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Abstract

We developed models of lymphatic nodes for 6 pediatric and 2 adult hybrid computational
phantoms to calculate the lymphatic node dose estimates from external and internal radiation
exposures. We derived the number of lymphatic nodes from the recommendations in International
Commission on Radiological Protection (ICRP) Publications 23 and 89 at 16 cluster locations for
the lymphatic nodes: extrathoracic, cervical, thoracic (upper and lower), breast (left and right),
mesentery (left and right), axillary (left and right), cubital (left and right), inguinal (left and right),
and popliteal (left and right), for different ages (newborn, 1-, 5-, 10-, 15-year-old, and adult). We
modeled each lymphatic node within the voxel format of the hybrid phantoms by assuming that all
nodes have identical size derived from published data except narrow cluster sites. The lymph
nodes were generated by the following algorithm: (1) selection of the lymph node site among the
16 cluster sites; (2) random sampling of the location of the lymph node within a spherical space
centered at the chosen cluster site; (3) creation of the sphere or ovoid of tissue representing the
node based on lymphatic node characteristics defined in ICRP Publications 23 and 89. We created
lymph nodes until the pre-defined number of lymphatic nodes at the selected cluster site was
reached. This algorithm was applied to pediatric (newborn, 1-, 5-, and 10-year-old male, and 15-
year-old males) and adult male and female ICRP-compliant hybrid phantoms after voxelization.
To assess the performance of our models for internal dosimetry, we calculated dose conversion
coefficients, called S values, for selected organs and tissues with Iodine-131 distributed in 6
lymphatic node cluster sites using MCNPX2.6, a well validated Monte Carlo radiation transport
code. Our analysis of the calculations indicates that the S values were significantly affected by the
location of the lymph node clusters and that the values increased for smaller phantoms due to the
shorter inter-organ distances compared to the bigger phantoms. By testing sensitivity of S values
to random sampling and voxel resolution, we confirmed that the lymph node model is reasonably
stable and consistent for different random samplings and voxel resolutions.

Keywords

lymphatic node; computational hybrid phantom; Monte Carlo transport; S value

1. INTRODUCTION

Organ and tissue absorbed dose in internal dosimetry has been generally evaluated by
simulating radiation exposure in computational human phantoms representing reference
individuals recommended by International Commission on Radiological Protection (ICRP)
(ICRP 1975; ICRP 2002). The capability to realistically model organs and tissues greatly
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depends on the type of phantom and the modeling techniques used. Computational phantoms
have evolved from the first-generation stylized (or mathematical) phantoms (Cristy and
Eckerman 1987; Han et al 2006) and the second-generation voxel (or tomographic)
phantoms (Caon 2004; ICRP 2009; Zaidi and Xu 2007), to more recently the third-
generation hybrid (or NURBS/Polygon Mesh) phantoms (Cassola et al 2010; Lee et al 2007;
Lee et al 2010; Segars et al 2010; Xu et al 2007; Zhang et al 2009). The best features of the
previous two classes of stylized and voxel phantoms are incorporated into the hybrid
phantoms: flexibility and realism, respectively.

Lymphatic tissue consists of reticular fibres and cells, along with lymphocytes distributed
throughout whole body. Except the lymphocytes, lymphatic tissues are localized to the
active bone marrow and the lymphatic organs: lymph nodes, spleen, thymus, mucous
membranes, tonsils, adenoids, Peyer’s patches, and the vermiform appendix. The lymphatic
nodes, one of the lymphatic organs, are considered by the ICRP to be a radiosensitive target
tissue (part of the remainder organs) since ICRP Publication 103 (ICRP 2007). According to
the report, there are about 600—700 lymphatic nodes in the adult total body. It is difficult to
model the lymph nodes in computational human phantoms because of their complex
anatomical distribution.

