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abstract

This paper presents an algorithm for learning the construction grammar 

of  a language from a large corpus. This grammar induction algorithm has 

two goals: first, to show that construction grammars are learnable without 

highly specified innate structure; second, to develop a model of  which 

units do or do not constitute constructions in a given dataset. The basic 

task of  construction grammar induction is to identify the minimum set of  

constructions that represents the language in question with maximum 

descriptive adequacy. These constructions must (1) generalize across 

an unspecified number of  units while (2) containing mixed levels of  

representation internally (e.g., both item-specific and schematized 

representations), and (3) allowing for unfilled and partially filled slots. 

Additionally, these constructions may (4) contain recursive structure 

within a given slot that needs to be reduced in order to produce a 

su�ciently schematic representation. In other words, these constructions 

are multi-length, multi-level, possibly discontinuous co-occurrences which 

generalize across internal recursive structures. These co-occurrences are 

modeled using frequency and the ΔP measure of  association, expanded in 

novel ways to cover multi-unit sequences. This work provides important 

new evidence for the learnability of  construction grammars as well as a 

tool for the automated corpus analysis of  constructions.

keywords :  construction grammar, grammar induction, multi-unit 

association measures, poverty of  the stimulus.

1.  Learning construction grammars

The Cognitive Linguistics paradigm holds that language is not strictly separated 

from other cognitive faculties (e.g., Langacker, 1987; Hilpert, 2008) and, to some 
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degree following from this, that languages are learnable without highly specified 

innate structure (e.g., Hopper, 1987). That is, languages are learnable from the 

statistical properties of  observed linguistic expressions without positing innate 

structures present in the learner (e.g., Goldberg, Casenhiser, & Sethuraman, 

2004; Bybee, 2006; Goldberg, 2009). A ‘Grammar’ within Cognitive Linguistics, 

then, is a data-driven and ultimately domain-independent model able to learn 

grammatical generalizations from linguistic input. More precisely, any innate 

constraints on the Grammar in this paradigm are not specific to language 

but rather are general cognitive constraints (e.g., limits on working memory, 

ability to recognize and categorize di�erences, etc.) that, when applied to 

language learning, result in cross-linguistic patterns. One argument advanced 

for innate structure is that language learners are exposed to di�erent instances of  

observed language but reach relatively similar grammatical representations. 

The question, then, is whether this stability results from learners sharing 

a partially defined initial state (e.g., innate structure) or from learners sharing 

a single domain-independent ability to generalize from observations.

A lower-case grammar is the representation of  a specific language while an 

upper-case Grammar is the ability to learn such a grammar from linguistic 

input alone with minimal innate structure. Thus, language-specific construction 

grammars (e.g., analyses in Fillmore, 1988, and Kay & Fillmore, 1999) can be 

seen as part of  a more general Construction Grammar (e.g., Goldberg, 2006; 

Langacker, 2008). This di�ers from Chomsky’s various divisions of competence/

performance and universal/specific grammar (1965, 1975), however, in that the 

Grammar does not consist of  predefined structures/rules/constraints but rather 

of  mechanisms for deriving or learning such structures/rules/constraints from 

observed language data. This data-driven view can be visualized as in Figure 1, 

where the Grammar is a link between language observations and generalized 

language representations (grammars).

This illustration of  the data-driven view of Grammar should not be mistaken 

for an innate Language Acquisition Device (e.g., Briscoe, 2000). The view 

here is that the Grammar consists largely or entirely of  domain-independent 

principles for deriving generalizations from a series of  observations, and that 

the form of  produced grammars is a result of  (i) the observed language data 

itself  and (ii) the domain-independent principles for forming generalizations. 

In other words, from this perspective Grammar “is not an overarching set of  

abstract principles, but more a question of  a spreading of  systematicity from 

individual words, phrases, and small sets” (Hopper, 1987, p. 142). This implies, 

for example, that a speaker’s grammar is not fixed but rather continues to be 

modified as more language use is observed. The essential di�erence between 

these views is whether systematicity in language is seen as a top-down 

phenomenon (defined by innate structure) or a bottom-up phenomenon 

(defined by spreading systematicity from observed language use).
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The debate over an innate or a data-driven language faculty comes down 

in part to a simple empirical question: Is it possible to learn the grammar of  

a language without innate structure? In other words, is Grammar a set of  

structures or a set of  mechanisms for learning such structures? This question 

has been approached with a variety of  evidence; the point of  this paper is to 

provide computational corpus-based evidence by simulating the language-

learning process with computational models (e.g., Goldsmith, 2001, 2006; 

Solan, Horn, Ruppin, & Edelman, 2005; as opposed to the approach taken in 

Briscoe, 2000). If  a grammar-induction algorithm is capable of  learning the 

grammar of  a language without innate structure and using purely statistical 

properties of  observed language data, then it follows that such grammar 

learning is possible in principle given only linguistic input. This is the case 

even though the model is provided written language while human learners are 

provided spoken language, and even though human and computational learners 

do not employ the same mechanisms. In other words, the question is whether 

the regularities of  language can be adequately generalized into a productive 

model of  grammar given only observed ‘surface’ linguistic expressions.

Katzir (2014) observes that such computational simulations can be a counter-

argument to the poverty-of-the-stimulus line of  reasoning for Universal 

Grammar. However, this does not address either the richness-of-the-stimulus 

or typological lines of  reasoning for Universal Grammar. Thus, this is one 

piece among many for the view of  language as a learned phenomenon. It is, 

further, only one piece of  converging evidence against the poverty-of-the-

stimulus line of  reasoning. For example, there are two main weaknesses to 

this source of  evidence: (i) that the algorithm requires access to much more 

data than do human learners, and (ii) that that data is presented all at once 

rather than being observed sequentially across many occasions. We can 

perhaps divide the poverty-of-the-stimulus argument into two parts: first, 

that language cannot be learned without innate structure as a matter of  quality 

of  observations, in part because only positive examples can be observed; 

second, that language cannot be learned without innate structure as a matter 

of  quantity of  observations, in that language learners have access to di�erent 

amounts of  linguistic input but reach similar grammatical representations. 

This source of  evidence, then, deals only with poverty-of-the-stimulus in 

terms of  quality of  observed language and not in terms of  quantity.

Fig. 1. Grammar and grammars.
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This work can also be seen as a response to criticisms (e.g., Bod, 2006) that 

construction grammar makes imprecise and thus untestable predictions. In other 

words, it provides a reproducible model of which possible constructions qualify 

as actual constructions in reference to a given dataset, a question that is not 

adequately addressed in the literature. Section 1 of  this paper examines the 

nature of  a construction grammar, the definition of  a construction, and the 

properties of  constructions which the model must capture. Section 2 describes 

the grammar induction algorithm in detail. Section 3 presents several 

introspective and quantitative evaluations of  the output grammar for subsets 

of  the ukWac corpus of  web-crawled English (Baroni, Bernardini, Ferraresi, & 

Zanchetta, 2009).

1.1.  grammar  as  meaningful  symbol ic  units

The basic idea of  construction grammar is that grammar is more than simply 

a formal system consisting of  stable but arbitrary rules for defining well-formed 

sequences. Grammar, instead, consists of  meaningful and symbolic form–

meaning mappings, called constructions (Goldberg, 2006). In this sense, 

a grammar consists of  meaningful constructions in the same way that a lexicon 

consists of  meaningful words (Langacker, 2008). The task of  learning the 

grammar of  a language, in this paradigm, is the task of  learning the vocabulary 

of  meaningful symbolic units which makes up that grammar. This allows us 

to bring together two important premises: first, that grammar consists of  

meaningful symbolic units (e.g., Langacker’s Cognitive Grammar); second, that 

co-occurrence and distribution are indicators of  meaning (e.g., Firth, 1957).

Taken together, these premises suggest that constructions, like words, can 

be studied and defined as a set of  co-occurring elements in a corpus. In this 

case, however, the elements are in fact abstract and productive schemas 

representing a large number of  linguistic forms. If  grammars consist of  

symbolic form–meaning mappings, and if  the distribution of  elements in a 

corpus reveals their meaning, then the problem of  grammar induction can be 

viewed as the problem of  distinguishing those potential constructions which 

significantly co-occur from those potential constructions which do not 

significantly co-occur. It should be noted that the constructions discussed 

here are not simple idioms or phrases (although such may be constructions) 

but rather range from fully schematic and productive to fully item-specific 

representations.

Given that constructions are productive and co-occurring schemas, such 

co-occurrences can be disguised in observed language data by two sorts of  

phenomena: (1) by recursive structure within a particular element of  the 

construction; or (2) by unfilled or partially filled elements in the construction. 

This means that the language represented by these constructions can appear 
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to be discontinuous. The problem is that this greatly increases the hypothesis 

space and raises the question of  learnability: With such a large hypothesis 

space, unconstrained by innate structure, is it feasible for the learner to 

distinguish valid constructions from the much larger number of  potential 

constructions? Lidz and Williams (2009), for example, argue that the great 

number of  possible grammatical representations, taken together with similar 

learned output grammars across language learners, requires the constraining 

power of  innate structures/rules/constraints. This objection is countered in 

the evaluation section of  this paper by comparing the agreement of  output 

grammars learned from di�erent subsets of the corpus. In this case, the subsets 

represent multiple learners with the same Grammar learning the language from 

di�erent inputs.

