantly degraded performance

at higher collective settings. The variation of 2D lift to drag ratio with angle of

attack also suggests that for all geometries, it is preferable to operate at a local

angle of attack of around 3◦. This can be achieved by having a certain amount

of negative twist.

4.8 Sectional Flow Contours

In order to attain a better understanding of the separation, spanwise contours

of eddy viscosity for all four geometries at 12◦ collective setting are plotted in

Figs. 4.14, 4.15, 4.16 and 4.17 at the same spanwise locations as the pressure

plots, shown earlier. At the 0.4R station there is little difference between all

of the cases. The leading edge separation bubble for the blunt leading edge

geometries is very small. The high values of eddy viscosity are concentrated in

the separated regions near the trailing edge and in the very near wake. The wake

also seems to show the typical shear layer instabilities for low Reynolds number

flow, clearly indicating that the flow is unsteady. It should be noted that over

most of the airfoil, the eddy viscosity values are less than one and the flow
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is substantially predicted to be laminar. By the 0.6R station, the separation

is more pronounced for the blunt leading edge geometries in the leading edge

region; as a result, the results do show a movement forward for the beginning

of the growth in eddy viscosity. The region of higher eddy viscosity has grown

slightly larger near the trailing edge for both geometries with clear shear layer

instability. By the 0.8R location, there is now a region of high eddy viscosity

near the leading edge region for the blunt leading edge geometries that connects

to the high eddy viscosity region near the trailing edge. At the 0.95R station

there is clearly a relatively massively separated flow region that extends over

nearly the whole chord of the cross section for the blunt leading edge geometry

cases, resulting in a large volume of high eddy viscosity flow. The eddy viscosity

contours seem to show that the Spalart-Allmaras model fortuitously mimics a

transition model. The eddy viscosity remains fairly low in the laminar regions

and increases as the flow separates and the flow transitions to turbulent. This

suggests that the separation pattern predicted in the present calculations might

indeed be quite reasonable.

Figures 4.18 and 4.19 show radial velocity contours along with streamlines

at spanwise locations of 0.4R and 0.8R, respectively. The plots show similar

separation features as those observed in the contours of eddy viscosity. It is in-

teresting to note that in the regions of flow separation, the radial flow component

of velocity is very strong as compared to the regions outside. This may result in

the transport of eddy viscosity from within the leading edge separation bubble

towards the tip, further elevating the level of eddy viscosity in the tip region.
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(a) BLTE geometry (b) SLE geometry

(c) STE geometry (d) SLTE geometry

Figure 4.14: Eddy Viscosity contours at 0.4R for micro-scale single rotor, 12◦

collective setting.
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(a) BLTE geometry (b) SLE geometry

(c) STE geometry (d) SLTE geometry

Figure 4.15: Eddy Viscosity contours at 0.6R for micro-scale single rotor, 12◦

collective setting.
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(a) BLTE geometry (b) SLE geometry

(c) STE geometry (d) SLTE geometry

Figure 4.16: Eddy Viscosity contours at 0.8R for micro-scale single rotor, 12◦

collective setting.
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(a) BLTE geometry (b) SLE geometry

(c) STE geometry (d) SLTE geometry

Figure 4.17: Eddy Viscosity contours at 0.95R for micro-scale single rotor, 12◦

collective setting.
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(a) BLTE geometry (b) SLE geometry

(c) STE geometry (d) SLTE geometry

Figure 4.18: Radial Velocity contours along with streamlines at 0.4R for micro-

scale single rotor, 12◦ collective setting.
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(a) BLTE geometry (b) SLE geometry

(c) STE geometry (d) SLTE geometry

Figure 4.19: Radial Velocity contours along with streamlines at 0.8R for micro-

scale single rotor, 12◦ collective setting.
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4.9 Flow-field Visualizations

Next, qualitative features in the flow-field are examined. Figure 4.20 shows iso-

surfaces of the so-called q-criterion [90] near the blade surface for 12◦ collective

setting for all four geometries. While the flow is smooth near the tip of the sharp

leading edge geometries, numerous vortical structures can be seen on the top of

the blades with blunt leading edge geometries, due to flow separation. These

structures can also be seen in Figs. 4.21 (a) & (c), which show the streamwise

vorticity contours. Looking at the tip vortex, for both the leading edge geome-

tries, it is evident that the tip vortex flow-field is extremely complicated because

of the presence of a variety of secondary structures near the blade tip. The origin

of these structures can be discerned from Fig. 4.21. While initial traces of the

tip vortex can be seen slightly upstream of the quarter-chord point, secondary

vortices originate from the leading edge as well as from the separation of the

crossflow boundary layer rolling over the rounded tip. In addition to the sec-

ondary vortices, a large number of additional vortical structures are found near

the trailing edge of the blade over most of the span for both cases as seen from

Fig. 4.21; although they are better formed for the sharp leading edge geometries.

Similar vortical structures can be seen even in the experimental flow visualiza-

tion [29] shown in Fig. 4.22. These structures are formed as a result of flow

separation near the blade trailing edge. Within a short distance downstream of

the trailing edge, these structures appear to have merged with the tip vortex (as

seen from the coherent iso-surface in Fig. 4.20).

Figure 4.23 shows the iso-surface of q-criterion (colored with vorticity mag-

nitude contour) in the entire flow-field for the BLTE geometry at 12◦ collective

setting. The resolution of the tip vortex until 3 blade passages is clearly evident.
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Beyond this wake-age, the background mesh becomes too coarse to accurately

represent the details of the tip vortex. An interesting feature revealed from this

figure is the fact that while the tip vortex is smooth initially, it seems to get

twisted near the first blade passage. This is because of the fact that it is embed-

ded in a highly strained field due to the presence of the evolving tip vortex (note

that the vertical convection of the tip vortex is relatively low before the first

pass as has been well documented [1, 38]) and other near-blade structures. It is

also seen that after the first pass, the vortex becomes wavy along its axis, thus

suggesting a slight instability. Interestingly, such an instability was observed

experimentally even for a full-scale rotor [1]. It should be mentioned here that

the corresponding iso-surface for the other geometries at 12◦ collective setting is

not too different from Fig. 4.23.

Further evidence of the interaction between different turns of the tip vortex

can be seen in Fig. 4.24(a), in which vorticity magnitude contours are shown

along a 0◦ azimuthal plane of the background mesh. The tip vortex, after its first

blade passage, is seen to interact with the inboard wake as well as the second

blade passage, both of which introduce a strain-field. The experimental flow

visualization [29] plotted in Fig. 4.24(b) is qualitatively similar to the computed

flow-field and shows similar interactions.

145



(a) BLTE geometry (b) SLE geometry

(c) STE geometry (d) SLTE geometry

Figure 4.20: Iso-surfaces of second invariant of velocity magnitude, q = 8.0, at

12◦ collective setting for micro-scale single rotor.
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(a) BLTE geometry (b) SLE geometry

(c) STE geometry (d) SLTE geometry

Figure 4.21: Contours of streamwise vorticity at 12◦ collective setting for micro-

scale single rotor.

Figure 4.22: Experimental flow visualization [29].
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Figure 4.23: Iso-surfaces of second invariant of velocity magnitude (colored by

vorticity magnitude), q = 1.0, at 12◦ collective setting for micro-scale single

rotor, BLTE geometry.
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(a) Contours of vorticity magnitude at ψ = 0◦ for BLTE

geometry of micro-scale single rotor at 12◦ collective set-

ting.

(b) Experimental flow visualization [29]

Figure 4.24: Flow-field comparison.
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4.10 Wake Trajectory

Figure 4.25 shows the computed wake trajectory for the BLTE geometry at

12◦ collective setting, along with the experimental data. The computed radial

contraction of the wake (shown in Fig. 4.25(a)) shows good comparison with

the experimental wake trajectory in the early wake ages. By the wake age of

210◦, the experimental wake trajectory does not seem to contract, while the

computed trajectory continues to contract. The difference could be because of

the large separation near the root due to the mounting apparatus (hub) in the

experiment, which prevents wake contraction (see Fig. 4.26). The instability in

the computed wake, after the first blade passage, can be seen in the form of

wiggles after 180◦ azimuth (discussed previously). Additionally, the contraction

rate is seen to decrease, after the first blade passage at 180◦ azimuth, as a

result of the interaction of the tip vortex before the first blade passage with

the tip vortex after the blade passage. The blade passage effect is also seen in

the vertical convection of the wake, see Fig. 4.25(b). After the blade passage,

the vertical convection rate increases because of increased inflow. Note that,

computed vertical convection is seen to compare well with the experimental

measurements.

Figure 4.25(c) shows the spatial location of the wake. The computed trajec-

tory is again seen to compare well with the experiments during the initial wake

ages, but differs at the later wake ages, due to the differences in the radial con-

traction explained before. For the computed trajectory, it can be seen that the

wake contracts to less than 0.8R and is not too different from that observed for

full-scale rotors [1]. Recall that the theoretical momentum theory contraction

is 0.707R. The wake trajectories for the other geometries are not too different
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from that of the BLTE geometry.

azimuth (deg)

r/
R

0 60 120 180 240 300 360 420 480 540
0.75

0.8

0.85

0.9

0.95

1

Experimental

Computational

(a) r/R vs azimuth

azimuth (deg)

z
/R

0 60 120 180 240 300 360 420 480 540
1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

0.1

Experimental

Computational

(b) z/R vs azimuth

Figure 4.25: Comparison of wake trajectory with experimental data [29] for

BLTE geometry of micro-scale single rotor at 12◦ collective setting.
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Figure 4.25: Comparison of wake trajectory with experimental data [29] for

BLTE geometry of micro-scale single rotor at 12◦ collective setting. (cont’d)

Figure 4.26: Experimental flow visualization [29].
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4.11 Vortex Structure Comparison

Experimental data [29] can be used to quantitatively validate the initial devel-

opment and evolution of the tip vortex structure. Figures 4.27 and 4.28 show

the comparison of swirl velocity and axial velocity profiles, respectively along a

line passing through the center of the tip vortex at different wake ages at 12◦ col-

lective setting for the BLTE geometry. It should be noted that the axial deficit

in the core of the vortex is very large and is most likely due to the dominance

of viscous forces for these small scale micro-rotors. In general, there is good

agreement between the computational and the experimental results. The peak

swirl velocity is predicted correctly at all azimuth locations, however, the peak

axial deficit is over-predicted (less than ∼ 25%). The core radius, defined as half

the distance between the peak-to-peak swirl velocity is also over-predicted at all

wake ages. At 180◦ wake age, the core radius is over-predicted by about 20%.

However, the rate of core growth and the rate of peak swirl decay is predicted

accurately, see Fig. 4.29, indicating that the inconsistency mainly arises during

tip vortex formation, while the tip vortex evolution is well resolved.

