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Abstract—In the simulation of high frequency nanoscale semiconductor devices in which
electromagnetic (EM) fields and carrier transport are coupled, and optoelectronic devices in which
strong interactions between EM fields and charged particles exist, both the Maxwell’s equations and
the time-dependent Schrödinger equation (TDSE) need to be solved to capture the interactions between
EM and quantum mechanics (QM). One of the numerical simulation methods for solving these equations
is the finite difference time domain (FDTD) method. In this review paper, the development of FDTD
method applied in EM and QM simulation is discussed. Several widely used FDTD techniques, i.e.,
explicit, implicit, explicit staggered-time, and Chebyshev methods, for solving the TDSE are introduced
and compared. The hybrid approaches based on FDTD method, which are used to solve the Poisson-
TDSE and Maxwell-TDSE coupled equations for EM-QM simulation, are also discussed. Furthermore,
the applications of these simulation methods for nanoscale semiconductor devices and optoelectronic
devices are introduced. Finally, a conclusion is given.

1. INTRODUCTION

Comprehensive modeling and numerical simulation techniques for emerging nanoscale semiconductor
devices and optoelectronic devices to capture the interactions between electromagnetics (EM) and
quantum mechanics (QM) are necessary. For nanoscale semiconductor devices in which the operation
frequency increases continuously, the quasi-static (QS) EM and time-dependent QM simulation are
needed to obtain their high-frequency performance [1]. On the other hand, for optoelectronic devices
such as quantum-dot (QD) lases and semiconductor optical amplifiers (SOAs) which have more complex
interactions between EM fields and charged particles [2], the time-dependent EM-QM simulation is also
needed to simulate their dynamic properties [3].

Maxwell’s equations and time-dependent Schrödinger equation (TDSE) are the fundamental
governing equations of EM and QM, respectively [4, 5]. In the time-dependent EM-QM simulation,
the quantum transport can be simulated by solving the TDSE which incorporates the effect of EM
fields through the magnetic vector potential “A” and the electrical scalar potential “Φ”, as shown in
Eq. (1). And the feedback from quantum transport to the EM fields can be modeled by adding quantum
current density “Jq” obtained from the TDSE to Maxwell’s equations, as shown in Eq. (2).

iℏ
∂Ψ(r, t)

∂t
=

[
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2m
[−iℏ∇− qA(r, t)]2 + qΦ(r, t) + V (r, t)]Ψ(r, t). (1)
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∇× H =
∂D

∂t
+ σE + Jq.

∇× E = −∂B

∂t
.

(2)

Various numerical methods are developed for solving these equations, since the analytical solution
is difficult to find especially for devices with complex structures [6–11]. For solving the TDSE, one of
the numerical simulation methods is the finite difference time domain (FDTD) method which is also
widely used in EM simulation [12]. In 2000, Sullivan applied FDTD method to solve one-dimensional
(1D) TDSE [13], then developed this method to calculate two-electron wave packet dynamics in a QD
modeled by a two-dimensional (2D) harmonic oscillator [14]. In 2002, Sullivan and Citrin presented a
more flexible FDTD formulation of the TDSE, which is capable of simulating the dynamic processes in
various nanostructures [15]. In 2004, the FDTD method applied for quantum applications was named
as “FDTD-Q” by Soriano e al. With FDTD-Q method, the time behavior of the wave function for
the quantum well wire (QWW) was obtained, and the analysis of stability and convergence of this
method was also carried out [16]. Besides, there are also many modified methods proposed with better
performance [17–21].

At low frequency, since QS approximation is valid, the Poisson’s equation and time-independent
Schrödinger equation are used to get the carrier transport properties of nanoscale semiconductor
devices [22, 23]. However, as frequency increases, QS approximation is not accurate, and the time-
dependent behavior should be taken into consideration. The Maxwell’s equations and TDSE need to
be solved to capture the interactions between EM and QM [3, 24, 25] and analyze the high frequency
transient performances [26]. In 2007, Yang and Sui calculated the electron tunneling current through
a potential barrier by 3D FDTD method to capture the EM-QM coupled behaviors [27]. In 2010,
Ahmed et al. implemented a hybrid FDTD method to simulate the electric field distribution of the
nanowire [28]. The hybrid approach, in which the conventional FDTD is used to solve the TDSE [12],
and the locally one-dimensional FDTD (LOD-FDTD) is used to solve the Maxwell’s equations [29, 30],
is more efficient, and has more freedom to choose time step [31]. In 2018, a more efficient and precise
FDTD method for the EM-QM simulation of single dipole, 2D quantum well (QW) and QD with current
excitation was presented by Xiang et al., in which the fourth-order spatial differences are used for the
whole device and third-order symplectic integrators are used for the TDSE [32]. And these numerical
methods can be used for simulation of various nanoscale semiconductor devices and optoelectronic
devices, such as plasmonic devices [33], QD lasers and amplifiers [3, 34, 35], and devices for quantum
state control [36–38].

In this review paper, we present and discuss several different schemes of FDTD method for solving
TDSE and hybrid approaches based on FDTD method for Poisson-TDSE and Maxwell-TDSE coupled
equations, in which the corresponding stability condition and computational cost are discussed. Besides,
simulation examples by FDTD methods, including nanoscale semiconductor devices and optoelectronic
devices, are presented. Finally, a conclusion is given.