1.2.  prec i se  def in it ions  for  what  c onst itutes  a 

c onstr uct ion

What is a construction? Or, asked another way, which units count as grammatical 

entities (i.e., constructions) for a given speaker and a given language? The 

discussion above contrasts potential constructions and actual constructions, 

framing the language-learning task as one of  distinguishing between these 

two categories. A Construction Grammar in the sense discussed here provides 

a mathematical definition of  co-occurrence such that the theory can distinguish 

between potential and actual constructions and thus produce a set of constructions 

(i.e., a grammar) representing a given language. This sort of  grammar is 

updateable in the sense that the units which qualify as constructions change 

over time as new language use is observed. The model is based on form (e.g., 

multi-length and multi-level non-continuous sequences with possible internal 

recursive structure) and distribution (e.g., frequency and multi-unit association 

measures). The implicit hypothesis, then, is that constructions can be identified 

using these measures on surface linguistic expressions.

A counter-argument to this program of  precisely defining constructions 

is that it is based on the classical theory of  categorization’s strict category 

boundaries rather than on the fuzzy and gradient membership posited by 

proto-type categorization theory. This is a false dichotomy, however, because 

the model ranks constructions using scalar measures. The classical, strict 

categorization approach can be simulated by setting a strict boundary 

threshold. The proto-type, fuzzy categorization, approach can be achieved 

by retaining the order of  constructions posited by the model. In short, the 

container metaphor for language (e.g., that a grammar and a lexicon contain 

certain elements and not others) is a conventional way of  discussing linguistic 

theory, even when we are aware that parts of  this metaphor are not accurate 

(e.g., Langacker, 2006). In other words, the idea of  an optimum grammar 
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to describe a language is a metaphoric idea, subject in practice to variations 

within speakers (e.g., across genres) and between speakers (e.g., across speech 

communities). Although not explored further here, such variations in learned 

construction grammars occur at two levels: types of  constructions (presence or 

absence of a given construction) and usage of constructions (relative frequency 

of  a given construction).

The grammatical generalizations learned by the algorithm are abstracted 

away from individual speakers by definition, in that they are learned from a 

corpus of  data produced by many speakers. Thus, the argument presented 

here participates in the abstraction by which language-use is generalized 

away from individuals and discussed as a single entity such as ‘English’ or 

‘German’. This abstraction means that the elements of  a grammar are not 

necessarily a psycholinguistic reality for any single speaker, a limitation that 

also applies to the work presented here.

1.3.  pr opert ies  of  c onstr uct ions  to  be  modeled

Constructions are form–meaning mappings that di�er in their size, internal 

complexity, and level of  schematicity. This paper is concerned only with 

constructions above the level of  individual words. The constructions that 

need to be identified are idioms like the partially filled idiom in (1), argument 

constructions like the ditransitive in (2), and sentence-level constructions like 

the covariational conditional in (3) (c.f. Goldberg, 2006).
 
 (1)  jog [someone’s] memory

 (2)  NP + <transfer> + NP + NP

 (3)  the [X’er], the [Y’er] 
These examples represent three of  the essential properties of  constructions 

that need to be captured: (i) varying length, (ii) varying levels of  representation 

in each slot, and (iii) filled, partially filled, or unfilled slots. A fourth essential 

property of  constructions (iv) is the ability to contain recursive material 

within a given slot (e.g., a nominal construction nested within a verbal 

construction) as well as constituents with varied internal structure.

The first challenge is that constructions vary in length and that word-based 

measures of  length do not account for constituent-internal structure.  

For example, the idiom in (1) contains three units, while the ditransitive in 

(2) contains four units. Further, and creating a greater di�culty, constructions 

can have recursively filled slots. For example, (4a) through (4c) contain 

instances of  the same ditransitive construction but contain di�erent numbers 

of  lexical units, ranging from five to eight. The algorithm must be able to 

generalize over these di�erent lengths and recursively filled slots to identify 

the underlying construction: NP + <transfer> + NP + NP. In other words, 

https://doi.org/10.1017/langcog.2016.7 Published online by Cambridge University Press

https://doi.org/10.1017/langcog.2016.7


dunn

260

co-location can occur at the word-level but also at the phrase-level, so that in 

(4c), for example, Bill’s uncle and two Canadian dollars can be seen as being 

separated by six units (at the word-level) or by two units (at the phrase-level). 

The algorithm must be su�ciently flexible to allow item-specific representations 

(e.g., (4e)) to be identified alongside fully schematized representations as in (2). 

In other words, the problem is how to measure multi-level co-occurrence.
 
 (4)  a.  Bill gave Wendy two dollars.

 b.  Bill gave Wendy’s sister two dollars.

 c.  Bill’s uncle gave Wendy’s older half-sister from Paris two Canadian 

dollars.

 d.  Bill’s uncle gave Wendy a hand.

 e.  gave X a hand

 

The second challenge is that constructions vary in the level of  representation 

used and may contain mixed levels of  representation. For example, the 

ditransitive construction in (2) must be represented using parts-of-speech 

and semantic categories. The idiom in (1), on the other hand, has to be 

represented at multiple levels: the fixed part of  the idiom requires simple 

lexical representation but the unfilled slot has semantic restrictions (e.g., an 

animate object). This multi-level requirement makes the task more di�cult 

than collocation identification and, more importantly, again multiplies the 

space within which the learner must search for potential constructions.

The grammar induction algorithm operates on three levels: first, on 

lemmatized word-forms representing the lexical level of  language; second, on 

part-of-speech forms representing lexical units grouped according to their 

syntactic distribution; third, on semantic or conceptual forms representing 

lexical units grouped according to their meaning. In addition, the algorithm 

allows for the reduction of  internal structure within prepositional phrases, 

noun phrases, multi-word named entities, and adjunct units in order to measure 

distance at both the fully schematized and the item-specific levels for purposes 

of  measuring co-occurrence. These phrasal representations are similar to 

Fillmore’s (1988) ‘maximal’ categories, whereas the lemma and part-of-speech 

representations are similar to ‘minimal’ categories.

The third challenge is that constructions contain filled, partially filled, 

and unfilled slots. In other words, a particular slot of  the construction can be 

filled by a lexical item, can be constrained to a unit of  a particular semantic 

category, or can be left entirely unfilled. This means that a construction can 

be non-continuous in the surface linguistic expression. For example, the 

idiom in (5) has an unspecified slot which, however, must be filled by a human 

or some entity which takes on the properties of  a human via metonymy or 

personification. The idiom in (6a), however, can be filled by any material 
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whatsoever, as shown by the examples in (6b–d). The algorithm deals with 

this requirement by using multiple levels of  representation: partially filled 

slots can be defined by their semantic requirements (e.g., any animate object), 

and unfilled slots can be defined by their syntactic requirements (e.g., any noun 

phrase). This again multiplies the search space for potential constructions.
 
 (5)  send [someone] to the cleaners

 (6)  a.  They didn’t pay [NP] any heed.

 b.  They didn’t pay [me] any heed.

 c.  They didn’t pay [the warning signs] any heed.

 d.  They didn’t pay [the smoke on the horizon] any heed. 
The fourth challenge is that constructions can have recursively filled internal 

structure. This takes two forms: (i) a syntactically defined slot can be filled with 

a wide range of  complex constituents of  the same type (e.g., NPs take many 

di�erent forms), and (ii) constructions can be nested within other constructions. 

As an example of  the first case, if  we take the ditransitive construction in (2) 

above, repeated in (7a), any of  the components can contain constituents with 

varied internal structure, so that (7b) through (7d) are all instantiations of  the 

same construction. As an example of  the second case, (7e) contains the same 

ditransitive construction nested within a di�erent instance of  the construction, 

so that ball is part of  the main ditransitive as well as the relative clause version 

of  the ditransitive. The first sort of  recursion, of  interchangeable constituents 

in a single more general slot, although a challenge to model, is a relatively simple 

phenomenon for construction grammar in general. The second sort, however, 

is more di�cult on both levels.
 
 (7)  a.  NP + <transfer> + NP + NP

 b.  He gave her the ball.

 c.  The short man quickly gave her the blue ball.

 d.  The two short men quickly refused to give her any of the balls.

 e.  He gave her the ball Bob had just given him two days before.

 

The constructions output by the algorithm have a linear form such as in 

(8a–d). In this formula, units of  a given level of  representation occur in the 

specified order. Four levels of  representation are used in the final output: 

first, specific word-forms and lemmas, as in (8a) with “be”; second, part-of-

speech tags for individual units, as also in (8a) with the units in brackets; 

third, semantic or conceptual categories which constrain the fillers of  the slot 

in question, as in (8c) in small caps; fourth, syntactic phrases with reduced 

internal structure, such as NP and PP in (8d).
 
 (8)  a.  [Wh-Determiner] + [Modal] + “be” + [Past-Participle]

 b.  “to” + [Verb] + [Determiner] + [Noun]
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 c.  [Noun] + [Preposition] + [Determiner] + <planning>

 d.  “be” + [Past-Participle] + PP+ NP 
The use of  multiple levels of  generality shows the influence of  corpus 

linguistics on the algorithm in addition to Cognitive Grammar: the goal is 

to find the inventory of  symbolic grammatical units attested in the corpus, 

even if  those units are not abstract or schematic but rather fully item-specific. 

This is an important part of  grammar induction because observed patterns in 

usage show that speakers have clear preferences both for schematic structures 

and for specific instances of  such structures.

