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Abstract Computational mechanics quantifies structure in a stochastic process via its causal

states, leading to the process’s minimal, optimal predictor—the ǫ-machine. We extend

computational mechanics to communication channels coupling two processes, obtaining

an analogous optimal model—the ǫ-transducer—of the stochastic mapping between them.

Here, we lay the foundation of a structural analysis of communication channels, treating

joint processes and processes with input. The result is a principled structural analysis of

mechanisms that support information flow between processes. It is the first in a series on

the structural information theory of memoryful channels, channel composition, and allied

conditional information measures.

Keywords Sequential machine · Communication channel · Finite-state transducer ·

Statistical complexity · Causal state · Minimality · Optimal prediction · Subshift

endomorphism

1 Introduction

Arguably, the distinctive character of natural and engineered systems lies in their organiza-

tion. This is in contrast to differences, say, in how random they are or in their temperature.
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Computational Mechanics of Input–Output Processes. . . 405

Computational mechanics provides an analytical and constructive way to determine a sys-

tem’s organization [1], supplementing the well developed statistical physics view of systems

in terms of disorder—via thermodynamic entropy and free energy. The contrast begs a ques-

tion, though, how does organization arise?

As a step to an answer, we extend computational mechanics from describing individual

systems to analyze organization in transformations between systems. We build on its well

established methods to describe a calculus for detecting the emergence of structure. Indeed,

natural systems are nothing, if not the result of transformations of energy, information, or both.

There is no lack of examples: Filtering measurement time series to discover the temporal

behavior of hidden states [2]; Maxwell’s Demon translating measurement information to

control actions that rectify thermal fluctuations into work, locally defeating Thermodynamics’

Second Law [3–5]; sensory transduction in the retina that converts light intensity and spectra

into neural spike trains [6]; perception-action cycles in which an agent decides its future

behavior based on its interpretation of its environment’s state [7,8]; and, finally, firms that

transform raw materials into finished goods [9].

We refer to our objects of study as structured transformations to emphasize the particular

focus on basic questions of organization. How complex is a transformation? What and how

many resources are required to implement it? What does it add to an input in producing an

output? Randomness, structure, or both? What is thrown away? How is its own organization

reflected in that of its output?

The framework addresses these questions, both quantitatively and from first principles.

It is the first in a series. Foremost, it’s burden is to lay the groundwork necessary to answer

these questions. Sequels introduce information measures to classify the kinds of information

processing in joint input–output processes and in structured transformations. To delineate

the underlying mechanisms that produce organization, they analyze a range of examples and

describe a number of interesting, even counterintuitive, properties of structured transforma-

tions.

The questions posed are basic, so there is a wide range of applications and of historical

precedents. Due to this diversity and to avoid distracting from the development, we defer

reviewing them and related work until later, once the context has been set and the focus,

benefits, and limitations of our approach are clear.

The following analyzes communication channels and channel composition in terms of

intrinsic computation [1,10]. As such, it and the entire series, for that matter, assume famil-

iarity with stochastic processes at the level of Ref. [11], information theory at the level of

Refs. [12,13], and computational mechanics at the level of Refs. [14,15]. These serve as the

default sources for statements in our review.

We first present a brief overview and relevant notation for how computational mechanics

describes processes. We extend this to describe controlled processes—processes with input.

Several examples that illustrate the basic kinds of input–output process are then given, by

way of outlining an organizational classification scheme. At that point, we describe the

global ǫ-machine for joint input–output processes. Using this we introduce the ǫ-transducer,

defining its structural complexity and establishing its optimalities. We close with a thorough

analysis of the example input–output processes and compare and contrast ǫ-transducers with

prior work.
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406 N. Barnett, J. P. Crutchfield

2 Processes and Their Presentations

2.1 Stationary, Ergodic Processes

The temporal stochastic process we consider is a one-dimensional chain . . . Y−2Y−1Y0Y1

Y2 . . . of discrete random variables {Yt }t∈Z that take values {yt }t∈Z over a finite or countable

alphabet Y . A finite block Yi Yi+1 . . . Y j−1 of variables with t ∈ [i, j) is denoted Yi : j .

The left index is always inclusive, the right always exclusive. Let
↼⇀
Y denote the bi-infinite

chain Y−∞:∞, and let
↼⇀
Y denote the set of all bi-infinite sequences ↼⇀y with alphabet Y .

↼−
Yt = . . . Yt−2Yt−1 is the past leading up to time t , not including t , and

−⇀
Yt = Yt Yt+1 . . . is

the future leading from it, including t .

We can also use the time index notation above to specify the time origin of a process or

bi-infinite sequence. This is useful when we are comparing two such processes or sequences.