It was impossible to model the complex structure of the lymphatic nodes within stylized
phantoms by using mathematical surface equations. After the introduction of voxel
phantoms, investigators began attempting to model the lymphatic nodes. Kramer et al.
(Kramer et al 2006) manually inserted lymphatic node voxels into their voxel phantoms
MAXO06 and FAXO06 in regions of the armpits, groin, behind the knees, in front of the
elbows, the neck, and around abdominal soft-tissue organs. More recently, Zankl et al.
(ICRP 2009) reported ICRP reference male and female voxel phantoms with lymphatic
nodes. Since the lymph nodes are not identifiable on the computed tomography (CT)
images, the tissues were manually drawn at locations specified in anatomical textbooks. The
higher distribution at specific locations (e.g., groins, axillae, the hollows of the knees, crooks
of the arms) in the textbooks is correctly incorporated. Six different lymphatic node regions
are modeled: extrathoracic airways, thoracic airways, head, trunk, arms, and legs. However,
they do not attempt to incorporate site-specific number of the lymphatic nodes.

We previously reported the development of an algorithm to model the lymphatic nodes in
the adult male hybrid phantom (Lee €t al 2009). In the current study, we improved the
algorithm by accounting for the numbers of the lymphatic nodes and extended it to the
pediatric hybrid phantoms. To assess the performance of our models for internal dosimetry,
we calculated the dose conversion coefficients, called S values, for selected organs/tissues
and the 16 lymphatic node sites considering an iodine-131 (I-131) source distributed in
selected lymphatic nodes.

2. MATERIALS AND METHODS
2.1. Hybrid phantom series

We used 8 ICRP-compliant pediatric and adult hybrid phantoms : newborn, 1-year, 5-year,
10-year male, and 15-year-old and adult male and female phantoms developed at the
University of Florida and the National Cancer Institute (Lee et al 2007; Lee et al 2010; Lee
et al 2008). The phantoms were originally segmented from head and torso CT images of real
patients at the given ages. Arms and legs were separately segmented from high resolution
CT images of arms and legs of the 18-year-old male, and then scaled to match the standard
anthropometric data at each respective age. Four international reference datasets were
incorporated into the final phantom series: (1) reference masses of organs and tissues (ICRP
2002), (2) reference elemental compositions of organs and tissues, (3) reference
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anthropometric data of the United States (http://www.cdc.gov/nchs/nhanes.htm), and (4)
reference dimensions of the alimentary tracts. Each hybrid phantom includes more than 40
organs/tissues as well as 35 detailed skeletal sites. The skeleton is composed of cortical and
spongiosa structures to enable detailed dose calculations for active marrow and bone
surface.

Because the male and female pediatric phantoms (newborn to 10-year-old) share the same
anatomy except gender-specific organs such as prostate, uterus, testes, and ovaries, we only
used the male phantoms for those ages in this study. The 15-year-old and adult male and
female phantoms were based on totally independent individuals to accurately model their
gender-specific anatomy and unique heights and weights. Therefore, we developed a lymph
node model for both male and female phantoms of age 15 and adult.

2.2. Anatomical data of lymphatic node model

We identified 16 lymphatic nodal sites each representing a cluster of lymphatic nodes from
the literature (Marieb and Hoehn 2007): extrathoracic, cervical, thoracic (upper and lower),
breast (left and right), mesentery (left and right), axillary (left and right), cubital (left and
right), inguinal (left and right), and popliteal (left and right). We assumed that the lymphatic
nodes were symmetrically distributed in case of left and right-sided sites (e.g., axillary). To
realistically model the lymphatic nodes, we used additional data such as the diameter of a
single node, the site-specific diameter of a lymph node cluster, as well as the number of
lymphatic nodes.

Genereux et al. (Genereux and Howie 1984) measured the size and number of lymphatic
nodes in the mediastinal region by using computed tomography (CT) images of 39 patients
and by dissection at autopsy in 12 cadavers. Depending on their anatomic site, lymphatic
nodal size ranges from 0.1 to 2 cm. The average size in the four different zones around
mediastinal region is 1.26 x 0.83 cm. Glazer et al. (Glazer et al 1985) measured the number
and size of normal mediastinal lymphatic nodes via CT images of 56 normal adult patients.
They suggested 1 cm as the upper limit of the short axis for a mediastinal node in the
transverse CT image plane. Kiyono et al. (Kiyono et al 1988) also measured the number and
size of normal lymph nodes for each region of the mediastinum from 40 adult cadavers.
They propose a standard for maximum normal short transverse diameters for the
mediastinum region ranging from 0.8 — 1.2 cm. Based on the literatures, we subsequently
defined a standardized nodal diameter of 1 cm for our model in adult male and female for all
lymphatic nodes except extrathoracic and upper/lower thoracic sites. In these locations we
used a diameter of 0.6 cm because the spaces of residual soft tissues in the head and thoracic
regions were too small to allow the inclusion of individual lymphatic nodes larger than 0.6
cm. Using the diameter of a lymph node for an adult male, we calculated age-dependent
nodal diameters using the ratio of the lateral width of the phantoms as a factor of
proportionality. Table 1 shows the age-dependent nodal diameters for the hybrid phantoms
used in this study.