Finally, an essential property of  constructions more generally is that they 

are form–meaning mappings rather than purely syntactically defined sequences. 

This is modeled here both directly and indirectly. Directly, it is captured 

using semantic or conceptual representations of  words; in e�ect, this means 

that the filler of  a slot can be defined in terms of  a specific meaning, rather 

than in terms of  a specific lexical or syntactic item. Indirectly, this is captured 

using overlapping constructions with di�erent levels of  schematicity. More 

item-specific constructions represent di�erent instances of  a more general or 

schematized construction and have di�erent meanings from generic instances 

of  that construction (e.g., give me two pieces of  cheese vs. give me a hand).

2.  The construction induction algorithm

This section looks at the construction induction algorithm1 in detail, starting 

in Section 2.1 with a discussion of  the underlying problem and how it is 

distributed across the algorithm. Section 2.2 looks at the di�erent levels of  

representation used in the algorithm. The core functions of  the algorithm are 

then examined: the generation of  potential constructions (2.3), formulating 

association measures to evaluate candidates (2.4), and then using association 

measures to select the best candidates. The algorithm is then situated relative to 

other computational work on constructions, relative to collostructional analysis, 

and relative to other work on grammar induction (2.5).

2.1.  aspects  of  the  pr oblem

The goal of the construction grammar induction algorithm is to search through 

the many linguistic expressions present in a large corpus in order to find the 

relatively small number of  underlying generalizable grammatical units which 

produce or represent those linguistic expressions. In other words, the problem 

[1]  Code and related data for the Construction Induction algorithm is available at www.jdunn.
name.
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is to cut through the noise in the textual data and return only those units 

which can be considered part of  the grammar represented in the corpus. The 

linguistic expressions in the corpus have a very large number of  possible 

representations (i.e., potential constructions); the problem is to find the 

optimum set of  representations.

The construction grammar induction algorithm identifies multi-length, 

multi-level, non-continuous co-occurrences while abstracting over internal 

recursive structure. In other words, the algorithm builds frequency and 

association measures of co-occurrence but does so at multiple levels of analysis. 

This task is divided across three stages in the algorithm: first, the candidate 

generation stage deals with recursive structures and non-continuous 

representations. Second, the construction identification stage forms templates 

for construction types and identifies the presence of  these construction 

templates in linguistic expressions in order to extract and inventory potential 

constructions. Third, the candidate evaluation stage searches through the 

very large number of  potential grammatical representations (i.e., candidate 

constructions) to determine the set which best represents the linguistic 

expressions in the input corpus using frequency and multi-unit association 

measures. The pseudo-code for the algorithm is shown in Table 1; this 

pseudo-code can be considered a diagram of  the essential workings of  the 

algorithm and also a guide to a specific Python implementation.

2.2.  le vels  of  representat ion

Level of  representation refers to the type of  linguistic analysis used to label 

a particular element in the construction: part-of-speech (e.g., noun), phrase 

type (e.g., prepositional phrase), semantic-category (e.g., animate), and lemma 

(e.g., “candle”). The idea behind varying levels of  representation within a 

construction is (1) that language is composed of  layered and interacting levels 

of  structure and (2) that grammatical units can be fossilized at each level. 

In other words, some constructions may be completely schematic and others 

may be completely item-specific. The algorithm, therefore, must operate on 

multiple levels of  representation because we cannot know a priori for a given 

linguistic expression the specificity or type of  representation present in the 

construction that produced it.

The algorithm has a few dependencies. First, it relies on part-of-speech 

tagging (in this case, TreeTagger: Schmid, 1994), which labels lexical units 

according to their syntactic distribution and function. Second, it relies on 

semantic or conceptual tagging (in this case, the UCREL Semantic Analysis 

System: Piao, Bianchi, Dayrell, D’Egidio, & Rayson, 2015), which labels 

lexical units according to their ontological meaning. Third, it relies on a 

dependency parser (in this case, MaltParser: Nivre et al., 2007), which aids 
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table  1. The construction-grammar induction algorithm

1 Create unit inventories for each level of  representation
 a. Create list of  all unit values at each level of  representation
 b. Discard unit values below frequency threshold
 c. Assign each unit value a numeric index

2 Ingest input files
 a. Divide into units divided by sentence boundaries and/or punctuation (by parameter)
  i. Represent each unit as vector of  unit value indexes
  ii. Represent each clause/sentence as a collection of  unit vectors

3 Search for recursive structures and non-continuous units
 a. For each clause:
  i. Look for adjunct units (e.g., adverbs)
  ii. Look for PPs (e.g., “into the house”)
  iii. Look for NPs (e.g., “the house”)
  iv. Look for Multi-Word Named Entities (e.g., “Norman Rockwell”)
 b. For each reduction in each clause:
  i. Create alternate clause with unit either reduced (e.g., to “NP”) or removed
  ii. Create alternate clauses with all combinations of  reductions applied

4 Create construction templates
 a. For all lengths from 2 through N (Max construction length):
  i. All possible combinations of  levels of  representation

5 Extract candidate constructions using templates and units of  text
 a. For each template:
  i. Search through original and alternate linguistic expressions
  ii. Extract and count all matches
  iii. Disregard any matches containing discarded labels
  iv. Remove all candidates below the frequency threshold

6 Evaluate candidates:
 a. Frequency
 b. Summed ΔP, Left-to-Right
 c. Summed ΔP, Right-to-Left
 d. Mean ΔP, Left-to-Right
 e. Mean ΔP, Right-to-Left
 f. Beginning-Reduced ΔP, Left-to-Right
 g. Beginning-Reduced ΔP, Right-to-Left
 h. End-Reduced ΔP, Left-to-Right
 i. End-Reduced ΔP, Right-to-Left
 j. Beginning-Divided ΔP, Left-to-Right
 k. Beginning-Divided ΔP, Right-to-Left
 l. End-Divided ΔP, Left-to-Right
 m. End-Divided ΔP, Right-to-Left
 n. Direction Scalar ΔP
 o. Direction Categorical ΔP

7 Prune candidates:
 i. By Association Strength
 ii. Horizontally (prefer longest candidates)
 iii. Vertically (remove alternate representations)

in the reduction of  prepositional phrases and noun phrases. There is no 

theoretical reason why these functions could not be incorporated into a single 

framework, only the practical consideration of  avoiding the duplication of  

existing work. These dependencies do not invalidate the argument against 
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innate structure because each could itself  be performed in an unsupervised 

and data-driven fashion.2

2.3.  generat ing  potential  c onstr uct ions

The candidate generation step carries the weight of  deriving possible 

generalizations from each linguistic expression. There are two separate stages 

here: first, producing alternate representations of  a linguistic expression to 

reduce recursive units; second, extracting construction templates of  varying 

length and level of  representation from those alternate representations of  the 

linguistic expressions (i.e., steps 3–5 in the pseudo-code).

For example, the sentences in (9a–c) all depend on the ditransitive construction, 

with increasing substructures within the slots of  the construction that create 

noise for the language-learning algorithm. In other words, finding the 

construction “NP + <transfer> + NP + NP” from the sentence in (9c) 

requires looking at each constituent as a whole, as shown with brackets in (9d). 

The algorithm approaches this problem by generating alternate forms for 

each linguistic expression and then including these alternate forms in the 

search for co-occurrences.
 
 (9)  a.  “The co�ee gave her a headache.”

 b.  “The dark unfiltered co�ee soon gave her a splitting headache.”

 c.  “The dark unfiltered co�ee from South America soon gave her a 

splitting headache and a feeling of nausea.”

 d.  “[The dark unfiltered co�ee from South America] [soon gave] [her]  

[a splitting headache and a feeling of nausea].” 
Given an expanded set of linguistic expressions, the algorithm handles varying 

length and varying levels of representation by creating templates for all possible 

combinations of  representations within the defined length parameter. Each 

template, therefore, represents the most abstract properties of  a construction: 

How many units and what representations does it contain? The algorithm then 

extracts all potential constructions, which are simply instantiations of  each 

template in a linguistic expression.

2.4.  e valuat ing  potential  c onstr uct ions

The evaluation of  potential constructions involves mathematically modeling 

the properties which separate constructions and non-constructions, either 

[2]  More recent versions of  the algorithm incorporate a distributional method of  creating 
semantic dictionaries as well as the unsupervised learning of  phrase structure rules which 
supports the further reduction of  complex constituents, thus removing two of  the three 
dependencies.
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with a sharp delineation of  the two categories or with a scalar ordering by 

degrees of  entrenchment. In this case, the model is observational in that it 

operates on a corpus of  attested linguistic expressions. Thus, the question is 

what quantitative distributional measures are required to develop a model of  

constructions. Two standard measures are used: frequency and association 

strength. The implementation of  these standard measures, however, must 

allow for the evaluation of  multi-unit candidates, which requires developing 

multi-unit association measures.

The first measure is frequency, a simple representation of  how often 

something appears in the dataset. This measure is relative frequency, in that 

all candidates are evaluated on the same dataset. In addition to providing 

a constraint on the overall search space, frequency remains an important 

measure of  a candidate’s status as a construction, in order to prefer some 

possible representations over others. The frequency threshold is enforced by 

creating an index of  unit frequencies on the entire corpus or on a significant 

subset of  the corpus (i.e., a million word subset) and ignoring those units 

which do not pass this indexing threshold. While this reduces the search 

space for the algorithm, it is not psychologically plausible in the sense that 

human learners do not have this sort of  large existing dataset to query in 

advance of  learning. As noted in more detail below, one critical assumption 

behind this approach is that human learners have the ability to store and 

update the frequencies of  units and sequences of  units largely without limit. 

