
Research Article

Computational Logistics for Container Terminal Handling
Systems with Deep Learning

Bin Li 1 and Yuqing He 2

1School of Mechanical & Automotive Engineering, Fujian University of Technology, Fuzhou 350118, China
2School of Transportation, Fujian University of Technology, Fuzhou 350118, China

Correspondence should be addressed to Bin Li; mse2007_lb@whut.edu.cn

Received 8 January 2021; Accepted 17 April 2021; Published 26 April 2021

Academic Editor: Qiangqiang Yuan

Copyright © 2021 Bin Li and Yuqing He. +is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Container terminals are playing an increasingly important role in the global logistics network; however, the programming,
planning, scheduling, and decision of the container terminal handling system (CTHS) all are provided with a high degree of
nonlinearity, coupling, and complexity. Given that, a combination of computational logistics and deep learning, which is just
about container terminal-oriented neural-physical fusion computation (CTO-NPFC), is proposed to discuss and explore the
pattern recognition and regression analysis of CTHS. Because the liner berthing time (LBT) is the central index of terminal
logistics service and carbon efficiency conditions and it is also the important foundation and guidance to task scheduling and
resource allocation in CTHS, a deep learning model core computing architecture (DLM-CCA) for LBTprediction is presented to
practice CTO-NPFC. Based on the quayside running data for the past five years at a typical container terminal in China, the deep
neural networks model of the DLM-CCA is designed, implemented, executed, and evaluated with TensorFlow 2.3 and the specific
feature extraction package of tsfresh. +e DLM-CCA shows agile, efficient, flexible, and excellent forecasting performances for
LBTwith the low consuming costs on a common hardware platform. It interprets and demonstrates the feasibility and credibility
of the philosophy, paradigm, architecture, and algorithm of CTO-NPFC preliminarily.

1. Introduction

Container terminals are the important hub nodes of the
global logistics network, and the container terminal
handling system (CTHS) has typical characteristics of
nonlinearity, hierarchy, dynamic, timeliness, randomness,
context-sensitivity, coupling, and complexity (NHDT-
RCCC) [1, 2]. As a result, the layout programming, process
design, job planning, task scheduling, resource allocation,
and collaborative decision of CTHS, which are abbreviated
as PDP-SAD, all are of nondeterministic polynomial
completeness (NPC), and these have been the focus and
difficulty of the theoretical research and engineering
practice for operations research and logistics industry.

A lot of scholars have a number of discussions on the
PDP-SAD in CTHS with various methods, such as layout
design [3], berth allocation [4], quay crane planning [5],

yard crane scheduling [6], and integrated scheduling [7].
Nevertheless, a large number of difficult problems in
CTHS remain to be solved and new ones emerge one after
another with the rapid development of the port and
waterway industry. Consequently, a very obvious trend is
that more and more automated and intelligent methods
and means are applied to CTHS gradually. Kavoosi et al.
proposed the augmented self-adaptive parameter control
strategy for evolutionary algorithm to solve berth
scheduling problem [8]. Rekik and Elkosantini suggested a
multiagent approach for the reactive and decentralized
control of container stacking in an uncertain and dis-
turbed environment [9]. More importantly, the machine
learning and deep learning both have been applied to the
PDP-SAD at container terminals slowly, such as container
relocation problem [10] and container premarshalling
problem [11].

Hindawi
Computational Intelligence and Neuroscience
Volume 2021, Article ID 5529914, 18 pages
https://doi.org/10.1155/2021/5529914

mailto:mse2007_lb@whut.edu.cn
https://orcid.org/0000-0001-9322-1723
https://orcid.org/0000-0002-3853-2809
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/5529914


For smoothing and overcoming the NHDT-RCCC of
CTHS, this paper tries to integrate computational logistics
and deep learning to discuss and explore the running of
CTHS by the refinement, generalization, transferring,
unification, integration, and fusion of problem-oriented
computation (RGT-UIF-PoC). +e combination is clearly
different from the classical research methodology and
existing engineering solution to CTHS, and it conforms to
the current research and development trend of intelligent
logistics systems as well. More critically, the combination of
computational logistics and deep learning is supposed to
construct container terminal-oriented neural-physical fu-
sion computation (CTO-NPFC) based on the abstraction
and automation of computation, which is intended to
provide intelligent decision support compound engine for
the PDP-SAD of CTHS with soft real-time constraint
conditions both at the tactical level and on the strategic level.

+e reminder of this paper is organized as follows:
Section 2 provides the overview of computation logistics and
deep learning and clarifies the reasons for combining the
two. Section 3 presents CTO-NPFC to design and imple-
ment the container terminal-oriented logistics generalized
computing automation and intelligence and proposes the
deep learning model core computing architecture (DLM-
CCA) for liner berthing time (LBT) prediction. A real case
study of CTHS, which covers LBT forecasting experiments
and performance evaluation by CTO-NPFC, is discussed at
length in Section 4. Section 5 concludes the paper with some
discussions and extensions.

2. Computational Logistics and Deep Learning

2.1. Computational Logistics and Practical Philosophy
Over the past 15 years, we have been focusing on the dis-
cussion and exploitation of computational logistics. +e
initial definition of computation logistics was proposed by
Bin Li on the 54th IEEE Conference on Decision and
Control (CDC 2015) in 2015 based on a decade of explo-
ration since 2006 [12], which was briefly stated as follows.

Computational logistics involves the programming,
designing, implementation, testing, and evaluation of
complex logistics systems (CLS) and then includes the
planning, controlling, scheduling, and decision-making for
the related logistics service procedure in the various ad-
ministrate levels, which forms a unified and quantitative
universal approach for design, construction, execution,
management, and improvement of CLS by the extraction,
transformation, and application of basic concepts, funda-
mental principles, decision framework, control mechanism,
and scheduling algorithms in computer science and
automatic control theory in accordance with theory of
computation and similarity theory.

From the above definition, it is concluded that the
computational logistics is significantly different from the
traditional methods for CLS that cover mathematic pro-
gramming, system simulation, intelligent optimization,
and simulation-based optimization [13–15]. +e theoretical
origins of computational logistics mainly include compu-
tational thinking, computational lens, theory of computation,

and great principles of computing [16], which are collectively
referred to as 4CTTLP.

It is critical that the computational logistics derives from
practice and in turn serves practice. +e former practice
means the exploration and application of 4CTTLP in the
field of computer and control science and engineering, and
the latter practice signifies the exploitation and development
of 4CTTLP in the domain of CLS. +e former focuses on the
computation in the cyberspace, and the latter discusses the
issues of the computation in the physical world emphati-
cally. +e nature of computation builds the bridges between
the computation in the cyberspace and the counterparts in
the physical world and then gives a unified abstract and
automated perspective of computation for both. To some
extent, the study of computational logistics aims at pro-
viding an insight into the intensions and characteristics of
the computations occurring in the physical world. +en, the
essence, connotation, and extension of computation can be
further clarified in the context of CLS. As a result, the RGT-
UIF-PoC is the core principles and practical philosophy of
computational logistics.

Actually, in the absence of automated container
terminals, some scholars have applied computational
methods and control theory to the PDP-SAD of the
traditional CTHS over the past decade or so, which exert
the philosophy of computational logistics unconsciously.
+e works utilize feedback control [17], queue-based
local scheduling [18], predictive allocation [19], pa-
rameter tuning and control [20], and multistage global
coordination [21] into the scheduling and decision at
container terminals. +e above discussions lay a good
foundation for the establishment, development, and
demonstration of computational logistics.

2.2. Deep Learning for Scheduling and Decision. Deep
learning originates from the discussion and exploration of
artificial neural network (ANN) and deep neural networks
(DNN), and it is a deep machine learning model [22]. +e
deep learning executes a series of nonlinear transformation
to study how to automatically extract the multilayer
characteristics from the original data, and it has been
widely applied in the field of image recognition, speech
recognition, natural language processing, drug discovery,
and so on [23].

However, the deep learning is rarely applied to the
programming, planning, scheduling, control, and decision-
making of complex operating systems for the moment. At
the same time, some preliminary discussions are beginning
to be done, especially based on ANN and DNN. +e deep
learning is tentatively applied for shipping container code
localization and recognition [24], machine conditions pre-
diction [25], logistics delivery demand [26, 27], and railway
transportation fault diagnosis [28]. +e above works are a
preliminary attempt to apply deep learning to complex
operating systems, especially for logistics service hubs.
Nevertheless, there are still lots of works to be done on
scheduling and decision making for CLS at the strategy and
tactical level.

