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Abstract. We consider solution techniques for the coupling of Darcy and

Stokes flow problems. The study was motivated by the simulation of the

interaction between channel flow and subsurface water flow for realistic

data and arbitrary interfaces between the two different flow regimes. Here,

the emphasis is on the efficient iterative solution of the coupled problem

based on efficient solvers for the discrete Stokes and Darcy problems.

1 Introduction

Coupling different types of flows is an important issue in many applications.

The most convenient way of dealing with coupled flow problems consists

in the definition of two non-overlapping subdomains where different laws

of flow are satisfied. The solutions in the subdomains must satisfy appropri-

ate matching conditions at the interface. We consider the case of coupling

Stokes and Darcy flows [3–6,8,9,12,15]. In [9], Layton, Schieweck and

Yotov provide a variational formulation for which weak solutions are shown

to exist and which can be used as a base for a domain decomposition strategy
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tribution, and reproduction in any medium is permitted, provided the original author

and source are credited.
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for its approximate solution [13]. In [9], the proposed finite element method

imposes the interface condition by using Lagrange multipliers which are

used as boundary values for each subproblem. The subproblems are writ-

ten in weak form and solved independently. The interface data are relaxed

through an iterative process.

An alternative approach consists in a definition of the coupled prob-

lem where the solutions are matched directly without Lagrange multipliers.

An appealing feature of this approach is that it suggests a natural way for

the iterative solution based on the Neumann-Dirichlet iteration [3–6,12].

In physical terms, the solution procedure iteratively matches fluxes under

the assumption of normal stress continuity. Numerical studies focused on

coupling Darcy flow with shallow water equations [3,4], and on coupling

Darcy and Stokes flows in 2D [5,6] as well as in 3D [12]. A thorough analy-

sis of the associated interface problems can be found in [6]. From a practical

standpoint, the advantage of the Neumann-Dirichlet iteration is that it al-

lows us to use independent software realizing the subdomain solvers: they

exchange minimal interface data. This is indispensable in industrial appli-

cations where commercial codes for Stokes and Darcy solves can not be

modified.

Our study of the techniques for solving the coupled problem was mo-

tivated by the simulation of the interaction between channel flow and sub-

surface water flow. In particular, we have investigated realistic scenarios

where the interface is composed of several patches belonging to different

non-parallel planes and can not be reduced to one of the coordinate planes.

The objective of our study is to develop an efficient and computationally

cheap solution technique for the above-mentioned case.

We have implemented the Neumann-Dirichlet iterative matching and

found that there are realistic applications where it is impossible to obtain

the solution of the coupled problem due to very small convergence rates. The

reduction of the coupled problem to the interface equation [5,6] for fluxes

seems to be technically impossible in the case of interface geometry under

consideration [12]. Therefore, Krylov subspace methods are not applicable

for the acceleration of the iterative coupling. To overcome this difficulty, we

suggest another approach based on the recovery of the Neumann-Dirichlet

iteration operator for the error. Being a direct method, the recovery requires

as many pairs of coupling iterations as the number of interface degrees of

freedom. It is independent of the value of the problem coefficients but re-

quires higher precision for the iterative solution of the subproblems. The

suggested method augments the flexibility of the Neumann-Dirichlet itera-

tion allowing us to use different commercial codes as black box solvers.
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The recovery strategy appears to be applicable but expensive.An alterna-

tive method of solving the coupled problem is to form the interface equation

for the normal stresses assuming continuous fluxes. This approach is capa-

ble of dealing with arbitrary interface geometries. Also, it suggests a simple

way of iterative acceleration by Krylov subspace methods. In spite of the

high stiffness of the interface operator, the number of GMRES iterations is

just slightly sensitive to the value of coefficients [12]. This makes the latter

approach very appealing in practical computations. In the 2D case and based

on CG iterations, the same observation was made independently in [6]. We

remark that forming the interface equation presumes certain modification

of the source code of the subdomain solves. This reduces the flexibility of

commercial software usage.

Another method suitable for realistic scenarios was suggested in [6].

It is based on the Robin-Robin domain decomposition method with two

relaxation parameters for which Krylov subspace acceleration seems to be

inapplicable.

2 The differential formulation of the coupled problem

Coupling of Darcy and Stokes flows corresponds to the situation in which

an incompressible fluid contained in a domain Ω ⊂ ℜd can flow both

ways across the interface Γ . The interface separates two non-overlapping

subdomains, Ω1 and Ω2, in which Stokes and Darcy flows are realized,

respectively. Subdomain Ω1 represents the subdomain occupied by a fluid

body, while the porous medium occupying Ω2 is assumed to be saturated

with the fluid.We pose the coupled model as two differential problems whose

solutions satisfy certain interface conditions. Find (u1, p) : Ω1 → ℜd × ℜ,

and φ : Ω2 → ℜ, velocity, pressure and piezometric head, respectively,

such that:






























− div T = f1 in Ω1

div u1 = 0 in Ω1

u1 = uD
1 on Γ D

1

T · n1 = 0 on Γ N
1

interface conditions on Γ,

(1)































div ǫu2 = f2 in Ω2

ǫu2 = −K · grad φ in Ω2

φ = φD on Γ D
2

−n2 · K · grad φ = φN on Γ N
2

interface conditions on Γ,

(2)
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where Γ1 = Γ D
1 ∪ Γ N

1 = ∂Ω1\Γ , Γ2 = Γ D
2 ∪ Γ N

2 = ∂Ω2\Γ , and ni is the

outward unit normal to ∂Ωi .