The present algorithm, because it has access to the entire corpus all at once, 

can use frequency indexing as a means of  reducing the hypothesis space in a 

way that human learners cannot.

Association strength is measured using the bi-directional ΔP (Gries, 2013; 

cf. Gries, 2008, 2012), calculated both left-to-right and right-to-left, as shown 

in Table 2. To be more precise, the ΔP is not bi-directional but rather consists 

of  two direction-dependent measures; taken together, these two direction-

dependent measures allow us to model linguistic associations in all possible 

directions. Both spoken and written language are one-dimensional in the sense 

that Unit A can either come before or come after Unit B. The construction 

induction algorithm is based on multi-directional (left-to-right or right-to-left), 

multi-dimensional (across varying levels of representation), multi-length (across 

two or more units) association strength, measured with and without complex 

constituent-internal structure (i.e., distance is measured at di�erent levels of  

abstraction). The idea is that sequences which are constructions (e.g., are 

cognitively entrenched to some degree) are more internally associated than 

sequences which are not constructions (e.g., those which are chance co-occurrences 

of units). The purpose of the association measures (and the frequency counts on 

which such measures are ultimately based) is to learn an inventory of constructions 

from the very large hypothesis space of  all observed sequences.
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table  2. Calculating ΔP

1 Let X be a unit of  any representation
2 Let Y be any other unit of  any representation
3 Let Xa indicate that unit X is absent
4 Let Xp indicate that unit X is present
5 ΔP(X|Y) = p(Xp |Yp) - p(Xp |Ya)
6 ΔP(Y|X) = p(Yp |Xp) - p(Yp |Xa)

Like most linguistic association strength measures, ΔP is usually employed 

to measure the relationship between two individual words. Given the 

variable length required by constructions, this is converted into a multi-

word measure in four di�erent ways. Each calculation is given for a sequence 

of  elements listed in (10) for the sake of  example. Association strength is 

an important addition to frequency because it allows the model to capture 

the constraint of  degree of  openness (Goldberg, 2006). The basic problem is 

that very frequent units occur often in competing potential constructions 

and association measures prevent the over-identification of  false positive 

constructions containing frequent units.
 
 (10)  A B C D E F 

First, the simplest multi-word measure is a sum of  the total directional 

association within a candidate, implemented with a minimum pairwise threshold. 

In other words, so long as each pairwise ΔP is above the threshold, this measure 

simply sums the total association strength. While this first measure tends to favor 

longer candidates, it is left as-is in order to counteract the frequency thresholds 

which tend to favor shorter candidates. An alternate version, the mean ΔP, 

is normalized by the length of  the candidate in number of  units to produce 

the mean pairwise association score across the entire sequence. Both measures 

are shown in Table 3.

This multi-unit measure is similar to Daudaravičius and Marcinkevičienė’s 

(2004) work on detecting the borders of collocations, except that it allows both 

a minimum threshold and a final score (e.g., the summed association strength). 

In other words, the gravity count measure is a di�erent formulation for 

association strength and a collocation is defined as a sequence of pairs whose 

association falls above a given threshold. The summed ΔP is similar, except 

that it also outputs a sum of  pairwise associations for those sequences which 

do exceed the threshold. This similarity is disguised by a di�erence in 

implementation. For example, Jelinek (1990) also uses an iterative approach 

that tests increasingly longer sequences for su�cient association strength; in the 

current implementation, each candidate is considered independently, although 

any longer sequence which passes the frequency threshold is by definition 

made up of  smaller sequences which have themselves passed that threshold. 
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Gries and Mukherjee (2010) also use mean pairwise association strength to test 

multi-unit candidates. Finally, it should be noted that all measures discussed 

below are implemented in both left-to-right and right-to-left directions, although 

the discussion is streamlined by exemplifying each measure in a single direction.

The second multi-unit measure is the di�erence between the mean ΔP with 

and without the candidate’s edge members. In other words, going from left-

to-right, this measures the di�erence between the association between A-B-

C-D and B-C-D: Do we gain or lose association by extending the unit? This 

measures whether the longer version of  the candidate increases or decreases 

the overall association strength. Given that the evaluation is trying to discover 

the optimum candidates, those candidates which reduce the mean association 

strength can be viewed as less than optimum. This measure has two variants, 

one looking at the front and the other at the end of  the candidate (and each, 

like the underlying ΔP, is calculated in both directions), as shown in Table 4.

The third multi-unit association measure is the ΔP of  the first unit and the 

rest of  the candidate (A|BCDEFG) and the ΔP of  the last unit and the rest 

of  the candidate (ABCDEF|G). This is an alternate measure of  how much 

the increased length raises or lowers the overall association strength. This is 

calculated as in Table 5 (and, as before, in both directions).

The fourth multi-unit measure uses the dominant pairwise direction of  

association. In other words, moving through the candidate, is the left-to-

right or right-to-left association stronger between the current pair of  units? 

The idea here is that the optimum candidate should have a single dominating 

direction, and that the more disagreement there is in pairwise directional 

associations the worse the candidate is. This sort of  measure was suggested, 

for example, by Gries (2013), although not implemented. The assumption 

that a construction should have a single dominating direction of  association 

is not entirely transparent, and further work needs to be done on this issue.

There are two methods of  calculating this measure, a scalar method and 

a categorical method. First, the scalar method finds the di�erence between 

both directions for each pairwise unit and sums these di�erences. Positive 

numbers indicate the dominance of  left-to-right association while negative 

numbers indicate dominance of  right-to-left association. This provides 

both the direction and the degree of  the dominance. One weakness, however, 

table  3. Calculating the Summed ΔP

1 Calculate each ordered pairwise ΔP:
2   A|B, B|C, C|D, D|E, E|F
3 Fp = Pairwise Frequency Threshold
4 If  any ordered pairwise ΔP < Fp, discard candidate construction
5 Summed ΔP = ( )( )Σ ∆ | ∆ | …P(A B) P(B C)

6 Mean ΔP = ( ( )( )Σ ∆ ∆| | …P(A B) P(B C) ) / Nunits
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table  4. Calculating the Reduced ΔP

1 Beginning-Reduced ΔP = Mean ΔP(ABCDEFG) – Mean ΔP(BCDEFG)
2 End-Reduced ΔP = Mean ΔP(ABCDEFG) – Mean ΔP(ABCDEF)

is that two large pairwise di�erences can cancel each other out. Thus, the 

related categorical measure simply counts the number of  pairs for which the 

left-to-right or right-to-left measure dominates and returns the minimum of  

these as a counter of  how many times the dominating direction changed while 

moving sequentially through the candidate. Thus, a candidate in which either 

direction of  association wholly predominates would receive a 0, a candidate 

with one change in direction would receive a 1, and so on. These are calculated 

as shown in Table 6.

This collection of  association measures, together with frequency, is used 

to create a vector representing each candidate. A summary of  the measures 

contained in this vector is given in Table 7. The selection and ordering of  

possible candidates is performed using this vector representation. This is, 

as all quantitative models are, a simplification of  a construction grammar, 

in this case focusing only on frequency and frequency-based co-occurrence 

information to determine which potential constructions form the strongest or 

most associated units. The question, however, is whether this simplification 

(i.e., purely statistical generalization) is su�cient for learning a construction 

grammar from a corpus.

Alternate methods for calculating multi-unit association strength include Wei 

and Li (2013), who start with da Silva and Lopes’ (1999) notion of  pseudo-

bigrams, in which all sequences longer than two units are reduced to all possible 

pairwise combinations (e.g., A|BCD, AB|CD, ABC|D for the sequence 

ABCD). This is similar to the divided ΔP measures described above. Starting 

with these pseudo-bigrams, Wei and Li take the average pointwise mutual 

information score for each pseudo-bigram in the sequence, but refine the average 

by weighting each pseudo-bigram by its probability in the corpus. This gives 

more weight in the final measure to the most probable subsequences.

The one assumption that these measures require is that the language 

learner is able to store frequencies, both of  units and of  sequences. In other 

words, a sizable amount of  linguistic memory is required to store all the 

units and sequences that make up possible candidates and to update the 

frequencies of  those units and sequences as new language is observed. 

This could be done, in algorithmic terms, either with cumulative observed 

frequencies or with a rolling time-based window. This approach, then, does 

assume that learners are capable of  this sort of  frequency storage, a question 

that is beyond the scope of  the present paper (although see Tomasello, 2003, 

and Bybee, 2010).
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For the sake of  example, sample calculations are shown for the sequence 

did not know about it. Only lexical items are considered for simplicity. 

First, this sequence consists of  the pairs in (11). Each word is shown with 

its frequency in the Corpus of  Contemporary American English (COCA: 

Davies, 2010) in brackets, with the total co-occurrences of  each pair 

following. The left-to-right (LR) and right-to-left (RL) ΔP are shown  

for each (note that the total number of  words in COCA is rounded to  

520 million in these calculations). Given these measures, the summed ΔP 

left-to-right is 0.0939 with a smallest pairwise value of  0.0108 (“know 

about”) and the mean ΔP is 0.0234. Going from right-to-left, the summed 

ΔP is 0.2052 with a smallest pairwise value of  0.0052 (“not know”) and a 

mean ΔP of  0.0513.
 