Apart from the experimental uncertainties, there are two possible reasons

for the discrepancy. The main reason could be due to the inadequacy of the

Spalart-Allmaras turbulence model in a non-isotropic environment such as those

found near the regions of tip vortex formation. Additionally, better turbulence

modeling is required to capture the separation correctly. It might be worthwhile

to examine this issue using a DES approach in the tip region. The second reason

for the discrepancy could be due to under-resolution of the tip vortex formation

because of insufficient mesh resolution near the blade tip.
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Figure 4.27: Vortex swirl velocity profile (non-dimensionalized by tip speed)

comparison between computational BLTE geometry and experimental baseline

geometry [29] for micro-scale single rotor, 12◦ collective setting.
154



r/c

a
x
ia

l
v
e

lo
c
it
y

1 0.5 0 0.5 1
0.5

0.4

0.3

0.2

0.1

0

0.1

Computational

Experimental

(a) Ψ = 30◦

r/c

a
x
ia

l
v
e

lo
c
it
y

1 0.5 0 0.5 1
0.5

0.4

0.3

0.2

0.1

0

0.1

Computational

Experimental

(b) Ψ = 60◦

r/c

a
x
ia

l
v
e

lo
c
it
y

1 0.5 0 0.5 1
0.5

0.4

0.3

0.2

0.1

0

0.1

Computational

Experimental

(c) Ψ = 90◦

r/c

a
x
ia

l
v
e

lo
c
it
y

1 0.5 0 0.5 1
0.5

0.4

0.3

0.2

0.1

0

0.1

Computational

Experimental

(d) Ψ = 120◦

r/c

a
x
ia

l
v
e

lo
c
it
y

1 0.5 0 0.5 1
0.5

0.4

0.3

0.2

0.1

0

0.1

Computational

Experimental

(e) Ψ = 150◦

r/c

a
x
ia

l
v
e

lo
c
it
y

1 0.5 0 0.5 1
0.5

0.4

0.3

0.2

0.1

0

0.1

Computational

Experimental

(f) Ψ = 180◦

Figure 4.28: Vortex axial velocity profile (non-dimensionalized by tip speed)

comparison between computational BLTE geometry and experimental baseline

geometry [29] for micro-scale single rotor, 12◦ collective setting.
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Figure 4.29: Tip vortex viscous core radius (a) and Peak tip vortex swirl velocity

(b) comparison with experimental data [29] with wake age for micro-scale single

rotor.
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4.12 Average Velocity Profiles in Wake

The sectional drag for low Reynolds number airfoils is much larger than that at

high Reynolds number and may alter the induced velocities in the rotor wake

for small scale micro-rotors. Figure 4.30 shows the radial variation of various

components of velocity averaged in the azimuthal direction. The variation is

shown at different planes below the rotor. It should be noted that the results

shown at z = 0 are obtained by averaging those at z = 0.1c and z = −0.1c (to

minimize influence of the rotor blade). The velocities are non-dimensionalized by

the tip speed. The peak magnitude of the radial velocity reaches about 15% of

the tip speed in the plane of the rotor and it occurs near the tip of the blade. As

one moves away from the rotor, the radial component becomes weaker and the

location of peak radial velocity moves inboard as a result of wake contraction.

Correspondingly, the location of peak swirl velocity and peak inflow also move

inboard. The average magnitude of swirl velocity in the wake region remains

fairly constant at about 5− 6% of the tip speed at all distances from the blade,

with the peak reaching about 10 − 12% of the tip speed. These values are

significantly larger as compared to those for a full-scale rotor. Sample results

for the full-scale Harrington single rotor-2 (studied in Chapter 3), operating at

a thrust coefficient of 0.004, is plotted in Fig. 4.31. The thrust coefficient for the

micro-scale rotor is about 0.0167. As a result, the inflow for the full-scale rotor

is about half the value as that of the micro-rotor. The swirl velocity, however is

only about one-fourth of that for the micro-rotor. The larger swirl velocity can

be one of the reasons for additional power loss in micro-scale rotors. Note that a,

similar magnitude of swirl velocity component was seen for the other micro-scale

rotor geometries.
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Figure 4.30: Average velocities along radial direction at different planes below

the rotor for BLTE geometry for micro-scale single rotor, 12◦ collective setting.
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Figure 4.30: Average velocities along radial direction at different planes below

the rotor for BLTE geometry for micro-scale single rotor, 12◦ collective setting.

(cont’d)
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Figure 4.31: Average velocities along radial direction at different planes below

the rotor for full-scale Harrington single rotor-2 [49], CT = 0.004.
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4.13 Effect of Twist and Taper

Having studied the effect of leading and trailing edge geometry profiles for micro

rotors, an initial study is also performed on the effect of twist and taper on

the performance of these small-scale rotors. Twist and taper are generally used

to optimize the rotor performance in full-scale helicopters. Taper reduces the

profile losses near the tip, apart from reducing the local solidity of the blades

and consequently the inflow. On the other hand, introducing negative twist in

the blades increases the inflow at the root while reducing it at the tips. This

produces a more uniform inflow distribution, thus reducing the induced losses of

the rotor. With the right combination of twist and taper, a more uniform inflow

and higher lift to drag ratios can be achieved along the blade span. Twist and

taper can also be expected to provide similar benefits in micro-scale rotors.

Past studies on the use of twist for micro-rotor blades have shown contra-

dictory results. Use of twist was shown to be beneficial in the experimental

studies of Ramasamy et al. [30]. However, in the experimental studies done

by Bohorquez [2], the use of twist did not show any benefits compared to the

untwisted blades, whereas, the blade element momentum theory (BEMT) anal-

ysis on the same blades did show improvements for the twisted blades. Similar

to twist, past studies also show contradictory results for the use of taper on

micro-rotor blades. The experimental results obtained by Bohorquez showed

improvements with taper (asymmetric distribution showing maximum benefits).

On the other hand, experimental results obtained by Ramasamy et al. showed

no benefits with the use of taper. In this section, the computational method-

ology developed in this work is used to provide further insights into the use of

twist and taper for the MAV rotors.
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Figure 4.32: Performance comparison for various blade twists for micro-scale

single rotor, SLTE geometry.

Figure 4.32 shows the performance comparison for three different linear twists

(−3◦, −10◦ and −15◦) along with the no twist case for the SLTE geometry.

Clearly, we can see that the performance improves with larger negative twist,

especially at higher thrust values. The FM for the −15◦ twist reaches a max-

imum value greater than 0.6 (∼ 10% increase from SLTE). The reason for the

improved performance is clearly due to a more uniform inflow achieved by the
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Figure 4.33: Average inflow velocity along radial direction at different planes

below the rotor for micro-scale single rotor, θ0.75 = 12◦.

twisted blades, see Fig. 4.33, where the inflow velocity at different planes below

the rotor is plotted for the untwisted/untapered SLTE geometry and the −15◦

twisted planform. Additionally, the thrust level at which maximum CT/CQ is

achieved also increases (∼ 35%) as the twist increases. This is significant be-

cause the MAV can now operate at a higher thrust level to achieve maximum

endurance.

(a) 2:1 Symmetric Taper (b) 2:1 Asymmetric Taper (c) 2:1 Bilinear Taper

Figure 4.34: Blade taper planforms for micro-scale single rotor.

Effect of taper is investigated by simulating three different taper distribu-

tions; 2 : 1 symmetric linear taper, 2 : 1 asymmetric linear taper and 2 : 1

bilinear taper (shown in Fig. 4.34). Additionally, a blade that uses a combina-

tion of twist (−15◦) and taper (2 : 1 bilinear) is studied. The taper starts at
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Figure 4.35: Performance comparison for various blade taper for micro-scale

single rotor, SLTE geometry.

80% span. The symmetric and the asymmetric taper distributions are similar

to those studied by Bohorquez [2]. For the symmetrically tapered blade, the

mid-chord line remains unchanged, while for the asymmetrically tapered blade,

the leading edge line remains unchanged. For the bilinearly tapered blade, the

leading edge remains unchanged till 90% span. Both asymmetric and bilinear

taper intrinsically introduces a negative twist. In order to maintain the thick-
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ness ratio, the airfoil is thinned as the blade tapers. Taper introduces a very

small change in solidity, which can be neglected. Figure 4.35 shows the perfor-

mance comparison for that resulting from the untapered SLTE geometry along

with those resulting from the various taper distributions. It can be seen that

all the untwisted taper planforms provide similar performance improvements at

all thrust levels. This suggests that the performance improvement mainly arises

due to the reduction in profile power, as the difference in twist near the tip for

the two tapered blades did not contribute to any significant difference in perfor-

mance. This fact is also supported by Fig. 4.36, where spanwise sectional L/D is

plotted for SLTE geometry along with symmetrically tapered geometry. Clearly,

the sectional L/D for tapered geoemetry is larger near the tip because of the

decrease in profile power, while there is no significant differences in the inboard

untapered portions. Because of the performance improvements, maximum FM

for the tapered blades reaches a value of about 0.58 (∼ 5% increase from SLTE).

The thrust level at which CT/CQ reaches a maximum, increases marginally for

the tapered blades.

The combined use of twist and taper can be seen to perform better than

just having either twist or taper, achieving a maximum FM of about 0.63 (∼

14% increase from SLTE), showing that performance in MAVs can be further

improved by having a good blade planform. Further studies will be required to

determine an optimal configuration.

4.14 Summary

In this chapter, time accurate computations of hovering micro-scale single ro-

tors are validated with available experimental data and the resulting flow-field
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Figure 4.36: Sectional L/D distributions for SLTE and symmetrically tapered

blade of micro-scale single rotor, 12◦ collective setting.

examined to determine the resulting flow physics. The solver is applied to study

the effect of leading and trailing edge geometries on hovering micro rotors. Four

different geometries comprising of two different leading and trailing edge profiles

(blunt and sharp) for the blade section were studied. The performance of all

the geometries show good comparison with the experimental data. Blunt lead-

ing edge geometries show poorer performance compared to the corresponding

sharp leading edge geometries mainly because of large pressure drag acting at

the blunt front. A blunt leading edge geometry also shows a significant leading

edge laminar separation bubble which results in complete separation near the

tip. Flow visualization shows that the tip vortex flow-field is very complicated

with the presence of secondary vortices and additional vortices formed due to

separation near the trailing edge. The tip vortex velocity profiles are reasonably

well predicted as compared to experimental data, but the inadequacy of the
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current turbulence model may lead to some discrepancies during tip vortex for-

mation. The examination of the wake trajectory showed good comparison with

the experimental data during the initial wake ages. However, the comparison

was not good at a later wake age, because of the expansion of the experimental

trajectory caused by the separation near the root due to the mounting appara-

tus. The swirl velocities for the micro-rotor are found to be significantly larger

as compared to those from a full-scale rotor, which can be one of the reasons for

additional power loss in the smaller scale rotors.

A preliminary study on planform shape shows that the use of twist and

taper improves the performance of micro rotors, similar to that for full-scale

rotors. Twist reduces the induced power, while taper decreases the profile power.

Additionally, twist increases the thrust level at which the rotor has maximum

thrust to power ratio. Combined use of twist and taper is seen to further improve

the performance.
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Chapter 5

Computational Investigation of Full

Scale Coaxial Rotor Aerodynamics in

Hover

After having performed computations on a hovering micro-scale single rotor,

the next step is to validate the CFD model developed for a coaxial rotor in

full-scale. In this chapter, high resolution computations are performed on a

hovering full-scale coaxial rotor and validated with experimental performance

results. Subsequently, detailed analysis of the flow physics is performed. A trim

procedure is implemented to balance the torque and to trim the thrust to a

particular value. The experimental results are torque-trimmed and therefore, it

is appropriate to trim the CFD solution for the purpose of comparison.

5.1 Rotor Configuration

The hovering coaxial experimental setup of Harrington Rotor-2 [49] is used to

validate the computational predictions for the coaxial rotors at full-scale. It
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consists of two 2-bladed rotors arranged to form a coaxial system. The aspect

ratio of the blade is 8.33 (blade chord is 18 inches and rotor diameter is 25 feet),

resulting in an individual rotor solidity of 0.076 with rotor spacing, H/D = 0.08

(1.33 chords). The blade uses a NACA airfoil with a linearly varying thickness

of 27.5% at 0.2R to 15% at R. The tip speed of the rotor is 392 ft/sec. The

corresponding tip Reynolds number is 3.5 × 106 and the tip Mach number is

0.352. Thus, each rotor system is identical to the single rotor system examined

in Chapter 3.

5.2 Mesh System

A six mesh system consisting of two blade meshes, two nested background meshes

and two cylindrical outer background meshes is used. The blade mesh, the nested

background mesh and the outer background mesh of each rotor form an overset

system. It was mentioned before in Chapter 2, that the outer boundary of

the blade mesh cannot be made to extend very far from the blade surface in a

coaxial configuration and is limited by the rotor separation distance. Therefore,

nested background meshes are used, which can transfer the solution smoothly

from the blade mesh to the outer background mesh. The outer background

meshes communicate with each other by means of a sliding mesh interface as

explained earlier, allowing for a complete simulation using just one blade mesh

in each rotor system. The solution is transferred from one mesh to the other

by using a third order slope limited M3-quartic interpolation of Huynh [91].