2. METHODOLOGY

2.1. FDTD for Time-Dependent QM Simulation

The TDSE can be solved by FDTD method to simulate time-dependent quantum transport. In this
section, we introduce several different FDTD techniques for TDSE [39], i.e., explicit [40], implicit [41],
explicit staggered-time [42] and one-step Chebyshev methods [43]. For simplicity, we start from the 1D
case, and the discretization methods for 3D case can be obtained accordingly. The 1D TDSE is given
by

iℏ
∂Ψ(x, t)

∂t
= − ℏ

2

2m

∂2Ψ(x, t)

∂x2
+ V (x)Ψ(x, t). (3)
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2.1.1. Explicit Method

After using explicit second order difference scheme with central difference approximation [44], Eq. (3)
can be discretized as

iℏ
Ψn+1

j − Ψn−1
j

2∆t
= − ℏ

2

2m

Ψn
j−1 − 2Ψn

j + Ψn
j+1

∆x2
+ VjΨ

n
j , (4)

where j represents the jth spatial grid, and the superscript n represents the nth temporal grid. ∆x and
∆t are the space step and time step, respectively. The explicit method is fast and easy to implement.
When ∆t satisfies Eq. (5), this explicit FDTD scheme is stable [45, 46].

∆t �
ℏ

2ℏ
2

m∆x2
+ max(|V |)

. (5)

2.1.2. Implicit Method

The implicit difference scheme is also called Crank-Nicolson scheme and can be obtained by averaging
the explicit forward difference scheme at time n and the backward difference scheme at time n + 1 [41].
The discretized form of Eq. (3) can be written as

Ψn+1
j+1 + (α − 2 − βVj) Ψn+1

j + Ψn+1
j−1 = −Ψn

j+1 + (α + 2 + βVj)Ψn
j − Ψn

j−1, (6)

where α = i4m∆x2

ℏ∆t
, β = 2m∆x2

ℏ2 . Such an implicit FDTD scheme is unconditionally stable and
accurate [41]. From Eq. (6), we can see it is a tridiagonal set of linear equations. The computational
cost of this scheme is very large, although there are many techniques for solving tridiagonal systems
that can reduce the expense [47–49].

2.1.3. Explicit Staggered Method

The explicit staggered method has become a popular algorithm since it was first proposed by Visscher in
1991 [42]. In addition to retaining the advantages of explicit method, the explicit staggered method also
improves the stability. Unlike the explicit and implicit method, the explicit staggered method treats
the real and imaginary components of the wave function at staggered moments. The wave function can
be described by

Ψ(x, t) = ΨR(x, t) + iΨI(x, t), (7)

where the subscripts R and I represent the real and imaginary components, respectively. Then, Eq. (3)
can be rewritten as two partial differential equations as [42]

ℏ
∂ΨR

∂t
= − ℏ

2

2m

∂2ΨI

∂x2
+ V ΨI , (8)

ℏ
∂ΨI

∂t
= +

ℏ
2

2m

∂2ΨR

∂x2
− V ΨR. (9)

After defining the real and imaginary components at staggered moments, the above equations can
be discretized as [42]

Ψn+1
Rj = Ψn

Rj −
ℏ∆t
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(
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n+ 1

2
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)

+
∆t

ℏ
VjΨ
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2

Ij , (10)
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2

Ij +
ℏ∆t

2m∆x2

(
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Rj−1 − 2Ψn

Rj + Ψn
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)

− ∆t

ℏ
VjΨ

n
Rj . (11)

The two equations can be solved in an iterative way [42]. The explicit staggered method is stable
when ∆t satisfies the following equation [16]

∆t �
ℏ

ℏ
2

m∆x2
+ max(|V |)

. (12)
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Compared with Eq. (5), it is seen that when the potential is zero and all other variables are the
same, the critical time step of this scheme is twice of that of the explicit method. Therefore, this method
is more stable than explicit method when the time step is the same.

2.1.4. One-Step Chebyshev Method

The Chebyshev method is unconditionally stable [46], and large time step can be used in this method,
but we need to carefully choose the time step due to the tradeoff between efficiency and accuracy.
Rewrite the TDSE with Hamiltonian operator as

iℏ
∂Ψ(x, t)

∂t
= HΨ(x, t), (13)

where H = − ℏ2

2m
∂2

∂x2 + V . The general solution of Eq. (13) is given by

Ψ(t + ∆t) = exp

(

− i

ℏ
H∆t

)

Ψ(t). (14)

The key of this approach is to use a Chebyshev polynomial expansion to approximate the operator
exp

(

− i
ℏ
H∆t

)

. By the way, Taylor expansion would lead to the explicit method [43]. After expanding
the right-hand side of Eq. (14), we can obtain [43]

Ψ(t + ∆t) = eizBΨ(t) =

[

J0(z) + 2

∞
∑

k=1

ikJk(z)Tk(B)

]

Ψ(t), (15)

where Jk(z) is the k order Bessel function, and Tk(B) is a matrix-valued Chebyshev polynomial defined
by the following relations [43]

T0(B)Ψ(t) = Ψ(t), T1(B)Ψ(t) = BΨ(t), (16)

Tk+1(B)Ψ(t) = 2BTk(B)Ψ(t) − Tk−1(B)Ψ(t), k = 1, 2, · · · (17)

The way to improve the accuracy of this approach is mainly through increasing the expansion
order, which is different from the previous approaches. The major drawback of this technique is that
the potential distribution is supposed to be unvaried during each time step. When the potential is
time-dependent, the time step will be limited by the speed of potential variation [39], thus, greatly
reducing the efficiency of this technique. In addition, there are also many other approaches based on
the above FDTD methods for further modifications [17–20].