 (11)  a.  “did” [895,094] + “not” [2,155,912] and their co-occurrence [128,432]

 a’.  LR = 0.0581, RL = 0.1395

 b.  “not” [2,155,912] + “know” [857,571] and their co-occurrence 

[14,697]

 b’.  LR = 0.0130, RL = 0.0052

 c.  “know” [857,571] + “about” [1,444,147] and their co-occurrence 

[17,933]

 c’.  LR = 0.0108, RL = 0.0182

 d.  “about” [1,444,147] + “it” [5,146,411] and their co-occurrence [75,164]

 d’.  LR = 0.0120, RL = 0.0423

 

The reduced ΔP compares the mean values for subsequences; the formulation 

for the beginning-reduced is shown in (12a) and the end-reduced in (12b). 

For the end-reduced measures, in both directions, the mean association is 

lower in the longer sequence than in the reduced sequence, although the 

di�erence is quite small. The point, though, is to see if  a smaller sequence has 

a higher mean association. It is important to remember that these measures 

are also calculated on other subsequences if  those subsequences are themselves 

candidates. In this case, for example, each pair is itself  a candidate (although 

not a multi-unit candidate), as are both reduced sequences. This results from 

the fact that any longer sequence which passes the frequency threshold is 

composed of  subsequences which have also passed the frequency threshold. 

In practical terms, then, it is the multi-unit measures taken together with 

the di�erent candidates that allow full coverage in the search for actual 

constructions and makes iterative measures unnecessary.

table  5. Calculating the Divided ΔP

1 Beginning-Divided ΔP = ΔP(A|BCDEFG)
2 End-Divided ΔP = ΔP(ABCDEF|G)
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 (12)  a.  Beginning-Reduced: Mean (“did not know about it”) – Mean  

(“not know about it”)

 a’.  LR = 0.0115, RL = 0.0291

 b.  End-Reduced: Mean (“did not know about it”) – Mean (“did not 

know about”)

 b’.  LR = –0.0039, RL = –0.0030 
The divided ΔP calculates multi-unit association with units instead of  pairs. 

This is shown in (13) with its beginning and end variants. The frequency of  

each unit is shown (in this case, with larger sequences viewed as units), and 

the frequency of  the entire sequence is 16. Longer sequences like this can 

result in high association: given the sequence not know about it, the preceding 

elements are limited and thus the association is high even though frequency 

is low. It is important to note, again, that other subsequences are compared in 

other shorter and longer candidates.
 
 (13)  a.  Beginning-Divided: (“did” [895,094] | “not know about it” [33])

 a’.  LR = 0.4831, RL = 0.0000

 b.  End-Divided: (“did not know about” [197] | “it” [5,146,411])

 b’.  LR = 0.0000, RL = 0.0714 
The final two measures quantify the role of  direction within the sequence: 

Given a series of  pairwise associations, how stable is the dominating direction 

of  association? The first measure subtracts the right-to-left association from 

the left-to-right association in order to show accumulating e�ects of  dominance. 

In this case, the final measure is –0.1191, showing that, overall, the dominating 

pairwise direction is right-to-left. The categorical measure looks at how many 

times the direction changes. In this case, there is one left-to-right dominating 

pair (“not know”), giving the measure a value of  1. The purpose of  this 

discussion has been to provide an example of  how the measures are calculated, 

rather than a complete analysis of  their many permutations.

2.5.  model ing  c onstr uct ions

The final and essential step is to take this large number of possible constructions 

and model the properties which separate possible and actual constructions in 

order to predict the inventory of  the dataset-specific construction grammar. 

It will be useful, first, to look at some existing approaches to this problem.

table  6. Calculating the Direction ΔP

1 Direction-Scalar ΔP = [ ( ) ( ) ( ) ( ) ]∆P A B ∆P B A ∆P A B ∆P B AΣ …( | − | ), ( | − | )
2 Direction-Categorical ΔP = min(Number LR dominant pairs, Number RL  

dominant pairs)
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Wible and Tsao (2010) present StringNet, which finds all sequences of  

word-form, lemma, or part-of-speech (unigrams to 8-grams) which pass a 

frequency threshold. StringNet uses a mutual information measure to rank 

results; however, this measure is not expanded for multi-unit sequences but 

rather normalized across the results of  a particular query. Pruning of  nested 

or redundant sequences is used to reduce the number of  candidates. Tsao 

and Wible (2013) use co-occurrence vectors with these sequences to produce 

distributional similarity scores. Forsberg et al. (2014) build on StringNet by 

incorporating dependency parsing to identify phrases as parts of  potential 

constructions, similar to the how the present algorithm reduces complex 

constituents in identifying potential constructions. Frequency is used to prune 

potential constructions and the final evaluation is performed using a multivariate 

generalization of  pointwise mutual information (van de Cruys, 2011) scaled 

by the number of  unique word-form sequences instantiating each candidate. 

Zuidema (2006) formulates the problem of identifying constructions as taking 

parse trees and identifying those sub-trees which frequently re-occur and 

which may contain syntactically defined (e.g., partially filled) slots at the end. 

This approach uses a simpler definition of  constructions, along the lines of  

productive multi-word expressions.

Taken together, this previous work introduces elements present in the 

current algorithm which are expanded and incorporated into an overall 

model of  a construction grammar in this paper. First, the current algorithm 

has more robust approaches to dealing with recursive structure (e.g., reducing 

noun phrases) and partially filled / unfilled slots. Further, it includes semantic 

category as a level of  representation, an important part of  representing 

constructions. These improvements involve the generation of  possible 

constructions. The primary contribution of  this paper, however, consists of  

developing and aggregating measures of  association to model the gradient 

distinction between possible and actual constructions. This component is the 

essential central problem of  construction grammar induction: reducing large 

table  7. Summary of  measures in vector representing the candidates

Measure Variations

Simple Frequency
Summed ΔP Left-to-Right, Right-to-Left
Mean ΔP, Left-to-Right, Right-to-Left
Beginning-Reduced ΔP Left-to-Right, Right-to-Left
End-Reduced ΔP Left-to-Right, Right-to-Left
Beginning-Divided ΔP Left-to-Right, Right-to-Left
End-Divided ΔP Left-to-Right, Right-to-Left
Direction-Scalar ΔP
Direction-Categorical ΔP

https://doi.org/10.1017/langcog.2016.7 Published online by Cambridge University Press

https://doi.org/10.1017/langcog.2016.7


computational learning of grammars

273

numbers of possible representations to a small number of actual and productive 

constructions. Thus, the current work builds on existing work to produce a 

coherent and e�cient model for construction identification and extraction.

Given a large number of  potential constructions with frequency and 

association strength values, the model for determining which to include in 

the grammar first removes clear false positives and then ranks the remaining 

candidates by their degree of  entrenchment. The pruning steps, shown in 

Table 8, begin by removing those candidates which fall below the pairwise 

threshold. In other words, multi-unit candidates such as ABCDEF have both 

multi-unit association scores and pairwise scores; the idea here is to remove 

those candidates which have weak links between at least one pair, indicating 

that an alternative candidate with alternate boundaries is a better representation.

The second step is to remove those candidates whose mean association 

strength as a whole is lower than the mean association strength of a subsequence 

(e.g., ABCDEF vs. BCDEF or ABCDE). The idea here is that the representation 

with the higher mean association strength is the best grammatical unit.

The third step is to prune those candidates in which the dominating pairwise 

direction of  association changes internally. For example, with the sequence 

ABCDEF, if  all dominating pairwise associations are left-to-right except for 

CD, in which right-to-left dominates, this is an indicator that the candidate 

provides a non-optimal boundary.

The final two reduction steps are the simplest: horizontal pruning takes the 

remaining candidates and chooses the largest, while vertical pruning finds those 

candidates of the same length which share the same association strengths, so that 

they are alternate representations of  the same underlying construction.

These reduction rules are applied in this order, with association strength given 

the most weight because it removes the largest number of  candidates and thus 

eases the application of subsequent rules. The final step is to rank the remaining 

constructions by their degree of  entrenchment; in other words, the idea is to 

order constructions by how highly associated they are. This is done using the 

mean ΔP and the end-divided and beginning-divided ΔP. First, the highest 

directional score for each of  these three measures is taken, and then again the 

highest of  these scores. Thus, each candidate is represented by its highest 

direction and type of association measure. In other words, because constructions 

take many forms and association can be captured by any of these measures, each 

candidate is represented by its highest association and ranked accordingly.

2.6.  c onstr uct ion  identif icat ion  and  c ollostr uct ional 

analys i s

The measures of  association used to model constructions complement existing 

work on measuring properties of  constructions from corpora. Collostructional 
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analysis (Stefanowitsch & Gries, 2003, 2005; Gries & Stefanowitsch, 2004a, 

2004b) encapsulates the most relevant area of  work, performing three related 

tasks: (i) quantifying the relationship between individual words and a given 

slot of a given construction; (ii) using the relationship between individual words 

and a given slot of  a given construction to quantify the relationship between 

similar constructions; and (iii) quantifying the relationship between individual 

words in two di�erent slots in a given construction. This work di�ers from 

the present in that it focuses on quantifying di�erences within and between 

constructions while taking the existence of  particular constructions as a given. 