2 Computational Intelligence and Neuroscience



2.3. Tentative Combination for Container Terminal Handling
Systems. Within the conceptual framework of computa-
tional logistics, the information computing in the traditional
sense does not meet the requirements of the PDP-SAD at
container terminals, and it is only the state, activity, and
transaction mapping between the information space and the
physical world. +e pure information management and
process mirroring is not the wing plane of the computational
logistics because it does not provide intelligence decision
support for the running of CTHS.

However, the abstract models and automation machines
of CTHS by computational logistics really need the problem-
oriented, process-oriented, and scenario-oriented machine
intelligence. +e deep learning can take this responsibility
for CTHS, and it is based on the ANN or DNN that has the
excellent ability of self-learning, self-organization, self-ad-
aptation, and strong nonlinear function approximation [23].
So the deep learning is just about the following aircraft of
computational logistics.

For the PDP-SAD at container terminals, the deep
learning is expected to conduct the pattern recognition,
clustering analysis, regression forecast, and performance
evaluation to drive the planning, scheduling, deployment,
execution, and commissioning of CTHS. At present, the
deep learning is seldom applied in the control and decision
making of CLS. +e computational logistics establishes a
sound and solid abstraction and automation foundation of
CTHS for the application of deep learning.

In reality, we try to combine computational logistics and
deep learning tentatively to figure out the PDP-SAD in
CTHS from the perspective of computation. +e scenario-
oriented learning is a prominent characteristic of the
combination. +e computational logistics learns from the
computer science and control engineering by 4CTTLP, and
the deep learning can execute self-learning and self-evolu-
tion from the operational log robustly.+e two are supposed
to complement each other to overcome NHDT-RCCC
together.

3. Logistics Generalized Computing
Automation and Intelligence for
Container Terminals

3.1. Logistics Generalized Computation for Container Ter-
minal Hubs. +e discussion and concerning focus of
computational logistics is the generalized computation in
the physical world primarily, especially for the CTHS. +e
essence of computation is every process. More specifically,
the substance of computation is a mechanical motion that is
driven by energy and controlled by instructions in a narrow
sense.

It is obvious that the internal behaviors of CTHS achieve
a higher level of compliance with the substance of com-
putation even in a narrow sense. +e gaps between the
computation in computer systems and the corresponding
parts in CTHS are mainly due to the huge differences in
processing time scales and spatial dimensions.+ose directly
lead to the differences in the aspects of computational

constraints and optimization objectives. Nevertheless, those
have no impact on the comparability, similarity, inter-
community, and uniformity in terms of abstraction and
automation between computer systems and CTHS.

According to the essence and connotation of compu-
tation, the internal behaviors of CTHS can be abstracted as
a kind of generalized computation that is the container
terminal-oriented logistics generalized computation
(CTO-LGC). On the condition that the various container
units are abstracted as the logistics generalized computa-
tion alphabet that have been defined in our previous studies
[29], the CTO-LGC covers the positioning, relocation,
mapping, accessing, shifting, transferring, handling,
switching, and routing of container logistics units (PRM-
AST-HSR), which construct the instruction set architecture
for CTO-LGC in effect. +e CTO-LGC is the critical ap-
plication of computational logistics for CTHS. On the one
hand, it is the synthesis and abstraction of container ter-
minal handling process and physical behaviors. On the
other hand, the CTO-LGC is the most direct reflection of
the computability of CTHS [16], and it establishes the
foundation of evaluating logistics generalized computa-
tional complexity at container terminals [29].

3.2. Logistics Generalized Computation Automation and
Intelligence. +e above CTO-LGC provides a solid founda-
tion for further discussion by abstraction, and the CTO-LGC
governs the center position of the computational logistics
for CTHS. +e automation and intelligence of CTO-LGC are
the next focus of computational logistics. By the combination
and integration of computational logistics and deep learning,
we make a definition of CTO-NPFC based on the nature of
computation and algorithms to discuss the issue whose
conceptual framework is illustrated in Figure 1.

+e CTO-NPFC integrates and unifies the DNN com-
puting process and CTO-LGC physical process to design,
implement, and execute the automation and intelligence of
CTO-LGC that is intended to achieve the agile, efficient, and
robust operation of CTHS by transferring and learning. +e
CTO-NPFC is the extension and expansion of cyber-
physical systems in the context of intelligent logistics sys-
tems for CTHS. +e CTO-NPFC is intended to provide an
insight, perspective, framework, paradigms, patterns, and
algorithms for the PDP-SAD of CTHS.

+e solution and practice of CTO-NPFC are challenging
and crucial for the automation and intelligence of CTO-
LGC. For the automation of CTO-LGC, the instruction set
architecture for CTO-LGC establishes an abstract per-
spective and automation mechanism for the programming
tactics and algorithm design of PDP-SAD at container
terminals. For the intelligence of CTO-LGC, the deep
learning must provide the powerful and flexible machine
intelligence to improve the running level of CTHS. Now we
focus on the deep learning engine of CTO-NPFC to explore
its computing architecture, core principles, key components,
design paradigms, and adaptive training, which establishes
the underlying operational architecture and core algorithms
of CTO-NPFC.

Computational Intelligence and Neuroscience 3



3.3. Deep Learning Model Core Computing Architecture for
Liner Berthing Time Prediction. According to the above
CTO-NPFC preliminary sketch, it is concluded that the berth
has essential function and influence in the operation of CTHS
because it is the container transportation mode translation
buffer that is also the most valuable service resource in CTHS.
As the berth serves for the calling container ships that are the
service center objects at container terminals, the liner berthing
time (LBT) is crucial to both of terminals and carriers, es-
pecially for berth allocation and quay crane scheduling. In
reality, the prediction and evaluation of LBT determine the
operation schedule and resource allocation of CTHS in sig-
nificantmeasure. To a large extent, the LBTcan determine and
forecast carbon emission efficiency so as to facilitate the
sustainable development of container terminals.

Hence, we define the deep learning model core com-
puting architecture (DLM-CCA) for LBT forecasting,
which is demonstrated by Figure 2. As a matter of fact, the
DLM-CCA not only is for the prediction of LBT, but also is
appropriate for the forecasting of the other key performance
indicators of CTHS.+rough a lot of experiments, the DLM-
CCA in Figure 2 has been proven to be an agile, efficient,
robust, tailorable, and portability computing architecture
and design paradigm for the various CTHS.

+e DLM-CCA is a lightweight deep learning intelligent
engine with the perfect property of configurability, flexi-
bility, agility, robustness, and high efficiency, which is good
for applying to the intelligent decision support for CTHS not
just the prediction of LBT. +e DLM-CCA actually consists
of six components that are time series feature extraction
module, deep learning engine preheating module, liner
service data preprocessing, deep learning DNN architecture,
DNN model evaluation, and predicting outcome for deci-
sion support. +e six modules construct a six-phase deep
learning pipeline, and they can be further refined into 21-
stage sequential process, and those can be defined, debugged,
configured, and tailorable, respectively. Nowwe elaborate on
the points of the DLM-CCA.

3.4. Deep Learning Kernel of Liner Berthing Time Prediction
+e above DLM-CCA is an important component of CTO-
NPFC and is the machine intelligent engine of CTHS for
pattern recognition, clustering analysis, regression predic-
tion, and so on. +e following key points make up the deep
learning kernel of LBT prediction.

For one thing, the time series feature extraction of the
LBT is a crucial step for the CTO-NPFC, which is based on a

Terminal deep learning DNN
intelligence engine in cyberspace 

Optimizer

Berth k

Container transportation mode translation buffer

B
er

th
in

g

U
n

b
er

th
in

g

Container terminal oriented logistics generalized computation in physical world

CTO-LGC PRM-AST-HSR state, activity and transaction data in cyberspace

P
an

o
ra

m
ic

lo
gg

in
g 

Key performance indicators for terminal operation

Online job scheduling and resource allocation

Determining and driving the deployment and execution of CTO-LGC

CTO-LGC running
data cleaning

DNN performance evaluator 

Deep neural
networks

Container liner i

Container storage bay 1 

Container storage bay 2 

Container storage bay 3 

Container storage bay…

Container storage bay j 

T
ra

n
sf

er
ri

n
g

H
o

ri
zo

n
ta

l

Container terminal storage yard

Storage bay
set for import

empty
containers 

Storage bay
set for export

empty
containers 

Storage bay
set for

transhipment
empty

containers 

Storage bay
set for import

full
containers 

Storage bay
set for export

full
containers 

Storage bay
set for

transhipment
full

containers 

Positioning

Accessing

MappingRelocation

Shifting Transferring

Handling Switching Routing

Instruction set architecture for CTO-LGC

Liner berthing time
Actual running 

time of liners

Gross handling time
of quay cranes for

liners 

… …

Container terminal oriented
neural-physical compound computation 

D
es

ig
n an

d im
plem

en
ta

tio
n o

f C
TO

-L
GC

D
at

a 
fu

el
s

O
p

ti
m

iz
at

io
n

 o
b

je
ct

iv
es

Figure 1: Container terminal-oriented neural-physical fusion computation preliminary sketch.