For example, if we wish to say that
↼⇀
Y is

↼⇀
X delayed by three time steps, this can be written

as
↼⇀
Y3 =

↼⇀
X0. To indicate the time origin in specific realized symbol values in a chain, we

place a period before the symbol occurring at t = 0: e.g., ↼⇀y = . . . acbb.caba . . ., where

y0 = c. Finally, if the word abcd follows a sequence of random variables Yi : j we denote this

by Yi : j+4 = Yi : j abcd , for example. A word occurring before a sequence of random variables

is denoted by a similar concatenation rule; e.g., Yi−4: j = abcdYi : j .

A stochastic process is defined by its word distributions:

P(Yt :t+L) ≡ {P(Yt :t+L = yt :t+L)}yt :t+L∈YL , (1)

for all L ∈ Z
+ and t ∈ Z.

We will often use an equivalent definition of a stochastic process as a random variable

defined over the set of bi-infinite sequences
↼⇀
Y . In this case, a stochastic process is defined

by an indexed set of probabilities of the form:

P(
↼⇀
Y ) ≡ {P(

↼⇀
Y ∈ σ)}

σ⊆
↼⇀
Y

, (2)

where σ is a measurable set of bi-infinite sequences. We can obtain a process’ word probabil-

ities by selecting appropriate measurable subsets—cylinder sets—that correspond to holding

the values of a contiguous subset of random variables fixed.

In the following, we consider only stationary processes—those invariant under time trans-

lation:

P(Yt :t+L) = P(Y0:L) and

P(
↼⇀
Y t ) = P(

↼⇀
Y0),

for all t ∈ Z and L ∈ Z
+. This property ensures that a process’s behavior has no explicit

dependence on time origin.

We will also primarily limit the discussion to ergodic stationary processes—processes

where any realization ↼⇀y gives good empirical estimates P̂(Y0:L) of the process’s true word

probabilities P(Y0:L) [16]. That is, for any finite realization y0:M , the empirical estimate

P̂(w) of a word w = w0w1 . . . wL−1 of length L , converges almost surely to the true process

probability P(Y0:L = w) as M → ∞, where:

P̂(w) ≡

M−L∑

t=0

Iw(yt :t+L)

M − L + 1
,
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and the indicator function Iw(yt :t+L) equals 1 when yt :t+L = w, and 0 otherwise. This

property ensures, among other things, that any particular realization of the process reflects

the behavior of the process in general—a useful property when we do not have freedom to

re-initialize the system at will.

2.2 Examples

To illustrate key ideas in the development, we use several example processes, all with the

binary alphabet Y = {0, 1}. They are used repeatedly in the following and in the sequels.

2.2.1 Biased Coin Process

The Biased Coin Process is an independent, identically distributed (IID) process, where word

probabilities factor into a product of single-variable probabilities:

P(Y0:L) = P(Y0)P(Y1) · · · P(YL−1),

where P(Yt ) = P(Y0) for all t . If n is the number of 0s in y0:L , then P(y0:L) = pn(1− p)L−n ,

where p = P(Y0 = 0).

2.2.2 Period-2 Process

The Period-2 Process endlessly repeats the word 01, starting with either a 0 or a 1 with equal

probability. It is specified by the word distributions:

P(Yi : j = (. . . 1010.1010 . . .)i : j ) = 1
2

and

P(Yi : j = (. . . 0101.0101 . . .)i : j ) = 1
2
,

where i, j ∈ Z, i < j .

2.2.3 Golden Mean Process

The Golden Mean Process generates all binary sequences, except those with consecutive 0s.

After a 1 is generated, the next 0 or 1 appears with equal likelihood. Its word distributions

are determined by a Markov chain with states Y0 = 0 and Y0 = 1 having probabilities

P(Y0 = 0) = 1/3 and P(Y0 = 1) = 2/3, respectively, and transition probabilities:

P(Y1 = 0|Y0 = 0) = 0,

P(Y1 = 1|Y0 = 0) = 1,

P(Y1 = 0|Y0 = 1) = 1
2
, and (3)

P(Y1 = 1|Y0 = 1) = 1
2
.

2.2.4 Even Process

The Even Process generates all binary sequences, except that a 1 always appears in an even-

length block of 1s bordered by 0s. After an even number of 1s are generated, the next 0 or 1

appears with equal likelihood. Notably, the Even Process cannot be represented by a Markov

chain of any finite order or, equivalently, by any finite list of conditional probabilities over

words. As we will see, though, it can be represented concisely by a finite-state hidden Markov

model. To see this, we must first introduce alternative models—here called presentations—for

a given process.
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408 N. Barnett, J. P. Crutchfield

2.3 Optimal Presentations

We can completely, and rather prosaically, specify a stationary process by listing its set of

word probabilities, as in Eq. (1), or conditional probabilities, as in Eq. (3). As with the Even

Process, however, generally these sets are infinite and so one prefers to use finite or, at least,

more compact descriptions. Fortunately, there is a canonical presentation for any stationary

process—the ǫ-machine of computational mechanics [10,14]—that is its unique, optimal,

unifilar generator of minimal size; which we now define.