Compared to first order (linear) interpolation, the higher order interpolation

significantly reduces the oscillation in the forces of the bottom rotor arising due to

the interpolation error, along with providing a better representation of the wake.

169



It should be mentioned here that, a spectral scheme was investigated to provide

higher order interpolation. However, the results were unsatisfactory due to the

presence of numerous spurious oscillations and therefore, in order to minimize

these oscillations, a monotonic M3-quartic interpolation was chosen. The extra

cost for the higher-order interpolation is minimal since the interpolation is only

one-dimensional between the sliding mesh boundaries.

All the computations are performed on top and bottom rotor blade meshes

having 267×155×111 points in the streamwise, spanwise and normal directions,

respectively, nested background meshes having 97 × 204 × 72, top rotor outer

background mesh having 97×270×61 points and bottom rotor outer background

mesh having 97 × 270 × 180 in the azimuthal, radial and vertical directions,

respectively. Thus, the total number of mesh points used is 18.3 million.

Figure 5.1 shows the blade and background meshes. The blade mesh of the

top rotor is sufficiently fine in the tip region to resolve the tip vortex formation.

For the bottom rotor, the grid is redistributed such that the inboard region

is more highly refined, in order to resolve the wake interaction. In the most

refined regions, the nested background mesh has a grid spacing of 0.0165 chords

in the vertical direction, while the outer background mesh has a grid spacing

of 0.033 chords in the same direction. In the radial direction, both the nested

and outer background meshes have a grid spacing of 0.02 chords in the most

refined region. Along the azimuthal direction, a grid plane is spaced every 2◦

in the outer background mesh. For the nested background mesh, the azimuthal

spacing varies from 0.3◦ near the blade to 2◦ in its outer boundaries. The outer

boundary of the outer background mesh extends to 3R above the top rotor,

4.5R below the bottom rotor and 4R from the tip of the blade. Each calculation
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along with trimming takes about 30 days when run in parallel on 16 Intel Xeon

3.20GHz processors.

(a) Blade mesh with inner and outer cylindrical meshes

of the top and bottom rotors

(b) Inner and outer cylindrical meshes of the bottom ro-

tor (top view)

Figure 5.1: Computational mesh for full-scale coaxial rotor system.
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5.3 Trimming Procedure

In the experimental test, the top and bottom rotors were torque balanced by

selecting the appropriate collective pitch. In order to obtain a reasonable vali-

dation, the CFD results need to be yaw-trimmed. This is achieved by using a

trimming procedure, by which the thrust is trimmed to a specific value in ad-

dition to balancing the torque. The CFD calculations are started using initial

collective settings obtained from the vortex filament method for various target

values of thrust. These settings were provided by Ananthan [53]. Using the

initial results obtained from these collective angles, the collective settings are

changed in a manner described below [92].

The rotor control input vector and the response vector are respectively given

by

x = {θ01
, θ02

}T

y = {ΣCT ,ΣCQ}T

where, θ01
and θ02

are respectively the collective setting of the top and bottom

rotor. Note that the sign of CQ of the bottom rotor is taken negative.

The change in the response vector for a perturbation in the input vector x

can be written as a Taylor series expansion given by

y(x + ∆x) = y +
∂y

∂x
∆x + ...

The Jacobian matrix, [J ] of the dependent quantities with respect to the

independent quantities can be written as
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[J ] =
∂y

∂x
=







∂ΣCT

∂θ01

∂ΣCT

∂θ02

∂ΣCQ

∂θ01

∂ΣCQ

∂θ02







Neglecting the higher order terms, the expression for the perturbation in the

control input vector x can be written as

∆x = [J ]−1(y(x + ∆x) − y) = [J ]−1











ΣCT − CTreq

ΣCQ











The Jacobian matrix obtained from the vortex filament code is used to de-

termine the change in collective settings. The solution for the new collective

settings are calculated using the previous solution as the initial condition. As a

result, the convergence time reduces significantly, thereby making the trimming

procedure feasible. The above step is repeated until the values are trimmed

to within 1% of the target. For all cases the trim criteria was met in 3 to 4

iterations.

Table 5.1 shows the trim collective settings obtained for various target thrust

values. These settings are not too different from that obtained using the vortex

filament code.
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Table 5.1: Trim collective settings for the top and bottom rotors of full-scale

coaxial system.

Case CT θ0 θ0

(Target) (top rotor) (bottom rotor)

1 0.000 0.00◦ 0.00◦

2 0.002 3.72◦ 4.10◦

3 0.003 4.74◦ 5.22◦

4 0.004 5.73◦ 6.22◦

5 0.005 6.63◦ 7.11◦

6 0.006 7.45◦ 7.95◦

7 0.007 8.36◦ 8.85◦

8 0.008 9.10◦ 9.60◦

9 0.009 9.85◦ 10.30◦
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5.4 Performance Comparison

5.4.1 Mean Performance

Tables 5.2 and 5.3 respectively summarize the mean values of thrust (CT ) and

power (CQ) coefficients obtained from CFD for each individual rotor system as

well as for the entire system. It can be seen that all the cases are trimmed to

within the specified criteria of 1% error. As a general trend, it is observed that

as the total thrust increases, the difference between the top and bottom rotor

thrust also increases. Table 5.2 also shows the ratio of the top rotor thrust to

the total thrust. It can be seen that at all thrust levels, the top rotor contributes

to about 55% of the total value.

Table 5.2: Computed mean thrust coefficient for full-scale coaxial system.

Case CTtop
CTbot

CTtotal
CTtop

/CTtotal

1 −0.00006 0.00005 0.00001 -

2 0.00112 0.00086 0.00198 0.57

3 0.00164 0.00134 0.00298 0.55

4 0.00219 0.00177 0.00396 0.55

5 0.00274 0.00221 0.00495 0.55

6 0.00329 0.00271 0.00600 0.55

7 0.00385 0.00317 0.00702 0.55

8 0.00436 0.00364 0.00800 0.55

9 0.00490 0.00411 0.00901 0.54

Figure 5.2(a) compares the computed variation of mean total thrust coef-

ficient with mean total power coefficient with the measured values. The total

performance is well predicted. At lower collectives, the power is slightly over-
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Table 5.3: Computed mean power coefficient for full-scale coaxial system.

Case CQtop
CQbot

CQtotal
|CQtop

− CQbot
|

1 0.000104 0.000107 0.000211 0.000003

2 0.000148 0.000148 0.000296 0.000000

3 0.000180 0.000180 0.000360 0.000000

4 0.000220 0.000218 0.000438 0.000002

5 0.000264 0.000261 0.000525 0.000003

6 0.000312 0.000311 0.000623 0.000001

7 0.000369 0.000367 0.000736 0.000002

8 0.000425 0.000426 0.000851 0.000001

9 0.000489 0.000489 0.000958 0.000000

predicted for a given thrust, whereas at higher collectives, the power is marginally

under-predicted for a given thrust level. Plotted along with the experimental

data and the CFD results is the curve fit using momentum theory for a coaxial

rotor [89]. The results using momentum theory also show a similar trend as the

CFD results.

Figure 5.2(b) shows the mean performances of the individual rotor systems

(zero collective case is excluded). As expected, for the bottom rotor, the per-

formance degrades significantly (about 40% increase in power at same thrust at

higher thrust levels) compared to that of the single rotor because of the influence

of the wake from the top rotor. It is interesting to note that even the perfor-

mance of the top rotor is slightly degraded (about 15% increase in power at

same thrust at higher thrust levels), indicating that the bottom rotor has some

influence on the flow-field of the top rotor. Similar observations were made by

Syal [55] for the Harrington rotor-1 using a Free Vortex Method (FVM).
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Figure 5.2: Comparison of performance with experimental data [49] for full-scale

coaxial rotor.

5.4.2 Unsteady Performance

A measure of the unsteadiness in thrust and power is the root mean square

value of the temporal variations and this is summarized in Tables 5.4 and 5.5.
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As a general trend, the absolute value of the fluctuation increases with increasing

collective pitch settings, except for the bottom rotor torque. For the bottom rotor

torque, the absolute fluctuations increase at lower thrust values, but reaches a

plateau at higher thrust levels. Looking at the relative fluctuation with respect

to the mean value, we see a reduction in value for all quantities except the top

rotor power. For the top rotor power, the relative fluctuation is seen to remain

constant over a large range of CT . Additionally, when the fluctuations of the

whole system are compared to that of the individual rotors, it is seen that though

the absolute value is higher, the relative fluctuation is smaller. In general, there

is 5− 10% fluctuation in all integrated quantities, which could be significant for

vibration and acoustic characteristics. Further details of the temporal variation

will be presented later in this section.

Table 5.4: Computed RMS fluctuation of thrust coefficient for full-scale coaxial

system.

Case dCTrms
% dCTrms

% dCTrms
%

(top rotor) fluctuation (bottom rotor) fluctuation (total) fluctuation

1 0.000131 − 0.000141 − 0.000027 −

2 0.000185 16.52% 0.000125 14.53% 0.000128 6.46%

3 0.000209 12.74% 0.000137 10.22% 0.000208 6.97%

4 0.000235 10.73% 0.000160 9.04% 0.000278 7.02%

5 0.000260 9.49% 0.000176 7.96% 0.000335 6.77%

6 0.000287 8.72% 0.000198 7.31% 0.000391 6.51%

7 0.000313 8.13% 0.000235 7.41% 0.000440 6.27%

8 0.000341 7.82% 0.000242 6.65% 0.000484 6.05%

9 0.000368 7.51% 0.000257 6.25% 0.000532 5.90%
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Table 5.5: Computed RMS fluctuation of power coefficient for full-scale coaxial

system.

Case dCQrms
% dCQrms

% dCQrms
%

(top rotor) fluctuation (bottom rotor) fluctuation (total) fluctuation

1 0.0000114 10.96% 0.0000118 11.02% 0.0000231 10.94%

2 0.0000106 7.16% 0.0000144 9.73% 0.0000227 7.67%

3 0.0000121 6.72% 0.0000156 8.66% 0.0000234 6.50%

4 0.0000140 6.36% 0.0000175 8.03% 0.0000253 5.77%

5 0.0000166 6.29% 0.0000184 7.05% 0.0000268 5.10%

6 0.0000197 6.31% 0.0000191 6.14% 0.0000291 4.67%

7 0.0000235 6.37% 0.0000193 5.23% 0.0000322 4.38%

8 0.0000277 6.52% 0.0000193 4.54% 0.0000357 4.20%

9 0.0000317 6.48% 0.0000188 3.84% 0.0000383 4.00%

Figures 5.3 and 5.4, respectively shows the temporal variation of CT and CQ

over one revolution for cases 2-9. Note that, when viewed from above, the top

rotor rotates in an anti-clockwise fashion and the bottom rotor rotates clockwise.

Therefore, the azimuthal locations of the top and bottom rotors are measured

in their respective directions of rotation. From the figure, the unsteadiness is

clearly seen with a dominant 4/rev frequency (number of times a blade of one

rotor encounters a blade of the other rotor in one revolution). A higher frequency

variation can be seen in the form of spikes when the blades are very close to

each other. Such a variation can be attributed to the venturi effect caused by

the thickness of the blades, which leads to a reduction in pressure between the

rotors. As a result, the thrust of the top rotor spikes down whereas the thrust

of the bottom rotor spikes up. Apart from the thickness effect, there is also a
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(a) Top rotor CT variation

(b) Bottom rotor CT variation

Figure 5.3: Temporal variation of CT of the top and bottom rotors over one

revolution for all cases for full-scale coaxial system.

loading effect created by the bound circulation of the blades. These effects are

schematized in Fig. 5.5. As the blades of the top and bottom rotors approach
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(a) Top rotor CQ variation

(b) Bottom rotor CQ variation

Figure 5.4: Temporal variation of CQ of the top and bottom rotors over one

revolution for all cases for full-scale coaxial system.

each other, each blade induces an upwash on the other blade. The upwash

increases as the blades approach each other, but after a certain point it starts
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Figure 5.5: Schematic of the loading effect in coaxial system.

decreasing, changes sign and acts as a downwash. The strength of the downwash

is seen to initially increase and then starts decreasing as the blades move away

from each other. Correspondingly, the forces on both the top and the bottom

rotor increase as the blades approach, then decrease and then increase again as

they move away. Furthermore, while the thrust and the power of the top rotor

show an impulsive but phased behavior, the features are more spread out and

distinct for the bottom rotor which lies in the wake of the top rotor.