4 Computational Intelligence and Neuroscience



Python package that is time series feature extraction on basis
of scalable hypothesis tests named as tsfresh. +e tsfresh has
a low computational complexity and allows starting on a
problem with only limited domain knowledge available [30].
Moreover, the tsfresh implements standard application
programming interfaces of time series and machine learning

libraries and is designed for both exploratory analyses as well
as straightforward integration into operational data science
applications [31]. In recent years, the tsfresh has been widely
applied in many fields, such as predicting the smart grid
stability [32], artificial intelligence for cloud storage array
operations [33], and the pressure transients of pipe networks

D
ee

p
 le

ar
n

in
g 

D
N

N
 i

n
te

ll
ig

en
ce

 e
n

gi
n

e 
fo

r 
li

n
er

b
er

th
in

g 
ti

m
e 

p
re

d
ic

ti
o

n
 a

n
d

 e
va

lu
at

io
n

E
n

gi
n

e 
p

re
h

ea
ti

n
g

Import tensorflow
package 

Export feature files

Feature engineering

Import simplified CTO-
LGC job data set

Import tsfresh package

Check data status

Delete NaN value

D
at

a 
p

re
p

ro
ce

ss
in

g

View unique values for
each key attribute 

Imaging data set

Non-numerical label
digitization

Numerical
normalization

Converted to
supervision sequence

Dataset partition

Building DNN model

D
ee

p
 le

ar
n

in
g 

m
o

d
el

 

Model training and
evolution tracking 

D
N

N
 m

o
d

el
 e

va
lu

at
io

n

Training graph of loss
computation 

Evaluation on testing
data set

Loss computation on
testing data set 

Comparison the
predicted value with

the actual value

Acquire prediction
results

Inverse normalization
of prediction values 

Evaluate fitness
capability 

Reliability analysis of
predicted values 

Output actual values

P
re

d
ic

ti
n

g 
o

u
tc

o
m

es
 f

o
r

d
ec

is
io

n
 s

u
p

p
o

rt

Define DNN
architecture

Activation function

Tanh

Sigmod

Relu

Define epoch

Define batch size 

Prediction and evaluation loss index:
MAE/MSE/RMSE 

Optimizer function

Adam/SGD/RMSprop/adagrad/
adadelta/adamax/nadam

Export predictive
values 

Data standardization
through label encoder

function 

Relu variants
Function parameter

debugging 

Predicted step size
debugging 

Define conversion
function 

Data conversion

Create data frame 

Specify rules for
input serializations 

Specify rules for
forecasting sequences 

Aggregate data 

Self-defining function

Self-define learning
rate decay scheduler

E
xt

ra
ct

 c
h

ar
ac

te
ri

st
ic

s
w

it
h

 t
sf

re
sh

 

One-directional
network layers

Bidirectional network
layers 

Advanced activation
layers 

Bi-LSTM layer

Bi-GRU layer

Lambda layer

Thresholded ReLU
layer 

PReLU layer

Leaky ReLU layer

ELU layer

Gaussian noise layer

Simple RNN layer

RNN (simple RNN
cell) layer

RNN (GRU cell) layer

RNN (LSTM cell)
layer

Dense network

GRU network

LSTM network 

Robustness evaluation
of predicted values 

Noise layer

Self-defining layer

Dropout layer

Absolute energy value 

Quantile value

Filter characters

Extract all features

Benford correlation

Range count

Value count

Absolute energy value 

Quantile value

...

Mean abs change

Delete weakly related
columns 

Delete columns with
NaN values 

...

Continuous wavelet
transform coefficients 

Median value

Mean change

Continuous wavelet
transform coefficients 

R square/MAE/MSE/
EVS/ MAPE/RMSE

Multiple random seed
setting

Import CTO-LGC job
data set containing
extracted features

from tsfresh

Figure 2: Deep learning model core computing architecture for liner berthing time prediction.

Computational Intelligence and Neuroscience 5



in industries and water distribution systems [34]. However,
the tsfresh has not been applied to the PDP-SAD of CLS. We
integrate the tsfresh into the prediction of LBTto support the
scheduling and decision of CTHS. +is is a significant,
meaningful, and workable attempt to the complex operating
systems.

Furthermore, the definition of deep learning model that
is no other than the DNN architecture is the deep learning
kernel of LBT forecasting. As a principal foundation, the
liner berthing time series and relevant liner handling data
are integrated and converted into the specific supervised
training data frame on the basis of data numeralization,
standardization, and normalization in the first place. +e
given terminal quayside running data frame set is going to be
divided into three parts: training set, validation set, and test
set, and the ratio of the three can be adjusted and modified
according to the actual situations and decision requirements.
+e DNN architecture is established with the diverse ner-
vous layers flexibly. +ose mainly cover unidirectional
neural network layer and bidirectional neural network layer.
+e former includes long short-term memory (LSTM)
network layer, gated recurrent unit (GRU) network layer,
dense network layer, simple recurrent neural network
(RNN) network layer, and RNN cell network layer.+e latter
contains principally the bidirectional-LSTM and bidirec-
tional-GRU. In addition, the dropout layer, noise layer,
advanced activation layer, and self-defined Lambda network
layer are all the important components of DLM-CCA.
According to the different terminal layout, handling
technology, equipment configuration, and task load, the
DLM-CCA can be customized and clipped efficiently and
expeditiously.

Besides, the components composition, parameter set-
ting, and running configuration are of vital importance for
the performance of DLM-CCA. For the prediction of LBT,
the Tanh is propitious to be as activation function, and the
Adam is suitable for holding the post of optimizer through a
lot of experimentations. Meanwhile, the training frequency
of DNN model, batch size of single model training, and
model learning rate all have important influences on the
performance of the DLM-CCA. All of these require a mass of
debugging when the DLM-CCA comes to specific objects
and applications. According to the practical application, the
DLM-CCA shows stable and efficient forecasting perfor-
mance once the DNNmodel has been trained and debugged
successfully for the given CTHS.

4. Computational Experiments

4.1. Case Scenario and Experimental Platform. A regional
and traditional container terminal hub in China is the target
object for the discussion of the CTO-NPFC. +ere are five
deep water berths along terminal quayside, and 12 quay
cranes with the four different activation parameters and
handling specifications are deployed along quayside. +e
annual container throughput of terminal is about two
million twenty-foot equivalent units (TEUs). About 75 to 85
percent of the visiting container ships are attached to the
domestic trade routes in China as appropriate, and the other

liners serve for international trade routes. It is a very typical
large-scale container terminal by the east coast of China.

+e above DLM-CCA is a lightweight single target
computing architecture that has high self-learning com-
putation efficiency. Moreover, it requires less hardware
computing platform. +e experimental platform can be
briefly stated as follows. +e hardware platform is mainly
based on the central processing unit (CPU) of the Intel
Core Intel i7-9750H and the graphics processing unit
(GPU) of the NVIDIA GeForce GTX 1660 Ti whose com-
puting capability is 7.5 for compute unified device archi-
tecture (CUDA). Besides, the main memory is 24GB, and
the video memory is 6GB. +e software platform is pri-
marily based on the TensorFlow 2.3 for GPU and the tsfresh
package whose version is 0.170. +e whole DLM-CCA is
designed, implemented, and executed by Python 3.7.3.

4.2. Loading Task Set Evaluation of Container Terminal-
Oriented Logistics Generalized Computation. Because the
domestic routes container liner occupies the vast majority of
calling container ships that more than three quarters liners
are used for internal trading container transportation for any
given year, we select the corresponding liner calling,
berthing, and handling log as the loading task set of the
DLM-CCA to explore the prediction of LBT. In reality, as the
LBT is also the most important indicator to measure CTO-
LGC, the LBT of domestic liner services really have a more
important position and function than the ones in interna-
tional service for the running of CTHS in China both in the
short term and in the long term. It can be seen from the
growth trend of container throughput of Chinese ports
recently, especially since the COVID-19 outbreak.