2.2. FDTD for Time-Dependent EM-QM Simulation

Maxwell’s equations and TDSE are the fundamental governing equations for EM and QM. A general
model for time-dependent EM-QM simulation is shown in Fig. 1. The moving carriers inside the device

Figure 1. A general model for the coupled EM-QM simulation [50].
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are the source of EM fields. The EM fields, in turn, will affect carrier transport. The impact of EM
fields on the carriers is implemented by introducing the magnetic vector potential “A” and the electrical
scalar potential “Φ” into the TDSE. And the current density “Jq” inside the device which is calculated
by using the wave functions obtained from TDSE is incorporated into the Maxwell’s equations to model
the feedback from carriers to the EM fields. These terms establish the coupling between the time
domain EM model and active quantum devices model [51, 52]. In this section, we mainly focus on the
FDTD method for solving the coupled Maxwell’s equations and TDSE. It’s worth noting that when the
frequency is much smaller than the velocity of the wave propagation divided by length of the channel
(which is ∼ 100 THz for the simulated device with a channel length of 20 nm), the EM simulation can be
simplified into an electrostatic problem [53]. In this case, the TDSE is solved self-consistently with the
Poisson’s equation instead of Maxwell’s equations [1]. Correspondingly, the two equations are coupled
by the charge density term which is obtained from TDSE.

2.2.1. FDTD for Poisson-TDSE Coupled Equations

For electrostatic EM simulation, the time-dependent quantum transport equation is solved self-
consistently with the Poisson’s equation. In 2006, Chen et al. used FDTD method to solve the TDSE
with the electrostatic potential obtained from Poisson’s equation, and the simulation process is shown
in Fig. 2 [50]. The Poisson’s equation is given by

∇ · ε∇V = −ρv, (18)

where ρv is the charge density calculated by the wave function from the TDSE. The Poisson’s equation
can be solved with numerical techniques, such as finite difference method (FD) and finite element
method (FEM). Under the electrostatic assumption, the TDSE can be simplified as

iℏ
∂Ψ(r, t)

∂t
= − 1

2m∗
ℏ

2∇2Ψ(r, t) + U(r, t)Ψ(r, t). (19)

Figure 2. The process of electrostatic EM simulation with the time-dependent quantum transport [50].

The FDTD methods used to solve the TDSE have already described in the previous section. After
getting the solution of this equation, we can obtain the charge density of the device which establishes
the coupling between the TDSE and Poisson’s equation as follows

ρv(z, t) =

√
2m∗e

πℏ

∫

∞

Ec

1√
E − Ec

|Ψ(z, t)|2dE. (20)
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2.2.2. FDTD for Maxwell-TDSE Coupled Equations

For time-dependent EM-QM simulation at high frequency, the quantum transport properties are
calculated by TDSE, and the EM field distribution is obtained from Maxwell’s equations. In 2010,
Ahmed et al. implemented a hybrid technique which consists of implicit and explicit FDTD methods
for the simulation of nanowire with excitation source [28]. The side view and 3D structure of the
nanowire are shown in Figs. 3(a) and (b). The conventional FDTD method is applied to the region with
fine mesh where quantum effect exists, and LOD-FDTD is applied to the rest of the region with coarse
mesh, as shown in Fig. 3(c) [28]. And the interpolation technique is used at the interface between the
coarse and fine mesh domains to couple the two regions [54]. The Maxwell’s equations containing the
quantum current density are written as [55]

∇× H =
∂D

∂t
+ σE + Jq, (21)

∇× E = −∂B

∂t
, (22)

where “Jq” can be obtained from the TDSE. The Maxwell’s equations can be solved by LOD-FDTD
method which consists of three sub time-steps defined by the general LOD procedure in the three spatial
coordinate directions [30]. For simplicity, the first step equations of the LOD-FDTD method are given
as follows, and the other two can be obtained similarly [30].

∂B
n+ 1

3

x

∂t
= 0, (23)

∂B
n+ 1

3

y

∂t
=

⎛

⎝

∂E
n+ 1

3

z

∂x
− ∂En

z

∂x

⎞

⎠ , (24)

∂B
n+ 1

3

z

∂t
= −

⎛

⎝

∂E
n+ 1

3

y

∂x
−

∂En
y

∂x

⎞

⎠ , (25)

(a)

(b)

(c)

Figure 3. (a) Side view of the nanowire. (b) 3D structure of the nanowire connected to electrodes. (c)
Fine mesh around nanowire, and coarse mesh in the rest of the region [28].
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+ σE

n+ 1

3

x = −J
n+ 1

3

x , (26)
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y
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⎛

⎝
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z

∂x
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z

∂x

⎞

⎠ − J
n+ 1

3
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∂D
n+ 1

3

z

∂t
+ σE

n+ 1

3

z =

⎛

⎝

∂H
n+ 1

3

y

∂x
−

∂Hn
y

∂x

⎞

⎠ − J
n+ 1

3

z . (28)

The FDTD techniques used to solve TDSE have already been described in the previous section.
The only difference is that in the presence of EM field, Eq. (3) needs to be modified as

iℏ
∂Ψ(r, t)

∂t
=

[

1

2m
[−iℏ∇− qA(r, t)]2 + qΦ(r, t) + V (r, t)]Ψ(r, t). (29)

where “A” and “Φ” represent vector and scalar potential terms, respectively, and satisfy

B = ∇× A, (30)

E = −∇Φ − ∂A

∂t
. (31)

Due to the interface complexity, the TDSE is considered in 1D case, which can be written along
the z-axis in terms of real and imaginary parts as [56]

∂ΨR(z, t)

∂t
= − ℏ

2m

∂2ΨI(z, t)

∂2z
+

q2

2ℏm
Az(z, t)2ΨI(z, t) − q

ℏ
Φ(z, t)ΨI(z, t) +

V (z)

ℏ
ΨI(z, t)

− q

m
Az(z, t)

∂ΨR(z, t)

∂z
− q

2m
ΨR(z, t)

∂Az(z, t)

∂z
, (32)

∂ΨI(z, t)

∂t
=

ℏ

2m

∂2ΨR(z, t)

