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Abstract: Computational linguistics explores how human language is interpreted automatically and
then processed. Research in this area takes the logical and mathematical features of natural language
and advances methods and statistical procedures for automated language processing. Slot filling and
intent detection are significant modules in task-based dialogue systems. Intent detection is a critical
task in any natural language understanding (NLU) system and constitutes the base of a task-based
dialogue system. In order to build high-quality, real-time conversational solutions for edge gadgets,
there is a demand for deploying intent-detection methods on devices. This mandates an accurate,
lightweight, and fast method that effectively operates in a resource-limited environment. Earlier
works have explored the usage of several machine-learning (ML) techniques for detecting intent in
user queries. In this article, we propose Computational Linguistics with Deep-Learning-Based Intent
Detection and Classification (CL-DLBIDC) for natural language understanding. The presented CL-
DLBIDC technique receives word embedding as input and learned meaningful features to determine
the probable intention of the user query. In addition, the presented CL-DLBIDC technique uses the
GloVe approach. In addition, the CL-DLBIDC technique makes use of the deep learning modified
neural network (DLMNN) model for intent detection and classification. For the hyperparameter
tuning process, the mayfly optimization (MFO) algorithm was used in this study. The experimental
analysis of the CL-DLBIDC method took place under a set of simulations, and the results were
scrutinized for distinct aspects. The simulation outcomes demonstrate the significant performance of
the CL-DLBIDC algorithm over other DL models.

Keywords: computational linguistics; deep learning; natural language understanding; intent detection;
mayfly optimization

1. Introduction

With the development of the task-based dialogue mechanism, natural language un-
derstanding (NLU), as a critical element of the task-based dialogue system, has gained
more interest among researchers [1]. An author could capture context data for identifying
the intent of a user by utilizing intellectual, interactive gadgets which talk to humans, in
various cases, and then derive the semantic constituents from the text that the end-user
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inputs into semantic slots which have been previously defined [2]. Two modules, such as
slot filling and intent detection, could transform the text into a semantic representation
that offers the task data to support the dialogue system and aids users in achieving their
goals [3]. “Intent detection” refers to the task of categorizing natural language utterances
into semantic intent classes that have previously been defined [4].

Finding message intent in natural language utterances becomes a critical task for
conversational mechanisms [5]. In applications ranging from natural-language response
production to offering intellectual proposals, understanding the primary intent of a context
interaction becomes critical. Conventionally, research on intent detection has focused
on this task with the supposition that inference and training are executed using cloud
infrastructure or well-equipped servers [6,7]. This results in the inappropriateness of
prevailing machine-learning (ML) techniques for real-time dialogue mechanisms in low-
resource edge devices because of its higher latency and dependence on large, pre-trained
methods. Recently, there has been greater commercial and academic interest in guiding
artificial intelligence (AI) solutions that could work in a straightforward manner on a device
using local data [8,9]. On-device AI methods are capable of supporting intent detection
in real-time at a low latency and aid in guarding the privacy of delicate user data, such as
smartphone messages.

Slot filling and intent detection have always been implemented as the pipeline mod-
ules in research on conventional, task-based dialogue systems [10]. However, pipeline
techniques propagate mistakes effortlessly. In contrast with pipeline techniques, joint
methods have the benefit of using the dependency between slots and intent. Such works
have been primarily classified into two classes: the use of semantic analysis and a joint
model that incorporates both classification and feature design into the learning process [11].
However, few studies have used additional information, such as the incidence relation
and the shared resources between slot-filling and intent-detection modules. However, the
above-mentioned studies contain a typical issue: that is, the high-quality and standardized
public datasets are highly inadequate because labeling and collecting datasets require more
effort and time [12]. Thus, researchers have tried to include an external knowledge base
in the prevailing datasets so as to solve the issue of data scarcity. A knowledge base can
be engineered into a knowledge cluster, and thus it becomes structured, easy to use and
operate, and provides comprehensive and organized knowledge [13]. Moreover, it is a
set of interrelated knowledge pieces that are managed, stored, used, and organized in
computer memory by some knowledge-representation mode to solve issues in certain
domains. Recent research studies have shown that the impact of NLU is enhanced by the
presentation of a knowledge base.