According to the field research and data collection at the
container terminal, it is almost impossible to be more than
36 hours for the LBTof domestic trade routes in practice. In
a recent five-year span, there are 9433 effective job records of
calling liners after data cleaning, which are identified as the
absolute foundation for the DLM-CCA and called after
quayside running mirror for liner berthing time (QRM-
LBT).+eQRM-LBT is a quantitative random job testing for
CTO-LGC, which has been elaborated in our previous work
[15]. +e general conditions of LBTmay be demonstrated by
Figure 3 and Table 1 generally. In Table 1, the SD means
standard deviation, and the same is true in subsequent
statistical tables. It is easy to infer that the practical LBT is
highly volatile and stochastic, which makes the prediction of
LBT very intractable.

Furthermore, there is a distinguishing feature in the
QRM-LBT. It is that the overwhelming majority of LBT
within 24 hours goes as high as 9243 items, and the pro-
portion in totality reaches up to 97.986 percent. Besides,
there are 158 running records of LBT that is between 24
hours and 30 ones, which accounts for 1.675 percent of all
records.+ere are 30 running records of LBT that is between
30 hours and 36 ones, which accounts for 0.318 percent of
QRM-LBT. +ere are only two records of LBT between 36
hours and 42 ones whose proportion is almost negligible. In
other words, only 190 items of LBT are above 24 hours, but

6 Computational Intelligence and Neuroscience



those exert a random perturbation to the prediction of LBT.
Both make the LBT forecasting a huge challenge. Never-
theless, it possesses the important theoretical significances
and precious practical values.

4.3.CriticalFeatureExtractionofLinerBerthingandHandling
OperationalLog. +ePython package of tsfresh is designed to
extract characteristics from time series [29] and avoids the
time-consuming problem caused by manual statistical cal-
culation and greatly speeds up the progress of data set feature
processing. +e core application of the tsfresh is divided into
two steps. Now we discuss these two steps in detail.

For one thing, the tsfresh can acquire a comprehensive
number of features by doing statistical analysis. All feature
calculators are contained in themodel of feature extraction. By
inputting time series data to calculator, we can get the values of
a series of characteristics, which are used in subsequent
programs. In the applied tsfresh of 0.17.0 version, 72 features
computational methods including absolute energy value are
provided. In the setting phase of feature extraction, we try to
reserve the default options because the tsfresh has provided a
set of reasonable parameters for all feature calculators in most
instances. We can also make additional special settings on a
few feature extractors to meet the computing needs of the
given types of features. When applying the feature extraction
module, only a small minority of features are found to be
relevant in the practice, which usually revolve around a core
set of indicators for the target of prediction as a rule of thumb.

Consequently, we can extract key features to avoid calculating
unnecessary function values to save time. +rough the
implementation of feature extraction, multiple feature indexes
including mean absolute change, mean change, and quantity
value can be obtained precisely.

For another, all the relevant problem of feature selection
is the identification of all strongly and weakly relevant at-
tributes, especially for the time series classification and
regression problems in the field of industrial application.+e
LBT forecasting is just the typical regression problem. Each
label or regression target objectively has complex infor-
mation association, whichmakes it more difficult to solve the
problem of feature selection. To limit the number of irrel-
evant features, the tsfresh deploys the fresh algorithm, and
the fresh stands for FeatuRe Extraction based on Scalable
Hypothesis tests [29]. According to the importance of fea-
tures to classification or regression problems, it filters
available features in the early stage of machine learning
process and controls the expected percentage of selected
unrelated features. On a smaller scale, the filtering process is
further divided into three stages: feature extraction, feature
significance testing, and multiple test procedure. After this
process, only a small part of the features that are relevant
enough are retained; most uncorrelated or weakly correlated
features can be removed, including the column of NaN (not
a number) value. +is module will remove all NaN values
and select only the relevant features next. Finally, the filtered
feature data file is exported to provide more feature support
for the DNN computing architecture.

45.000

40.000

35.000

30.000

25.000

20.000

15.000

10.000

5.000

0.000

0

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

45
00

50
00

55
00

60
00

65
00

70
00

75
00

80
00

85
00

90
00

95
00

10
00

0

Terminal calling liner sequence number

B
er

th
in

g 
ti

m
e 

sp
an

 (
h

o
u

rs
)

Figure 3: Distribution preliminary sketch of visiting liners berthing time.

Table 1: Distribution characteristic value of LBT for domestic trade routes in China (unit: hours).

Year
Quantity of

liners
Minimum of

LBT
Maximum of

LBT
Mean of
LBT

Median of
LBT

Mode of
LBT

SD of LBT
Variance of

LBT

YA 1422 0.667 34.750 10.196 9.500 8.500 4.818 23.217
YB 1264 0.750 34.833 9.617 9.083 7.000 4.744 22.506
YC 1350 0.750 32.750 10.221 9.417 8.667 4.950 24.503
YD 2561 1.000 34.000 12.137 11.667 7.833 5.560 30.909
YE 2836 0.583 40.833 12.248 11.750 10.167 5.624 31.629

Computational Intelligence and Neuroscience 7



4.4. Deep Learning for Liner Berthing Time Prediction with
Partial Feature Extraction. After critical feature extraction
of the liner berthing and handling operational log, the
definition of DNN computing architecture is made explicitly
to drive the configuration, deployment, and execution of
CTO-LGC. +e QRM-LBT including the operational rec-
ords of five years are marked as four data sets. Above all, the
running log of YA and YB is defined as the quayside running
mirror for liner berthing time with the log of two years
(QRM-LBT-LTW), which includes 2686 records. In the
second place, the running log of YA, YB, and YC is called
after the quayside running mirror for liner berthing time
with the log of three years (QRM-LBT-LTH) that covers
4036 items. +irdly, the running log of YA, YB, YC, and YD
is denominated the quayside running mirror for liner
berthing time with the log of four years (QRM-LBT-LFO)
that includes 6597 records. Lastly, the running log of YA, YB,
YC, YD, and YE is regarded as the quayside running mirror
for liner berthing time with the log of five years (QRM-LBT-
LFI) that contain 9433 items.

For any of the above data sets, the whole is divided into
three parts that are train subset, validation one, and test one,
and the proportions of the three all are 80%, 16.82%, and
3.18%, respectively. Consequently, the LBT of 86, 129, 210,
and 300 liners are going to be predicted that are about one
week, two weeks, three weeks, and amonth’s worth of calling
container ships for domestic trade routes. +at is to say, the
CTO-NPFC can make an intelligent decision support for the
logistics service program of one week, two weeks, three
weeks, and a month in this case, especially for berth allo-
cation plan. +e weekly and monthly berth allocation plan is
a very important foundation, basis, and reference for PDP-
SAD at container terminals. Meanwhile, by utilizing the
tsfresh, we focus on the indicator of the actual operation
time of ship (AOTS), which is directly related to LBT, to
extract two types of critical features. One is the absolute
energy of the time series that only has one secondary in-
dicator, and the other is Mexican hat wavelet that covers four
secondary indicators. +e combination of the critical fea-
tures and QRM-LBT is imported into the DLM-CCA to
execute LBT forecasting.

+e DLM-CCA adopts the sequential model that is a
linear stack of multiple network layers. To make the CTO-
NPFC more concrete, the DNN computing architecture is
constructed by a four-layer network including LSTM,
Gaussian Noise, bidirectional GRU, and dense network
layer. Moreover, the number of artificial neural cells in
each layer is distinctly different from each other. Mean-
while, the step size of the supervisory sequence is two, the
training epoch of model is 60, and the batch size is 32. +e
loss function of mean absolute error (MAE), which is
commonly used for regression problems, is applied to train
and guide the generation of the DNN model. +e loss
function of MAE, root mean squared error (RMSE), and R-
square is used for DNNmodel evaluation together, and the
R is the coefficient of determination of DNN model.
+eoretically speaking, the MAE and RMSE are expected to
be close to zero, and the R-square is supposed to be
approaching one.