We measured the diameters of the 16 lymph node cluster sites based on the literature
(Marieb and Hoehn 2007) and concluded that the diameters are approximately close to the
lateral phantom width divided by a factor of 10 except for the mesentery and inguinal lymph
sites; in these cases factors of 5 and 15 were used, respectively. The phantom width was
calculated by multiplying the number of voxels between left and right limits of the phantoms
by the voxel resolution. By using the width of the age-dependent phantom, the cluster
diameters were automatically scaled down to the pediatric phantoms. The resulting cluster
diameters are tabulated in Table 1.
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We derived the number of lymph nodes at the 16 sites from ICRP Publications. The true
number of lymph nodes in the human body is large and is difficult to accurately estimate.
The ICRP reports that at least 600—700 lymphatic nodes exist within the adult body, 8-37 in
the armpits, at least 50-60 in the lung hilus, and 200-500 in the mesentery area (ICRP
2002). We used the center of these ranges for our model. Hence we modeled 650 lymph
nodes in the adult male phantom with 55, 350, and 22 in the thoracic (upper and lower),
mesentery (left and right), and axiliary (left and right) lymph node sites, respectively. We
then uniformly distributed the remainder of the lymph nodes, which were equal to 223 nodes
(650-55-350-22=223) to the other lymph node sites (Table 2). We used the site-specific
number of lymph nodes in the adult male phantom to derive the site-specific number of
lymph nodes in the other phantoms. ICRP Publication 23 provides age-dependent estimates
of the number of mesentery lymphatic nodes (ICRP 1975). We adopted the following
numbers after some realistic adjustment: 220 for 0—1 year, 400 for 10 year, and 350 for
adult. We calculated the number of lymph nodes in the 5-year male phantom by
interpolating the number of nodes present in the 1-year-old and 10-year-old phantoms. We
assumed the number of lymph nodes for the 15-year-old male and female, and adult female
phantoms to be the same as in the adult male. We used the ratio of the number of the
mesentery nodes in the pediatric phantoms to the adult phantoms as a factor of
proportionality to calculate the site-specific nodal numbers for the other phantoms (Table 2).

2.3. Algorithm for modeling lymphatic nodes

The hybrid phantom is composed of a combination of Non-Uniform Rational B-Spline
(NURBS) and polygon mesh (PM) surfaces. The original NURBS/PM hybrid phantom is
converted into voxel format to be coupled with Monte Carlo calculation code through a
voxelization process previously described by Lee et al (Lee et al 2007). In the current study,
we used both NURBS/PM and voxel formats to create the lymphatic node model. The
procedure involved two steps: (1) identifying location of 16 central points of the 16
lymphatic cluster sites within the NURBS/PM format, and (2) populating lymphatic nodes
within the voxel format using an algorithm.

First, we chose 16 points corresponding to the center of the 16 lymphatic cluster sites in the
NURBS/PM-format hybrid phantoms using commercial 3D NURBS modeling software!.
We manually saved the rectangular coordinates of these 16 points for each phantom in
ASCII text file. The 8 hybrid phantoms were voxelized using a resolution adequate enough
to accurately model the smallest elements in the anatomy (Table 1).

Second, we extended our previous algorithm that incorporates lymphatic nodes in our adult
male phantom (Lee et al 2009) to more realistically account for the site-dependent number
of lymph nodes. This was done using an in-house MATLAB"" (Mathworks, Natick, MA)
code to automate the lymph node generation. The MATLAB code uses the voxel phantom
data and the necessary anatomical data, i.e., the center and diameter of the 16 clusters, the
diameter of a single lymph node, and the derived site-specific nodal numbers. The code
generates the individual lymph nodes in two steps: (1) position sampling and (2) node
generation. The code consecutively selects each lymph node site and randomly sampled the
position of the individual lymphatic nodes within the spherical location bounded by the
diameter of the cluster location. Any location already occupied by other organs or the
skeleton, excluding residual soft tissue, and lymph nodes already generated is rejected. If the
previous criteria are met, sphere or ovoid of tissue representing individual lymphatic nodes
were created at the sampled positions. The shape of a single node depends on whether the
voxel resolution of a given phantom is isotropic or not. Sphere is generated for the isotropic

thinocerosTM (McNeel North America, Seattle, WA)

Phys Med Biol. Author manuscript; available in PMC 2014 January 02.