Here, T is the stress tensor divided by the density, which may be linked to

the rate of strain D(u1) := 1
2
[grad u1+gradT u1] via the Newton constitutive

relation as

T = −pI + 2νD(u1),

where p is the isotropic pressure divided by the density, ν the kinematic

viscosity, ǫ the porosity, and K the conductivity tensor.

The set of interface conditions on Γ is represented by three laws. The

first interface condition is an expression for the dynamic equilibrium, in the

form of a balance of normal forces across Γ . Let t = n1 ·ρT be the traction

exerted over the fluid. The traction −t exerted by the fluid over the interface

must be compensated by the Darcy pressure ρgφ:

−t · n1 = −n1 · ρT · n1 = ρgφ on Γ. (3)

Replacing T with the Newton constitutive relation yields

p − 2νn1 · D(u1) · n1 = gφ on Γ. (4)

The second condition at the interface is the expression of mass conser-

vation on Γ yielding the conservation of the normal component of velocity:

u1 · n1 + u2 · n2 = 0 on Γ. (5)

The flow in the surface fluid body is uniquely defined provided that the

tangential velocity at the interface is properly specified. The third interface

condition is the Beavers-Joseph relation [2,8]: the difference between the

slip velocity of the free fluid u1 · τj and the tangential component of the

seepage velocity u2 · τj was proposed to be proportional to the shear rate of

the free fluid:

(u1 − u2) · τj =

√

(Kτj , τj )

α
(−n1 · ρT) · τj , (6)

where τj , j = 1, . . . , d − 1, is the set of orthonormal tangent vectors on Γ .

Further simplification [14] of condition (6) is obtained by dropping out

the term u2 · τj due to its negligible impact in the model. The interface

condition, due to Beavers, Joseph, and Saffman, reads as follows:

u1 · τj =

√

(Kτj , τj )

α
(−n1 · ρT) · τj . (7)

This condition contributes an additional term to the bilinear form corre-

sponding to the Stokes problem. In certain cases [3–6], condition (7) can be

further simplified:

−n1 · ρT · τj = 0. (8)
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For instance, this simplification makes sense when α is very small. For a

detailed justification of (8) we refer to [6]. We adopt the simple condition

(8), since the more advanced condition (7) does not affect the objective of

our research.

3 Weak and finite element formulations

Since the finite element approximation is based on the weak formulation, we

rewrite the coupled differential problem in weak form. To do so, we define

the spaces

HΓ1
:=

{

v ∈ H 1(Ω1) : v = 0 on Γ D
1

}

,

H1 :=
{

HΓ1

}d
,

Q := L2(Ω1),

H2 :=
{

ψ ∈ H 1(Ω2) : ψ = 0 on Γ D
2

}

and specify functions φe ∈ H 1(Ω2), φe = φD on Γ D
2 , ue ∈ {H 1(Ω1)}

d ,

ue = uD
1 on Γ D

1 so that the solution can be split according to

u1 = u0
1 + ue, u0

1 ∈ H1 φ = φ0 + φe, φ0 ∈ H2.

Incorporating the interface conditions (4), (5), (8), we arrive at the weak

formulation: Find u0
1 ∈ H1, φ0 ∈ H2 and p ∈ Q such that:

∫

Ω2

grad ψ · K · grad φ0 −

∫

Γ

ǫψ(u0
1 + ue) · n1

= −

∫

Ω2

grad ψ · K · grad φe +

∫

Γ N
2

φN ψ +

∫

Ω2

f2 ψ∀ψ ∈ H2, (9)

∫

Ω1

νgrad u0
1 · grad w −

∫

Ω1

p div w +

∫

Γ

g(φ0 + φe)w · n1

= −

∫

Ω1

νgrad ue · grad w +

∫

Ω1

f1 w ∀w ∈ H1, (10)

∫

Ω1

qdiv u0
1 = −

∫

Ω1

qdiv ue ∀q ∈ Q. (11)

Let Ω1,h and Ω2,h be conforming simplicial triangulations of the sub-

domains Ω1, Ω2 matching at the interface Γ . The finite element spaces are

based on the meshes:

HΓ1,h :=
{

vh ∈ C(Ω1) : vh = 0 on Γ D
1 , vh|E ∈ isoP2(E)∀E ∈ Ω1,h

}

,

H1,h :=
{

HΓ1,h

}d
,

Qh :=
{

qh ∈ C(Ω1) : qh|E ∈ P1(E)∀E ∈ Ω1,h

}

,

H2,h :=
{

ψh ∈ C(Ω2) : ψh = 0 on Γ D
2 , ψh|E ∈ P1(E)∀E ∈ Ω2,h

}

.
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Let φD
h and uD

h be the finite element analogs of φe and ue, respectively.