We set the different random number seeds for DNN
architecture and execute 100 times for the data set of
QRM-LBT-LTW, QRM-LBT-LTH, QRM-LBT-LFO, and
QRM-LBT-LFI, respectively. +e consuming time of each
experiment is all between 35 seconds and 85 ones or so, and
the time taken varies depending on the size of the data set. For
the four data sets, the MAE of the train set is between 0.0022
and 0.0056, and the MAE of the validation set is between
0.0009 and 0.0058, which both testify to the generation and
training of DNN model that have good performance because
the two are pretty close to zero. +e typical DNN model
training loss curves can be illustrated by Figure 4 with partial
feature extraction, which only takes the data set of QRM-LBT-
LFI as an example due to limited length.

Meanwhile, for the four data sets, the MAE of the test set
is approximately between 0.659 and 1.281, and the RMSE of
the test set is between 1.206 and 2.001, and the R-square of
the test set is approximately between 0.857 and 0.954. +e
comparison of typical LBTprediction results with real values
for the four data sets can be showed in Figures 5–8, re-
spectively. In total, the DNN model with partial feature
extraction has given us some impressive performance im-
provements compared with the DNNmodel without feature
extraction, which has been discussed in our previous studies
[35].

4.5. Deep Learning for Liner Berthing Time Prediction with
Complete Feature Extraction. In Section 4.4, the feature
extraction plays an important role in the prediction of LBT.
Now, we further increase the depth and breadth of feature
extraction. By the tsfresh, we focus on the indicator of AOTS
and LBTsimultaneously to extract the critical features of the
absolute energy of the time series and the Mexican hat
wavelet, which add the total of 10 secondary indicators.
+rough the same DNN model, we also execute 100 times
for the data set of QRM-LBT-LTW, QRM-LBT-LTH, QRM-
LBT-LFO, and QRM-LBT-LFI apart.+e consuming time of
each experiment is all about between 40 seconds and 93
ones, and the time taken varies depending on the size of the
data set as well. For the four data sets, the MAE of the train
set is between 0.0021 and 0.0041, and the MAE of the
validation set is about between 0.0010 and 0.0047. Relative to
the partial features’ extraction, the progress of two is not
particularly obvious. +e representative DNN model
training loss curves may be demonstrated by Figure 9 with
complete feature extraction, which only takes the data set of
QRM-LBT-LFI for example due to limited length too.

At the same time, the MAE of the test set is between 0.029
and 0.331, and the RMSE of the test set is between 0.038 and
0.343 or so, and the R-square of the test set is approximately
0.999. All three improve significantly compared to the situ-
ations in partial feature extraction. +e comparison of typical
LBT prediction results with real values for the four data sets
can be demonstrated by Figures 10–13 apart.

By contrast, there has been further performance
improvement on the DLM-CCA with complete feature
extraction compared with the one with partial feature
extraction. +rough the above experimental results, it is

8 Computational Intelligence and Neuroscience



concluded that the DLM-CCA with the complete features
can predict the LBTexcellently. It means that the LBTcan be
basically confirmed once the berthing order is determined
roughly. +is is very beneficial to the task scheduling and
resource allocation of the CTHS.

4.6. Forecasting Performance Evaluation of Liner Berthing
Time. From a qualitative point of view, the DLM-CCA
shows the prominent predictive function, and we will make
further quantitative analysis on its forecasting performance
now. Clearly, the prediction error of LBT is what we are most

0 10

Train loss

Valid loss

20 30 40 50 60

0.000

0.005

0.010

0.015

0.020

0.025

0.030

Figure 4: Typical DNN model training loss curves for QRM-LBT-LFI by partial feature extraction.

35

30

25

20

15

10

5

0
0 20 40

Calling liner sequence number

Liner berthing time expectation

Liner berthing time prediction

V
is

it
in

g 
li

n
er

 b
er

th
in

g 
ti

m
e 

(h
o

u
rs

)

60 80

Figure 5: A comparison of LBT predictors with real values for QRM-LBT-LTW by partial features.

Computational Intelligence and Neuroscience 9



interested in. For two different treatments of partial feature
extraction and complete feature extraction, we will discuss
them each in turn and then compare and analyze the dif-
ferences between the two. Now, we present comprehensive
performance profiles of LBT prediction deviation, which is
showed in the eight statistical tables listed in Tables 2–9. +e
former four tables are aiming at the partial feature extraction
from the data set of QRM-LBT-LTW, QRM-LBT-LTH,
QRM-LBT-LFO, and QRM-LBT-LFI apart, and the latter
four ones are specific to the complete feature extraction from

the same four data sets. It provides a critical insight into the
deep learning forecasting performance of the DLM-CCA.

In order to facilitate the statistical analysis of the specific
prediction deviation of LBT, we process and calculate the
absolute value of the differences between the predicted value
and the real value for the indicator of LBT. In view of the
different distribution range of LBTprediction deviation using
partial feature extraction and complete feature extraction, we
set the LBT deviation levels on the basis of keeping corre-
sponding relations for comparison. For the experimental

35

30

25

20

15

10

5

0
0 20 40

Calling liner sequence number

Liner berthing time expectation

Liner berthing time prediction

V
is

it
in

g 
li

n
er

 b
er

th
in

g 
ti

m
e 

(h
o

u
rs

)

60 12010080

Figure 6: A comparison of LBT predictors with real values for QRM-LBT-LTH by partial features.

35

30

25

20

15

10

5

0
0 50 100

Calling liner sequence number

Liner berthing time expectation

Liner berthing time prediction

V
is

it
in

g 
li

n
er

 b
er

th
in

g 
ti

m
e 

(h
o

u
rs

)

150 200

Figure 7: A comparison of LBT predictors with real values for QRM-LBT-LFO by partial features.

10 Computational Intelligence and Neuroscience



results obtained by partial features, we first define [0, 0.5] and
[0.5, 1] as the first and second levels of scale contrast and then
divide the LBT prediction deviation into another five levels
according to the time interval of one hour. For the results
obtained by complete extraction, we divide the prediction
deviation of LBT into six levels with an interval of 0.1 hours by
taking the deviation range [0, 0.1] as the first level.

For one thing, the quantity of LBT forecasting error
between 0 and 1 accounts for the largest proportion with
partial feature extraction, which is more than 50% for all the
data sets and increases as the time span grows to 82.073%.
Meanwhile, the proportion of LBT prediction deviation in
[0, 5] is more than 96% for any data set. +e prediction
accuracy with partial features is much better than the pure

35

30

25

20

15

10

5

0
0 50 100

Calling liner sequence number

Liner berthing time expectation

Liner berthing time prediction

V
is

it
in

g 
li

n
er

 b
er

th
in

g 
ti

m
e 

(h
o

u
rs

)

150 300250200

Figure 8: A comparison of LBT predictors with real values for QRM-LBT-LFI by partial features.

0 10

Train loss

Valid loss

20 30 40 50 60

0.005

0.010

0.015

0.020

0.025

Figure 9: Typical DNN model training loss curves for QRM-LBT-LFI by complete feature extraction.

Computational Intelligence and Neuroscience 11



DNN model whose prediction deviation in [0, 5] is only
approximately 73% [35].

Furthermore, the quantity of LBT forecasting deviation
between 0 and 0.1 accounts for the largest proportion with
complete feature extraction, and it reaches up to 47.151%,
51.574%, 62.276%, and 71.650% for the four data sets.
Moreover, the proportion of LBT prediction deviation less
than or equal to 0.5 hours is more than 99.8% for any one
data set. +e prediction accuracy with complete features is

improved tenfold versus the one by partial features, which
indicates the DLM-CCA possesses the outstanding predic-
tive performance. However, it is worth mentioning that the
SD value increases visibly with the rise of prediction quantity
at the same prediction deviation level of [0, 0.1] and (0.1, 0.2]
both.

In addition, we set three indexes including MAE, RMSE,
and R-square to evaluate the performance of the DNN
model. Tables 10–12 are the evaluating indicator results by

35

30

25

20

15

10

5

0
0 20 40

Calling liner sequence number

Liner berthing time expectation

Liner berthing time prediction

V
is

it
in

g 
li

n
er

 b
er

th
in

g 
ti

m
e 

(h
o

u
rs

)

60 80

Figure 10: A comparison of LBT predictors with real values for QRM-LBT-LTW by complete features.

35

30

25

20

15

10

5

0
0 20 40

Calling liner sequence number

Liner berthing time expectation

Liner berthing time prediction

V
is

it
in

g 
li

n
er

 b
er

th
in

g 
ti

m
e 

(h
o

u
rs

)

60 12010080

Figure 11: A comparison of LBT predictors with real values for QRM-LBT-LTH by complete features.