The current work, put in similar terms, focuses on quantifying and modeling 

the di�erences between constructions and non-constructions. These non-

constructions, like other counter-factuals or ungrammatical forms in linguistic 

analysis, represent possible alternate generalizations drawn from linguistic 

expressions. Thus, collostructional analysis looks at variations in the use 

of  constructions, whereas this work looks at variations in inventories of  

constructions across individuals and speech communities.

2.7.  c omparison  to  ex i st ing  algorithms

Knowledge-based approaches to computational linguistics manually build 

machine-tractable representations of  language. Such representations include 

an ontology of  atomic concepts with their properties and connections as well 

as machine-tractable descriptions of  the meaning of  linguistic expressions 

phrased in terms of  these atomic concepts (see, for example, Nirenburg & 

Raskin, 2004; Levison, Lessard, Thomas, & Donald, 2013, and the comparison 

of  these approaches to formal semantics in Dunn, 2015). Both Fluid 

Construction Grammar (FCG) and Embodied Construction Grammar (ECG) 

(e.g., Bryant, 2004; Steels, 2004, 2012; Chang, De Beule, & Micelli, 2012) can be 

viewed as variants of  this work, in which hand-crafted but machine-tractable 

representations of  constructions, frames, and concepts are collected and 

manipulated computationally for various purposes (similar to but expanding 

on Zadrozny, Szummer, Jarecki, Johnson, & Morhenstern, 1994). These 

approaches do not interface with natural language (e.g., they do not operate 

table  8. From potential to actual constructions

Order Operation

1 SΔP: Remove candidates which fall below pairwise ΔP threshold
2 RΔP: Remove candidates which lose association strength when reduced
3 Direction: Remove candidates which change directions of  association
4 Horizontal Pruning: Keep longest sequence possible within remaining candidates
5 Vertical Pruning: Keep representation with highest association strength
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on linguistic expressions). Rather, they should be seen as an extension of  

introspective analysis of  constructions into computational applications by 

standardizing the units and methods of  analysis. These approaches are unable 

to learn constructions from linguistic expressions and cannot be used to 

simulate language learning because the representations are themselves a sort 

of  innate representation provided to any algorithms which take them as input.

There are also previous computational treatments of  constructions in actual 

corpora. For example, O’Donnell and Ellis (2010) develop an algorithm for 

searching a RASP-parsed version of  the British National Corpus for instances 

of  two predefined verb–argument constructions. Vincze, Zsibrita, and Istvan 

(2013) and Istvan and Vincze (2014) computationally distinguish between 

verb–particle constructions and non-construction verb–particle co-occurrences 

using a parser to identify candidates and then employing a supervised binary 

classifier to distinguish those which are part of  a construction from those which 

are not, using lexical, syntactic, and semantic features.

The present algorithm is also an approach to unsupervised grammar 

induction, the task of  learning a generalized grammatical representation 

from observed language (e.g., from text). Van Zaanen (2000) approaches this 

task as a problem of  finding constituents and their boundaries, so that the 

task is to identify which units are mutually replaceable. The algorithm compares 

every pair of  sentences, using edit distance to determine which units, if  any, 

are shared by the sentences. Those units which occur with shared structures, 

then, are constituents which can be mutually replaced. This generates candidate 

constituents which are then evaluated using the probability that the candidate 

is a constituent. Dennis (2005) takes a similar approach using part-of-speech 

sequences rather than word-form sequences and adding a span-based edit 

distance measure. Clark’s (2001) approach to finding clusters of  constituent 

types is to take an input text as a sequence of  part-of-speech tags and to 

cluster sequences of  these tags using their distribution. Mutual information 

(MI: i.e., association strength) is used to filter out redundant or nested candidates, 

and the MI threshold is determined using minimum description length to 

evaluate possible grammars (cf. Goldsmith, 2006). Klein and Manning (2002) 

take yet another approach to finding constituents, starting with all possible 

subsequences of part-of-speech tags within the same sentence as the candidate 

set, considering only those candidates which produce binary trees. Given 

observed sentences and unobserved constituents, Expectation Maximization 

is used to cluster candidates as actual constituents or non-constituents.

While more current approaches to grammar induction have made a number of  

improvements (Bod, 2006; Headden, Johnson, & McClosky, 2009; Blunsom & 

Cohn, 2010; Mareček & Straka, 2013; Spitkovsky, Alshawi, & Jurafsky, 2013), 

this work has focused on grammar as a tree of  dependency relations and on 

categories with phrase-structure rules, such as in combinatory categorical 
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grammar. The present algorithm, however, focuses on grammar as a set of  

meaningful and symbolic form–meaning mappings. The output is not a parse 

tree or a set of  categorized dependencies, but rather a mapping between 

linguistic expressions and schematic constructional representations of  those 

expressions at varying levels of  abstraction. Thus, this work is not reviewed 

in more detail here, although see Heinz, de la Higuera, and van Zaanen (2016) 

for a general overview of  the problem.

3.  Evaluating learned grammars

This section presents a rigorous quantitative evaluation of  learned grammars. 

The first part (3.1) describes the general experimental design and provides a 

qualitative analysis of  the sorts of  constructions formulated by the algorithm. 

The next subsection (3.2) begins the quantitative analysis by looking at the 

distributions of  and correlations between the various multi-unit association 

measures employed. The next part (3.3) examines the grammar’s coverage on 

unseen test sets under di�erent construction pruning conditions. The section 

after this (3.4) quantifies stability in learned grammars across di�erent sizes 

of  datasets and, after this (3.5), the stability in learned grammars across 

mutually exclusive datasets, with each instance of  the algorithm simulating a 

single language learner.

3.1.  exper imental  des ign  and  qual itat ive  analys i s  of 

results

For the purposes of  this evaluation, the construction grammar induction 

algorithm is run on 1 billion words (40 million sentences) from the ukWac 

web-crawled corpus of  UK domain sites (Baroni et al., 2009). The advantage 

of  using this corpus is, in part, its size. This is important for two reasons: 

first, it showcases the feasibility of  the algorithm in terms of e�ciency; second, 

it allows us to examine the stability of  the learned grammar across di�erent 

subsets of  the corpus. Given the grammar learned on this dataset, we start 

with a qualitative analysis of  the sorts of  constructions which are included in 

the grammar, looking at representative examples of  constructions identified 

in the ukWac corpus. Additional constructions and examples are given in the 

‘Appendix’.

The first example of  a learned construction is shown in (14a), with examples 

in (14b–e). This construction is defined by part-of-speech information and 

the lemma “be”, representing a relative clause with a passive verb. While this 

generalization covers multiple complementizers and modal verbs, it does not allow 

for multiple tenses within the verb phrase. It remains, however, a productive and 

schematic representation that covers a large number of  linguistic expressions.
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 (14)  a.  [Wh-Determiner] + [Modal] + “be” + [Past-Participle]

 b.  that will be provided

 c.  that can be played

 d.  which will be presented

 e.  that should be made
 

The second example, in (15a), again consists of  parts-of-speech with a 

single high-frequency lemma, “to”. This represents an infinitive verb phrase 

with an object, which, as shown in (15d), can be generalized to any NP. One 

weakness with this representation, however, is that the determiner is often 

part of  a noun phrase, so that this representation could be made more general 

by eliminating the [Determiner] from the construction. Of  course, the whole 

point of  a data-driven model such as this is that it builds representations from 

observed usage and not from intuitions about the most productive schema.
 
 (15)  a.  “to” + [Verb] + [Determiner] + [Noun]

 b.  to bring an end

 c.  to get an idea

 d.  to use any NP

 e.  to sell a product
 

A more item-specific example is shown in (16a), this time including a partially 

filled slot that is defined only by its semantic category of  rel ig ion. In this 

case, the construction reflects the metaphor in which a religious organization 

takes on the characteristics of  a physical body. What separates this as a 

construction, however, is that whereas literal statements about a body do 

not require a specific form (strengthen your body, heal your body, etc.), the 

interpretation here requires a prepositional phrase in which the type of  body 

is specified (strengthen the body of  the church, heal the body of  Christ, etc.). 

An example of  over-identification is shown in (16e), in which church is 

actually referring to a physical object and used as a reference point. Thus, this 

is not an example of  this metaphoric construction, but rather is an over-

generalization from the learned representation.
 
 (16)  a.  [Noun] + [Preposition] + [Determiner] + <rel ig ion>

 b.  body of the church

 c.  member of the church

 d.  need in the church

 e.  west of the church
 

A simple prepositional phrase construction is shown in (17a), involving spatial 

relations for a given location. This is a schematic construction that does not 

di�erentiate between di�erent spatial relations and di�erent types of locations. 

This does not, however, preclude the algorithm from learning more specific 
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spatial phrases, which in fact it does. For example, more specific identified 

constructions include: “in” + NamedEntity; “in” + NP; “through” + NP. These 

are cases where more item-specific and more schematic constructions overlap.
 
 (17)  a.  [Preposition] + “the” + <lo cat ion>

 b.  on the site

 c.  in the area

 d.  into the city

 e.  throughout the area 
A specific verb phrase construction is shown in (18a), in which a movement 

verb has an infinitive verb as an object. In this case, the infinitive object shows 

the purpose of  the movement, as in examples (18b–e). The object of  the 

infinitive is not included in this construction, and specifying specific objects 

would result in a finer-grained analysis.
 