They can be constructed by assigning the values of φD, uD
1 to the boundary

nodes on Γ D
2 and Γ D

1 respectively, and zero values to all other nodes of the

mesh. Therefore, the following splitting is feasible:

u1h = u0
1h + uD

h , u0
1h ∈ H1,h φh = φ0h + φD

h , φ0h ∈ H2,h. (12)

The coupled FEM problem can be stated as follows. Find u0
1h ∈ H1,h,

φ0h ∈ H2,h and ph ∈ Qh such that

∫

Ω2

grad ψh · K · grad φ0h −

∫

Γ

ǫψh(u
0
1h + uD

h ) · n1 =

∫

Γ N
2

φN ψh +

−

∫

Ω2

grad ψh · K · grad φD
h +

∫

Ω2

f2 ψh ∀ψh ∈ H2,h, (13)

∫

Ω1

νgrad u0
1h · grad wh −

∫

Ω

phdiv wh +

∫

Γ

g(φ0h + φD
h )wh · n1 =

−

∫

Ω1

νgrad uD
h · grad wh +

∫

Ω1

f1 wh ∀wh ∈ H1,h, (14)

∫

Ω1

qhdiv u0
1h = −

∫

Ω1

qhdiv uD
h ∀qh ∈ Qh. (15)

We refer to Ω1,h/2 as the triangulation obtained by splitting each tetra-

hedron from Ω1,h into eight subtetrahedra. Further, we denote by U0 and

UΓ the vectors whose components are the values of u0
1h at the nodes of

Ω1,h/2\(Γ ∪ Γ̄ D
1 ) and of u0

1h at the interface nodes of Ω1,h/2\Γ̄
D

1 . Also P

stands for the vector of the values of the fluid pressure at the nodes of Ω1,h.

In addition, Φ0 contains the values of the piezometric head φ0h at the nodes

of Ω1,h\(Γ ∪ Γ̄ D
2 ), and ΦΓ those at the nodes on Γ \Γ̄ D

2 . The algebraic

representation of the coupled problem (13)–(15) is















A0 A0Γ BT
0 0 0

AT
0Γ AΓ BT

Γ P T
nΓ

MΦΓ
0

B0 BΓ 0 0 0

0 −MλPnΓ
0 DΓ DT

0Γ

0 0 0 D0Γ D0





























U0

UΓ

P

ΦΓ

Φ0















=















F0

FΓ

Fp

GΓ

G0















. (16)

The main difference between the system (16) and its counterpart from [5,6]

is with respect to UΓ . In our setting, UΓ contains three velocity components

at each interface node, whereas in [5,6] UΓ is composed of only the normal

component. This allows us to treat arbitrary interfaces rather than interfaces

whose normal is orthogonal to a coordinate plane.

The main objective of the paper is to discuss several approaches to the

iterative solution of (16) under the assumption that iterative solvers for the
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discrete Stokes and Darcy problems are available. The stiffness of the matrix

of (16) is affected by the mesh size h, the scalar coefficients ν, ǫ, g and the

tensor K. Therefore, the iterative solution is sensitive to these parameters as

well, and the comparison of different approaches should take this sensitivity

into account.

4 Iterative solution procedures

4.1 Neumann-Dirichlet iterations

The Neumann-Dirichlet algorithm [3,4] replaces the tightly coupled prob-

lems (13)–(15) by an iterative coupling process which converges to the

solution of (13)–(15). In physical terms, the Neumann-Dirichlet iteration

is matching the interface fluxes keeping the normal stresses continuous. In

algebraic terms, the Neumann-Dirichlet iteration for the solution of (16)

is defined as follows. Let λk = PnΓ
U k

Γ denote the kth iterate with entries

associated with the nodes of (Ω1,h\Γ̄
D

1 ) ∩ Γ .

Step 1: Initialization. Choose an initial guess λ0 and the relaxation param-

eter θ .