Given a process’s word distribution, its ǫ-machine is constructed by regarding any two

infinite pasts ↼−y and ↼−y ′ as equivalent when they lead to the same distribution over infinite

futures—the same future morphs, of the form P(
−⇀
Y |↼−y ). This grouping is given by the causal

equivalence relation ∼ǫ :

↼−y ∼ǫ
↼−y ′ ⇐⇒ P(

−⇀
Y |

↼−
Y = ↼−y ) = P(

−⇀
Y |

↼−
Y = ↼−y ′). (4)

The equivalence classes of ∼ǫ partition the set
↼−
Y of all allowed pasts. The classes are the

process’s causal states. The indexed set of causal states is denoted by S and has elements

σi . Note that i is not a time index, but an element of an index set with the same cardinality as

S . The associated random variable over alphabet S is denoted by S. The ǫ-map is a function

ǫ :
↼−
Y → S that takes a given past to its corresponding causal state or, equivalently, to the

set of pasts to which it is causally equivalent:

ǫ(↼−y ) = σi

= {↼−y ′ : ↼−y ∼ǫ
↼−y ′}.

The ǫ-map induces a dynamic over pasts: Appending a new symbol yt to past ↼−yt produces a

new past ↼−yt+1 = ↼−yt yt . This, in turn, defines a stochastic process—the causal-state process—

with random variable chain
↼⇀
S = S−∞:∞ = . . . S−1S0S1 . . ., where at time t each St takes

on some value st = σi ∈ S . The relationship between a process’s pasts and its causal states

is summarized in Fig. 1. The map from the observed chain
↼⇀
Y to the internal state chain

↼⇀
S

is the causal state filter. (We return to this mapping later on.) The dynamic over causal states

is specified by an indexed set T of symbol-labeled transition matrices:

T ≡ {T (y)}y∈Y ,

where T (y) has elements:

T
(y)

i j = P(S1 = σ j , Y0 = y|S0 = σi ).

· · ·
↼−y t−1

↼−y t
↼−y t+1 · · ·

· · · st−1 st st+1 · · ·

yt−2 yt−1 yt yt+1

yt−2 yt−1 yt yt+1

ǫ ǫ ǫ

Fig. 1 Process lattice: the dynamic inherited by the causal states st = σi ∈ S from a process’s pasts via the

ǫ-map: st = ǫ(. . . yt−2 yt−1)
yt
−→ st+1 = ǫ(. . . yt−2 yt−1 yt )
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The ǫ-map also induces a distribution π over causal states, with elements:

π(i) = P(S0 = σi )

= P
(
ǫ
(↼−

Y
)

= σi

)
.

Since the process is stationary and the ǫ-map is time independent, π is also stationary. We

therefore refer to π as the process’s stationary distribution. Note that for ergodic processes,

the stationary distribution can be calculated directly from the transition matrices alone [17].

The tuple (Y , S, T ) consisting of the process’ alphabet, causal state set, and transition

matrix set is the process’ ǫ-machine.

The ǫ-machine is a process’s unique, maximally predictive, minimal-size unifilar presen-

tation [10,18,19]. In other words, the causal states are as predictive as any rival partition R

of the pasts
↼−
Y . In particular, any given causal state σi is as predictive as any of its pasts

↼−y ∈ ǫ−1(σi ). Measuring predictive ability via the mutual information between states and

future observations, this translates to the statement that:

I[S0;
−⇀
Y0] = I[

↼−
Y0;

−⇀
Y0]

≥ I[R0;
−⇀
Y0],

where R0 ∈ R. Moreover, among all equally predictive (prescient rival) partitions R̂ of the

past, the causal states minimize the state Shannon entropy: H[S] = H[π] ≤ H[R̂]. Due to the

ǫ-machine’s minimality, the statistical complexity Cμ = H[S] = H[π] measures the amount

of historical information a process stores.

A process’s ǫ-machine presentation has several additional properties that prove useful.

First, the causal states form a Markov chain. This means that the ǫ-machine is a type of

hidden Markov model. Second, the causal states are unifilar:

H[St+1|Yt , St ] = 0.