This article proposes Computational Linguistics with Deep-Learning-Based Intent
Detection and Classification (CL-DLBIDC) for NLU. The CL-DLBIDC technique receives
word-embedding as input and uses learned meaningful features to determine the probable
intention of the user query. In addition, the CL-DLBIDC technique uses the GloVe approach.
In addition, the CL-DLBIDC technique makes use of the deep learning modified neural
network (DLMNN) model for intent detection and classification. For the hyperparameter
tuning process, the mayfly optimization (MFO) algorithm has been used in this study. The
experimental analysis of the CL-DLBIDC technique took place under a set of simulations,
and distinct aspects of the results have been examined.

2. Related Works

Yan et al. [14] have presented a semantic-enhanced Gaussian mixture method (SEG)
for unknown intent identification. In particular, the authors devised utterance embeddings
that have a Gaussian mixture distribution, and they infused dynamic-class semantic data
into Gaussian means that allow for the learning of more class-concentrated embeddings,
which can be helpful in facilitating downstream outlier recognition. Coupled with a density-
related, outlier-identification method, SEG has attained competitive outcomes on three real,
task-based, dialogue datasets in two languages for unknown intent recognition. Gangad-
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haraiah and Narayanaswamy [15] have examined an attention-related neural network (NN)
method which executes multi-label categorization to identify many intents and generates
labels for intents, as well as slot-labels, at the token-level. The authors displayed the existing
performance for slot-label identification and intent detection through a comparison with
strong, newly formulated methods.

Dopierre et al. [16] have presented ProtAugment, a meta-learning technique for short
text classification (an intent-detection task). ProtAugment is a new extension of the Proto-
typical Network, which confines overfitting to the bias presented by a few-shots classifier
objective at every episode. It depends on various paraphrasing. It is a conditional language
method that has become the initial, fine-tuned language for paraphrasing, and diversity
was later presented at the decoding phase of every meta-learning episode. Nigam et al. [17]
have proposed a method for forecasting slots and the intent of queries for chatbots that will
answer career-based queries. The authors considered a multistage technique in which both
the process (slot-tagging and intent-classification) imitate one another’s decision-making
at various levels. The method segregates the issue into stages, figuring out single issues,
and transferring the related outcomes of the present stage to the following stage, thus
minimizing the search space for consequent levels, and finally, it performs categorizations
and tagging that are more viable after every stage.

In [18], the authors began from the nature of out-of-domain (OOD) intent classifications
and predicted its optimizing objective. The authors even presented an effective technique,
called k-nearest-neighbor (KNN) contrastive learning. This technique uses KNN for learn-
ing discriminatory semantic features that are highly conducive to OOD identification. [19]
enhanced intent-detecting performance by using datasets that were gathered in the same
field, but which have various intent groups. In the baseline mechanism, the authors used
the existing, pre-trained transforming techniques with an intent-identification-classifier
layer. This technique contains two fine-tuned stages. In the initial stage, the variables of
the classifier and transformer layers were adapted utilizing an in-domain dataset to the
targeted set. Then, the author retained the transformer parameters, which were updated,
but replaced the classifier with a newer one designed for the targeted task. In the second
stage, the network was finely tuned endwise, utilizing the targeted set.

Shen et al. [20] modeled an innovative domain-regularized module (DRM) for reducing
the overconfident phenomenon of a vanilla classifier, attaining superior generalization in
both cases. In addition, DRM was utilized as a drop-in replacement for the final layer in
any NN-related intent classifier, offering a low-cost method for an important enhancement.
Qin et al. [21] introduced an Adaptive Graph-Interactive Framework (AGIF) for joint,
multiple-intent recognition and slot-filling, where the authors introduced an intent–slot
graph communication layer for modeling strong relations among the intents and slots.
Such communication layers can be implemented for every token adaptively, which has the
benefit of mechanically deriving the related intent data, forming a finely grained intent
data compilation for token-level slot estimation.