12 Computational Intelligence and Neuroscience



partial features extraction, and Tables 13–15 are the ones
with complete features extraction. By comparing two sets of
data table collections, it is concluded that the latter is also
superior to the former dramatically whether for MAE or for
RMSE. Especially for the index of R-square, it is very close to
the theoretical optimal value of 1 while adopting complete
features extraction.

A final note about the DLM-CCA is that its compu-
tational cost and consume time are easy to accept. +e
experimental platform is very common as described in

Section 4.1. Both of Tables 16 and 17 show the total running
time (TRT) analysis of the DNN model based on partial
features and complete features, respectively. In either case,
we can get the LBT forecasting weekly or monthly within
95 seconds, and there are little differences in LBT fore-
casting performance. It is a very prominent performance
both in theory and in practice.

+rough the above experiments and evaluations, it is
concluded that the CTO-NPFC provides a rational, agile,
flexible, efficient, and robust intelligent decision support

35

30

25

20

15

10

5

0
0 50 100

Calling liner sequence number

Liner berthing time expectation

Liner berthing time prediction

V
is

it
in

g 
li

n
er

 b
er

th
in

g 
ti

m
e 

(h
o

u
rs

)

150 200

Figure 12: A comparison of LBT predictors with real values for QRM-LBT-LFO by complete features.

35

30

25

20

15

10

5

0
0 50

Calling liner sequence number

Liner berthing time expectation

Liner berthing time prediction

V
is

it
in

g 
li

n
er

 b
er

th
in

g 
ti

m
e 

(h
o

u
rs

)

100 250200150 300

Figure 13: A comparison of LBT predictors with real values for the QRM-LBT-LFI by complete features.

Computational Intelligence and Neuroscience 13



Table 2: Prediction deviation profile of liner berthing time for QRM-LBT-LTW by partial features.

Prediction
deviation (hours)

Minimum of
liners

Maximum of
liners

Mean of
liners

Median of
liners

Mode of
liners

SD of
liners

Variance of
liners

Quantitative
proportion of liners (%)

[0, 0.5] 17.000 34.000 25.440 25.000 26.000 3.864 14.926 29.582
(0.5, 1] 19.000 28.000 23.590 24.000 23.000 1.795 3.222 27.430
(1, 2] 20.000 43.000 31.390 31.000 31.000 4.361 19.018 36.500
(2, 3] 0.000 3.000 0.890 1.000 1.000 0.527 0.278 1.035
(3, 4] 0.000 1.000 0.690 1.000 1.000 0.463 0.214 0.802
(4, 5] 1.000 2.000 1.070 1.000 1.000 0.255 0.065 1.244
(5, +∞] 2.000 3.000 2.930 3.000 3.000 0.255 0.065 3.407

Table 3: Prediction deviation profile of liner berthing time for QRM-LBT-LTH by partial features.

Prediction
deviation (hours)

Minimum of
liners

Maximum of
liners

Mean of
liners

Median of
liners

Mode of
liners

SD of
liners

Variance of
liners

Quantitative
proportion of liners (%)

[0, 0.5] 34.000 57.000 49.620 50.000 52.000 3.638 13.236 38.465
(0.5, 1] 29.000 43.000 33.930 34.000 33.000 2.471 6.105 26.302
(1, 2] 24.000 37.000 29.430 29.000 30.000 2.543 6.465 22.814
(2, 3] 5.000 8.000 5.560 5.000 5.000 0.668 0.446 4.310
(3, 4] 3.000 5.000 4.460 5.000 5.000 0.607 0.368 3.458
(4, 5] 1.000 1.000 1.000 1.000 1.000 0.000 0.000 0.775
(5, +∞] 5.000 5.000 5.000 5.000 5.000 0.000 0.000 3.876

Table 4: Prediction deviation profile of liner berthing time for QRM-LBT-LFO by partial features.

Prediction
deviation (hours)

Minimum of
liners

Maximum of
liners

Mean of
liners

Median of
liners

Mode of
liners

SD of
liners

Variance of
liners

Quantitative
proportion of liners (%)

[0, 0.5] 108.000 134.000 126.920 128.000 129.000 4.724 22.314 60.438
(0.5, 1] 33.000 68.000 44.110 43.000 43.000 6.107 37.298 21.005
(1, 2] 15.000 25.000 18.540 18.000 18.000 1.717 2.948 8.829
(2, 3] 6.000 8.000 7.310 7.000 7.000 0.674 0.454 3.481
(3, 4] 4.000 7.000 5.660 6.000 6.000 0.533 0.284 2.695
(4, 5] 2.000 4.000 3.010 3.000 3.000 0.500 0.250 1.433
(5, +∞] 4.000 5.000 4.450 4.000 4.000 0.498 0.248 2.119

Table 5: Prediction deviation profile of liner berthing time for QRM-LBT-LFI by partial features.

Prediction
deviation (hours)

Minimum of
liners

Maximum of
liners

Mean of
liners

Median of
liners

Mode of
liners

SD of
liners

Variance of
liners

Quantitative
proportion of liners (%)

[0, 0.5] 160.000 197.000 179.190 178.000 173.000 8.659 74.974 59.730
(0.5, 1] 58.000 76.000 67.030 68.000 68.000 4.385 19.229 22.343
(1, 2] 22.000 42.000 30.150 30.000 28.000 4.410 19.448 10.050
(2, 3] 7.000 10.000 8.630 9.000 9.000 0.702 0.493 2.877
(3, 4] 6.000 7.000 6.960 7.000 7.000 0.196 0.038 2.320
(4, 5] 2.000 3.000 2.520 3.000 3.000 0.500 0.250 0.840
(5, +∞] 5.000 6.000 5.520 6.000 6.000 0.500 0.250 1.840

Table 6: Prediction deviation profile of liner berthing time for QRM-LBT-LTW by complete features.

Prediction
deviation
(hours)

Minimum of
liners

Maximum of
liners

Mean of
liners

Median of
liners

Mode of
liners

SD of
liners

Variance of
liners

Quantitative
proportion of liners (%)

[0, 0.1] 0.000 82.000 40.550 41.500 16.000 24.026 577.248 47.151
(0.1, 0.2] 4.000 54.000 28.740 28.000 19.000 13.197 174.172 33.419
(0.2, 0.3] 0.000 55.000 11.970 6.000 2.000 12.467 155.429 13.919
(0.3, 0.4] 0.000 45.000 4.060 1.000 0.000 8.335 69.476 4.721
(0.4, 0.5] 0.000 17.000 0.580 0.000 0.000 2.426 5.884 0.674
(0.5, +∞] 0.000 3.000 0.100 0.000 0.000 0.436 0.190 0.116

14 Computational Intelligence and Neuroscience



Table 7: Prediction deviation profile of liner berthing time for QRM-LBT-LTH by complete features.

Prediction
deviation (hours)

Minimum of
liners

Maximum of
liners

Mean of
liners

Median of
liners

Mode of
liners

SD of
liners

Variance of
liners

Quantitative
proportion of liners (%)

[0, 0.1] 8.000 116.000 66.530 75.500 38.000 34.747 1207.329 51.574
(0.1, 0.2] 8.000 85.000 43.830 43.000 73.000 23.163 536.541 33.977
(0.2, 0.3] 0.000 64.000 14.590 7.000 3.000 15.359 235.902 11.310
(0.3, 0.4] 0.000 16.000 3.210 2.000 2.000 3.080 9.486 2.488
(0.4, 0.5] 0.000 5.000 0.640 0.000 0.000 0.855 0.730 0.496
(0.5, +∞] 0.000 3.000 0.200 0.000 0.000 0.490 0.240 0.155

Table 8: Prediction deviation profile of liner berthing time for QRM-LBT-LFO by complete features.

Prediction
deviation (hours)

Minimum of
liners

Maximum of
liners

Mean of
liners

Median of
liners

Mode of
liners

SD of
liners

Variance of
liners

Quantitative
proportion of liners (%)

[0, 0.1] 12.000 196.000 130.780 143.000 191.000 55.869 3121.332 62.276
(0.1, 0.2] 7.000 161.000 67.960 58.000 29.000 49.525 2452.738 32.362
(0.2, 0.3] 1.000 46.000 8.8400 5.000 4.000 9.047 81.854 4.210
(0.3, 0.4] 0.000 6.000 1.720 1.000 1.000 1.415 2.002 0.819
(0.4, 0.5] 0.000 7.000 0.490 0.000 0.000 0.933 0.870 0.233
(0.5, +∞] 0.000 3.000 0.210 0.000 0.000 0.668 0.446 0.100

Table 9: Prediction deviation profile of liner berthing time for QRM-LBT-LFI by complete features.