1duosnuey Joyiny vd-HIN 1duosnuey Joyiny vd-HIN

1duosnuepy Joyiny Yd-HIN

Lee et al.

Page 5

voxel resolution (e.g., newborn) and ovoid is for the anisotropic resolution phantoms. The
code creates lymph nodes until the predefined number of lymph nodes within a given site is
reached. We obtained the volume of the site-specific lymph nodes from the resulting voxel
phantoms and calculated the mass of the lymph nodes in each site using the density, 1.03 g/
cm?, of the average soft tissue (ICRU 1992). The second step is summarized in Figure 1.

2.4. Visualization of the lymph node model

Once the lymph node model was completed and merged with the other anatomical data in
the hybrid voxel phantom, it was rendered in 3-dimensions using Visualization Toolkit
(VTK) (KitWare Inc., Clifton Park, NY) for visual inspection. VTK is well tested software
library for the visualization of scientific data. It includes routines for viewing and
manipulating visual data based on low level functions defined by the OpenGL library. After
modeling of lymphatic nodes in the hybrid phantom, each voxel is given a value (tag
number 0 — 255) and stored to disk using one byte (8 bits) of data. Using the proper
dimensions, orientation, and resolution information, VTK is able to construct the 3-
dimensional reference frame needed to properly view the data. The data can then be
visualized in any number of ways. In our case, the data was viewed volumetrically and
mapped using the tag numbers associated with each voxel. Through different color transfer
functions and opacity functions, we were able to view and inspect the lymph node models
and thus the accuracy of the lymph node model at various anatomical levels.

2.5. lllustrative calculation of S values

To assess the performance of our lymph node models for use in internal dosimetry, we
calculated the dose conversion coefficients, called S values, for I-131 using 6 selected
lymphatic node sites considered as source regions and 30 organs and tissues (including the
16 lymphatic node sites) considered as target regions. Source regions included upper and
lower thoracic, left and right mesentery, and left and right axiliary lymph node sites. Target
organs other than lymphatic nodes included the brain, salivary glands, thyroid, esophagus,
left and right lung, stomach wall, liver, small intestine wall, left and right colon wall, skin,
urinary bladder wall, and ovaries/testes. I-131 was assumed to be uniformly distributed in
each of the selected lymphatic node source regions.

We directly calculated the S values using Monte Carlo radiation transport techniques.
Calculations for photons and electrons were done separately. The simulations provided the
energy deposition in each target organ ry per simulated particle, noted as E (r1) and E4(ry)
(MeV/particle) for photons and electrons, respectively, where M(rr) is the mass of the target
organ. We computed the products of the energy deposition per simulated particle and the
particle yield (either photon Y, or electron Yp) per nuclear transformation (MBg-s), which
we summed to compute the S value (mGy/MBg-s) ) (eq. 1):

|
—— | E. (v ) YA B Y
M(r, )" () Yy +Eg (rr) Yol (1)

S(ry + r.)=1.602 x 10717
where 1.602 x 10710 is the number of joules per MeV. We previously reported the details of
the calculation method (Lamart et al 2011).

We used a general purpose Monte Carlo radiation transport code, MCNPX2.6 (Pelowitz
2008) to calculate radiation dose per unit administered activity from photon and electron
transport using the I-131 emission spectrum provided from ICRP Publication 107 (ICRP
2008). We voxelized the 6 pediatric and 2 adult hybrid phantoms using the resolution
mentioned above (Table 1), and implemented lymph nodes using the MATLAB code.
Organ- and tissue-specific density and elemental composition were implemented into the
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material card of the MCNPX code. The radioactive source was described as a uniform
source of radiation within a given source region, by explicitly specifying the location of each
voxel included in the source region within the phantom matrix. The location data of the
source voxels were generated from each phantom by using an in-house MATLAB code. We
conducted the radiation transport simulations using 5 x 108 particle histories to ensure a
relative error of less than 1% for most of the source and target organ combinations.