3. The Proposed Model

This study presents a novel CL-DLBIDC approach to detecting and classifying intents
for natural language understanding. The presented CL-DLBIDC technique receives word
embedding as input and uses learned meaningful features to determine the probable
intention of the user query. In addition, the CL-DLBIDC technique uses the GloVe approach.
In addition, the CL-DLBIDC technique makes use of the DLMNN model for intent detection
and classification. For the hyperparameter tuning process, the MFO algorithm was used in
this study. Figure 1 demonstrates the overall block diagram of the CL-DLBIDC method.
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3.1. Word Embedding

Here, the CL-DLBIDC technique uses the GloVe approach. The GloVe (global vec-
tor) model exploits global co-occurrence matrixes to generate representations of word
vectors [22]. This study focuses on the co-occurrence of words in the corpora. Hence,
words which have the same context would be close to one another. Because antonymous
words share similar contexts and they close to one another, the output can be semantically
wrong. This kind of semantic incorrectness of the vector space must be solved in order to
achieve good outcomes. The first embedding is enriched by a somewhat-adapted form
of an enrichment method. The resultant vector space will be semantically correct when
compared to the first one. Consider that v = {v1, v2, vn} represents the group of word
vectors, where vi indicates the vector for jth words in a vocabulary. Assume A, S, R, and H
denote the collection of indices for pairs of antonymous, synonymous, related, and hypony-
mous or hypernymous words, correspondingly. For instance, if (i, j) is a component of S,
later ith and jth words in the vocabulary are synonyms. The first vector space y is adapted
through objective function and the set (constraint) to attain a novel vector space V′, where
V′ =

{
v′1, v′2, v′n}. The formula of objective functions is given in the following section.
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3.1.1. Enrichment Using Synonyms

Equation (1) brings synonymous words close to one another in the vector space by
improving the cosine similarities among them.

SE
(
V′
)
= ∑

(i,j)εS
τ
(
δ− cos

(
vi, vj

))
(1)

S represents the collection of pairs of synonyms in a vocabulary, and it involves syn-
onyms from WordNet and equivalence relations. δ is fixed to one and τ(x) = max (O, x).

3.1.2. Enrichment Using Antonyms

Equation (2) moves antonymous words farther from one another by decreasing the
cosine similarities among them to 0 or less.

AE
(
V′
)
= ∑

(i,j)εA
τ
(
cos
(
vi, vj

))
(2)

A represents the collection of pairs of antonyms that involve an exclusion relation
from PPDB and antonyms from WordNet.

3.1.3. Enriching with Related Words

Related words have a similar sense; however, they are not synonyms in a lexicon (e.g.,
“ride” vs. “commute”). Bringing related words close to one another in a vector space would
be useful because they have similar senses. The objective function shown in Equation (3)
raises cosine similarities among related words to 0 or greater than 0.

RE
(
V′
)
= ∑

(i,j)εR
τ
(
δ− cos

(
vi, vj

))
(3)

R denotes the group of related words from The Macmillan Dictionary, and δ was fixed
to 0. The value of δ guarantees that similarities among related words are 0 or greater than 0.
This ensures that related words are not as close to one another as synonyms are.

3.1.4. Enriching with Hypernyms and Hyponyms

Hypernymous terms have wider meanings, whereas hyponymous terms have par-
ticular meanings. A hypernym–hyponym is a pair of common terms and its particular
categories (e.g., “book”–“recipe book”). The cosine similarities between these words must
be 0 or greater than 0. The objective function provided in Equation (4) is the same as that is
Equation (3), and it is utilized for achieving this.

HE
(
V′
)
= ∑

(i,j)εH
τ
(
δ− cos

(
vi, vj

))
(4)

H is the group of hypernym–hyponym pairs in vocabulary V, with a value of δ as 1
and a path length of 1 in WordNet.

3.1.5. Regularization

When a word vector is adapted by employing the above for constraint, it becomes
distinct from the prior, neighboring vector. It alters the semantics of embedding, and
regularization must be performed to retain the meaning. The converted vector space
must be bent to the original vector space to conserve the meaning. The objective function
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provided in Equation (5) keeps cosine similarities among its neighbors and an initial word
vector greater than or equivalent to the cosine similarities among them.