Step 2: Iteration Loop. For k ≥ 0

1. compute

[

Φk+1
Γ

Φk+1
0

]

such that

[

DΓ DT
0Γ

D0Γ D0

] [

Φk+1
Γ

Φk+1
0

]

=

[

GΓ + Mλλ
k

G0

]

; (17)

2. compute







U k+1
0

U k+1
Γ

P k+1






such that







A0 A0Γ BT
0

AT
0Γ AΓ BT

Γ

B0 BΓ 0













U k+1
0

U k+1
Γ

P k+1






=







F0

FΓ − P T
nΓ

MΦΓ
Φk+1

Γ

Fp






; (18)

3. update λk according to

λk+1 = θPnΓ
U k+1

Γ + (1 − θ)λk . (19)
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The realization of the substeps (17)–(18) requires the iterative solution of a

symmetric positive definite and of a saddle point systems, respectively. The

system (17) is solved by the conjugate gradient method preconditioned by a

V-cycle of an algebraic multigrid [16] which provides linear arithmetic com-

plexity and a convergence rate independent of the mesh size. The system (18)

is solved by the generalized minimum residual method although the Lanc-

zos method of minimal iterations is applicable as well. The preconditioner

in the latter case is a block diagonal matrix. Each block corresponding to a

velocity component is represented by the V-cycle of the algebraic multigrid

method. The pressure block corresponds to a few iterations with Chebyshev

parameters solving approximately a system with the mass matrix.

The Neumann-Dirichlet algorithm has advantages and drawbacks. It ben-

efits from its simplicity of implementation and a simple and straightforward

way of choosing the initial guess in the iterative solution of the subproblems.

As we see below, this saves a lot of computational work. On the other hand,

the convergence rate of Neumann-Dirichlet iterations is very sensitive to the

problem coefficients. Also, the choice of the parameter θ may be cumber-

some: overly large values eventually result in divergence, and overly small

values result in non-optimal convergence rates.

The sensitivity of the convergence rate and of θ with respect to the

problem parameters is critical in realistic applications. When UΓ only rep-

resents the normal to the interface component of the velocity, the analy-

sis in [4,6] suggests that θ ∈ [0, θMAX], where, for ν/ǫ2 ≪ g/‖K‖, one

has θMAX ∼ O
(

ǫ5ν2‖K‖2/g2
)

. For θMAX = o(1) the convergence rate is

1−CθMAX. Therefore, the smaller θMAX is, the worse is the observed conver-

gence rate. Although an experimental evaluation of θMAX is less pessimistic,

θMAX ∼ O (νK/(ǫg)), for realistic values of conductivity ‖K‖ ∼ 10−5,

porosity ǫ ∼ 10−1 (the case of limestone) and kinematic viscosity ν ∼ 1

(the case of water), g ∼ 10, the empirical value of θMAX is 10−11. This

renders the method useless due to an unacceptable rate of convergence.

4.2 Recovery of the iteration operator for the error

An alternative technique is based on the recovery of the Neumann-Dirichlet

iteration operator for the error. The idea behind it is simple: consider three

iterative guesses λ0, λ1 and λ2 to the interface solution λ = PnΓ
UΓ of our

problem. Then, due to the linearity of the iteration operator TΛ we have

λ − λ1 = TΛ(λ − λ0), λ − λ2 = TΛ(λ − λ1) (20)

and

λ2 − λ1 = TΛ(λ1 − λ0). (21)
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Eliminating λ2 in (20), we obtain the following equation for λ:

(I − TΛ)λ = λ1
h − TΛλ0 , (22)

which suggests the following procedure.

1. For every node on the interface Γ \Γ D
1 , indicated by k = 1, . . . , N , take

λ0
k = ek, which is the kth unit vector in ℜN and find λ1

k and λ2
k performing

two steps of (17)–(19).

2. Form the matrices T01 and T12 with columns λ0
k − λ1

k and λ1
k − λ2

k, re-

spectively.

3. Recover the iteration operator TΛ = T12 · T −1
01 .

4. Recover the solution λh = (I − TΛ)−1(λ1
k − TΛλ0

k) for an arbitrary k.

In practice, the cost of this procedure is dominated by the construction of

the matrices T01 and T12. In effect, the construction of a pair of columns

corresponding to a node at the interface implies two Neumann-Dirichlet

iterations in order to obtain λ1 and λ2. Each iteration consists of solving a

Stokes problem and a Darcy problem. The order N of the matrix TΛ depends

on the geometry of the subdomains and on the mesh properties. In the case

of a uniform grid for the unit cube partitioned into two equal subdomains

by a plane, N ≈ h−2, the number of nodes in the subdomains is h−3/2, and

hence the cost of forming T01, T12 is 2N logε−1O(N1.5). Here, ε is the norm

residual tolerance for both the Stokes and the Darcy subproblems. We note

that, although the asymptotic arithmetic complexity of the inversion of the

dense matrix T01 and the solution of the dense system (22), O(N3), is higher

than ε−1O(N2.5), the practical restriction for N � 103 makes the cost of

steps 3 and 4 negligible compared to the cost of step 1.

Being a “direct” method for solving the system (16), the procedure “con-

verges” exactly for N pairs of Neumann-Dirichlet iterations. However, the

procedure discussed above may be rather expensive if N is more than a few

thousands. Moreover, in realistic scenarios the stiffness of the matrix T01 is

very high. Therefore, the entries of T01 must be computed very accurately.

To this end, the value of the tolerance ε must be very small which requires

a larger number of iterations for the subproblems.