Figure 5.6 shows the temporal variation of thrust and power for the zero

collective case. From the figure, it can be seen that, at all times, the top and

bottom rotors produce almost equal and opposite thrust resulting in a net zero

thrust, while the power of both rotors are almost identical. This behavior is

expected, because for this zero collective case, the loading and wake effects are

negligible and only the thickness effect is prominent. Therefore, for both top and

bottom rotors, the forces remain constant for most of the time, being impulsive

only when the blades pass each other.

Figure 5.7(a) shows the temporal variation of the power due to pressure and

viscous forces for the top and bottom rotors for case 3. The viscous component

of the power coefficient is almost constant with time and is equal for both the

rotors. Figure 5.7(b) shows the temporal variation of the fraction of the total
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Figure 5.6: Temporal variation of CT and CQ of the top and bottom rotors over

one revolution for full-scale coaxial system (case 1).

thrust shared by the top rotor. For most of the time, the fraction is close to the

average value of 0.55. When the blades pass each other, the ratio briefly peaks
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Figure 5.7: Temporal variation of components of power for the top and bottom

rotors and thrust sharing over one revolution for full-scale coaxial system (case 3).

to a value of more than 0.6 and then impulsively dips to a value close to 0.3.

Figure 5.8 shows the spanwise thrust distribution for both the top and the
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bottom rotors at different azimuthal locations for case 3. For the top rotor, the

thrust distribution is similar at all azimuth locations except 0◦. At 0◦ azimuth,

due to the thickness effect discussed earlier, the thrust is lower. For the bottom

rotor, variation in thrust with azimuth is more prominent. The thrust at 0◦

azimuth is clearly larger due to the thickness effect. A dip is noticeable in

the thrust distribution at azimuth locations 15◦, 30◦ and 45◦ and this is due

to the interaction of the tip vortex from the top rotor with the bottom rotor.

The steepness of the dip is seen to be a maximum at 30◦, suggesting that the

interaction occurs around this azimuth location, where the wake-age of the top

rotor vortex is about 240◦. This will be seen more clearly while looking at

the temporal variation of sectional thrust of the bottom rotor at selected span

locations. It should be noted that the azimuthal location of the blade-vortex

interaction varies for the different thrust cases. The interaction occurs at an

earlier wake-age as the thrust increases, due to faster vertical convection of the

wake. Spatially the blade-vortex interaction occurs at a radial location of about

0.85R, as seen from the relative location of the dip.

Contours of the sectional thrust (RdCT

dr
) and its fluctuation from the mean

value are respectively plotted in Figs. 5.9 and 5.10 in the plane of the rotor, for

both the top and bottom rotors for case 3. The figures clearly show the large

fluctuations in the outer portions of the rotors as they pass by each other, as

well as the additional unsteadiness on the bottom rotor as the wake from the top

rotor encounters the plane of the bottom rotor. The interacting wake increases

the thrust outboard and decreases the thrust inboard. This can be seen clearly

in Fig. 5.11, which shows the temporal variation of the sectional thrust for the

bottom rotor at selected span locations in the neighborhood of the region of
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Figure 5.8: Spanwise thrust distribution at different azimuth locations for full-

scale coaxial system (case 3).

blade-vortex interaction for case 3. From this plot, the azimuthal location of

the interaction can be found to be close to 35◦, where the difference in thrust
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(a) Top rotor

(b) Bottom rotor

Figure 5.9: Sectional thrust (RdCT

dr
) contour for full-scale coaxial system (case 3).

between inboard and outboard section is maximum. The radial location of the

interaction is close to 0.84R, inboard of which the thrust dips at the time of

interaction and outboard of which it peaks.
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(a) Top rotor

(b) Bottom rotor

Figure 5.10: Fluctuation in sectional thrust (RdCT

dr
) contour for full-scale coaxial

system (case 3).
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Figure 5.11: Temporal variation in sectional thrust (RdCT

dr
) at selected spanwise

locations for the bottom rotor of full-scale coaxial system (case 3).

Figure 5.12 shows contours of the fluctuation of the sectional thrust for both

the top and bottom rotors for case 7, which is a higher thrust case. The fluc-

tuations for the top rotor are very similar to that of case 3, but have larger

magnitude. For the bottom rotor, the fluctuations are slightly different, mainly

because the wake from the top rotor now interacts with the bottom rotor at a

different azimuth location (at 0◦ as will be seen from the flow visualization).

189



(a) Top rotor

(b) Bottom rotor

Figure 5.12: Fluctuation in sectional thrust (RdCT

dr
) contour for full-scale coaxial

system (case 7).
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5.5 Effect of Rotor Spacing

In order to analyze the effect of rotor spacing, case 7 was run for two other

hypothetical rotor spacings, with one and half times (2 chords) and twice (2.66

chords) the original separation. These cases were run at the same collective set-

tings as the baseline case and therefore are not trimmed. Figures 5.13 and 5.14

shows the temporal variation of the top and bottom rotor thrust and power over

one revolution for all three cases. As the rotor spacing increases, both the thick-

ness and loading effects decrease. Therefore, smaller spikes are observed with

increasing separation. The mean values and the fluctuations of the integrated

quantities are summarized in Table 5.6. For the top rotor, the mean values of

the integrated quantities are seen to increase with the rotor spacing, whereas

for the bottom rotor, they decrease. As a result, the system goes out of torque

balance with increasing rotor spacing. However, the total thrust is seen not to

vary significantly.

The effect of rotor spacing can be better quantified by investigating the fre-

quency content in the integrated quantities. In Figs. 5.15 and 5.16, the amplitude

of the frequency is normalized by the amplitude of the 4/rev frequency of the

baseline case. It is seen that in all the cases (except the top rotor power), 4/rev

is the dominant frequency. For the top rotor power, the dominant frequency is

either 8/rev or 12/rev. The presence of these higher frequencies is due to the

sharper nature of the impulses. Therefore, as expected, an increase in the rotor

spacing decreases the high frequency content. This could be significant from the

view point of acoustic noise propagation. Additionally, it is also evident that the

relative amplitude of various frequencies decreases as the rotor spacing increases.

It should also be noted that the bottom rotor has lesser high frequency content
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relative to the dominant 4/rev frequency.
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Figure 5.13: Effect of rotor spacing on the thrust for full-scale coaxial system

(case 7).
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Figure 5.14: Effect of rotor spacing on the power for full-scale coaxial system

(case 7).
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Table 5.6: Effect of rotor spacing for full-scale coaxial system (case 7).

Baseline 1.5X spacing 2X spacing

Top rotor

CT 0.00385 0.00399 0.00407

dCTrms
0.000313 0.000161 0.000091

CQ 0.000369 0.000374 0.000377

dCQrms
0.0000235 0.0000128 0.0000079

Bottom rotor

CT 0.00317 0.00306 0.00298

dCTrms
0.000235 0.000108 0.000072

CQ 0.000367 0.000360 0.000352

dCQrms
0.0000193 0.0000138 0.0000118
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Figure 5.15: Effect of rotor spacing on the frequency distribution of thrust,

normalized by the amplitude of 4/rev frequency of the baseline case, for full-

scale coaxial system (case 7).
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Figure 5.16: Effect of rotor spacing on the frequency distribution of power,

normalized by the amplitude of 4/rev frequency of the baseline case, for full-

scale coaxial system (case 7).
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5.6 Wake Trajectory

In order to extract only the rotational flow regions and not the highly strained

regions, an iso-surface of so-called q-criterion [90] is shown in Fig. 5.17 for case 7.

The plot is colored using vorticity magnitude and is obtained when the top and

bottom rotors are aligned with each other. From the figure, it can be seen that

the tip vortices are well resolved for two blade passages. Beyond this wake-age,

the background mesh becomes too coarse to accurately represent the details of

the tip vortex. After passing the bottom rotor, there is a significant interaction

between the tip vortices. There is also some evidence of straining in the tip

vortex from the preceding bottom rotor blade as it passes under the subsequent

bottom rotor blade.

(a) q = 0.025

Figure 5.17: Iso-surfaces of the second invariant of vorticity magnitude for full-

scale coaxial system (case 7) when the blades are aligned.
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Figure 5.18: Wake trajectory for full-scale coaxial system (case 7) when the

blades are aligned.

Figure 5.18 shows the wake trajectory at the same instant of time. The radial

contraction of the wakes with azimuth is plotted in Fig. 5.18(a). It can be seen

that the wake of the top rotor contracts at a much faster rate as compared to

that of the bottom rotor. This is a result of the interaction between the two

wakes, which forces the top rotor wake inward, while pushing the bottom rotor

wake outward. Figure 5.18(b) shows the vertical convection of the wakes with
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the azimuth. Clearly, the wake of the top rotor convects at a faster rate due

to the presence of increased inflow. Both the wakes show an increased vertical

convection rate after the first blade passage at 180◦ azimuth. Figure 5.18(c)

shows the spatial location of both the wakes. It can be seen that the wake of

the top rotor contracts to about 0.85R by the time it reaches the bottom rotor.

5.7 Flow-field Visualization

Figure 5.19 shows the vorticity magnitude contours for case 7 in a fixed plane in

space at various instances in time. At the first instance both the top and bottom

rotor blades are aligned at the plane. As the time increases, the wake age of the

tip vortices from both the rotors at this plane increases. At all wake ages, the

bottom rotor tip vortices are clearly visible. On the other hand, the top rotor

vortices, which impinge upon the bottom rotor blade at around the plane shown

for this particular case, remains distorted after the interaction. However, when

similar contours are viewed on a plane which is located at different azimuth

location in space, the tip vortices from both the rotors are clearly distinguished.

The tip vortices from the rotors can also be clearly distinguished from Fig-

ures 5.20 and 5.21. Figure 5.20 shows the vorticity magnitude contours for case 7

in a plane that is at 30◦ azimuth with respect to the top rotor blade, at different

instances in time. At this plane, wake age of the tip vortices trailed from the

top rotor remains constant, while the wake age of those trailed from the bottom

rotor increases. At the first instance, the top and the bottom rotor blades are

aligned. At a later time, the bottom rotor blade can be seen to intersect the

plane of interest. The plot clearly shows the interaction of the vortices from the

two rotors with each other and also with the inboard sheet. Additionally, we can
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observe that, even though the vortices trailing from the top rotor vortices are at

constant wake age, they are not at a fixed position. Due to the various vortex-

vortex and blade-vortex interactions, the tip vortices trailing from the top rotor

(especially the ones after the first blade passage) show significant wandering.

Figure 5.21 shows the vorticity magnitude contours for case 7, but in a plane

that is at 30◦ azimuth with respect to the bottom rotor blade. At this plane, the

wake age of the bottom rotor vortices are fixed and the wake age of the top rotor

vortices increases. Again, significant wandering of the bottom rotor tip vortices

can be seen.

Figure 5.22 shows similar plots as in Fig. 5.19, but for a lower thrust level

(case 3). The vortices from both the rotors are clearly distinguished in this plane.

Recall that for this case, top rotor vortices impinge the bottom rotor at about

30◦ azimuth location. As a result, these vortices do not show the same distortion

in the plane shown, as was observed for case 7. Comparing the locations of the

vortices of the top and bottom rotors with those for case 7, we see that for this

case the vortices convect vertically down at a slower rate due to decreased inflow.

As a result, the number of vortex-vortex interactions in the same frame is larger,

therefore resulting in a more complicated flow-field.