∂2z
− q2

2ℏm
Az(z, t)2ΨR(z, t) +

q

ℏ
Φ(z, t)ΨR(z, t) − V (z, t)

ℏ
ΨR(z, t)

− q

m
Az(z, t)

∂ΨI(z, t)

∂z
− q

2m
ΨI(z, t)

∂Az(z, t)

∂z
. (33)

After getting the solution of the TDSE, the quantum current density is given by

Jz(z, t) = − q

2m
iℏ

(

Ψ∗(z, t)
∂

∂z
Ψ(z, t) − Ψ(z, t)

∂

∂z
Ψ∗(z, t)

)

− q2

m
Az|Ψ(z, t)|2. (34)

In this hybrid method, the time step in the LOD-FDTD region can be larger because implicit
method is used. Thus, it has more freedom to choose time steps and is flexible in terms of synchronization
in time steps compared with the traditional method like the explicit hybrid approach [31], in which the
time step in the region where quantum effect exists and in the rest of the region needs to be the same
to maintain stability [28].

Moreover, in the time-dependent EM-QM simulation, we are more concerned with how to select
discrete unit size and what FDTD techniques are used in different regions to reach a good tradeoff
between efficiency, accuracy and stability. And there are also many other numerical techniques to solve
the Maxwell-TDSE coupled equations [56–61] such as the high-order symplectic FDTD scheme [32, 62],
alternating direction implicit (ADI) FDTD method [63].

3. APPLICATIONS

In this section, the applications of FDTD method in the QS EM and time-dependent QM simulation
for nanoscale semiconductor devices and in the time-dependent EM-QM simulation for optoelectronic
devices are introduced [64–69].
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3.1. FDTD for Nanoscale Semiconductor Devices

In 2006, Chen et al. applied the Poisson-TDSE coupled equations to study the time-dependent
quantum transport and non quasi-static (NQS) effects in the coaxially gated carbon nanotube field-
effect transistor (CNTFET) [1, 50]. The structure and corresponding simulation results are shown in
Fig. 4 [50] and Fig. 5 [1, 50]. With the increase of frequency, the amplitudes of the small signal current
and charge decrease, which mean the gate gradually loses control of the device. Besides, the validity of
the QS approximation is also examined. The simulation results show that at high frequencies, the QS

Figure 4. Structure of the coaxially gated carbon nanotube field effect transistor [50].

(a) (b)

(c) (d)

Figure 5. (a) Small signal time-dependent drain to source current and (b) small signal time-dependent
channel charge at VDS = 0.5 V, VGS = 0.5 V, vgs = 10 mV. (c) AC transconductance and (d) gate
capacitance versus frequency at VDS = 0.5 V, VGS = 0.5 V [1, 50].
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approach overestimates the transconductance and gate capacitance and is not accurate, thus, fails to
explore the NQS effects in the CNTFET.

In 2008, Chen et al. also solved the Poisson-TDSE coupled equations to simulate the dynamic
properties of CNTFET [26]. The time evolutions of the total charge density and current of the CNTFET
in response to different gate voltages are shown in Fig. 6 [26]. From the simulation results, we can see
the charge density and current respond to the variation of the applied voltages simultaneously. When a
higher gate voltage is applied, the current overshoot is greater than its steady-state value and will take
more time to stabilize.

(a) (b)

Figure 6. (a) Time evolution of total charge density in response to different gate voltages. (b) Time
evolution of current in the center of the device in response to different gate voltages [26].

(a) (b)

Figure 7. (a) Schematic diagram of the energetic structure of a QD in a carrier reservoir. (b) Emitted
electric field at different time of the calculation, t = 0, t = 1.5 ps, t = 1 ns. The inset shows the emitted
output power versus bias level [3].
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3.2. FDTD for Optoelectronic Devices

FDTD method can be used for simulation of various optoelectronic devices, such as plasmonic
devices [33], QD lasers and SOAs [3, 34, 35, 70–72], and devices for quantum states control [37, 38, 73].
In 2013, Capua et al. used FDTD method to simulate the dynamic properties of QD lasers and SOAs
by solving the Maxwell-TDSE coupled equations [3]. In QD lasers and SOAs, the QD active gain
medium is modeled by a two-level system interacting with the EM field, as shown in Fig. 7(a) [3]. The
build-up of laser oscillations is presented in Fig. 7(b) [3]. It is seen that the steady-state oscillations are
established after the energetic transition processes are completed. Besides, the well-known properties
such as relaxation oscillations can be also seen from the simulation. Then, applying an antireflection
coating, the QD laser can be turned into a SOA. The amplification of ultrashort pulses and the Rabi-
oscillation phenomenon in SOA are also studied [3]. Rabi-oscillation is a very important regime in
the device, that is when the particle (or two-level system) is illuminated by EM waves in a cavity,
it cyclically absorbs photons and re-emits them by stimulated emission [74]. And the impacts of field
intensity, detuning, and material loss on the population inversion in Rabi-oscillation regime were further
investigated and discussed by Chen et al. in 2015 [34].

In addition, the control of quantum states [38, 74–76] has attracted great attention for various
applications such as quantum computaion [77–79]. In 2015, Takeuchi et al. proposed a scheme of

Figure 8. The model of a single electron confined in a quasi-1D nanoscale potential well and irradiated
by a pulsed laser field. The electric current source of the incident laser pulse is distributed uniformly
on the y-z plane and excites a plane-wave light control pulse polarized along z axis [37].