Prediction
deviation (hours)

Minimum of
liners

Maximum of
liners

Mean of
liners

Median of
liners

Mode of
liners

SD of
liners

Variance of
liners

Quantitative
proportion of liners

(%)

[0, 0.1] 6.000 294.000 214.950 237.000 288.000 80.353 6456.548 71.650
(0.1, 0.2] 6.000 236.000 77.4500 60.000 12.000 68.301 4664.968 25.817
(0.2, 0.3] 0.000 100.000 7.030 1.000 0.000 16.150 260.809 2.343
(0.3, 0.4] 0.000 14.000 0.500 0.000 0.000 2.062 4.250 0.167
(0.4, 0.5] 0.000 6.000 0.060 0.000 0.000 0.597 0.356 0.020
(0.5, +∞] 0.000 1.000 0.010 0.000 0.000 0.100 0.010 0.003

Table 10: MAE evaluation index profiles of liner berthing time prediction experiment by partial features.

QRM-LBT Minimum of MAE Maximum of MAE Mean of MAE Median of MAE SD of MAE Variance of MAE

QRM-LBT-LTW 0.998 1.281 1.124 1.128 0.060 0.004
QRM-LBT-LTH 1.126 1.213 1.167 1.168 0.017 0.000
QRM-LBT-LFO 0.826 0.856 0.840 0.839 0.006 0.000
QRM-LBT-LFI 0.659 0.797 0.720 0.719 0.032 0.001

Table 11: RMSE evaluation index profiles of liner berthing time prediction experiment by partial features.

QRM-LBT Minimum of RMSE Maximum of RMSE Mean of RMSE Median of RMSE SD of RMSE Variance of RMSE

QRM-LBT-LTW 1.672 1.773 1.716 1.713 0.023 0.001
QRM-LBT-LTH 1.905 2.001 1.952 1.953 0.016 0.000
QRM-LBT-LFO 1.593 1.684 1.640 1.640 0.015 0.000
QRM-LBT-LFI 1.206 1.333 1.268 1.267 0.029 0.001

Table 12: R-square evaluation index profiles of liner berthing time prediction experiment by partial features.

QRM-LBT
Minimum of R-

square
Maximum of R-

square
Mean of R-

square
Median of R-

square
SD of R-
square

Variance of R-
square

QRM-LBT-
LTW

0.886 0.899 0.893 0.893 0.003 0.000

QRM-LBT-
LTH

0.857 0.870 0.864 0.864 0.002 0.000

QRM-LBT-
LFO

0.912 0.921 0.917 0.916 0.002 0.000

QRM-LBT-LFI 0.943 0.954 0.949 0.949 0.002 0.000

Computational Intelligence and Neuroscience 15



solutions to the PDP-SAD of CTHS.+e CTO-NPFC trilogy
is mainly the container terminal physical logistics service-
oriented abstraction and automation that is just CTO-LGC,
critical feature extraction of CTO-LGC running mirror, and
pattern recognition and regression analysis with deep
learning for the combination of filtering critical features and
CTO-LGC running mirror. It is supposed to propose a
referenced theoretical framework and practical solution for
the exploration and exploitation of RGT-UIF-PoC in the
given field of complex logistics hubs.

5. Conclusions

+is paper focuses on the automation and intelligence of
CTO-LGC by the combination, integration, and fusion of
computational logistics and deep learning and proposes the
conceptual framework of CTO-NPFC to solve the PDP-SAD
at container terminals. +e thinking of CTO-NPFC seems to
be similar to digital twin and cyber-physical system, but
there are differences substantially among the three. In the
CTO-NPFC, the CTO-LGC in the physical world is

Table 13: MAE evaluation index profiles of liner berthing time prediction experiment by complete features.

QRM-LBT Minimum of MAE Maximum of MAE Mean of MAE Median of MAE SD of MAE Variance of MAE

QRM-LBT-LTW 0.048 0.331 0.127 0.109 0.064 0.004
QRM-LBT-LTH 0.054 0.216 0.116 0.103 0.044 0.002
QRM-LBT-LFO 0.039 0.179 0.093 0.090 0.034 0.001
QRM-LBT-LFI 0.029 0.187 0.076 0.070 0.038 0.001

Table 14: RMSE evaluation index profiles of liner berthing time prediction experiment by complete features.

QRM-LBT Minimum of RMSE Maximum of RMSE Mean of RMSE Median of RMSE SD of RMSE Variance of RMSE

QRM-LBT-LTW 0.063 0.343 0.144 0.132 0.063 0.004
QRM-LBT-LTH 0.069 0.231 0.138 0.127 0.040 0.002
QRM-LBT-LFO 0.060 0.188 0.110 0.105 0.030 0.001
QRM-LBT-LFI 0.038 0.195 0.086 0.080 0.037 0.001

Table 15: R-square evaluation index profiles of liner berthing time prediction experiment by complete features.

QRM-LBT
Minimum of R-

square
Maximum of R-

square
Mean of R-

square
Median of R-

square
SD of R-
square

Variance of R-
square

QRM-LBT-
LTW

0.996 1.000 0.999 0.999 0.001 0.000

QRM-LBT-
LTH

0.998 1.000 0.999 0.999 0.000 0.000

QRM-LBT-
LFO

0.999 1.000 1.000 1.000 0.000 0.000

QRM-LBT-LFI 0.999 1.000 1.000 1.000 0.000 0.000

Table 16: Total running time profiles of liner berthing time prediction by partial features (unit: seconds).

QRM-LBT Minimum of TRT Maximum of TRT Mean of TRT Median of TRT Mode of TRT SD of TRT Variance of TRT

QRM-LBT-
LTW

35.105 42.439 36.218 35.800 35.623 1.281 1.641

QRM-LBT-LTH 43.787 47.906 44.795 44.640 43.929 0.711 0.506
QRM-LBT-LFO 58.764 66.331 59.516 59.333 59.045 0.855 0.732
QRM-LBT-LFI 76.880 83.270 78.737 78.491 78.436 1.100 1.210

Table 17: Total running time profiles of liner berthing time prediction by complete features (unit: seconds).

QRM-LBT Minimum of TRT Maximum of TRT Mean of TRT Median of TRT Mode of TRT SD of TRT Variance of TRT

QRM-LBT-
LTW

40.972 47.047 43.288 42.956 43.882 1.374 1.887

QRM-LBT-LTH 45.972 62.255 53.382 53.805 52.710 2.907 8.451
QRM-LBT-LFO 61.907 81.319 64.215 63.293 62.939 3.063 9.384
QRM-LBT-LFI 80.034 92.435 83.489 82.790 81.739 2.407 5.795

16 Computational Intelligence and Neuroscience



combined with DNN computation in the cyberspace, and
the neural computation drives physical computation and
the computation under different physical sizes are combined
to complement each other, which conceives, designs,
implements, deploys, drives, evaluates, and optimizes the
operation of CTHS, especially in the context of low carbon
emissions and sustainable development. +e CTO-NPFC
is supposed to achieve and fulfill the mechanization,
automation, and intelligence of CTO-LGC. Moreover,
the synergy between computational logistics and deep
learning provides an insight, perspective, paradigm, and
practice to explore and exploit the nature, intension,
extension, and application of computation in the domain
of CLS and complex operating systems.

Data Availability

+e data used to support the findings of this study are in-
cluded within the article.

Conflicts of Interest

+e authors declare no conflicts of interest.

Acknowledgments

+is research was funded by the Humanities and Social
Science Programming Foundation of Ministry of Education
in China, grant no. 19YJA630031; the Scientific Research
Foundation of Fujian University of Technology in China,
grant no. GY-Z160125; and the Traffic Science and Tech-
nology Project of Shandong Province in China, grant no.
2016B35.

References

[1] N. Boysen and M. Fliedner, “Cross dock scheduling: classi-
fication, literature review and research agenda,” Omega,
vol. 38, no. 6, pp. 413–422, 2010.

[2] Ç. Iris and J. S. L. Lam, “A review of energy efficiency in ports:
operational strategies, technologies and energy management
systems,” Renewable and Sustainable Energy Reviews, vol. 112,
pp. 170–182, 2019.

[3] A. Gharehgozli, N. Zaerpour, and R. de Koster, “Container
terminal layout design: transition and future,” Maritime
Economics & Logistics, vol. 22, no. 4, pp. 610–639, 2020.