VS P
(
V, V′

)
=

M

∑
(i,j)εA

∑
jεN(i)

τ
(

cos
(

v′i, v′j
)
− cos

(
vi, vj

))
(5)

M denotes the word count in vocabulary, and N(i) denotes the group of neighbors
of ith in the first embedding space. N(i) involves the word in V whose cosine similarities
among ith words is higher than 0.8.

The last objective function is a linear integration of the abovementioned terms, as
shown in Equation (6).

E
(
V, V′

)
= SE

(
V′
)
+ AE

(
V′
)
+ RE

(
V′
)
+ HE

(
V′
)
+ VSP

(
V, V′

)
(6)

The objective function is minimalized by the stochastic gradient descent (SGD) ap-
proach for transformed vector V′ and initial vector V. SGD ran for 20 epochs with a learning
rate of 0.1.

3.2. Intent Detection Using the DLMNN Model

At this stage, the CL-DLBIDC technique makes use of the DLMNN model for intent
detection and classification. In the DLMNN model, all of the inputs are offered to separate
nodes that are common from the input region of classification [23]. The weight signifies a
randomly allocated value and can be connected with all of the inputs. The following is the
Hidden Layer (HL). The nodes in this HL are termed “hidden nodes”, and they apply the
function of summing the product of input values and the weighted vector of every input
node which is connected to it.

In DLMNN, the weighted value is optimized by employing the MFO algorithm and
DLMNN. An arbitrary weighted value offers a further backpropagation (BP) procedure for
achieving the outcome in an optimized manner. The activation function is then executed,
and the resultant layer is carried to following layer. This weight is an utmost control on the
classification result. The algorithmic steps of DLMNN classification are as follow:

Step 1: Allocate score value of selective features and its corresponding weight as:

Ei = {E1, E2, E3 . . . En}, (7)

Wi = {W1, W2, W3 . . . Wn}, (8)

Step 2: Multiply the input with the weighted vectors, which are arbitrarily chosen,
and then, it can be entirely summed as:

R =
n

∑
i=1

EiWi, (9)

where R refers to the summed value, Ei denotes the input entropy value, and Wi stands for
the weight value.

Step 3: Estimate the activation function (AF), employing

AFi = f

(
n

∑
i=1

EiWi

)
, (10)

Step 4: Measure the resultant HL as:

Yi = Ai + ∑ GiWi, (11)
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where Ai defines the bias value, Wi demonstrates the weight between the input and HLs,
and Gi refers to the values that are changed by application of AF.

Step 5: Re-perform the earlier three steps on all of the layers of the DLMNN. Last,
estimate the resultant unit by adding up every input signal weight to attain the resultant
layer neuron value,

Oui = Ai + ∑ PiWi, (12)

where Pi signifies the value of the layer which leads to the output 1, Wj represents the
weight of HL, and Oui demonstrates the output unit.

Step 6: Contrast the network outcome with the target values. The variance among these
two values produces the error signal. This value can be demonstrated mathematically as:

Er = Tai −Oui, (13)

where, Er represents the error signal, Tai indicates the aimed target output, and Oui stands
for the classification current output.

Step 7: At this point, the resultant unit is weighted against the target values. Accord-
ingly, the relative error is defined. According to this error, a value δi has been calculated,
and it can be utilized for allocating the error at the resultant layer back to every other unit
on network:

δi = Er[ f (Oui)], (14)

Step 8: The weighted correction is measured by employing the BP approach. This
relation is:

wci = βδi(Ei), (15)

where wci defines the weighted correction, β signifies the momentum term, Ei implies the
input vector, and δi stands for the error that is distributed from the network.

3.3. Parameter Tuning Using the MFO Algorithm

For the hyperparameter tuning process, the MFO algorithm was used in this study.
The major idea of this method is based on the flight and mating behaviors of the mayfly
(MF) [24]. It integrates the benefits of the firefly algorithm (FA), particle swarm optimization
(PSO), and the genetic algorithm (GA). Initially, the MFO algorithm generates an MF popu-
lation encompassing males and females. The existing velocity and location of i-th MFs are
two n-dimensional vectors; they are correspondingly represented as vi = (vi1, vi2 . . . , vin)
and xi = (xi1, xi2 . . . , xin). Every MF adapts its location based on its individual best
(pbest) location and the optimal (gbest) location originated by the entire MF swarm.