(a) (b)

Figure 9. The temporal variation of the ground state Ω0 and the objective state Ω1 in the time-
dependent electron wave packet obtained by the Maxwell-TDSE hybrid simulation employing (a) the
conventional light control pulse and (b) the present light control pulse [37].
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designing laser pulses for controlling quantum states based on the Maxwell-TDSE hybrid simulation [37].
A typical example is a single electron confined in a quasi-1D nanoscale potential well and irradiated
by a pulsed laser field, as shown in Fig. 8 [37]. The simulated temporal variations of the ground state
Ω0 and the objective state Ω1 are shown in Fig. 9 [37]. It indicates that the present light control
pulse can effectively control the quantum states by considering the feedback from the excited electrons
which could yield a locally strong EM field, also called near-field, in the vicinity of the target electron
system [80–82]. Moreover, they applied the hybrid simulation to predict the influence of the near-field in
the optical control of confined electron systems in 2017 [73], from which one can investigate and predict
how strongly the near-field generated by the excited electrons affects the light control pulse. And it also
shows that the near-field effects have strong dependence on the characteristics of the laser pulse and the
confined electron systems, such as amplitude of the light control pulse, electron density, and length of
the nanotube. In 2018, Yang et al. simulated the multi-quantum state control of nanotube by solving
the Maxwell-TDSE coupled equations, and the probability distribution of electrons and the conversion
rate of electronic state in the nanotube are shown in Fig. 10 [36].

(a) (b)

Figure 10. (a) Probability distribution of electrons in the nanotube. (b) Conversion rate of electronic
states in the nanotube [36].

4. CONCLUSION

In summary, modeling and numerical simulation techniques for nanoscale semiconductor devices
and optoelectronic devices to capture the interactions between EM and QM are necessary. FDTD
method is effective to solve the Poisson-TDSE and the Maxwell-TDSE coupled equations in nanoscale
semiconductor devices and optoelectronic devices. People have developed various discretization
techniques to improve the performance of FDTD methods.

In terms of future research trends, there are many potential possibilities. First, the Maxwell-TDSE
coupled model can be applied to a more complex system, maybe for electronic devices with a large
quantity of electrons and holes, or in a more complex environment with inhomogeneous and nonlinear
medium which will make an important impact on the transition dynamics. Second, nano-transistors or
new nanodevices have received considerable research attention in recent years. The numerical simulation
to study the high frequency transient performances of these devices is needed, and using the FDTD
method to solve the TDSE with Poisson’s equation is a good choice. Third, with the rapid development
of the electronics industry, the system complexity has brought great challenges to the performance of
the numerical algorithm. There is an urgent need for a more flexible FDTD technique with higher
efficiency, accuracy, and stability for the device simulations. Finally, exploration of new mechanisms,
and implementing it with the Maxwell-TDSE coupled equations to give a more complete description
about the dynamic behaviors of the devices and systems are also very attractive.



74 Duan et al.

ACKNOWLEDGMENT

The work is supported by the National Natural Science Foundation of China under Grants No. 61971375,
62071418 and 61931007, the Zhejiang Provincial Natural Science Foundation of China under Grant
No. LR21F010003, and by the Opening Project of Science and Technology on Reliability Physics and
Application Technology of Electronic Component Laboratory.

REFERENCES

1. Chen, Y., Y. Ouyang, J. Guo, and T. X. Wu, “Time-dependent quantum transport and
nonquasistatic effects in carbon nanotube transistors,” Applied Physics Letters, Vol. 89, 203122,
2006.

2. Chen, Y. P., W. E. I. Sha, W. C. H. Choy, L. Jiang, and W. C. Chew, “Study on spontaneous
emission in complex multilayered plasmonic system via surface integral equation approach with
layered medium Green’s function,” Optics Express, Vol. 20, No. 18, 20210, 2012.

3. Capua, A., O. Karni, and G. Eisenstein, “A finite-difference time-domain model for quantum-dot
lasers and amplifiers in the Maxwell-Schrödinger framework,” IEEE Journal of Selected Topics in
Quantum Electronics, Vol. 19, No. 5, 1–10, 2013.

4. Yankwich, P. E., “Introduction to quantum mechanics,” Journal of the American Chemical Society,
Vol. 82, No. 14, 3803–3803, 1960.

5. Rae, A. I. M., “The picture book of quantum mechanics,” Physics Today, Vol. 49, No. 1, 65–66,
1996.

6. Chan, T. F., D. Lee, and L. Shen, “Stable explicit schemes for equations of the Schrödinger type,”
SIAM Journal on Numerical Analysis, Vol. 23, No. 2, 274–281, 1986.

7. Chen, J. B. and M. Z. Qinz, “Multi-symplectic Fourier pseudospectral method for the nonlinear
Schrödinger equation,” Electronic Transactions on Numerical Analysis Etna, Vol. 12, 193–204,
2001.

8. Chang, Q. and G. Wang, “Multigrid and adaptive algorithm for solving the nonlinear Schrödinger
equation,” Journal of Computational Physics, Vol. 85, No. 2, 504, 1989.

9. Dai, W. Z. and R. Nassar, “A finite difference scheme for the generalized nonlinear Schrödinger
equation with variable coefficients,” Journal of Computational Mathematics, Vol. 18, No. 2, 123–
132, 2000.

10. Delfour, M., M. Fortin, and G. Payr, “Finite-difference solutions of a non-linear Schrödinger
equation,” Journal of Computational Physics, Vol. 44, No. 2, 277–288, 1981.

11. Herbst, B. M., J. Ll Morris, and A. R. Mitchell, “Numerical experience with the nonlinear
Schrödinger equation,” Journal of Computational Physics, Vol. 60, No. 2, 282–305, 1985.

12. Taflove, A. and S. C. Hagness, Computational Electrodynamics (The Finite-difference Time-domain
Method), 3rd Edition, Artech House, 2001.