In order to investigate the dosimetric impact of the changes in the new lymph node model,
we compared the S values from the new lymph node model with the values from our old
model (Lee et al 2009).

2.6. Sensitivity of S values to random sampling and voxel resolution

Sensitivity of S values to (1) the randomness of the lymph node generation and (2) the
different voxel resolution was tested.

First, two more lymph node models were consecutively generated within adult male voxel
phantom using the algorithm of the lymph node generation but with different seeds for
random numbers. Organ and lymph node S values were calculated using the two additional
phantoms when I-131 is assumed to be distributed within lower thoracic lymph nodes which
are relatively located in the middle of the torso region. Average, standard deviation (SD),
and coefficient of variation (COV) were calculated for the three sets of S values including
the value already calculated from the original adult male voxel phantom and the new S
values calculated from two additional phantoms. Although the site-specific and total
numbers of lymph nodes were identical within the three phantoms, the locations of each
individual lymph node were different.

Second, the adult male hybrid NURBS phantom was voxelized to generate two more adult
male voxel phantoms using different voxel resolutions: 0.1 x 0.1 x 0.1 cm3 and 0.2 x 0.2 x
0.2 cm3. Organ and lymph node S values were calculated for the two additional voxel
phantoms again when I-131 is assumed to be distributed within lower thoracic lymph nodes.
Average, SD, and COV were calculated for the three sets of S values including the values
from the original adult male voxel phantom with the voxel resolution of 0.1579 x 0.1579 x
0.2207 cm3 (Table 1) and the two additional phantoms.

3. RESULTS
3.1. Lymphatic node models

We modeled 16 sites of lymphatic nodes in 8 hybrid phantoms using our algorithm. We
visually evaluated and validated our algorithm using the visualization of the distribution of
the lymph nodes relative to the anatomical and skeletal structures of the phantoms. Figure 2
shows the frontal views of the original newborn hybrid phantom in NURBS format (left)
and the lymphatic node model with skeleton (right). All of organs and tissues are visualized
in the left figure to help readers understand the location of internal organs relative to that of
the lymph nodes. The lymph node models for other phantoms are shown in Figure 3. The
smaller diameter used for the lymph nodes at the extrathoracic and upper/lower thoracic
sites resulted in smaller sized lymph nodes as compared to other cluster sites.

The comparison of the lymph node masses across the sites and ages enabled us to
quantitatively assess our model (Table 3). The age-dependent lymph nodal mass followed
the same trend as the number of nodes defined in Table 2. We also compared the total mass
of age-dependent lymph node models with the values derived from ICRP Publications
(ICRP 1994; ICRP 2002) which we previously reported (Lee et al 2009). ICRP Publication
66 reports the masses of lymph nodes in extrathoracic and thoracic regions to be
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approximately 15 g each (ICRP 1994). We assumed that 14 different lymphatic node sites in
adult male contain a total lymphatic node mass of 15 g each, considering the left and right
mesentery sites as a single nodal region and the upper and lower thoracic sites also as a
single nodal region. The total mass in our previous study came from the reference mass of
the two lymph sites whereas the total mass in the current study starts from the reference
nodal numbers in the three lymph node sites. Although the two approaches completely
differ, the resulting total lymph node masses reasonably matched within 7% on average.

The site-specific mass and the percent distribution of our lymph nodes in the adult male
phantom are compared with those of the ICRP reference adult male phantom (ICRP 2009) in
Table 4. The 16 lymph sites were reorganized to match the ICRP category. The distributions
of the lymph nodes in the two phantoms reasonably match for trunk, arms, and legs regions.
Trunk and legs regions show very good agreement less than 10%.

3.2. S values for I-131 source

We calculated S values for selected organs and tissues using 6 selected lymph node sites as
source regions for the newborn, 1-, 5-, 10-year male phantoms, and 15-year and the adult
male and female phantoms.