Male MFs cluster together, which recommends that the position is upgraded on the
basis of social and personal experience. xt

i denotes the current location of i-th male MFs at t
iteration. Assume that xt

i denotes the existing location of i-th MFs at t iteration; the location
is upgraded by adding velocity vt

i , and it is shown below:

xt+1
i = xt

i + vt
i . (16)

Assume that male MFs often implement their mating dance not distant from the water,
and it is updated in the following equation:

vt+1
ij = gvt

ij + a1e−βr2
p
(

pbestij − xt
ij

)
+ a2e−βr2

g
(

gbestj − xt
ij

)
, (17)

In Equation (17), β refers to the visibility coefficient, a1 and a2, determined by the
positive constant that represents the attraction. pbestij indicates the optimal location
attained using the i-th male MFs in j dimension. rp and rg indicate the Euclidean distance
between χj and pbestj, and between χj and gbest, respectively. The gravity coefficient is
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denoted as g, which is a fixed number among [0, 1], or it is steadily lowered over the
iteration, as follows:

g = g max −
g max − g min

iter max
× iter, (18)

In Equation (18), g max and g min correspondingly embody the minimum and maxi-
mum weights. The current and the overall number of iterations are represented as iter and
ter max /. The personal optimal location pbesti at iteration t + 1 is defined as follows:

pbesti =

{
xt+1

i , i f f
(

xt+1
i

)
< f (pbesti)

same as be f ore, otherwise.
(19)

The finest male MF continues implementing up and down movements at distinct
velocities, and this equation is shown below:

vt+1
ij = vt

ij + d× r, (20)

In Equation (20), the mating dance coefficient can be represented as d, and r denotes
an arbitrary number within [−1, 1]. Female MFs do not cluster together, but they move to
male MFs. yt

i denotes the current location of the i-th female MF at t iteration. The change of
i-th female MF in location is evaluated by Equation (21):

yt+1
i = yt

i + vt
i . (21)

In the MFO algorithm, female and male MFs with similar individual fitness rankings
attract one another, and the female MF’s location changes in terms of the position of the
male MF with a similar ranking, as follows:

vt+1
ij =

 gvt
ij + a2e−βr2

m f
(

xt
ij − yt

ij

)
, i f f (yi) > f (Xi)

gvt
ij + f l × r, i f f (yi) ≤ f (xi) ,

(22)

where vt
ij and yt

ij denote the i-th female MF’s velocity and location in j dimension at
t iteration. a2 and β indicate the attraction constant and visibility coefficient, correspond-
ingly. rm f refers to the Euclidean distance between the i-th female MF and i-th male MF,
f l denotes a random walking coefficient that recommends that a female is not attracted
to a male, and r implies an arbitrary number within [−1, 1]. Figure 2 illustrates the steps
involved in the MFO technique.

The act of mating can be denoted as the crossover operator that offers the global
search ability for the MFO algorithm. In the MFO algorithm, female and male MFs with
similar individual fitness rankings mate with one another to generate offspring. The mating
process of every pair of female and male MFs generates two offspring, and the crossover
operator is given below: {

γ1 = L×male + (1− L)× f emale
γ2 = L× f emale + (1− L)×male,

(23)

In Equation (23), L implies an arbitrary number within [0, 1]. Furthermore, female and
male denote the parents. First, the offspring velocity is fixed as 0.

The mutation operator gives partial local search ability to MFO algorithm. The selected
offspring is upgraded by adding an arbitrary number to the parameter over this method;
hence, the offspring is changed to

γ
′
n = γn + σNn(0, 1), (24)

In Equation (24), the standard deviation and uniform distribution are signified as σ
and Nn, correspondingly. Even though this operator provides the MFO algorithm with
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robust local search ability, d and f l should be slowly decreased. Both values are upgraded
over the t iterations as follows:

dt = d0δt (25)

f lt = f l0δt, (26)

Here, δ is a fixed value among [0, 1].
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4. Experimental Evaluation

The intention detection results of the CL-DLBIDC model were tested using the SNIPS
dataset [25]. In this work, we considered 3500 samples with 7 class labels, as depicted in
Table 1.