4.3 Iterative solution of the interface equation

Let C denote the matrix block of (16) given by

C =







A0 A0Γ BT
0

AT
0Γ AΓ BT

Γ

B0 BΓ 0






. (23)
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In order to write the interface equation, we consider the first three equa-

tions of the system (16):

C







U0

UΓ

P






+







0

P T
nΓ

MΦΓ
ΦΓ

0






=







F0

FΓ

Fp






.

The matrix C corresponds to the standard discrete Stokes problem and is

invertible so that






U0

UΓ

P






= C−1







F0

FΓ

Fp






− C−1







0

P T
nΓ

MΦΓ
ΦΓ

0






. (24)

From the last equation of (16) we eliminate Φ0:

Φ0 = D−1
0 (G0 − D0Γ

ΦΓ ).

The fourth equation implies that

[

0 −MλPnΓ
0
]



C−1





F0

FΓ

Fp



 − C−1





0

P T
nΓ

MΦΓ
ΦΓ

0









+ DΓ ΦΓ + DT
0Γ

D−1
0 (G0 − D0Γ

ΦΓ ) = GΓ . (25)

Defining Sh
D

= DΓ − DT
0Γ

D−1
0 D0Γ

, we obtain

[

0 MλPnΓ
0
]

C−1





0

P T
nΓ

MΦΓ
ΦΓ

0



 + Sh
D

ΦΓ

= GΓ − DT
0Γ D−1

0 G0 +
[

0 MλPnΓ
0
]

C−1





F0

FΓ

Fp



 . (26)

Setting J := GΓ − DT
0Γ D−1

0 G0 +
[

0 MλPnΓ
0
]

C−1
[

F0 FΓ Fp

]T
and

C−1 =
[

0 I 0
]

C−1
[

0 I 0
]T

, we arrive at

(

Sh
D

+ MλPnΓ
C

−1P T
nΓ

MΦΓ

)

ΦΓ = J (27)

or, equivalently,
(

I + (Sh
D

)−1MλPnΓ
C

−1P T
nΓ

MΦΓ

)

ΦΓ = (Sh
D

)−1
J . (28)

We consider Richardson’s iteration for (28):

Φk+1
Γ = Φk

Γ + θ
(

(Sh
D

)−1
J −

(

I + (Sh
D

)−1MλPnΓ
C

−1P T
nΓ

MΦΓ

)

Φk
Γ

)

.
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The physical meaning of the Richardson iteration is matching normal

stresses under the assumption of flux continuity. The use of the unknown

iterative parameter θ is not necessary, if one switches to Krylov subspace

iterations. For instance, it can be solved by CG iterations [6]. We suggest

solving (28) by GMRES keeping in mind the stability of GMRES iterations.

As we show below, the use of Krylov subspace iterations is very efficient,

since the number of iterations is less sensitive to the stiffness of the system

matrix determined by the magnitude of the coefficients.

An alternative way of deriving an interface equation is to eliminate U0,

P , Φ0, ΦΓ instead of eliminating U0, UΓ , P , Φ0:

(

Sh
S

+ P T
nΓ

MΦΓ
(Sh

D
)−1MλPnΓ

)

UΓ = FS − P T
nΓ

MΦΓ

(

Sh
D

)−1
GS, (29)

where

FS = FΓ −
[

AT
0Γ BT

Γ

]

[

A0 BT
0

B0 0

]−1 [

F0

Fp

]

, GS = GΓ − DT
0Γ D−1

0 G0,

Sh
S

= AΓ −
[

AT
0Γ BT

Γ

]

[

A0 BT
0

B0 0

]−1 [

A0Γ

BΓ

]

.

The physical meaning of the alternative interface equation is matching fluxes

under the assumption of normal stress continuity. We note that the derivation

of (29) is confined to the case when the vector FS is available. This is the case

if UΓ represents only the normal component. Then, the matrix

[

A0 BT
0

B0 0

]

is

the discretization of the Stokes operator with homogeneous natural boundary

condition on Γ and inherited boundary conditions on ∂Ω1\Γ , which are

compatible [13]. Therefore, the system

[

A0 BT
0

B0 0

] [

Ũ0

P̃

]

=

[

F0

Fp

]

(30)

is compatible and FS may be found. Moreover, in this case Eq. (29) can be

transformed to the scalar equation

(

I + PnΓ
(Sh

S
)−1P T

nΓ
MΦΓ

(Sh
D

)−1Mλ

)

µ

= PnΓ

(

Sh
S

)−1(

FS − P T
nΓ

MΦΓ
(Sh

D
)−1GS

)

. (31)

The assignment of normal components to UΓ confines the set of possible

interfaces to patches on a coordinate plane which is not adequate for many

practical problems.
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We now consider the general case in which UΓ represents all velocity

components, and verify the compatibility of (30). In this case,

[

A0 BT
0

B0 0

]

rep-

resents the discretization of the Stokes operator with homogeneous Dirich-

let boundary condition on Γ . Hence, the condition Fp ∈ ImB0 has to

be verified. Recall that from (16) it follows that there exists U0 such that

Fp − BΓ UΓ = B0U0, i.e., Fp − BΓ UΓ ∈ ImB0. Therefore, Fp ∈ ImB0 if

and only if BΓ UΓ ∈ ImB0, i.e., if there exists W0 such that BΓ UΓ = B0W0.