5.8 Summary

In this chapter, high resolution computations are performed on a hovering full-

scale coaxial rotor and validated with experimental performance results. A trim-

ming procedure is implemented, which allows for detailed yaw and thrust trim.

The interaction between the rotor systems is seen to generate significant im-

pulses in the instantaneous thrust and power. The characteristic signature of
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this impulse is explained in terms of the blade thickness effect and loading ef-

fect. As expected, increased rotor spacing is seen to reduce both the thickness

and loading effects. Further, interaction of the top-rotor wake with the blades

of the bottom rotor results in low-harmonic unsteadiness. The flow-field of the

full-scale coaxial system is very complicated due to the various blade-vortex and

vortex interactions.
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(a) Ψb1 = Ψb2 = 0◦ (b) Ψb1 = Ψb2 = 30◦

(c) Ψb1 = Ψb2 = 60◦ (d) Ψb1 = Ψb2 = 90◦

(e) Ψb1 = Ψb2 = 120◦ (f) Ψb1 = Ψb2 = 150◦

Figure 5.19: Vorticity magnitude contours in a fixed plane in space for full-scale

coaxial system at different instances in time for full-scale coaxial system (case 7).
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(a) Ψb1 = 30◦, Ψb2 = 150◦ (b) Ψb1 = 30◦, Ψb2 = 6◦

(c) Ψb1 = 30◦, Ψb2 = 30◦ (d) Ψb1 = 30◦, Ψb2 = 66◦

(e) Ψb1 = 30◦, Ψb2 = 90◦ (f) Ψb1 = 30◦, Ψb2 = 126◦

Figure 5.20: Vorticity magnitude contours in a plane that is at 30◦ azimuth from

the top rotor blade at different instances in time for full-scale coaxial system

(case 7).
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(a) Ψb1 = 150◦, Ψb2 = 30◦ (b) Ψb1 = 6◦, Ψb2 = 30◦

(c) Ψb1 = 30◦, Ψb2 = 30◦ (d) Ψb1 = 66◦, Ψb2 = 30◦

(e) Ψb1 = 90◦, Ψb2 = 30◦ (f) Ψb1 = 126◦, Ψb2 = 30◦

Figure 5.21: Vorticity magnitude contours in a plane that is at 30◦ azimuth from

the bottom rotor blade at different instances in time for full-scale coaxial system

(case 7).
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(a) Ψb1 = Ψb2 = 0◦ (b) Ψb1 = Ψb2 = 30◦

(c) Ψb1 = Ψb2 = 60◦ (d) Ψb1 = Ψb2 = 90◦

(e) Ψb1 = Ψb2 = 120◦ (f) Ψb1 = Ψb2 = 150◦

Figure 5.22: Vorticity magnitude contours in a fixed plane in space for full-scale

coaxial system at different instances in time for full-scale coaxial system (case 3).
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Chapter 6

Computational Investigation of

Micro-Scale Coaxial Rotor

Aerodynamics in Hover

After gaining sufficient confidence in full-scale coaxial rotor computations, the

methodologies developed for micro-scale single rotor and full-scale coaxial rotor

is combined to simulate micro-scale coaxial rotor in this chapter. Computations

performed on a hovering micro-scale coaxial rotor are validated with experimen-

tal performance results. Next, a detailed study examining the influence of rotor

spacing on unsteadiness is presented. The primary differences in the flow-field

of micro-scale and full-scale coaxial rotor are identified.

6.1 Rotor Configuration

Micro-scale coaxial rotor simulations are validated by exploring the experimental

results obtained by Bohorquez et al. [2] on a hovering coaxial system having two

2-bladed rotors. The aspect ratio of blade each is 4.98 (rotor radius is 112 mm
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and blade chord is 22.5 mm), resulting in an individual rotor solidity of 0.128.

The blades have an untwisted planform with the airfoil cross section geometry

consisting of a circular arc airfoil with sharpened leading and trailing edges.

The airfoil has a camber of 6% and a thickness of 2.2%. The experiment was

conducted at various rotor RPM and inter-rotor spacing. The collectives of both

the top and bottom rotors are fixed at 16◦.

In the experimental test, the top and bottom rotors were torque balanced

by changing the RPM of the bottom rotor, while keeping the top rotor RPM

fixed. However, it was found that the percentile difference in rotational speed

required for torque balance is less than 2%. Therefore, it should be reasonable

to approximate the rotational speed of the bottom rotor to be the same as that

of the top rotor. Consequently, all the computations are performed assuming

identical top and bottom rotor rotational speeds.

6.2 Mesh System

The mesh system used for the computation is similar to that used for the full-

scale coaxial rotor calculation. A six mesh system consisting of two blade meshes,

two nested background meshes and two cylindrical outer background meshes is

used. Computations are performed on top and bottom rotor blade meshes hav-

ing 267 × 93 × 50 points in the streamwise, spanwise and normal directions,

respectively, nested background meshes having 97 × 124 × 56, top rotor outer

background mesh having 97×149×49 points and bottom rotor outer background

mesh having 97 × 149 × 143 in the azimuthal, radial and vertical directions, re-

spectively. The total number of mesh points used is 6.6 million. A smaller

number of mesh points can be used for the micro-scale rotor due to the lower
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aspect ratio and the relatively larger expected sizes of the boundary layers and

the core of the vortices as compared to the full-scale rotor. Figure 6.1 shows

the blade and background meshes. In the most refined regions, the nested back-

ground mesh has a grid spacing of 0.02 chords in the vertical direction, while the

outer background mesh has a grid spacing of 0.04 chords in the same direction.

In the radial direction, both the nested and outer background meshes have a

grid spacing of 0.025 chords in the most refined region. Along the azimuthal

direction, a grid plane is spaced every 2◦ in the outer background mesh. For the

nested background mesh, the azimuthal spacing varies from 0.3◦ near the blade

to 2◦ towards its outer boundaries. The outer boundary of the background mesh

extends to 3R above the top rotor, 4.5R below the bottom rotor and 4R from

the tip of the blade. The chosen time-step size corresponds to 0.125◦ of az-

imuth. Each calculation takes about 5 days when run in parallel on 21 Intel

Xeon 3.20GHz processors.

6.3 Effect of RPM

Experiments were conducted for a range of RPM varying from 1900 to 2700.

Correspondingly, the tip Reynolds number varied from 19, 000 to 27, 000 and

the tip Mach number ranged from 0.0665 to 0.0945. The rotor spacing is fixed

at h/R = 0.446. Figure 6.2(a) shows the comparison between the computed

and the measured variation of mean thrust with RPM for individual rotors as

well as the entire system. The total system thrust is seen to be well predicted

(within 3%) at all rotational speeds. Top rotor thrust is under-predicted by

approximately < 2% at all speeds, whereas the bottom rotor thrust is over-

predicted by approximately < 8%. Figure 6.2(b) shows the comparison of mean
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(a) Blade meshes along with cylindrical meshes

(b) Inner and outer cylindrical meshes

Figure 6.1: Computational mesh for micro-scale coaxial rotor system.

Power Loading (PL) versus mean thrust for the total system. Clearly, the power

is very well predicted.
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Figure 6.2: Performance comparison with experimental data [2] at different RPM

for micro-scale coaxial rotor.
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6.4 Effect of rotor spacing

Five different rotor spacings given by h/R = 0.268, 0.357, 0.446, 0.536 and 0.625

are studied. The RPM for this study is fixed at 2000. Correspondingly, the tip

Reynolds number is 20, 000 and the tip Mach number is 0.07.

6.4.1 Mean Performance

Table 6.1 summarizes the mean values of torque (CQ) coefficient obtained from

CFD for individual rotors as well as for the entire system for all the rotor spac-

ings. It can be seen that for all cases, torque is trimmed to within 5% error,

showing that it is reasonable to assume identical rotational speeds for the top

and bottom rotors. Table 6.2 summarizes the mean values of thrust (CT ) coef-

ficient obtained from CFD for individual rotors as well as for the entire system.

Also shown is the total thrust obtained from the experiments. It can be seen that

the computed top and bottom rotor thrusts show opposite trends as the rotor

spacing increases. While the top rotor thrust increases with the rotor spacing,

the bottom rotor thrust decreases as the rotor separation increases. Both the

rotor thrusts approach a constant value at very large rotor spacing. Because of

the opposing trends in the top and bottom rotor thrusts, the total thrust of the

system is seen to remain fairly constant with the rotor spacing, apart from the

marginal increase in value at smaller rotor separation distances. Similar trend

can be seen even in the experimental results. Tab 6.2 also shows the ratio of the

top rotor thrust to the total thrust. Top rotor contributes to about 55% of the

total value at smaller rotor spacing and increases to about 58% at the largest ro-

tor separation. Note that, the full-scale coaxial rotor also showed similar thrust

sharing.

211



Table 6.1: Computed mean torque coefficient for micro-scale coaxial system.

h/R CQtop
CQbot

CQtotal
|CQtop

− CQbot
|

0.268 0.00384 0.00422 0.00806 0.00038

0.357 0.00387 0.00410 0.00797 0.00023

0.446 0.00388 0.00407 0.00795 0.00019

0.536 0.00389 0.00407 0.00796 0.00018

0.625 0.00392 0.00408 0.00800 0.00016

Table 6.2: Computed mean thrust coefficient for micro-scale coaxial system.

h/R CTtop
CTbot

CTtotal
CTtop

/CTtotal
CTtotal

(Expt. [2])

0.268 0.0199 0.0163 0.0362 0.55 0.0349

0.357 0.0205 0.0158 0.0363 0.56 0.0349

0.446 0.0208 0.0157 0.0365 0.57 0.0350

0.536 0.0210 0.0155 0.0365 0.58 0.0350

0.625 0.0212 0.0153 0.0365 0.58 0.0350

6.4.2 Unsteady Performance

A measure of the unsteadiness in thrust and power is the root mean square value

of the temporal variations and this is summarized in Tables 6.3 and 6.4. For the

top rotor, the absolute value of the fluctuation decreases with increasing rotor

spacing, however surprisingly, for the bottom rotor, the absolute fluctuations

initially decrease and then increase again as the rotor separation increases. The

reason for this will be discussed later in the section. The fluctuations of the

integrated quantities of the whole system follows similar trend as that of the

bottom rotor. In general, there is 3−8% fluctuation in all integrated quantities,

which could be significant for vibration and acoustic characteristics. Note that,
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experiments typically provide only the mean performance data, while obtaining

the unsteady data is very challenging.

Table 6.3: Computed RMS fluctuation of power coefficient for micro-scale coaxial

system.

h/R dCQrms
% dCQrms

% dCQrms
%

(top rotor) fluctuation (bottom rotor) fluctuation (total) fluctuation

0.268 0.000141 3.67% 0.000626 14.83% 0.000628 7.79%

0.357 0.000094 2.43% 0.000304 7.41% 0.000234 2.93%

0.446 0.000053 1.37% 0.000168 4.13% 0.000204 2.57%

0.536 0.000048 1.23% 0.000357 8.77% 0.000376 4.71%

0.625 0.000039 0.99% 0.000405 9.93% 0.000405 5.06%

Table 6.4: Computed RMS fluctuation of thrust coefficient for micro-scale coaxial

system.

h/R dCTrms
% dCTrms

% dCTrms
%

(top rotor) fluctuation (bottom rotor) fluctuation (total) fluctuation

0.268 0.00105 5.28% 0.00164 10.06% 0.00237 6.55%

0.357 0.00065 3.17% 0.00074 4.68% 0.00074 2.04%

0.446 0.00040 1.92% 0.00057 3.63% 0.00088 2.41%

0.536 0.00036 1.71% 0.00091 5.87% 0.00120 3.29%

0.625 0.00024 1.13% 0.00105 6.86% 0.00117 3.21%

Figures 6.3 and 6.4, respectively, show the temporal variation of CT and CQ

over one revolution for all rotor spacings. As seen for the full-scale coaxial rotor,

the figure clearly shows the unsteadiness with a dominant 4/rev frequency. A

high frequency noise-like variation is seen at all times due to shedding near the
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(a) Top rotor CT variation

(b) Bottom rotor CT variation

Figure 6.3: Temporal variation of CT of the top and bottom rotors over one

revolution for various rotor spacing for micro-scale coaxial system.

trailing edge, which was seen even for the micro-scale single rotor (Fig. 4.23).