Figure 4 shows the age-dependent S values (mGy/MBg-s) for selected organs close to the
two source regions: (a) upper thoracic and (b) right mesentery lymph sites. To make the
graphs more readable, we did not include the values for the 15-year and adult female
phantoms. With I-131 distributed in the upper thoracic lymph nodes, the esophagus received
the greatest dose per unit of administered activity (Figure 4a). Because the upper thoracic
lymph nodes are closely surrounding the esophagus and also are close to the lungs, as
compared to other organs, there was more energy deposition in the esophagus and lungs than
in organs located further from the source. Because the distance between the source and the
target tissues is shorter in smaller phantoms, the S values tended to be greater in smaller
phantoms. For example, the S values for the esophagus and right lung in the newborn
phantom were 15 and 12 times greater than the values of the adult male phantom,
respectively. The influence of the source-to-target distance was also observed when the
I-131 was distributed in the right mesentery lymph nodes (Figure 4b). The small intestine
wall and right colon wall had relatively greater S values than other organs because the
mesentery lymph nodes were distributed close to the small intestine and colon (Figure 2).
The right colon had larger S values than the left colon because the source was distributed in
the right mesentery lymph nodes. For the newborn phantom, the S value for the right colon
wall was twice as large as the value for the left colon wall. The S values did not always
increase with decreasing age, e.g., the S values slightly decreased in the 1-year-old and the
newborn phantoms as compared to the computed S values observed in the 5-year-old
phantom. The inter-organ distance generally increase with growth; however, the spatial
distribution of the mesentery nodes relative to the right colon, for example, may be more
independent of growth in our models.

We calculated the S values for selected lymph node sites assuming I-131 was distributed in
the (a) left axillary and (b) lower thoracic lymph nodes (Figure 5). The S value resulting
from self-irradiation for the left axillary nodes was about 30,000 and 10,000 times larger
than the upper thoracic nodes in the newborn and adult male, respectively (not shown in
Figure 5 to make it more readable). Because of their close proximity to the left axillary
lymph nodes, the upper/lower thoracic and left breast lymph nodes had relatively greater S
values when compared with other lymph node sites. Upper thoracic lymph nodes had the
highest S values when I-131 was distributed in the lower thoracic nodes, and then were
followed by the right and left breast lymph nodes (Figure 5b).
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3.3. Comparison with the previous adult lymph node model

We compared the S values from the new lymph node model with the values from our old
model (Lee et al 2009) that we previously reported to investigate the dosimetric impact of
the changes in the new lymph node model. In our old model, a total of 278 lymph nodes are
placed within the adult male phantom by randomly generating the lymph nodes until
matching total lymph node mass to the estimate of 210 g. In the new model, however, we
generated 657 lymph nodes (Table 2) to better match the reference nodal numbers, 600-700
reported in the ICRP Publication 89 of which mass is 223 g in total. The new model includes
more than twice more lymph nodes as compared to the old model and most of the additional
nodes were placed in the mesentery sites to follow the reference range, 200-500 in the ICRP
Publication 89. Figure 8 shows the comparison of frontal views of lymph node models with
skeleton of the old (left) and new (right) models in the adult male phantoms. The increase of
the lymph nodes number and cluster size in the mesentery region is noticeable in the new
model.

To investigate the dosimetric impact of the changes made in our new lymph node model, we
compared the S values calculated from the new model with the values from the old model
that we previously reported (Lee et al 2009). Figure 6(a) and 6(b) shows the ratios of organ
and lymph node S values, respectively, from the old lymph node model to the values from
the new model when I-131 is localized in the right and left mesentery lymph nodes where
most significant change was made in the new model. The S values from the new model are
overall higher than those from the old one as shown in Figure 6(a). This is attributed to the
decreased distance between new mesentery lymph node cluster and the surrounding organs
corresponding to the expansion of the mesentery lymph node cluster in the new model.
Photons generated in the new mesentery lymph node model experience less attenuation
before entering the target organs than those in the old model. The old and new lymph node
models were implemented into the identical adult male phantom anatomy which made it
easy to evaluate the dosimetric impact of the changes in the lymph node models on organ S
values. However, it is difficult to investigate their impact on lymph node S values since the
diameter and location of the lymph node clusters were changed in the new model as
compared to the old one as shown in Figure 8. Self S values of right and left mesentery
lymph nodes from the right and left mesentery sources, respectively, are lower in the new
model than the old one as shown in Figure 6(b) because the bigger cluster size in the new
model provides more attenuation for the cross-firing photons among the mesentery lymph
nodes. The location of the lower thoracic lymph nodes was relocated upward in the new
model based on the literature (Marieb and Hoehn 2007) which caused the decrease of the S
values for the lower thoracic lymph node target in the new model as compared to the values
from the old model.