13. Sullivan, D. M., Electromagnetic Simulation Using the FDTD Method, 2nd Edition, Chapters 1–11,
Wiley-IEEE Press, 2000.

14. Sullivan, D. and D. S. Citrin, “Time-domain simulation of two electrons in a quantum dot,” Journal
of Applied Physics, Vol. 89, No. 7, 3841–3846, 2001.

15. Sullivan, D. M. and D. S. Citrin, “Determination of the eigenfunctions of arbitrary nanostructures
using time domain simulation,” Journal of Applied Physics, Vol. 91, No. 5, 3219–3226, 2002.

16. Soriano, A., E. A. Navarro, J. A. Porti, and V. Such, “Analysis of the finite difference time domain
technique to solve the Schrödinger equation for quantum devices,” Journal of Applied Physics,
Vol. 95, No. 12, 8011–8011, 2004.

17. Sudiarta, I. W. and D. J. W. Geldart, “Solving the Schrödinger equation using the finite difference
time domain method,” Journal of Physics A: Mathematical and Theoretical, Vol. 40, No. 8, 1885–
1896, 2007, doi: 10.1088/1751-8113/40/8/013.



Progress In Electromagnetics Research, Vol. 170, 2021 75

18. Moxley, F. I., D. T. Chuss, and W. Dai, “A generalized finite-difference time-domain scheme for
solving nonlinear Schrödinger equations,” Computer Physics Communications, Vol. 184, No. 8,
1834–1841, 2013.

19. Tay, W. C. and E. L. Tan, “Pentadiagonal alternating-direction-implicit finite-difference time-
domain method for two-dimensional Schrödinger equation,” Computer Physics Communications,
Vol. 185, No. 7, 1886–1892, 2014.

20. Wilson, J. P. and W. Dai, “Generalized finite-difference time-domain method with absorbing
boundary conditions for solving the nonlinear Schrödinger equation on a GPU,” Computer Physics
Communications, Vol. 235, 279–292, 2019.

21. Dai, W., G. Li, R. Nassar, and S. Su, “On the stability of the FDTD method for solving a time-
dependent Schrödinger equation,” Numerical Methods for Partial Differential Equations, Vol. 21,
No. 6, 1140–1154, 2010.

22. Adamowski, J., “A numerical solution of the Poisson-Schrödinger problem for a vertical gated
quantum dot,” TASK Quarterly, Vol. 8, 603, 2004, doi: 10.13140/2.1.4912.7040.

23. Fiori, G. and G. Iannaccone, “The effect of quantum confinement and discrete dopants in nanoscale
50 nm n-MOSFETs: A three-dimensional simulation,” IEEE Transactions on Nanotechnology,
Vol. 13, No. 3, 294, 2002, doi: 10.1088/0957-4484/13/3/311.

24. Guo, J., et al., “Assessment of high-frequency performance potential of carbon nanotube
transistors,” IEEE Transactions on Nanotechnology, Vol. 4, No. 6, 715–721, 2005.

25. Stefanucci, G., S. Kurth, A. Rubio, and E. K. U. Gross, “Time-dependent approach to
electron pumping in open quantum systems,” Physical Review B, Vol. 77, 75339, 2008, doi:
10.1103/PhysRevB.77.075339.

26. Chen, Z.-D., J.-Y. Zhang, and Z.-P. Yu, “Time-dependent transport in nanoscale devices,” Chinese
Physics Letters, Vol. 26, No. 3, 37303–37306(4), 2009.

27. Yang, J. and W. Sui, “Solving Maxwell-Schrödinger equations for analyses of nano-scale devices,”
European Microwave Conference, 2007.

28. Ahmed, I., E. H. Khoo, E. Li, and R. Mittra, “A hybrid approach for solving coupled Maxwell
and Schrödinger equations arising in the simulation of nano-devices,” IEEE Antennas and Wireless
Propagation Letters, Vol. 9, 914–917, 2010, doi: 10.1109/lawp.2010.2076411.

29. Shibayama, J., M. Muraki, J. Yamauchi, and H. Nakano, “Efficient implicit FDTD algorithm based
on locally one-dimensional scheme,” Electronics Letters, Vol. 41, No. 19, 1046–1047, 2006.

30. Ahmed, I., E. K. Chua, E. P. Li, and Z. Chen, “Development of the three-dimensional
unconditionally stable LOD-FDTD method,” IEEE Transactions on Antennas and Propagation,
Vol. 58, No. 11, 832–837, 2010.

31. Pierantoni, L., D. Mencarelli, and T. Rozzi, “A new 3-D transmission line matrix scheme for
the combined Schrödinger-Maxwell problem in the electronic/electromagnetic characterization of
nanodevices,” IEEE Transactions on Microwave Theory and Techniques, Vol. 56, No. 3, 654–662,
2008.

32. Xiang, C., F. Kong, K. Li, and M. Liu, “A high-order symplectic FDTD scheme for the Maxwell-
Schrödinger system,” IEEE Journal of Quantum Electronics, Vol. 54, No. 1, 1–8, 2018.

33. Lee, K. H., I. Ahmed, R. S. M. Goh, E. H. Khoo, E. P. Li, and T. G. G. Hung, “Implementation of
the FDTD method based on Lorentz-Drude dispersive model on GPU for plasmonics applications,”
Progress In Electromagnetics Research, Vol. 116, 441–456, 2011.

34. Chen, Y. P., Y. M. Wu, and W. E. I. Sha, “Modeling Rabi oscillation by rigorously solving Maxwell-
Schrödinger equation,” IEEE International Symposium on Microwave, 2016.

35. Hatori, N., M. Sugawara, T. Akiyama, and Y. Nakata, “Low frequency chirp self-assembled
InGaAs/GaAs quantum dot lasers,” Lasers & Electro-optics Society, Leos the Meeting of the IEEE,
2001.