This variation is more obvious in the top rotor forces. The higher frequency

214



(a) Top rotor CQ variation

(b) Bottom rotor CQ variation

Figure 6.4: Temporal variation of CQ of the top and bottom rotors over one

revolution for various rotor spacing for micro-scale coaxial system.

variation seen in the full-scale coaxial rotor near the blade passage due to ven-

turi effect is not very prominent. This is because, the airfoil sections used in
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the blades here are relatively thin and therefore, do not produce a significant

thickness effect. The upwash-downwash (loading) effect is seen to be present,

which decreases with the rotor spacing, similar to that for the full-scale coaxial

rotor. This is particularly clear from the temporal variation of the integrated

quantities of the top rotor, where the unsteadiness decreases with the increasing

rotor separation.

However, for the bottom rotor, the unsteadiness is not seen to follow any

particular trend as the rotor spacing increases. This is in contrast to that for

the full-scale system, for which the unsteadiness in the bottom rotor forces also

decrease with the rotor spacing. The reason for the differences can be understood

by comparing the temporal variation of thrust and power for the bottom rotor of

the micro-scale system along with that of the full-scale system (Fig. 5.3(b) and

5.4(b)). All the plots show two peaks (apart from the peak due to venturi effect

on the full-scale system). The peak which occurs close to the blade-passage is

due to the loading effect and the other peak occurs when the vortex from the top

rotor impinges upon the bottom rotor (for some of the plots, the peaks coincide).

Clearly, as opposed to the full-scale system, the peak due to vortex impingement

is more prominent and at times larger than the peak due to loading effect for the

micro-scale rotor. This suggests that, contrary to what occurs for the full-scale

system, the wake effect for the micro-scale system is comparable or maybe even

predominant over the loading effect when the rotor spacing is large. Therefore,

the unsteadiness in the integrated quantities for the bottom rotor of the micro-

scale coaxial system need not necessarily decrease as the rotor spacing increases.

On the other hand, because of the decrease in the dominant loading effect for the

full-scale systems, an increase in rotor spacing almost always results in a decrease
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in the unsteadiness of the bottom rotor forces. In Fig. 6.3, the peak due to vortex

impingement is seen to move to a later azimuth as the rotor spacing increases,

as the tip vortex from the upper rotor takes longer to convect down vertically.

The peak due to vortex impingement for h/R = 0.268, 0.357, 0.446, 0.536 and

0.625 respectively occur at 76◦, 2◦, 22◦, 48◦ and 68◦ azimuth location. For

h/R = 0.268 and h/R = 0.625, the peaks due to vortex impingement and the

loading effect are almost coincident, whereas for h/R = 0.446, the peaks are

farthest apart. Clearly, the unsteadiness in the forces of the bottom rotor is

smallest for h/R = 0.446, indicating that the phasing of the vortex impingement

upon the bottom rotor can play a significant role in reducing unsteadiness for

the micro-scale coaxial systems.

The effect of rotor spacing can be better quantified by investigating the fre-

quency content in the integrated quantities. In Fig. 6.5, the amplitude of the fre-

quency is normalized by the amplitude of the 4/rev frequency of the h/R = 0.268

case. It is seen that for all the cases, 4/rev is the dominant frequency. The pres-

ence of these higher frequencies is due to the sharper nature of the impulses.

Therefore, as expected, an increase in the rotor spacing decreases the high fre-

quency content of the top rotor forces. Additionally, it is also evident that

the relative amplitude of various frequencies decreases for the top rotor as the

rotor spacing increases. However, the trends for the bottom rotor are not so

obvious due to the reasons discussed earlier. As expected, the bottom rotor

for h/R = 0.446 case has the smallest 4/rev content. It should also be noted

that the bottom rotor has lesser high frequency content relative to the dominant

4/rev frequency when h/R = 0.268.
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(d) Bottom rotor power

Figure 6.5: Effect of rotor spacing on the frequency distribution, normalized by

the amplitude of 4/rev frequency of the h/R = 0.268 case, for micro-scale coaxial

system.

6.4.3 Effect of Top Rotor Wake on Bottom Rotor

In order to better visualize the effect of top rotor wake on the bottom rotor, an

azimuthal contour of the sectional thrust (RdCT

dr
) and its fluctuation from the

mean value are respectively plotted in Figs. 6.6 and 6.7, for the bottom rotors
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(a) h/R = 0.268 (b) h/R = 0.446

(c) h/R = 0.625

Figure 6.6: Sectional thrust (RdCT

dr
) contour for the bottom rotor of micro-scale

coaxial system.

for the cases with h/R = 0.268, h/R = 0.446 and h/R = 0.625. The figures

clearly show the unsteadiness on the bottom rotor as the wake from the top

rotor encounters the plane of the bottom rotor. The interacting wake increases

the thrust outboard and decreases the thrust inboard. The sectional thrust

fluctuation contour plots for the h/R = 0.268 and h/R = 0.625 cases are very

similar, whereas the corresponding plot for h/R = 0.446 case looks different.
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The reason for the differences is again explained by the different location of the

impingement of the top rotor vortex on the bottom rotor.

(a) h/R = 0.268 (b) h/R = 0.446

(c) h/R = 0.625

Figure 6.7: Fluctuation in sectional thrust (RdCT

dr
) contour for the bottom rotor

of micro-scale coaxial system.

In order to further understand the effect of the top rotor vortex impingement

on the bottom rotor, blade pressure fluctuation contours of the bottom rotor

are plotted at three different instances in time (instance 1 : 16◦ before the

impingement of the vortex, instance 2 : at the time of impingement of vortex,
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instance 3 : 16◦ after the impingement of the vortex) for the three rotor spacings

of h/R = 0.268, h/R = 0.446 and h/R = 0.625 in Figs. 6.8, 6.9 and 6.10,

respectively. In these plots, the leading edge of the blade is towards the middle

for both the upper and lower surfaces. At instance 1, a strong suction pressure

starts to build on the upper surface of the outboard region of the blade for all

cases. On the lower surface, the signature of the inboard vortex sheet impinging

on the blade can be seen, which is particularly clear for the h/R = 0.446 case.

At instance 2, the strong suction on the upper surface of the outboard portion of

the blade is getting ready to separate from the leading edge for all cases, which

can be seen more clearly in Fig. 6.11, which shows the sectional pressure contour

at an outboard spanwise location of 0.9R. At the same instance, a vortex has

already shed from the lower surface of the inboard portion of the blade with a

higher pressure peak wave further downstream (the acoustic wave seen on the

surface plots), see Fig. 6.12 which shows the sectional pressure contour at an

inboard spanwise location of 0.55R at instance 2. The suction peak associated

with the separated vortex on the lower surface is not very strong on the actual

surface. At instance 3, all the cases show a three dimensional shedding in the

outboard section of the blade.

As a summary to this section, the interaction of the top rotor vortex and

inboard sheet with the bottom rotor results in unsteady shedding from the

leading-edge region both in the outboard and inboard portions of the blade;

a phenomenon not seen for the full-scale coaxial rotor. In the outboard portion

of the blade, a highly three-dimensional shedding occurs on the upper surface of

the blade, whereas the shedding at the inboard portion of the blade occurs on

the lower surface and it is more two-dimensional in nature. The reason for this
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(a) Instance 1 (b) Instance 2

(c) Instance 3

Figure 6.8: Fluctuation in the surface pressure for the h/R = 0.268 case of

micro-scale coaxial system.

shedding is because of the change in local angle of attack due to velocity induced

by the tip vortex, which might result in significant movement of the stagnation

point about the sharp leading edge. In the outboard portion of the bottom rotor

blade, the angle increases as the top rotor vortex impinges upon it, whereas the

angle decreases in the inboard portion.
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(a) Instance 1 (b) Instance 2

(c) Instance 3

Figure 6.9: Fluctuation in the surface pressure for the h/R = 0.446 case of

micro-scale coaxial system.
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(a) Instance 1 (b) Instance 2

(c) Instance 3

Figure 6.10: Fluctuation in the surface pressure for the h/R = 0.625 case of

micro-scale coaxial system.

224



(a) h/R = 0.268 (b) h/R = 0.446

(c) h/R = 0.625

Figure 6.11: Spanwise pressure contour at r/R = 0.9 for micro-scale coaxial

system.
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(a) h/R = 0.268 (b) h/R = 0.446

(c) h/R = 0.625

Figure 6.12: Spanwise pressure contour at r/R = 0.55 for micro-scale coaxial

system.
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6.4.4 Wake Trajectory

In order to extract only the rotational flow regions and not the highly strained

regions, the iso-surfaces of so-called q-criterion [90] are shown in Fig. 6.13 for

the rotor spacings of h/R = 0.268, h/R = 0.446 and h/R = 0.625 at the instant

in time where the top and the bottom rotor are at the same azimuth. From the

figure, it can be seen that the tip vortices are well resolved for two blade passages

for all cases. Beyond this wake-age, the background mesh becomes too coarse

to accurately represent the details of the tip vortex. After passing through the

bottom rotor, there is a significant interaction between the tip vortices. There

is also some evidence of straining in the tip vortex from the preceding bottom

rotor blade as it passes under the subsequent bottom rotor blade.

Figure 6.14 shows the wake trajectory at the same instant of time for all the

three rotor spacings. The radial contraction of the wake of the top and bottom

rotors with azimuth are respectively plotted in Figs. 6.14(a) and (b). Similar to

that for the full-scale rotor, the wake of the top rotor contracts at a much faster

rate compared to that of the bottom rotor for all the cases. This is a result of the

interaction between the two wakes, which forces the top rotor wake inward, while

pushing the bottom rotor wake outward. Also, as this interaction occurs at an

earlier wake age for smaller rotor spacings, the amount of contraction of the top

rotor wake is larger at the same azimuth location for smaller rotor separation

distances. For the same reason, the top rotor wake gets wavy at an earlier

azimuth when the rotor separation is smaller. Comparing the contraction of the

bottom rotor wakes for the three rotor spacings, we can see that the contraction

rate is slightly larger for the h/R = 0.268 case, but it is not too different for

the other two rotor spacing cases. The reason for this could be due to stronger
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(a) h/R = 0.268 (b) h/R = 0.446

(c) h/R = 0.625

Figure 6.13: Iso-surfaces of the second invariant of vorticity magnitude (q = 0.2)

for micro-scale coaxial system when the blades are aligned.

interactions between the wakes for the smallest rotor spacing.

Figures 6.14(c) and (d) respectively show the vertical convection of the top

and bottom rotors wake with the azimuth for all the three rotor spacing cases.

Clearly, the wakes of the top rotor convect at a faster rate compared to bottom

rotor wakes due to the presence of increased inflow. Both the wakes show an
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Figure 6.14: Wake trajectories for various rotor spacing for micro-scale coaxial

system when the blades are aligned.

increased vertical convection rate after the first blade passage at 180◦ azimuth.

The top rotor wakes show an additional increase in vertical convection rate when

they encounter the bottom rotor. As a result, when the rotor spacing is smaller,

the vertical convection rate of the top rotor wake increases at an earlier azimuth,

therefore showing larger convection at the same azimuth location compared to a
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larger rotor spacing case. The vertical convection rate of the bottom rotor wake

is not too different for all the rotor spacings.

6.4.5 Flow-field Visualization

Figure 6.15 shows the vorticity magnitude contours for the h/R = 0.446 case

in a fixed plane in space at various instances in time. At the first instance

both the top and bottom rotor blades are aligned at the plane. As the time

increases, the wake age of the tip vortices from both the rotors at this plane

increases. At all wake ages, the top and bottom rotors tip vortices are clearly

visible. The interaction between the top and bottom rotor vortices results in

significant wandering. The figure also indicates that the tip vortices from the

two rotor systems are entering into a leap-frogging system, similar to that for

vortex smoke rings.