As compared to mesentery lymph nodes in Figure 6(a) and 6(b), relatively minor changes
were made in the new axillary lymph nodes. Figure 7 shows the ratio of organ S values from
the old model to the values from the new model when I-131 is localized in the right and left
axillary lymph nodes. Difference is observed less than 20% which is smaller than the case of
the mesentery lymph nodes. S values for the new axillary lymph nodes are overall greater
than the values for the old ones. As shown in Figure 8, less number of lymph nodes is
populated in the new model and they are more condensed toward torso region compared to
the old model which has some nodes located farther from the torso. Those farther lymph
nodes may contribute to the smaller organ S values in the old axillary lymph node model.

3.4. Sensitivity of S values to random sampling and voxel resolution

Table 5 and 6 show the organ and lymph node S values, respectively, for the three adult
male (AM) voxel phantoms including the original phantom (AM1) and two additional
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phantoms (AM2 and AM3) which were generated in three consecutive trials using the same
lymph node generation algorithm but different random number seeds. I-131 was assumed to
be distributed within lower thoracic lymph nodes. Average, SD, and COV (%) are also
included in both tables. Although the locations of individual lymph node were randomly
sampled among the three voxel phantoms, COV of organ S values was less than 10% as
shown in Table 5. COV of lymph node S values (Table 6) was also less than 10% for most
of lymph node sites except right and left popliteal sites. The COV higher than 10% in the
popliteal lymph nodes is attributed to the poor statistics in Monte Carlo calculations. Percent
relative errors from Monte Carlo calculation are also included next to the S values in Table 6
for reference. It was impossible to reduce the relative errors of the popliteal S values down
to less than 1% even using the 5 x 108 photon history because the lymph site is too far from
the source region as compared to other lymph sites as shown in Figure 8. Table 6 is sorted in
ascending order of S values to highlight the magnitude of S values. The S value for the left
popliteal lymph nodes, 5.5 x 10711 mGy/MBg-s, is 10,000 times smaller than the value for
the right breast lymph node, 5.6 x 10~/ mGy/MBg-s.

The organ and lymph node S values from another set of the three voxel phantoms are
tabulated in Table 7 and 8, respectively, including the values from the original adult male
voxel phantom with the voxel resolution of 0.1579 x 0.1579 x 0.2207 cm? (0.0055 cm?) and
the two additional voxel phantoms, AM4 and AMS5, with the voxel resolution of 0.1 x 0.1 x
0.1 cm3 (0.0010 cm3) and 0.2 x 0.2 x 0.2 cm? (0.0080 cm?), respectively. I-131 was
assumed to be distributed within lower thoracic lymph nodes. Similar with the sensitivity to
random samplings (Table 5), organ S values from the three voxel phantoms with different
voxel resolutions match well within the COV of 10%. As shown in Table 6, COV for lymph
node S values is less than 10% except for the popliteal lymph nodes which show the COV
way greater than 10%. Again the magnitude of Monte Carlo relative errors for those S
values is greater than 20% which means the results are unreliable. Again the popliteal lymph
node S values are much smaller than the values for other lymph nodes.

Based on the two different types of sensitivity analysis, we conclude that the lymph node
model is reasonably stable and consistent for different random samplings and voxel
resolutions.