[4] A. Imai, Y. Yamakawa, and K. Huang, “+e strategic berth
template problem,” Transportation Research Part E: Logistics
and Transportation Review, vol. 72, pp. 77–100, 2014.

[5] Ç. Iris and J. S. L. Lam, “Recoverable robustness in weekly
berth and quay crane planning,” Transportation Research Part
B: Methodological, vol. 122, pp. 365–389, 2019.

[6] L. Wang and X. Zhu, “Rail mounted gantry crane scheduling
optimization in railway container terminal based on hybrid
handling mode,” Computational Intelligence and Neurosci-
ence, vol. 2014, Article ID 682486, 8 pages, 2014.

[7] T. Qin, Y. Du, J. H. Chen, and M. Sha, “Combining mixed
integer programming and constraint programming to solve
the integrated scheduling problem of container handling
operations of a single vessel,” European Journal of Operational
Research, vol. 285, no. 3, pp. 884–901, 2020.

[8] M. Kavoosi, M. A. Dulebenets, O. F. Abioye, J. Pasha,
H.Wang, andH. Chi, “An augmented self-adaptive parameter
control in evolutionary computation: a case study for the
berth scheduling problem,” Advanced Engineering Infor-
matics, vol. 42, p. 100972, 2019.

[9] I. Rekik and S. Elkosantini, “A multi agent system for the
online container stacking in seaport terminals,” Journal of
Computational Science, vol. 35, pp. 12–24, 2019.

[10] C. Zhang, H. Guan, Y. Yuan, W. Chen, and T. Wu, “Machine
learning-driven algorithms for the container relocation
problem,” Transportation Research Part B: Methodological,
vol. 139, pp. 102–131, 2020.

[11] H. André, S. Tanaka, and K. Tierney, “Deep learning assisted
heuristic tree search for the container pre-marshalling
problem,” Computers & Operations Research, vol. 113,
p. 104781, 2020.

[12] B. Li, “Container terminal logistics scheduling and decision-
making within the conceptual framework of computational
thinking,” in Proceedings of the 54th Annual Conference on
Decision and Control (CDC 2015), pp. 330–337, Osaka, Japan,
December 2015.

[13] D. Kizilay, P. V. Hentenryck, and D. T. Eliiyi, “Constraint
programming models for integrated container terminal op-
erations,” European Journal of Operational Research, vol. 286,
no. 3, pp. 945–962, 2020.

[14] Y. Triska, E. M. Frazzon, and V. M. D. Silva, “Proposition of a
simulation-based method for port capacity assessment and
expansion planning,” Simulation Modelling Practice and
=eory, vol. 103, p. 102098, 2020.

[15] I. Castilla-Rodŕıguez, C. Expósito-Izquierdo, B. Melián-
Batista, R. M. Aguilar, and J. M. Moreno-Vega, “Simulation-
optimization for the management of the transshipment
operations at maritime container terminals,” Expert Systems
with Applications, vol. 139, p. 112852, 2020.

[16] B. Li and G. Song, “Computational logistics for container
terminal logistics hubs based on computational lens and
computing principles,” IEEE Access, vol. 8, pp. 194820–
194835, 2020.

[17] A. Alessandri, C. Cervellera, M. Cuneo, M. Gaggero, and
G. Soncin, “Modeling and feedback control for resource al-
location and performance analysis in container terminals,”
IEEE Transactions on Intelligent Transportation Systems,
vol. 9, no. 4, pp. 601–614, 2008.

[18] R. Choe, H. Cho, T. Park, and K. R. Ryu, “Queue-based local
scheduling and global coordination for real-time operation
control in a container terminal,” Journal of Intelligent
Manufacturing, vol. 23, no. 6, pp. 2179–2192, 2012.

[19] R. T. Cahyono, E. Jacob Flonk, and B. Jayawardhana,
“Discrete-event systems modeling and the model predictive
allocation algorithm for integrated berth and quay crane
allocation,” IEEE Transactions on Intelligent Transportation
Systems, vol. 21, no. 3, pp. 1321–1331, 2020.

[20] M. A. Dulebenets, “Application of evolutionary computation
for berth scheduling at marine container terminals: parameter
tuning versus parameter control,” IEEE Transactions on In-
telligent Transportation Systems, vol. 19, no. 1, pp. 25–37, 2018.

[21] C. Expósito-Izquierdo, J. de Armas, E. Lalla-Ruiz, B. Melián-
Batista, and J. Marcos Moren, “Multi-stage approach for the
transshipment of import containers at maritime container
terminals,” IET Intelligent Transport Systems, vol. 13, no. 4,
pp. 714–728, 2019.

[22] A. G. Blaiech, K. BenKhalifa, C. Valderrama,M.A. C. Fernandes,
and M. H. Bedoui, “A survey and taxonomy of FPGA-based

Computational Intelligence and Neuroscience 17



deep learning accelerators,” Journal of Systems Architecture,
vol. 98, pp. 331–345, 2019.

[23] F. Yan, Y. He, O. Ruwase, and E. Smirni, “Efficient deep neural
network serving: fast and furious,” IEEE Transactions on
Network and Service Management, vol. 15, no. 1, pp. 112–126,
2018.

[24] R. Zhang, Z. Bahrami, T.Wang, and Z. Liu, “An adaptive deep
learning framework for shipping container code localization
and recognition,” IEEE Transactions on Instrumentation and
Measurement, vol. 70, pp. 1–13, 2021.

[25] G. Niu, S. Tang, and B. Zhang, “Machine condition prediction
based on long short term memory and particle filtering,” in
Proceedings of the 44th Annual Conference of the IEEE In-
dustrial Electronics Society (IECON 2018), pp. 5942–5947,
Washington, DC, USA, October 2018.

[26] L. Munkhdalai, K. H. Park, E. Batbaatar, N. +eera-Umpon,
and K. H. Ryu, “Deep learning-based demand forecasting for
Korean postal delivery service,” IEEE Access, vol. 8,
pp. 188135–188145, 2020.

[27] Y.-S. Lin, Y. Zhang, I.-C. Lin, and C.-J. Chang, “Predicting
logistics delivery demand with deep neural networks,” in
Proceedings of the 7th International Conference on Industrial
Technology and Management (ICITM 2018), pp. 294–297,
Oxford, UK, March 2018.

[28] Y. Chen, B. Song, Z. Yuan, X. Du, and M. Guizani, “Fault
diagnosis based on deep learning for current-carrying ring of
catenary system in sustainable railway transportation,” Ap-
plied Soft Computing, vol. 100, p. 106907, 2021.

[29] B. Li, B. Sun,W. Yao, Y. He, and G. Song, “Container terminal
oriented logistics generalized computational complexity,”
IEEE Access, vol. 7, pp. 94737–94756, 2019.

[30] M. Christ, A. W. Kempa-Liehr, and M. Feindt, “Distributed
and parallel time series feature extraction for industrial big
data applications,” in Proceedings of the ACML Workshop on
Learning on Big Data 2016, pp. 1–17, Hamilton, New Zealand,
November 2016.

[31] M. Christ, N. Braun, J. Neuffer, and A. W. Kempa-Liehr,
“Time series feature extraction on basis of scalable hypothesis
tests (tsfresh-a python package),” Neurocomputing, vol. 307,
pp. 72–77, 2018.

[32] D. Moldovan and I. Salomie, “Detection of sources of in-
stability in smart grids using machine learning techniques,” in
Proceedings of the IEEE 15th International Conference on
Intelligent Computer Communication and Processing (ICCP
2019), pp. 175–182, Cluj-Napoca, Romania, September 2019.

[33] H. Wang and H. Zhang, “AIOPS prediction for hard drive
failures based on stacking ensemble model,” in Proceedings of
the 10th Annual Computing and Communication Workshop
and Conference (CCWC 2020), pp. 417–423, Las Vegas, NV,
USA, January 2020.

[34] S. Gurav, P. Kumar, G. Ramshankar, P. K. Mohapatra, and
B. Srinivasan, “Machine learning approach for blockage
detection and localization using pressure transients,” in
Proceedings of the 2020 IEEE International Conference on
Computing, Power and Communication Technologies,
pp. 189–193, Greater Noida, India, October 2020.

[35] B. Li and Y. He, “Container terminal liner berthing time
prediction with computational logistics and deep learning,” in
Proceedings of 2020 IEEE International Conference on Systems,
Man, and Cybernetics (SMC 2020), pp. 2417–2424, Toronto,
Canada, October 2020.

18 Computational Intelligence and Neuroscience