Figure 6.16 shows the vorticity magnitude contours for the h/R = 0.268

case in a plane that is fixed with respect to the bottom rotor blade, at different

instances in time. At this plane, the wake age of the tip vortices trailed from

the bottom rotor remains constant (0◦, 180◦, 360◦ etc.), while the wake age of

those trailed from the top rotor increases. At the first instance, the top and

the bottom rotor blades are aligned. The plot clearly shows the interaction

of the vortices from the two rotors with each other and also with the inboard

sheet. The impingement of the top rotor vortex upon the bottom rotor can be

seen to have occurred at an instance just before Fig. 6.16(f) which corresponds

to 156◦ wake-age of the top rotor vortex (78◦ azimuth in time). Recall that,

for this rotor spacing, a peak in integrated quantities of the bottom rotor had

occurred at about 76◦ azimuth in time and this plot confirms that the peak is
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indeed due to the vortex impingement. Similar conclusions can be made for the

rotor spacing of h/R = 0.446 and h/R = 0.625 from their corresponding plots,

Figs. 6.17 and 6.18. For all cases, we can observe that, even though the vortices

trailing from the bottom rotor vortices are at constant wake age, they are not at

a fixed position. Due to the various vortex-vortex and blade-vortex interactions,

the tip vortices trailing from the bottom rotor (especially the ones after the first

blade passage) show significant wandering.

Figure 6.19 shows the vorticity magnitude contours for the h/R = 0.446

case in a plane that is 30◦ in azimuth behind the top rotor blade, at different

instances in time. At this plane, the wake age of the tip vortices trailed from the

top rotor remains constant (30◦, 210◦, 390◦ etc.), while the wake age of those

trailed from the bottom rotor increases. At the first instance, the top and the

bottom rotor blades are aligned. At a later time, the bottom rotor blade can be

seen to intersect the plane of interest. Again, significant wandering of the top

rotor tip vortices can be seen due to various interactions, even though they are

at a constant wake age.

6.5 Summary

In this chapter, computations are performed on a hovering micro-scale coaxial

rotor and validated with experimental performance results. The overall perfor-

mance is well predicted for a range of RPMs and rotor spacing. As the rotor

spacing increases, the top rotor thrust increases and the bottom rotor thrust de-

creases, while the total thrust remain fairly constant. The interaction between

the rotor systems is seen to generate significant impulses in the instantaneous

thrust and power. Unsteadiness is mainly caused due to blade loading (for both

231



top and bottom rotor) and the wake impingement effect (for the bottom rotor).

Additional high frequency unsteadiness is also seen due to shedding near the

trailing edge. The phasing of the top vortex impingement upon the bottom ro-

tor plays a significant role in the amount of unsteadiness for the bottom rotor.

Interaction of the top rotor vortex and inboard sheet with the bottom rotor re-

sults in a highly three-dimensional shedding on the upper surface of the blade

in the outboard region and a two-dimensional shedding on the lower surface at

the inboard portion of the blade, most likely due to the sharp leading edge ge-

ometry . An analysis of the vortex trajectories and flow-field visualization shows

the expected faster contraction and vertical convection of the top rotor wake

as compared to bottom rotor wake. Significant wandering is observed and it is

expected that the tip vortices from the two rotor systems are entering into a

leap-frogging system, similar to that for vortex smoke rings.
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(a) Ψb1 = Ψb2 = 0◦ (b) Ψb1 = Ψb2 = 30◦

(c) Ψb1 = Ψb2 = 60◦ (d) Ψb1 = Ψb2 = 90◦

(e) Ψb1 = Ψb2 = 120◦ (f) Ψb1 = Ψb2 = 150◦

Figure 6.15: Vorticity magnitude contours in a fixed plane in space at different

instances in time for micro-scale coaxial system, h/R = 0.446.
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(a) Ψb1 = 0◦, Ψb2 = 0◦ (b) Ψb1 = 36◦, Ψb2 = 0◦

(c) Ψb1 = 60◦, Ψb2 = 0◦ (d) Ψb1 = 96◦, Ψb2 = 0◦

(e) Ψb1 = 120◦, Ψb2 = 0◦ (f) Ψb1 = 156◦, Ψb2 = 0◦

Figure 6.16: Vorticity magnitude contours in the plane of the bottom rotor blade

at different instances in time for micro-scale coaxial system, h/R = 0.268.
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(a) Ψb1 = 0◦, Ψb2 = 0◦ (b) Ψb1 = 36◦, Ψb2 = 0◦

(c) Ψb1 = 60◦, Ψb2 = 0◦ (d) Ψb1 = 96◦, Ψb2 = 0◦

(e) Ψb1 = 120◦, Ψb2 = 0◦ (f) Ψb1 = 156◦, Ψb2 = 0◦

Figure 6.17: Vorticity magnitude contours in the plane of the bottom rotor blade

at different instances in time for micro-scale coaxial system, h/R = 0.446.
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(a) Ψb1 = 0◦, Ψb2 = 0◦ (b) Ψb1 = 36◦, Ψb2 = 0◦

(c) Ψb1 = 60◦, Ψb2 = 0◦ (d) Ψb1 = 96◦, Ψb2 = 0◦

(e) Ψb1 = 120◦, Ψb2 = 0◦ (f) Ψb1 = 156◦, Ψb2 = 0◦

Figure 6.18: Vorticity magnitude contours in the plane of the bottom rotor blade

at different instances in time for micro-scale coaxial system, h/R = 0.625.
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(a) Ψb1 = 30◦, Ψb2 = 150◦ (b) Ψb1 = 30◦, Ψb2 = 6◦

(c) Ψb1 = 30◦, Ψb2 = 30◦ (d) Ψb1 = 30◦, Ψb2 = 66◦

(e) Ψb1 = 30◦, Ψb2 = 90◦ (f) Ψb1 = 30◦, Ψb2 = 126◦

Figure 6.19: Vorticity magnitude contours in a plane that is at 30◦ azimuth from

the top rotor blade at different instances in time for micro-scale coaxial system,

h/R = 0.446.
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Chapter 7

Conclusions

Micro air vehicles are an emerging technology that can provide an inexpensive

and expendable platform to a wide array of military and civilian missions where

larger vehicles are impractical to transport or operate. Rotary-wing MAVs are

particularly attractive for indoor missions because of their hovering and tight-

maneuvering capability. However, the capabilities of current rotary-wing MAVs

fall way short of various mission requirements due to limitations arising from

aerodynamic as well as non-aerodynamic issues. The work reported in this dis-

sertation attempts to develop and validate a high resolution computational plat-

form that can be used to address the various aerodynamic challenges associated

with the current rotary-wing MAV configurations.

This final chapter summarizes the contributions made in this work, along with

briefly discussing the main observations and conclusions drawn. Suggestions for

future research are also provided.
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7.1 Summary

The overall objective of this dissertation was to develop and validate a high

resolution computational methodology to study performance and flow physics

of conventional and a non-conventional (coaxial) micro-rotor configurations in

hover. This required the modification of an existing compressible Reynolds-

Averaged Navier Stokes (RANS) solver. The various improved methodologies

were then systematically verified for simpler problems before being applied to

rotor problems.

The solver was then applied to simulate a series of hovering rotors - micro-

scale single rotors, full-scale coaxial rotors and micro-scale coaxial rotors. Full-

scale coaxial rotor calculations were done as a part of the validation of method-

ologies developed for coaxial rotor simulation, before extending them to the

micro-scale coaxial rotors. All these computations were performed on structured

overset meshes, consisting of blade and background meshes.

Hovering micro-scale single rotor simulations were done using a blade mesh

overset in a background mesh. Four different geometries comprising of two dif-

ferent leading and trailing edge profiles (blunt and sharp) for the blade section

were studied. The computations were validated with experimentally measured

performance data, wake trajectory and also with tip vortex profile data. Apart

from validating the methodology, the details of flow physics were studied. Fi-

nally, a preliminary study of the effect of twist and taper on the micro-rotor

blades was performed.

Next, the solver was applied to simulate the aerodynamics of full-scale coax-

ial rotor configurations in hover. Due to the large aspect ratio and the small

vortex core size, a nested background mesh was found necessary to properly
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transfer information from the blade mesh to the outer background mesh. A trim

procedure was implemented to trim the coaxial system to a particular thrust

value and to balance the torque. The computations were validated with experi-

mentally measured mean thrust and power and the sources of unsteadiness were

examined. To understand the details of the flow physics, the tip vortices from

both the top and bottom rotor blades were preserved until two blade passages.

After gaining sufficient confidence in full-scale coaxial rotor computations,

the solver was then extended to simulate the aerodynamics of micro-scale coaxial

rotor configuration in hover. This was achieved by combining the methodologies

developed for micro-scale single rotor calculations and those for full-scale coaxial

rotor calculations. Again, a nested background mesh was found necessary to

properly transfer information from the blade mesh to the outer background mesh.

The computations were validated with experimentally measured mean thrust and

power. Subsequently, the effect of rotor spacing was studied and the sources of

unsteadiness along with the details of flow physics were investigated.

7.2 Observations

Specific observations and conclusions drawn from the CFD methodology and

from the study of hovering rotors (micro-scale single rotor, full-scale coaxial

rotor and micro-scale coaxial rotor) are detailed below.

7.2.1 CFD Methodology

The low Mach preconditioning parameter was controlled by varying the pseudo-

time step. The value of pseudo-time step size in the order of actual time step
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size was found to be optimum when considering both convergence and accuracy.

The use of the low Mach preconditioning for the study of low speed evolution

of 2D inviscid isentropic vortex, showed better convergence compared to the no-

preconditioning case, especially at very low speeds and higher time step. Low

Mach preconditioner increased accuracy near stagnation points, increased the

convergence rate, and resulted in lift coefficients that scale with the Prandtl-

Glauert compressible factor for the steady 2D flow over an airfoil. The compar-

isons of 3D finite-span wing results with experiment showed good capture of the

axial velocity deficit, peak swirl velocity and core radius size.

The sliding mesh interpolation boundary condition allowed the use of peri-

odicity in the flow-field and enabled the simulation of multi-bladed coaxial rotor

system using just one blade from each rotor system. The use of third order slope

limited M3-quartic interpolation instead of first order (linear) interpolation for

the sliding mesh interface boundary, reduced the oscillation in the forces of the

bottom rotor arising due to the interpolation error along with providing a better

representation of the wake. However, the use of a spectral scheme for higher

order interpolation resulted in numerous spurious oscillations.

Using the implicit hole-cutting method, the exchange of information al-

ways occurred at regions where cell sizes of the various meshes are comparable,

whereas, this was not guaranteed using conventional hole-cutting technique. The

use of improved blanking technique along with implicit hole-cutting method for

steady 2D airfoil problem simulated using a two mesh overset system having

optimally thin fringe layers resulted in less than 2% difference in lift, drag and

moment coefficients from those obtained using single mesh simulations. However,

the corresponding two mesh system simulation without the use of the improved
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blanking technique resulted in a difference of greater than 20% in the moment

coefficient and about 8−10% difference in the lift and drag coefficients from those

obtained using single mesh simulations. The new blanking technique along with

the implicit hole-cutting methodology provided improved performance predic-

tions compared to those obtained using a traditional hole-cutting methodology,

for full-scale single rotor simulation. The prediction accuracy improved from

∼ 20% error in power at lower thrust levels to within 3% error.

7.2.2 Micro-Scale Single Rotor

The performance validation study on a micro-scale single rotor showed good

comparison with the experimental data for all geometries (blunt leading and

trailing edge, sharp leading edge and blunt trailing edge, sharp leading and

trailing edge). At higher thrust levels, the power for the sharp leading edge

geometries were under-predicted by about 4− 5%, while the power for the blunt

leading and trailing edge geometry was over-predicted by 1− 2%. The following

are the conclusions drawn on the performance of a micro-scale single rotor:

1. The performance of the sharp leading edge geometries are better compared

to that of corresponding blunt leading edge geometries (∼ 8−16% increase

in maximum figure of merit and ∼ 4% increase in maximum power loading).