4. DISCUSSION

To provide an anatomically accurate model of the lymph nodes across ages and genders for
radiation dosimetry, we developed an algorithm to automatically incorporate lymphatic
nodes within computational human phantoms based on available reference data. We
generated lymph node models for 8 hybrid phantoms, i.e., newborn, 1-, 5-, 10-year male
phantoms, and 15-year and adult male and female phantoms using the algorithm. The 16
site-specific numbers of lymph nodes well matched the reference numbers reported by ICRP
Publications. The resulting total lymph node mass also reasonably matched the reference
lymph node mass derived from ICRP Publications. To further evaluate our lymph node
model, we calculated internal dose conversion factors (S values) using a radiation transport
code that employs Monte Carlo radiation transport techniques. As expected, the source-to-
target distance drove the magnitude of the S values, which generally decreased with
phantom size, because of increasing distance between the lymph node sources and the target
organs or tissue. Our work provides an anatomically improved model of lymph nodes for
radiation dosimetry when compared with the previous methods of modeling where lymph
nodes are manually drawn within the voxel phantoms by referring to anatomy textbooks
(ICRP 2009) or manually segmented from medical images with limited visibility of lymph
nodes (Kramer et al 2006). We checked the dosimetric impact of the better realism in our
new model by comparing the S values with those from our old lymph node model.
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The location of each lymph node was randomly sampled and fixed once the modeling is
done within a given voxel phantom. The spatial distribution of lymph nodes would be
different every time we apply the algorithm. However, the lymph nodes are generated within
tight constraints such as pre-defined cluster radius and the resulting lymph node model will
not provide a significant dosimetric uncertainty which was confirmed by the sensitivity
analysis of random sampling. Minor dose uncertainty caused by the variation of exact size,
shape, and location of lymph nodes might be at the similar level of uncertainty attributed to
an individual variability. Other organ and tissue models than lymph nodes within most of
voxel phantoms are also having the issue of individual variability (e.g., shape and location of
stomach). Other existing lymph node models developed through manual drawings or
segmentations also might involve the similar level of dose uncertainty.

The size of individual lymph node was determined by the breadth of our reference pediatric
and adult phantoms which follow the standard anthropometric data. If one intends to use our
lymph node model for a voxel phantom with non-50t percentile body size, we would
recommend using the lymph node size tabulated in Table 1 corresponding to the age of the
voxel phantom instead of its breadth since the nodal size may rather depend on age than
body size.

Our lymph node model still may be improved by further investigations. We used the
available published data on lymph nodes location and size and made assumptions to build
our model, e.g., we derived the site-specific number of lymph nodes for smaller phantoms
using the ratio of mesentery lymph nodes. To further validate the assumption, it may be
necessary to use high-resolution CT images for each lymph node site and across the specific
ages and both genders. This task may be challenging because lymph nodes are difficult to
identify in CT images. Also, whole body scans are less frequent than CT scans covering a
limited section of the body. One could derive the relative number of lymph nodes among
different sites using partial body scans from different patients, but then inter-individual
variability needs to be considered.

5. CONCLUSION

In this study we proposed a more anatomically accurate (compared to previous models)
lymph node model for 6 pediatric and 2 adult male and female phantoms. Our model
compared well with anatomical reference data from ICRP and yielded favorable results for
most target organs and tissues when computing S values, which are especially sensitive to
inter-organ distances. The pediatric hybrid phantoms, with the incorporated lymphatic node
models, will be used to derive reference radiation dose estimates for radiation protection
purpose.
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Initial Dota Reading

PHANTOM: 30 voxel phantom binary file
SITE_LOC: Center of spherical cluster for 16 sites
SITE_DIA: Diameter of spherical cluster for 165sites
NODE_DIA: Diameter of lymph nodes for 16 sites
NODE_NUM_REF: Derived site-specific nodal number
|
h 4

Site Loop: 1 to 16 sites

|
Ly

Location Sampling

Randomly sample, NODE_X, NODE_Y, and NODE 2,
location of a single nade
within the predefined cluster sphere, SITE_DIA

.

Node Generation

Generate a nodal sphere with a given diameter (NODE_DIA)
atthe sampled location {NODE_X,Y.Z) and
Count the number of node generated, NODE_NUM

NODE_NUM > NODE_NUM_REF

v

Export Phontom
Export binary fileincluding lymphatic node models

Figure 1.

Flowchart describing the algorithm to insert the lymph nodes in voxel phantoms.
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Figure 2.
3D rendering of the skeleton of the newborn phantom and the incorporated lymph nodes.
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Figure 3.
3D rendering of the skeleton and lymph nodes of the 1-, 5-, 10-, 15-year and adult male
phantoms.
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Ratio of the (a) organ and (b) lymph node S values from the old lymph node model
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previously reported to the values from the new model developed in the current study when

I-131 is localized in the right and left mesentery lymph nodes.
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Ratio of the organ S values from the old lymph node model to the values previously reported
from the new model developed in the current study when I-131 is localized in the right and
left axillary lymph nodes.
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Figure8.
Comparison of the frontal views of the old (left) and new (right) lymph node models with
the skeleton in the adult male hybrid voxel phantom.
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