By the definition of B0 and BΓ ,

(B0W0, q) =

∫

Ω1

qhdivWh
0 =

∫

Γ N
1

qh(nΓ · Wh
0)

(BΓ WΓ , q) =

∫

Ω1

qhdivUh
Γ =

∫

Γ

qh(nΓ · Uh
Γ )

for any qh from Qh. Here, Wh
0 and Uh

Γ denote the finite element extensions

of the vectors W0 and UΓ , respectively. Therefore,

(B0W0 − BΓ WΓ , q) =

∫

Γ N
1

qh(nΓ · Wh
0) −

∫

Γ

qh(nΓ · Uh
Γ ) ∀qh ∈ Qh.

(32)

Since Wh
0 = 0 on Γ , Uh

Γ = 0 on Γ N
1 , the left-hand side of (32) can not

vanish for any q. From this observation we conclude that the only way to

derive the interface equation seems to be the approach resulting in (28).

5 Numerical experiments

The above approaches have been implemented for two model 3D problems.

The first problem is the simplest: the interface Γ is planar and all the co-

efficients are set to 1. The second problem is more complicated due to a

non-planar interface and realistic coefficients. In both cases, the numerical

experiments were performed on a Pentium 4 (2.5GH). The details of the

iterative solvers for the subproblems were discussed in Sect. 4.1.

Model problem with an analytic solution

First, we consider a problem with an analytic solution and unit coefficients.

Let Ω1 = (0, 1)2 × (1, 2), Ω2 = (0, 1)3, Γ = {z = 1} ∩ Ω̄1, Γ N
1 = ∅,
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Γ N
2 = {y = 0 or y = 1} ∩ Ω̄2, K = kI, and k = ǫ = ν = g = 1. The

functions [5],

u1 =





− cos(πx/2) sin(πz/2) + 1

0

sin(πx/2) cos(πz/2) − 3





p = −(2/π + π/2) sin(πx/2) sin(πz/2) + 3z

φ = −2/π sin(πx/2) sin(πz/2) + 3z,

represent the solution of the coupled problem (9)–(11) with

f1 =







−(0.75π2 + 1) cos(πx/2) sin(πz/2)

0

(0.25π2 − 1) sin(πx/2) cos(πz/2) + 3







f2 = −π sin(πx/2) sin(πz/2).

A sequence of uniform meshes was generated by subsequent refinement

of each tetrahedron of a coarse tetrahedral mesh. The latter was obtained by

partitioning of the unit cube (0, 1)3 into 8 sub-cubes, splitting each sub-cube

into 6 tetrahedra and mapping the mesh into (0, 1)2 × (0, 2).

The basic features of the iterative process (17)–(19) as well as its arith-

metic complexity are reported in Table 1. The residual tolerance for the

subproblems (17), (18) was chosen to be 10−7 and 10−6, respectively. The

coupling iterations were terminated when ‖λk+1 − λk‖ ≤ 10−4‖λk‖. Here,

#ND denotes the number of coupling iterations, #Gk #(Pk) stands for the

number of GMRES (PCG) iterations for the Stokes (Darcy) subproblem

performed at the kth coupling iteration, CPUitS (CPUitD) refers to the exe-

cution time of one GMRES (PCG) iteration, and CPUtot denotes the total

execution time. As can be seen from Table 1, the number of coupling itera-

tions does not depend on the mesh size, whereas the numbers of the GMRES

and the PCG iterations decrease in the course of coupling iterations, due to

better initial guesses. We note that the convergence rate of the GMRES

iterations saturates as h → 0. The boundedness of the number of PCG it-

erations cannot be clearly observed. We explain the latter phenomenon by

Table 1. Performance of iterative solvers for a sequence of refined meshes

Mesh size #ND #G1 #P1 #G15 #P15 CPUitS CPUitD CPUtot

h = 1/8 15 55 5 2 4 0.04 <0.01 12.7

h = 1/16 15 60 9 3 3 0.65 0.015 204

h = 1/32 15 62 12 3 3 6.5 0.17 2108
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the extremely high convergence rate of the PCG for small Darcy problems.

On the other hand, the cost per iteration (for both GMRES and PCG) and

the total CPU time are linear with respect to the number of unknowns (each

refinement results in an 8-fold increase of the number of unknowns). The

Neumann-Dirichlet iterations is apparently a very efficient solution method

for (16) in this case.