36. Yang, Z. D., L. Zhang, H. Zeng, D. Z. Ding, and R. S. Chen, “Multi-quantum state control of
nano-tube by the Maxwell-Schrödinger hybrid method,” 2018 Cross Strait Quad-Regional Radio
Science and Wireless Technology Conference (CSQRWC), 2018.



76 Duan et al.

37. Takeuchi, T., S. Ohnuki, and T. Sako, “Maxwell-Schrödinger hybrid simulation for optically
controlling quantum states: A scheme for designing control pulses,” Physical Review A, Vol. 91,
No. 3, 033401, 2015.

38. Meshulach, D. and Y. Silberberg, “Coherent quantum control of two-photon transitions by a
femtosecond laser pulse,” Nature, Vol. 396, No. 6708, 239–242, 1998.

39. Chen, Z., J. Zhang, and Z. Yu, “Solution of the time-dependent Schrödinger equation with
absorbing boundary conditions,” Journal of Semiconductors, Vol. 30, No. 1, 1–6, 2009.

40. Subasi, M., “On the finite-differences schemes for the numerical solution of two dimensional
Schrödinger equation,” Numerical Methods for Partial Differential Equations, Vol. 18, No. 6, 752–
758, 2002, doi: 10.1002/num.10029.

41. Burden, R. L. and J. D. Faires, Numerical Analysis, 5th Edition, PWS Publishing Co., 1988.

42. Visscher, P. B., “A fast explicit algorithm for the time-dependent Schrödinger equation,” Computers
in Physics, Vol. 5, No. 6, 596–598, 1991.

43. Tal-Ezer, H. and R. Kosloff, “An accurate and efficient scheme for propagating the time dependent
Schrödinger equation,” Journal of Chemical Physics, Vol. 81, No. 9, 3967–3971, 1984.

44. Leforestier, C., et al., “A comparison of different propagation schemes for the time dependent
Schrödinger equation,” Journal of Computational Physics, Vol. 94, No. 1, 59–80, 1991.

45. Leforestier, C., R. H. Bisseling, C. Cerjan, M. D. Feit, and R. Kosloff, “A comparison of different
propagation schemes for the time dependent Schrödinger equation,” Journal of Computational
Physics, Vol. 89, No. 1, 490–491, 1991.

46. De Raedt, H., K. Michielsen, J. S. Kole, and M. T. Figge, “One-step finite-difference time-domain
algorithm to solve the Maxwell equations,” Physical Review E Statal Nonlinear & Soft Matter
Physics, Vol. 67, No. 5, Pt. 2, 056706, 2003.

47. Bar-On, I. and M. Leoncini, “Stable solution of tridiagonal systems,” Numerical Algorithms, Vol. 18,
No. 3, 361–388, 1998, doi: 10.1023/A:1019137919461.

48. Zhang, Y., J. Cohen, A. A. Davidson, and J. D. Owens, “A hybrid method for solving tridiagonal
systems on the GPU,” GPU Computing Gems Jade Edition, 117–132, 2012.

49. Chen, Y. C. and C. R. Lee, Augmented Block Cimmino Distributed Algorithm for Solving
Tridiagonal Systems on GPU, Chapter 9, Advances in GPU Research and Practice, 2017.

50. Chen, Y., “Finite element method modeling of advanced electronic devices,” Electronic Theses and
Dissertations, 2006.

51. Alsunaidi, M. A., S. M. S. Imtiaz, and S. M. El-Ghazaly, “Electromagnetic wave effects on
microwave transistors using a full-wave time-domain model,” IEEE Transactions on Microwave
Theory and Techniques, Vol. 44, No. 6, 799–808, 1996.

52. Grondin, R. O., S. M. El-Ghazaly, and S. M. Goodnick, “A review of global modeling of charge
transport in semiconductors and full-wave electromagnetics,” IEEE Transactions on Microwave
Theory and Techniques, Vol. 47, No. 11, 2167–2167, 2002.

53. Naeemi, A., R. Sarvari, and J. D. Meindl, “Performance comparison between carbon nanotube and
copper interconnects for GSI,” IEEE International Electron Devices Meeting, 2005.

54. Kim, G., E. Arvas, V. Demir, and A. Z. Elsherbeni, “A novel nonuniform subgridding scheme
for FDTD using an optimal interpolation technique,” Progress In Electromagnetics Research B,
Vol. 44, 137–161, 2012.

55. Mailloux, R., “Theory of electromagnetic waves,” IEEE Antennas & Propagation Society
Newsletter, Vol. 26, No. 2, 13–14, 1984.

56. Ahmed, I. and E. Li, “A hybrid FDTD and ADI-FDTD technique for coupled Maxwell’s and
Schrödinger’s equations,” IEEE Antennas & Propagation Society International Symposium, 2010.

57. Ren, X., et al., “High-order unified symplectic FDTD scheme for the metamaterials,” Computer
Physics Communications, Vol. 183, No. 6, 1192–1200, 2012.

58. Ryu, C. J., A. Liu, W. E. I. Sha, and W. C. Chew, “Finite-difference time-domain simulation
of the Maxwell-Schrödinger system,” IEEE Journal on Multiscale & Multiphysics Computational
Techniques, Vol. 1, 40–47, 2016.



Progress In Electromagnetics Research, Vol. 170, 2021 77

59. Ryu, C. J., A. Y. Liu, W. E. I. Sha, and W. C. Chew, “Finite-difference time-domain simulation
of the Maxwell-Schrödinger system,” IEEE Journal on Multiscale and Multiphysics Computational
Techniques, Vol. 1, 40–47, 2016, doi: 10.1109/JMMCT.2016.2605378.