Table 1. Dataset details.

Label Class No. of Samples

1 CreativeWork 500
2 PlayMusic 500
3 RateBook 500
4 ScreeningEvent 500
5 GetWeather 500
6 AddToPlaylist 500
7 BookRestaurant 500

Total No. of Samples 3500
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Figure 3 depicts the classification outcomes of the CL-DLBIDC model in terms of
the confusion matrix under distinct sizes of training (TR) data and testing (TS) data. The
CL-DLBIDC model classified all of the distinct class labels of the intents under all sizes of
TR and TS data.
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Table 2 exhibits a brief set of data regarding the intent-detection performance of the
CL-DLBIDC model on 80% of the TR data and 20% of the TS data. These results depict
that the CL-DLBIDC model has attained enhanced values under all classes. For instance,
with Class 1, the CL-DLBIDC method has granted accuy, recal , specy, Fscore, the Matthews
Correlation Coefficient (MCC), and Gmeasure of 99.04%, 97.48%, 99.29%, 96.63%, 96.07%, and
96.63%, respectively.

Table 3 displays a detailed set of data on the intent-detection performance of the CL-
DLBIDC method on 70% of the TR data and 30% of the TS data. The experimental values
indicate that the proposed model has shown enhanced performance on the classification of
distinct classes on 70:30% of the TR/TS data.
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Table 2. Result analysis of the CL-DLBIDC approach with distinct measures under 80:20 of TR/TS
data.

Labels Accuracy Recall Specificity F-Score MCC G-Measure

Training Set (80%)

1 99.04 97.48 99.29 96.63 96.07 96.63
2 99.14 94.78 99.87 96.95 96.48 96.97
3 99.11 99.75 99.00 96.91 96.44 96.95
4 99.39 96.95 99.79 97.82 97.47 97.82
5 99.64 98.53 99.83 98.77 98.56 98.77
6 99.14 96.77 99.54 97.01 96.51 97.01
7 99.54 98.27 99.75 98.39 98.12 98.39

Average 99.29 97.50 99.58 97.50 97.09 97.51

Testing Set (20%)

1 98.86 98.06 98.99 96.19 95.54 96.21
2 99.71 100.00 99.67 98.99 98.83 98.99
3 99.57 99.07 99.66 98.60 98.35 98.61
4 99.86 99.07 100.00 99.53 99.45 99.53
5 99.71 97.83 100.00 98.90 98.74 98.91
6 99.43 96.94 99.83 97.94 97.61 97.94
7 99.43 96.84 99.83 97.87 97.55 97.88

Average 99.51 98.26 99.71 98.29 98.01 98.30

Table 3. Result analysis of CL-DLBIDC approach with distinct measures under 70:30 of the TR/TS data.

Labels Accuracy Recall Specificity F-Score MCC G-Measure

Training Set (70%)

1 98.57 95.82 99.04 95.16 94.32 95.16
2 98.94 95.84 99.47 96.38 95.76 96.38
3 98.37 94.72 98.96 94.17 93.22 94.17
4 99.22 96.80 99.62 97.23 96.78 97.23
5 99.10 97.10 99.43 96.82 96.30 96.82
6 99.02 96.20 99.48 96.48 95.91 96.48
7 99.10 96.65 99.52 96.92 96.39 96.92

Average 98.90 96.16 99.36 96.16 95.53 96.17

Testing Set (30%)

1 99.24 98.58 99.34 97.20 96.77 97.21
2 99.05 95.68 99.56 96.38 95.83 96.38
3 99.05 98.11 99.21 96.89 96.34 96.90
4 99.24 95.51 99.89 97.39 96.97 97.40
5 99.24 97.42 99.55 97.42 96.97 97.42
6 99.33 97.47 99.66 97.78 97.39 97.78
7 99.33 97.89 99.56 97.54 97.16 97.54