Interaction of a channel and a porous medium

Secondly, we consider the penetration of fluid from a 3D channel with a solid

top lid and a sealed outlet into porous media. Two cases of porous material

are considered, limestone and coarse sand (instead of limestone, one may

consider sandstone or dolomite, and coarse sand may be substituted with

gravel or karstic limestone or permeable basalt). In the international system

of units, the problem coefficients are K = 10−5I for limestone, K = 10−2I

for sand, ǫ = 0.1, g = 10. We consider fluid with high viscosity ν = 1 (for

water ν = 10−6), since small values of ν make the system (16) so stiff that it

is non-tractable in conventional double precision arithmetics. We note that

ν ≪ 1 does not affect the efficiency of the solvers except for the Neumann-

Dirichlet iterations. The large value ν = 1 is set for the sake of presentation

of the simulation. Let Ω1 = (0, 40) × (8.175, 11.825) × (8.175, 10) and

Ω2 = (0, 40) × (0, 20) × (0, 10) \ Ω1. Moreover, Γ D
1 consists of the inlet

(x = 0), the outlet (x = 40) and the top (z = 10) of Ω1; Γ D
2 is the bottom

face of the domain Ω2. At the inlet of the channel, the x-component of

the inflow is ux = (11.825 − y)(y − 8.175)(10 − z)(z − 8.175)4/1.8254.

All other Dirichlet conditions are homogeneous. The Neumann boundary

conditions for Ω2 are set to zero. The right-hand sides representing sources

are set to zero, f1 = 0, f2 = 0. This implies that all the fluid entering

the channel through the inlet infiltrates into the porous media and leaves it

through the bottom face.

The mesh sequence is formed from tetrahedral partitionings of rectan-

gular grids with 2k steps in the x and y directions, and 2k−1 steps in the z

direction, k = 4, 5, 6. For k = 5 both the Stokes and the Darcy systems

have approximately 20000 unknowns, and for k = 6 they have about 150000

unknowns.

Figures 1, 2, 3 show cross-sections of the Stokes and the Darcy velocity

fields at the planes y = 10 and z = 9. The computed Darcy velocity vectors

(Figs. 2, 3) are normal to the interface and are constant along the x-axis in

the case of limestone, whereas they are not normal to the interface and not

constant along x-axis in the case of coarse sand. The Stokes velocity (Fig. 1)

field exhibits a small decrease in magnitude along the x-axis and a boundary

layer at the plane x = 40 in the case of limestone, whereas in the case of

coarse sand it shows a linear decrease in magnitude along the x-axis, up to
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vanishing at the plane x = 40. Due to inconsistency of boundary conditions,

a singularity of the flow fields is observed at the plane x = 0.

The basic reason for such a different behavior of the solution of the

coupled problem is the conductivity of the porous material. Indeed, in the

case of sand, the fluid easily penetrates the interface, and almost all the

injected water can infiltrate the vicinity of the inlet. On the other hand, the

flow in the Stokes region accommodates itself to fit the conservation of mass.

The other part of the domain is occupied by almost stagnant fluid. In the

case of limestone, the infiltration is not strong near the inlet and is more

uniformly distributed along the interface. The uniformity of the infiltration

into the Darcy region and the symmetry of boundary conditions result in

the orthogonality of Darcy velocities to the interface. In the presence of

an impervious boundary condition, the conservation of mass promotes a

flushing flow along the interface, additional to the one normal to the interface.

The module of velocity of the Stokes flow is dominated by the longitudinal

component. In accordance with conservation of mass, the above-mentioned

excess of injection into the sand results in a stronger decrease of longitudinal

velocity along the channel when compared with that in the case of limestone.

In both cases, the solution vanishes at the end of the channel in accordance

with the boundary condition. This, together with the higher longitudinal

velocity, explains the formation of a stronger boundary layer in the case of

limestone.

The two cases are very different not only in the solutions, but in the

solution procedures as well. The sand case was handled by the Neumann-

Dirichlet iteration with θ = 0.01. For the intermediate grid (k = 5), 683 it-

erations and 4144 seconds were required to obtain ‖λk+1−λk‖ ≤ 10−4‖λk‖.

The case of limestone can not be treated in a similar way: the value θ = 10−5

makes the Neumann-Dirichlet iterations inapplicable. However, the recov-

ery of the iteration operator readily solves the problem regardless of the value

‖K‖. Since the number of interface degrees of freedom for λ in the mesh

considered is 341, the recovery requires 341 pairs of iterations (17)–(19),

one pair for each λk, k = 1, . . . , 341. Accidentally, the total number of the

coupled iterations was also 683 in this case. However, it took 15179 seconds,

that is, almost 4 times slower than the Neumann-Dirichlet iterations for the

case of sand. The reason is two-fold: first, the residual tolerance for both

Fig. 1. XZ cross-section of isosurfaces of Stokes velocity module, in the case of sand

(bottom) and of limestone (top)
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Fig. 2. Darcy velocity field in XZ (top) and XY (bottom) cross-sections for the case of sand

subproblems was set to 10−12 instead of 10−6; second, the number of interior

GMRES iterations for the Stokes problem in the Neumann-Dirichlet itera-

tive coupling reduces from 110 to 21, whereas the recovery of the iteration

operator requires 160-180 GMRES iterations for each Stokes problem.