 (18)  a.  <move> + “to” + [Verb]

 b.  go to buy

 c.  come to learn

 d.  travel to find

 e.  walk to see 
Finally, the example in (19a) shows an identified construction which 

contains incorrect boundaries. We would expect, given introspective analysis, 

that some semantic definition of  the agent would follow “by”, but this is not 

the case. This illustrates one of  the major di�culties of  construction grammar 

induction: modeling a representation abstract enough to cover partially filled 

slots. In this case, the algorithm fails to find an adequately abstract representation 

for the agent, and thus a partially filled slot is not posited. The di�culty of  

finding a su�ciently general partially filled slot on the edges of the construction 

is that a large number of  false positives are possible (e.g., the danger of  adding 

unnecessary generalized slots to many constructions).
 
 (19)  a.  [Noun] + [Past-Participle] + “by”

 b.  software developed by

 c.  information given by

 d.  article written by

 e.  training provided by 
An important attribute of  construction grammars is that fully schematic 

and fully item-specific representations can co-exist. In other words, an abstract 

argument structure construction (e.g., the ditransitive) co-exists with separately 

represented instances of  that construction (e.g., the idioms give me a hand and 

give me a break). One advantage of  this model, then, is that such overlapping 

constructions of  varying abstractness can be captured, so long as each instance 
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itself  qualifies as a construction. The point, then, is that this paradigm of  

grammar induction is not limited a priori to a single level of  representation or 

a single level of  abstraction.

A final question here is whether these are posited to be psycholinguistically 

valid constructions. In other words, are the elements of  this grammar 

supposed to be those present in the mind of  a speaker of  this language? The 

goal here is somewhat more indirect: to automatically produce the inventory 

of  constructions necessary to describe the corpus. The question is whether 

the algorithm can learn adequate grammatical representations from the 

corpus, not that it necessarily learns exactly the same set as a human in exactly 

the same manner. This indirectness is a result of  the fact that the corpus 

under study contains language produced by a large number of  individuals. 

If  the algorithm were run entirely on a corpus of  language produced by a 

single individual we could consider more direct psycholinguistic tests of  the 

produced grammar. However, a language such as ‘English’ or even ‘British 

English’ is an abstraction over a large number of  individuals rather than a 

representation of  the psycholinguistic reality of  language in any single 

individual. Thus, in representing an abstraction in this manner the present 

algorithm is subject to all the same criticisms as that abstraction in not being 

specific to the psycholinguistic state of  individuals.

3.2.  distr ibut ions  of  feature  values

The model uses fourteen measures of  association for multi-unit potential 

constructions. Given that these measures are novel implementations for 

dealing with an open problem, it is important to consider the relative 

agreement and distributions of  these measures. For the evaluation below, the 

measures are examined across the first 20 million sentences in the corpus, 

and phrase types (e.g., NP) are not considered, for the sake of  simplicity. The 

descriptive statistics for the measures are calculated using only the subset of  

sequences which are more than two units in length (a total of  74,522). This is 

because the multi-unit measures have a zero value for sequences of  only two 

units. Further, no threshold for pairwise association strength is used, unlike 

for the measures used in the model itself. This is because the threshold 

e�ectively gives multi-unit sequences a zero for the summed ΔP score if  any 

pairwise association falls below a set parameter, and this changes the 

distributions by enlarging the number of  zero values. Thus, this evaluation is 

about comparing the measures on multi-unit sequences without a threshold 

in order to get a more accurate view of  the measures themselves, rather than 

evaluating the measures as used for reducing candidates in the overall model.

First, the agreement between each of  the measures is shown in Figure 2 

and Figure 3, calculated using Pearson’s R. The question is whether the 
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measures ultimately represent the same relationships and thus are redundant, 

or whether they reveal unique aspects of  association. These figures show the 

scatterplots of  each pair on the right-hand side, a histogram of  each measure’s 

density distribution in the middle, and the correlation coe�cient on the left-

hand side. Each of  the correlations is significant, not surprisingly given the 

large number of  instances.

In both directions the Summed and Mean measures are closely related; the 

scatterplot shows three distinct degrees of  correlation, with the correlation 

diminishing as the sequences in question grow longer (i.e., the sum and the 

mean are very similar for shorter sequences, which is expected). Thus, 

this relationship decreases as candidates grow longer. The two methods for 

comparing subsequences within a candidate, the Divided and Reduced 

measures, show little correlation between their respective Beginning and End 

Fig. 2. Left-to-Right Correlations.
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variants in both directions (the highest such correlation being 0.230 for the 

right-to-left Divided measures). The relationship between the Divided and 

Reduced measures is quite high at the beginning of  the sequences (i.e., at the 

Beginning going left-to-right and at the End going right-to-left), exceeding 

0.800 in both cases. However, at the end of  the sequences the correlation 

is much lower (never higher than 0.370). Thus, these variations on the 

subsequence measure do provide unique information in many but not all 

situations. For all of  these measures, it seems to be the case that they grow 

less correlated as the sequences in question grow longer. An interesting 

further question, outside the scope of  the present paper, is to what extent 

sequence length influences the distribution and correlation of  association 

measures, and what alterations can be made to reduce this influence for shorter 

sequences.

Fig. 3. Right-to-Left Correlations.
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The next question is whether the measures make adequate distinctions 

between potential multi-unit constructions. We approach this question by 

looking at measures of  the distribution of  each of  these features, in Table 9, 

calculated as above across only multi-unit potential candidates in the first 

20 million sentences in the corpus. The measures show what we would expect: 

wide ranges of values with means close to zero. This is because most candidates 

do not show association. Those which do show internal association are outliers, 

in a sense, and this is what allows them to be identified as actual constructions. 

The two measures which do not show means close to zero are the summed 

values, in both directions. This is a result of  the fact that only multi-unit 

candidates are considered here, so that all instances have at least three units. 

This, of course, influences the mean value but is necessary to allow this measure 

to be compared directly with the others.

3.3.  degree  of  c overage

The ideal construction grammar has at least one construction to account for 

every linguistic expression in a corpus. In other words, because all linguistic 

expressions are hypothesized to be formed from an underlying grammatical 

construction, it should be the case that all attested linguistic expressions can 

be described by at least one construction in the predicted grammar. Thus, 

the degree of  coverage of  a grammar is an important criteria for evaluating 

a learned construction grammar and, following from this, for evaluating the 

learning algorithm itself. The measure of  coverage is calculated as in (20), 

in which LE stands for Linguistic Expressions (operationalized in this 

case as sentences), with c standing for the subset covered by a hypothesized 

construction and n for the subset not covered in this way. Thus, this measure 

is simply the percentage of  the test corpus represented by the learned 

grammar, using sentences as the unit of  analysis
 
 (20)  LEc / LEc +LEn 

This evaluation is conducted by applying the grammar learned from the full 

corpus to an unseen portion of  the ukWac corpus in order to determine how 

much of  the unseen corpus is described by the learned grammar. The test set 

consists of  1.5 million sentences, evaluated in subsets of  100k sentences each, 

allowing us to evaluate fluctuations in the adequacy of  the grammar across 

di�erent test sets. There is a balance to be reached here between predicting 

a small set of  generalized and highly associated constructions, on the one 

hand, and predicting a grammar that achieves full coverage on the test sets, 

on the other. Given this balance, we compare three learned grammars: the 

‘full pruning grammar’ (2,309 constructions) contains only those constructions 

which pass all the pruning stages discussed above; the ‘no pairwise grammar’ 
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(26,223 constructions) applies the directional and divided ΔP and horizontal 

pruning stages, but does not eliminate candidates using the pairwise threshold. 

Finally, the ‘no pruning grammar’ (101,503 constructions) does not apply 

any of  the pruning rules (except, of  course, the construction frequency 

threshold). This allows us to see how expanding the grammar increases the 

overall coverage on these test sets.

The results are shown in Figure 4, with percentage of  coverage across the 

subsets of  the test corpus shown for each grammar. First, the coverage is 

consistent across both grammars and test sets. In other words, each grammar 

has very similar coverage across di�erent test sets, showing consistency in 

the adequacy of  the grammar on unseen linguistic expressions. Further, the 

di�erence between the models is maintained across test sets. For example, both 

the third and twelfth sets show a dip in coverage that is observed with all 

models. This shows that the coverage tests are stable measures of  the quality of  

a grammar’s coverage (regardless of  the size or generalizability of  the grammar).

The coverage experiment shows that larger grammars (e.g., without pruning) 

have more coverage. However, this increased coverage is not proportional to 

the size of  the grammar. Thus, the fully reduced grammar is only 2% of  the 

size of  the full grammar and yet maintains coverage between 5% and 10% 

lower than the much larger grammar. Thus, while some important elements 

of  the grammar have been discarded, the association measure model allows 

a much smaller grammar to find most of  the optimum constructions. This is 

significant because the problem is to maintain high coverage on unseen test 

sets without simply positing a very large grammar: the small pruned grammar 

contains few false positives, even if  it misses some true positives.