60. Turati, P., “FDTD modelling of nanostructures at microwave frequency,” Surface & Coatings
Technology, Vol. 254, No. 10, 402–409, 2014.

61. Pierantoni, L., D. Mencarelli, and T. Rozzi, “The combined Schrödinger-Maxwell problem
in the electronic/electromagnetic characterization of nanodevices,” Time Domain Methods in
Electrodynamics, 105–133, 2008.

62. Xie, G., Z. Huang, M. Fang, and W. Sha, “Simulating Maxwell-Schrödinger equations by high-
order symplectic FDTD algorithm,” IEEE Journal on Multiscale and Multiphysics Computational
Techniques, Vol. 4, 143–151, 2019, doi: 10.1109/JMMCT.2019.2920101.

63. Zheng, F. and Z. Chen, “A finite-difference time-domain method without the Courant stability
conditions,” IEEE Microw. Guided Wave Lett., Vol. 9, No. 11, 441–443, 1999.

64. Ravi, K., Y. Huang, and S. Ho, “A computationally efficient, non-equilibrium, carrier
temperature dependent semiconductor gain model for FDTD simulation of optoelectronic
devices,” 2011 Numerical Simulation of Optoelectronic Devices, 113–114, Sep. 5–8, 2011, doi:
10.1109/NUSOD.2011.6041166.

65. Bhardwaj, S., “Electronic-electromagnetic multiphysics modeling for terahertz plasmonics: A
review,” IEEE Journal on Multiscale and Multiphysics Computational Techniques, Vol. 4, 307–
316, 2019, doi: 10.1109/JMMCT.2019.2957361.

66. Wang, G., et al., “The numerical modeling of 3D microfiber couplers and resonators,” IEEE
Photonics Technology Letters, Vol. 28, No. 15, 1707–1710, 2016, doi: 10.1109/LPT.2016.2551323.

67. Tan, E. L. and D. Y. Heh, “Multiple 1-D fundamental ADI-FDTD method for coupled transmission
lines on mobile devices,” IEEE Journal on Multiscale and Multiphysics Computational Techniques,
Vol. 4, 198–206, 2019, doi: 10.1109/JMMCT.2019.2945187.

68. Zhai, M., H. Peng, J. Mao, and W. Yin, “Modeling tunable graphene-based filters using leapfrog
ADI-FDTD method,” 2015 IEEE MTT-S International Microwave Workshop Series on Advanced
Materials and Processes for RF and THz Applications (IMWS-AMP), 1–3, Jul. 1–3, 2015, doi:
10.1109/IMWS-AMP.2015.7325025.

69. Bahl, M., et al., “Mixed-level simulation of opto-electronic devices,” 2016 International Conference
on Numerical Simulation of Optoelectronic Devices (NUSOD), 101–102, Jul. 11–15, 2016, doi:
10.1109/NUSOD.2016.7547050.

70. Bandrauk, E. L. C., “A numerical Maxwell-Schrödinger model for intense laser-matter interaction
and propagation,” Computer Physics Communications, 2007.

71. Navarro, D., “A carrier-transit-delay-based nonquasi-static MOSFET model for circuit simulation
and its application to harmonic distortion analysis,” IEEE Transactions on Electron Devices,
Vol. 53, No. 9, 2025–2034, 2006.

72. Chen, Y. P., W. E. I. Sha, L. Jiang, M. Meng, Y. M. Wu, and W. C. Chew, “A unified Hamiltonian
solution to Maxwell-Schrödinger equations for modeling electromagnetic field-particle interaction,”
Computer Physics Communications, Vol. 215, 63–70, 2017, doi: 10.1016/j.cpc.2017.02.006.

73. Takeuchi, T., S. Ohnuki, and T. Sako, “A simple formula to predict the influence of the near-field
in the optical control of confined electron systems,” Journal of Physics B Atomic Molecular &
Optical Physics, Vol. 50, No. 4, 045002, 2017.

74. Gerry, C., Introductory Quantum Optics, 1st Edition, Cambridge University Press, London, 2004.

75. Rabitz, H., “Whither the future of controlling quantum phenomena?,” Science, Vol. 288, No. 5467,
824–828, 2000.

76. Townsend, D., et al., “A Stark future for quantum control,” The Journal of Physical Chemistry A,
Vol. 4, No. 115, 357–373, 2011.

77. Rangan, C. and P. H. Bucksbaum, “Optimally shaped terahertz pulses for phase retrieval
in a Rydberg-atom data register,” Physical Review A, Vol. 64, No. 3, 033417, 2001, doi:
10.1103/PhysRevA.64.033417.



78 Duan et al.

78. Palao, J. P. and R. Kosloff, “Quantum computing by an optimal control algorithm for
unitary transformations,” Physical Review Letters, Vol. 89, No. 18, 188301, 2002, doi:
10.1103/PhysRevLett.89.188301.

79. Nunn, J., et al., “Mapping broadband single-photon wave packets into an atomic memory,” Physical
Review A, Vol. 75, No. 1, 011401, 2007, doi: 10.1103/PhysRevA.75.011401.

80. Lewis, A. and K. Lieberman, “Near-field optical imaging with a non-evanescently excited high-
brightness light source of sub-wavelength dimensions,” Nature, Vol. 354, No. 6350, 214–216, 1991,
doi: 10.1038/354214a0.

81. Zenhausern, F., “Apertureless near-field optical microscope,” Applied Physics Letters, Vol. 65,
No. 13, 1623–1625, 1994.

82. Choi, S., et al., “Active tailoring of nanoantenna plasmonic fields using few-cycle laser pulses,”
Physical Review A, Vol. 93, No. 2, 021405, 2016.