The total thrust produced by the geometries with identical trailing edges

are similar. However, the geometries having blunt leading edge require

larger power (∼ 12 − 18% at higher thrust level). The large pressure drag

created by the near stagnation pressure along the leading edge for the

blunt leading edge geometries is the main reason for the increased power.

A small contribution to the additional power for the blunt leading edge
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geometry cases also comes from the presence of a significant leading edge

separation bubble, which increased in chordwise extent towards the tip,

eventually leading to complete separation near the tip.

2. Methods that use 2D airfoil characteristics, such Blade Element Momen-

tum Theory (BEMT) and Free Vortex Methods (FVM) should be suitable

for preliminary design. However, their accuracy should deteriorate if there

is significant leading edge separation with the accompanying significant

spanwise flow and transport of vorticity.

3. Sharpening the trailing edge improves the performance of the geometry

with blunt leading edge, but not for the geometry with sharp leading edge.

Blunt trailing edge geometries has lower thrust (∼ 5−8% at higher thrust

levels) and power (∼ 7−10% at higher thrust levels) compared to the sharp

trailing edge geometry with identical leading edge due to higher pressure

on the upper surface of the airfoil.

4. Similar to full-scale rotors, use of twist and taper improves the performance

of micro rotor using sharp leading and trailing edge geometry. The per-

formance improvement due to twist (∼ 10% increase in maximum figure

of merit and ∼ 11% increase in maximum power loading) is mainly due

to the reduction in induced power. Twist also increases the thrust level

(∼ 35%) at which maximum CT/CP is achieved. The improvement in

tapered blade (∼ 5% increase in maximum figure of merit and ∼ 11% in-

crease in maximum power loading) occurs as a result of decrease in profile

power. The combination of twist and taper provides further benefits over

the untwisted rectangular planform (∼ 14% increase in maximum figure of
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merit and ∼ 18% increase in maximum power loading) over the untwisted

rectangular planform.

In the validation of the flow-field of a micro-scale single rotor, the wake

trajectory showed good comparison with the experimental data during the initial

wake ages. However, the comparison was not good at a later wake age, because of

the expansion of the experimental trajectory, possibly caused by the separation

near the root due to the mounting apparatus. The computed wake contracts to

about 0.75R, which is similar to the wake contraction for a full-scale rotor. The

effect of blade passage was seen as an increase in the vertical convection rate

and a decrease in the radial contraction rate. Comparison of tip vortex profiles

showed that the peak swirl velocity was predicted reasonably well at all wake

ages, whereas the axial deficit along the vortex center and the vortex core radius

were over-predicted at all wake ages (less than ∼ 25% for axial deficit and ∼ 20%

for vortex core radius at 180◦ wake age). The discrepancy in the tip vortex profile

was found to arise during the initial tip vortex formation. The inadequacy of the

Spalart-Allmaras turbulence model in a non-isotropic environment could be the

main reason for the disparity. Additionally, the separation may not be predicted

accurately by the Spalart-Allmaras model. Sectional flow contours showed larger

turbulence in separated regions and in the very near wake for all the geometries.

In the separated regions, the radial velocity was also larger and was directed

towards the tip of the blade. The contour plots showed shear layer instabilities

in the wake, which are typical for low Reynolds number flows.

The following are the conclusions drawn on the flow-field of a micro-scale

single rotor:

1. Tip vortex flow-field of micro-rotor is very complicated with the presence
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of secondary vortices. Additional vortices are found near the trailing edge

of the blade over most of the span, a feature which has been observed

in experiments. The tip vortex formed on the micro-rotor blade interacts

with secondary vortices early in its development along the chord. After

the first passage of the tip vortex under the blade, the vortex experiences

some destabilization as it is influenced by the strain field from both the

blade and the inboard wake sheet. The instabilities in the wake after the

blade passage show oscillations in the radial location of the wake.

2. The swirl component of azimuthally averaged velocities is twice as large as

compared to a full-scale rotor operating at the same thrust level and could

lead to significant power losses.

7.2.3 Full-Scale Coaxial Rotor

The performance validation study on a full-scale coaxial rotor showed that the

overall performance was reasonably well predicted, with the thrust and power

trimmed to less than 1% error. It was observed that the top rotor contributes

to approximately 55% of the total thrust at all thrust levels. From the flow-

visualization, the tip vortices from both the top and bottom rotors were clearly

identifiable. The interaction of top rotor vortex with bottom rotor, along with

that between tip vortices from the two rotors with each other and the inboard

sheet, produce a highly complicated flow-field. Significant wandering of the tip

vortex was observed due to interactions for both the top and the bottom rotor.

Wake trajectory showed that the wake of the top rotor contracts at a faster rate

compared to that of the bottom rotor because of the vortex-vortex interaction.

The top rotor wake contracted to about 0.82R by the time it reaches the bottom
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rotor. Additionally, the top rotor wake convected vertically down at a faster

rate due to increased inflow. Following are the specific conclusions drawn on the

full-scale coaxial system:

1. The bottom rotor shows significant degradation in performance due to the

influence of the top rotor wake (∼ 40% increase in power at same thrust

at higher thrust levels). Interestingly, even the top rotor shows slight

degradation in performance (∼ 15% increase in power at same thrust at

higher thrust levels), showing that the bottom rotor has some influence on

the top rotor.

2. The flow-field of hovering coaxial rotor is unsteady with a dominant 2N/rev

frequency (where N is the number of blades for each rotor). The unsteadi-

ness in hovering coaxial system is explained in terms of blade thickness

effect, loading effect and wake effect. Thickness of the blade surfaces re-

sults in an impulsive behavior when the blades of the top and bottom

rotor are aligned. Additional impulsiveness is generated due to the blade

loading. For the bottom rotor, the added influence of the top rotor wake

makes the features more spread out and distinct. The interactions result

in fluctuations (5 − 10%) in the integrated quantities. Such a fluctuation

could be significant for vibration and acoustic characteristics. Increasing

the rotor spacing decreases the fluctuation in performance data.

7.2.4 Micro-Scale Coaxial Rotor

The overall performance of a micro-scale coaxial system was well predicted for

a range of RPMs. Top rotor thrust was under-predicted by less than ∼ 2%

at all speeds, whereas the bottom rotor thrust was over-predicted by less than
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∼ 8%. The total power was well predicted. In the experiment, torque was

balanced by changing the bottom rotor RPM, while keeping the top rotor RPM

fixed. Assuming identical rotational speed for the top and bottom rotors in

computation introduced only an error within 5% in the torque balance. As

the rotor spacing increases, the top and bottom rotor thrusts showed opposite

trends. While the top rotor thrust increased with the rotor spacing, the bottom

rotor thrust decreased as the rotor separation increases. Both the rotor thrusts

approached a constant value at very large rotor spacing. The total thrust of

the system was seen to remain fairly constant with the rotor spacing, which

was seen even in the experimental results. Top rotor contributed to about 55%

of the total thrust at smaller rotor spacing and increased to about 58% at the

largest rotor separation, which was similar to what was seen for full-scale coaxial

rotor. Similar to full-scale system, the computed performance data showed that

the flow-field is unsteady with a dominant 2N/rev frequency (where N is the

number of blades for each rotor). The interactions resulted in a fluctuation of

3−8% in the integrated quantities. Similar to full-scale coaxial rotors, significant

wandering of the tip vortex was observed for both the top and the bottom rotors.

Following are the specific conclusions drawn on a micro-scale coaxial system:

1. Unsteadiness in micro-scale coaxial rotor is mainly caused due to blade

loading and wake effect. The venturi effect due to thickness of the blade

(seen in full-scale coaxial rotors) was negligible because of the thin airfoil

used. Additional high frequency unsteadiness is also seen due to shedding

near the trailing edge, which was also seen for micro-scale single rotor.

2. As the rotor spacing increases, the unsteadiness in the top rotor decreases,

however the unsteadiness in the bottom rotor does not follow any particular
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trend. For the micro-scale coaxial system, the wake effect is comparable or

even predominant over the loading effect when the rotor spacing is large.

This is in contrary to the full-scale systems, where the loading effect was

more predominant over the wake effect and therefore, increase in rotor

spacing almost always results in a decrease in unsteadiness of the forces on

bottom rotor.

3. In micro-scale coaxial system, the phasing of the impingement of the top

rotor vortex upon the bottom rotor plays a significant role in the amount

of unsteadiness for the micro-scale coaxial systems. To have least unsteadi-

ness on the bottom rotor, the vortex impingement should occur farthest

away from the location at which the loading effect peaks. The phasing can

be controlled by adjusting the rotor-spacing.

4. Interaction of top rotor vortex and inboard sheet with the bottom rotor

results in unsteady shedding both in the outboard and inboard portions

of the blade; a phenomenon not seen for the full-scale coaxial rotor. In

the outboard portion of the blade, a highly three-dimensional shedding

occurs on the upper surface of the blade, whereas the shedding at the

inboard portion of the blade occurs on the lower surface and it is more

two-dimensional in nature. Sharp leading edge geometry on the bottom

rotor is believed to be the main reason for such a drastic separation and

slight amount of roundness at the leading edge could possibly alleviate this

issue.
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7.3 Recommendations

The verification of the techniques used to improve the state-of-the-art in the CFD

modeling of micro-rotors, along with their validation with available experimental

data, gives confidence in the ability of using the resulting methodology to be

part of a tool that could aid in developing MAVs, which meet the targets set by

DARPA.

Specifically, regarding CFD methodology, the following recommendations are

made:

1. Time accurate low Mach preconditioning should be used for micro-rotors

with pseudo-time step size in the order of actual time step size.

2. The improved blanking technique with proper treatment of fringe points

should be used for all overset calculations.

3. The Spalart-Allmaras turbulence model appears to be sufficient for sim-

ulating micro-rotors. However, the current methodology can further be

improved by implementing a transition model to provide better quantita-

tive prediction of the separation pattern for micro-rotors.

Furthermore, based on the physical insights gained by examining the various

simulations, the following recommendations are made:

1. Blunting leading edge geometries should be avoided due to the increase in

pressure drag.

2. The limitations in the aerodynamic efficiency of micro-rotors is still possi-

bly because of the large profile power. Further efforts should be made to

design airfoils that have low profile drag at low Reynolds numbers.
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3. Similar to full-scale rotors, twist and taper should be used to improve

performance of micro-rotors.

4. Optimal rotor spacing for a micro-scale coaxial system can be used to

reduce fluctuations on the bottom rotor.

5. Some degree of leading edge roundness might be desirable to avoid separa-

tion on coaxial rotors due to the blade-vortex interactions on the bottom

rotor.

6. CFD should be used to investigate the feasibility for optimizing the bottom

rotor geometry in coaxial micro-rotors.

7.4 Future Work

Some of the suggested future work are:

1. More validation of simple design tools like Blade Element Momentum The-

ory and Free Vortex Method for micro-rotors need to be done using the

results obtained from the CFD methodology developed in this work.

2. Assuming periodicity in coaxial rotor simulation serves as a first approx-

imation, which reduce the simulation time significantly. However, this

assumption restricts the aperiodicity that can develop between different

blades of a rotor system. Therefore, simulation using all the blades of

each rotor system must be performed to check the validity of the current

approximation.

3. Additional experiments need to be performed for further validation of coax-

ial rotors, especially, the measurement of unsteady thrust and power. In
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addition, wake measurements for the coaxial rotors needs to be performed.

4. To understand the aerodynamics of coaxial rotors in non-hovering flight

conditions, CFD methodology need to be extended for axial and forward

flights; corresponding experiments need to be performed for the continued

validation.

5. To develop a comprehensive computational platform that can be used for

building MAVs, the methodology developed in this work needs to be ex-

tended to other non-conventional micro-rotors such as ducted rotors, flap-

ping rotors etc.
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