The selection or learning of  the grammatical constructions from the total 

hypothesis space involves a combination of  association measures (to model 

table  9. Distribution measures for each feature

Feature Mean Std. Dev. Range

Frequency 37,527 69,460 12,600–3,681,400
Summed (LR) 0.317 0.188 0.000–1.201
Summed (RL) 0.334 0.204 –0.004–1.544
Mean (LR) 0.105 0.051 0.000–0.524
Mean (RL) 0.112 0.057 –0.002–0.635
Beginning Reduced (LR) 0.105 0.094 –0.016–0.792
Beginning Reduced (RL) 0.110 0.103 –0.018–0.895
End Reduced (LR) 0.106 0.092 –0.016–0.824
End Reduced (RL) 0.111 0.103 –0.018–0.895
Directional Scalar −0.012 0.152 –1.025–0.946
Beginning Divided (LR) 0.163 0.155 –0.016–0.957
Beginning Divided (RL) 0.006 0.021 –0.005–0.857
End Divided (LR) 0.005 0.016 –0.003–0.601
End Divided (RL) 0.178 0.177 –0.019–0.981
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which sequences are more cognitively entrenched than others) and pruning 

rules (to use those association measures to reduce the number of  predicted 

constructions). We can thus use the coverage experiment to show which 

association measures were most useful for producing a small grammar 

with high coverage. With only frequency measures, the grammar consists 

of  101,503 sequences which could potentially be a grammatical representation; 

this is reduced to 26,223 sequences with all pruning except the pairwise 

threshold (e.g., the reduced and directional measures). This is further 

reduced to 2,309 with the pairwise threshold. While coverage is reduced 

with each reduction in the grammar, these reductions are minimal. A further 

examination of  the amount of  influence of  each measure individually (e.g., 

comparing performance with di�erent subsets of  association measures) is 

beyond the scope of  this paper, in large part because such tests would be 

much more meaningful in a multi-language context: Which measures 

perform best for which language? The question here is whether these 

measures can be used to produce a meaningful grammatical representation 

in the first place.

While the model can always be improved, these coverage results show 

that observed frequencies can be used to model the productive elements of  a 

grammar and distinguish them from possible but not productive elements. 

In other words, the frequency threshold has reduced the enormous number 

of  potential constructions to a smaller but still large number of  candidates, 

and the association strength measures have reduced this to a small grammar 

while maintaining relatively high coverage across sets of  unseen linguistic 

expressions.

Fig. 4. Degree of  coverage across test sets of  100k sentences.
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3.4.  stab il ity  acr oss  c orpus  s i zes

Given the grammar induction algorithm, how much variation is there in the 

learned or predicted grammars given the size of the corpus used for evaluation? 

Another way of  looking at this question is how large a corpus needs to be 

before the algorithm converges onto a stable output grammar. This question 

is approached by running the algorithm on increasingly large subsets of  the 

corpus and determining, for each subset, how much its grammar agrees with 

the final grammar. All non-frequency thresholds are held constant across 

corpus sizes, while the frequency thresholds are scaled relative to the size 

of  the corpus. The results are shown in Table 10, along with the number 

of  constructions in the grammar for each subset (note that the number of  

constructions in the full grammar here di�ers from the other evaluations as a 

result of  scaling the frequency thresholds; this scaling was performed in 

order to reduce the influence of  absolute frequency on the results).

Agreement is calculated using precision: given the grammar learned from 

a subset of  the corpus, how many of  the identified constructions are present 

in the full, gold-standard grammar? This measure is quantified as in (21), 

where FP stands for false positives (those elements in the subset grammar not 

present in the full grammar) and TP stands for true positives (those elements 

in both grammars).
 
 (21)  Precision = TPsubset / (TPsubset + FPsubset) 

The results in Table 10 show that stability increases as more data is given to 

the algorithm. For example, the first sizable increase in agreement is between 

10 and 20 million sentences. It is interesting that, even though the subsets 

have scaled frequency thresholds, the number of  candidates decreases as the 

amount of  data increases. This is because the model is more clearly able to 

separate the grammatical representations from noise as the dataset becomes 

larger. Given the cap on this experiment, the question of  how much data is 

required for convergence is left open. A further question is whether frequency 

or association measures have more impact on the amount of  data required 

for convergence. That is a question for further work; the point here is that 

agreement increases as more data is available, but that convergence is not yet 

reached.

3.5.  stab il ity  acr oss  learners

An argument for innate structure, advanced by Lidz and Williams (2009), 

is that learners produce very similar grammars for a language even though 

subject to di�erent observed input. This results, they argue, from innate 

constraints. Here we turn this into an empirical question: To what degree do 

instances of  the same grammar induction algorithm (i.e., language learners) 

https://doi.org/10.1017/langcog.2016.7 Published online by Cambridge University Press

https://doi.org/10.1017/langcog.2016.7


dunn

286

agree in their learned grammars when provided mutually exclusive subsets 

of  the same size? In other words, how much agreement is there when the 

algorithm is run on di�erent datasets? If  the output grammars largely agree, 

this is evidence that such innate constraints are not, in fact, required to 

explain this stability in learned grammars. Figure 5 shows the agreement 

between the grammars produced on four distinct subsets of  the corpus, each 

containing 10 million sentences. Agreement is calculated as the number of  

shared constructions given the total number of  constructions, comparing all 

subsets to subset 1 for the sake of  visualization.

The agreement ranges from the low- to mid-70s. This is quite strong, 

especially considering the measures of  stability by size discussed above 

(i.e., it would likely be higher if  the size of  each subset was increased to 20 or 

40 million sentences). This means that the algorithm, given entirely di�erent 

datasets, produced grammars sharing over 70% of  their constructions. While 

by no means perfect, this shows that the grammar induction algorithm is not 

burdened with a poverty-of-the-stimulus that requires innate structure to 

produce consistent output across learners. In other words, the hypothesis of  

innate structure is not required to explain relatively consistent grammars 

from di�erent language learners.

3.6.  further  work

As always in projects of  this sort, further work is necessary to explore issues 

raised in the course of  these experiments. First, the dependencies should 

be reduced as much as possible to maintain a fully unsupervised pipeline. 

This has, in fact, been accomplished with additional algorithms for forming 

distributional semantic dictionaries and for learning phrase structure rules 

from a part-of-speech parsed corpus. Such work only strengthens the evidence 

already presented in this paper. A further important task is to evaluate these 

and other multi-unit association measures and their influence on the final 

output construction grammar. Such an evaluation ultimately requires a 

multi-language and multi-genre experimental design, which renders it outside 

the scope of  the present paper.

table  10. Grammar agreement across corpus sizes

Corpus Size (Sents) Total Constructions Precision

1 million 2,532 0.2890
5 million 2,167 0.2644
10 million 1,439 0.2966
20 million 1,201 0.3780
40 million 911 n/a
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4.  Conclusions From evaluations

Grammar induction algorithms, much like language learners, observe very 

large numbers of  linguistic expressions and must generalize from these 

observations to a relatively small grammar that has the ability to produce 

all such observations. The problem is that there are a very large number 

of  possible grammatical representations for these observations, unless the 

space of  possible grammatical representations is reduced by positing innate 

structures/rules/constraints that eliminate many candidates a priori. This 

paper has shown that the construction grammar induction algorithm presented 

here can learn a relatively small grammar while (i) maintaining relatively high 

coverage on unseen linguistic expressions and (ii) maintaining relatively high 

stability across learners.

The results are by no means perfect and continued technical and theoretical 

improvements are possible and, in fact, under way. However, these results are 

su�cient to provide empirical evidence against the poverty-of-the-stimulus 

line of  reasoning for Universal Grammar. This source of  evidence, further, 

is unique in providing large-scale corpus-based evidence for a question which 

in the past has been approached with small-scale intuition-based evidence. 

In other words, past work has simply posited that such grammar learning is not 

possible without constraining innate structures/rules/constraints (e.g., Lidz & 

Williams, 2009). This paper, on the other hand, goes beyond simple positing 

and provides empirical evidence that such learning is, in principle, possible.

The question here is whether linguistic structure (specifically, a construction 

grammar) can be learned from observed language without existing structure 

or knowledge about the language. In other words, is the grammar wholly 

Fig. 5. Stability across simulated learners.
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learned or is the grammar in part pre-existing? While this algorithm has 

dependencies (e.g., part-of-speech tagging), this is a practical issue in the 

sense that data-driven part-of-speech tagging does not need to be reinvented 

when its current state-of-the-art performs quite well. What this means is that 

grammatical representations can be learned from observed frequencies. 

While there are always technical improvements to be made, the current 

algorithm shows that the learning of  grammatical structures in this way is 

possible and in this sense provides converging evidence with many other 

empirical sources that have been collected within the Cognitive Linguistics 

paradigm.
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APPENDIX

Further  examples

Construction: [Singular-Noun] + <so c ial  act / state> + [Verb] + [Past-Participle]

Examples: limit people are granted
approach should be used
option should be included
team should be asked
assessment should be kept
program must be recommended
notice must be given
bar should be pressed
NP should be accepted
information should be published

Construction: [Singular-Noun] + [Preposition] + [Number] + <t ime>

Examples: delivery within 2 weeks
train within one hour
format within one year
module over six months
increase over ten years
target within three years
mark within six months
change over five years
notice within 7 days

Construction: “be” + [Past-Participle] + “out”

Examples: was grown out
was sent out
was carried out
was made out
was taken out
was worked out
was given out
was forced out
was set out
was delivered out
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Construction: <movement> + NP + <t ime>

Examples: here NP time
put NP time
train NP day
set NP time
come NP year
go NP night
course NP day
through NP now
stay NP year
follow NP day

Construction: [Comparative-Adj] + [Singular-Noun]

Examples: further information
more power
great power
more variety
great e�ort
new knowledge
good standard
large area
high quality
long life

Construction: [Singular-Noun] + <money>

Examples: purchase price
NP price
building costs
housing prices
housing market
energy bill
government fund
development company
family business
capital investment
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