Average 99.21 97.24 99.54 97.23 96.78 97.23

The training accuracy (TRA) and validation accuracy (VLA) obtained by the CL-
DLBIDC methodology on the test dataset are shown in Figure 4. The experimental outcome
denotes that the CL-DLBIDC approach has attained maximal values of TRA and VLA.
Seemingly, the VLA is greater than the TRA.
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The training loss (TRL) and validation loss (VLL) obtained by the CL-DLBIDC method
on the test dataset are exhibited in Figure 5. The experimental outcome represented that
the CL-DLBIDC algorithm has established minimal values of TRL and VLL. Particularly,
the VLL is lesser than TRL.
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A clear precision-recall inspection of the CL-DLBIDC approach on the test dataset is
portrayed in Figure 6. The figure shows that the CL-DLBIDC technique has resulted in
enhanced values of precision-recall values under all classes.
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A brief ROC analysis of the CL-DLBIDC algorithm on the test dataset is presented
in Figure 7. The results indicate that the CL-DLBIDC method has shown an ability to
categorize distinct classes in the test dataset.
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Table 4 provides the overall classification outcome of the CL-DLBIDC model as com-
pared with recent models, such as Lightweight on-device Intent Detection (LIDSNet), Stack-
Propagation–Bidirectional Encoder Representations from Transformers (Stack-PBERT),
stack-propagation, Capsule-NLU, slot-gated bidirectional long short-term memory with
attention (Attention-SG-BiLSTM), and slot filling and intent detection using bidirectional
long short-term memory (SFID-BLSTM) models [26]. Figure 8 showcases the compara-
tive accuy examination of the CL-DLBIDC model with existing techniques. The figure
indicates that the Attention-SG-BiLSTM model attained a lower accuy of 96.87%, whereas
the LIDSNet, Capsule-NLU, and SFID-BLSTM models obtained a clearly raised accuy of
97.79%, 97.43%, and 97.36%, respectively. Next, the stack-propagation model resulted in
a moderately improved accuy of 98.29%. Although the stack-PBERT model obtained a
reasonable accuy of 99.25%, the CL-DLBIDC model obtained a higher accuy of 99.51%.

Table 4. Comparative analysis of the CL-DLBIDC approach with recent algorithms.

Methods Accuracy (%) F1-Score (%)

CL-DLBIDC 99.51 98.29
Stack-PBERT 99.25 97.98

LIDSNet 97.79 95.61
Stack-Propagation 98.29 96.23

Capsule-NLU 97.43 96.40
SFID-BLSTM 97.36 97.21

Attention-SG-BiLSTM 96.87 96.99
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Figure 9 showcases the comparative F1score analysis of the CL-DLBIDC technique with
existing techniques. The figure shows that the Attention-SG-BiLSTM approach obtained a
lower F1score of 96.99%, whereas the LIDSNet, Capsule-NLU, and SFID-BLSTM method-
ologies obtained a clearly raised F1score of 95.61%, 96.40%, and 97.21%, respectively. The
stack-propagation method resulted in a moderately improved F1score of 96.23%. Although
the stack-PBERT approach has obtained a reasonable F1score of 97.98%, the CL-DLBIDC
methodology obtained a higher F1score of 98.29%. These results demonstrate the enhanced
outcomes of the CL-DLBIDC model in comparison with recent models.
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5. Conclusions

This study has presented a new CL-DLBIDC approach to detect and classify intent for
natural language understanding. The CL-DLBIDC technique receives word-embedding
as an input and uses learned meaningful features to determine the probable intention
of the user query. In addition, the CL-DLBIDC technique uses the GloVe approach. In
addition, the CL-DLBIDC technique makes use of the DLMNN model for intent detection
and classification. For the hyperparameter tuning process, the MFO algorithm was used in
this study. The experimental analysis of the CL-DLBIDC algorithm took place under a set
of simulations, and different aspects of the results have been scrutinized. The simulation
outcomes demonstrate the significant performance of the CL-DLBIDC method over other
DL models, with a maximum accuracy of 99.51%. The enhanced performance of the
proposed model is due to the hyperparameter tuning process using the MFO algorithm. In
the future, hybrid DL models and the feature-selection process can improve the detection
efficiency of the proposed model.
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