The iterative solution of the interface equation (28) is a very efficient

procedure even in the case of realistic coefficients. We examined how the

number of GMRES iterations depends on the critical parameters such as the

mesh size h and the conductivity K.

In Table 2, we present the number of GMRES iterations, NGMRES, needed

to reduce the initial residual of (28) (for zero initial guess) by a factor of

10−6, in the case of a material with K = I. The stopping criteria for the
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Fig. 3. Darcy velocity field in XZ (top) and XY (bottom) cross-sections for the case of

limestone

subdomain iterative solvers are residual reductions until 10−10 and 10−6 in

Ω2 and Ω1, respectively. The number of degrees of freedom for ΦΓ in (28)

is denoted by #DOF, the mean number of iterations applied to the Stokes

and the Darcy subproblems are NSt and NDr, respectively. The last column

is the total computational time in seconds. The iteration counts for solving

(28) and the Stokes subproblem are practically independent of mesh size,

and NDr grows slowly with mesh refinement. The total computational time

per coupling iteration is approximately proportional to the total number of
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Table 2. Iteration counts for the case K = I

Mesh #DOF NGMRES NSt NDr CPU

k = 4 216 8 62 15 6

k = 5 429 8 53 20 74

k = 6 1625 9 53 23 1098

Table 3. Iteration count NGMRES for different porous materials

Mesh \ K = I× 1 10−1 10−2 10−3 10−4 10−5

k = 4 8 20 47 75 87 93

k = 5 8 20 42 64 72 73

k = 6 9 22 47 88 120 127

Table 4. Spectrum of the interface operator (28) for k = 4 and different porous materials

Mesh \ K = I× 1 10−1 10−2 10−3 10−4 10−5

λ1(σ1) 1 (73) 1 (73) 1 (73) 1 (72) 1 (72) 1 (72)

λ2 1.0026 1.026 1.26 3.62 27.2 263

λmax 1.766 9.59 86.9 869 8589 85890

unknowns, since each refinement multiplies the total number of unknowns

by a factor of 8.

Table 3 reflects the dependence on the conductivity coefficient K. Two

interesting effects can be observed in this table: saturation of NGMRES as

K → 0 and non-monotone dependence of NGMRES on the mesh size for

small conductivities. The first phenomenon is due to a very special structure

of the spectrum of the interface operator I + (Sh
D

)−1MλPnΓ
C−1P T

nΓ
MΦΓ

from (28) shown in Table 4. The spectrum is computed on the coarse grid,

k = 4. It consists of the marginal eigenvalue λ1 = 1 with multiplicity

σ1 = 72 (73), and the remaining part belonging to the segment [λ2, λmax]

whose both ends are scaled with ‖K‖−1. For large conductivity coefficients,

the marginal eigenvalue is not separated from the other eigenvalues, whereas

λmax ∼ ‖K‖−1. As soon as the gap between λ1 and λ2 becomes large, the

ratio λmax/λ2 saturates. As a result, NGMRES saturates independently of the

condition number λmax/λ1 of the interface operator. This feature of GMRES

iterations is similar to the property of the conjugate gradient method applied

for spd matrices [1,7]. We cannot explain the non-monotone dependence of

NGMRES on mesh size for ‖K‖ ≪ 1: the spectrum of the interface operator

on medium mesh (k = 5) is similar to that presented in Table 4 except that

the multiplicity of λ1 is 88.
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6 Conclusions

We considered several techniques for the iterative solution of coupled Darcy

and Stokes flows. The study was motivated by the simulation of the inter-

action between channel flow and subsurface water flow in case of realistic

coefficients and arbitrary interfaces between the different flow subdomains.

The simplest iterative procedure, the Neumann-Dirichlet iteration, is not ap-

plicable due to its low convergence rate for the case of realistic coefficients.

The recovery of the iteration operator was suggested as a possible remedy

in the case of very slow convergence. Being a direct method, the recovery

requires as many pairs of coupling iterations as the number of interface de-

grees of freedom. The recovery may be computationally expensive due to

the higher precision required for the iterative solution of the subproblems.

However, due to minimal data exchange, it provides the flexibility of using

commercial software as subdomain solves.

An alternative approach is to derive an interface equation algebraically

and apply the iterative solution based on Krylov subspace acceleration. The

interface equation for the fluxes applies for plane interfaces between the

flows. The interface equation for the normal stresses assuming continuous

fluxes exhibits flexibility in the interface geometry and the benefits of the

applicability of Krylov subspace iterative solvers. In spite of the huge stiff-

ness of the discrete interface operator, the number of GMRES iterations

only slightly depends on the values of the coefficients. This makes the iter-

ative matching of the normal stresses (while keeping the fluxes continuous)

very appealing in practical computations, although forming the interface

equation hampers the use of commercial software as subdomain solves.
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