That is, the current state and symbol uniquely determine the next state. This is necessary

for an observer to maintain its knowledge of a process’s current causal state while scanning

a sequence of symbols. Third, unlike general (that is, nonunifilar) hidden Markov models,

one can calculate a process’s key informational properties directly from its ǫ-machine. For

example, a process’s entropy rate hμ can be written in terms of the causal states:

hμ = H[Y0|S0].

And, using the methods of Refs. [14,20], a process’s past-future mutual information—the

excess entropy E—is given by its forward S
+ and reverse S

− causal states:

E ≡ I[
↼−
Y ;

−⇀
Y ] (5)

= I[S−; S
+].

Generally, the excess entropy is only a lower bound on the information that must be stored

in order to predict a process: E ≤ Cμ. This difference is captured by the process’s crypticity

χ = Cμ − E.

Since they are conditioned on semi-infinite pasts, the causal states defined above corre-

spond to recurrent states in a process’s complete ǫ-machine presentation. They capture a

process’s time-asymptotic behavior. An ǫ-machine also has transient causal states that arise

when conditioning on finite-length pasts, as well as a unique start state, which can be either

transient or recurrent. When the underlying process is ergodic, they can be derived from the

recurrent causal states using the mixed-state method of Ref. [14]. In general, they can be
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410 N. Barnett, J. P. Crutchfield

obtained from a modified causal equivalence relation, extended to include finite pasts. We

omit them, unless otherwise noted, from our development.

The preceding introduced what is known as the history specification of an ǫ-machine: From

a stationary, ergodic process, one derives its ǫ-machine by applying equivalence relation Eq.

(4). There is also the complementary generator specification: As a generator, rather than using

equivalence classes over a process’s histories, the ǫ-machine is defined as a strongly connected

hidden Markov model whose transitions are unifilar and whose states are probabilistically

distinct. Such an ǫ-machine generates a unique, ergodic, stationary process, and is the same

ǫ-machine that we would obtain by applying the causal equivalence relation to said generated

process [21]. The following uses both history and generator ǫ-machines; which will be clear

in context.

2.4 Example Process ǫ-Machines

The cardinality of a process’s causal state set S need not be finite or even countable; see, e.g.,

Figs. 7, 8, 10, and 17 in Ref. [22]. For simplicity in the following, though, we restrict our

study to processes with a finite or countably infinite number of causal states. This allows us to

depict a process graphically, showing its ǫ-machine as an edge-labeled directed graph. Nodes

in the graph are causal states and edges, transitions between them. A transition from state σi

to state σ j while emitting symbol y is represented as an edge connecting the corresponding

nodes that is labeled y : p. (Anticipating our needs later on, this differs slightly from prior

notation.) Here, p = T
(y)

i j is the state transition probability and y is the symbol emitted on the

transition. Figure 2 displays ǫ-machine state-transition diagrams for the example processes.

Since the Biased Coin Process’s current output is independent of the past, all pasts are

causally equivalent. This leads to a single causal state A, occupied with probability 1. (See

Fig. 2a.) Therefore, the Biased Coin Process has a statistical complexity of Cμ = 0 bits.

It’s excess entropy E also vanishes. This example illustrates the general property that IID

processes lack causal structure. They can be quite random; the example here has an entropy

rate of hμ = H(2/3) ≈ 0.918 bits per step, where H(p) is the binary entropy function.

Fig. 2 ǫ-machines for the

example processes. Transitions

labeled y : p, where p = T
(y)
i j

is

the state transition probability

and y is the symbol emitted on

the transition

A
0 :1/3
1 :2/3

(a) Biased Coin

Process.

A B

0 :1

1 :1

(b) Period-2 Process.

A B1 :1/2

0 :1/2

1 :1

(c) Golden Mean Process.

A B0 :1/2

1 :1/2

1 :1

(d) Even Process.
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In contrast, the Period-2 Process has two causal states, call them A and B, that correspond

to pasts that end in either a 1 or a 0, respectively. (See Fig. 2b.) Since the states are occupied

with equal probability, the Period-2 Process has Cμ = 1 bit of stored information. In this

case, E = Cμ. It is perfectly predictable, with hμ = 0 bits per step.

The two causal states of the Golden Mean Process also correspond to pasts ending with

either a 0 or 1, but for it the state transition structure ensures that no consecutive 0s are

generated. (See Fig. 2c.) Causal state A is occupied with P(A) = 2/3 and state B with

P(B) = 1/3, giving Cμ = H(2/3) ≈ 0.918 bits. Note that the excess entropy is substantially

less—E ≈ 0.2516 bits—indicating that the process is cryptic. We therefore must store

additional state information above and beyond E in order to predict the process [20]. Its

entropy rate is hμ = H(2/3) ≈ 0.918 bits per step.

As mentioned already, the Even Process cannot be represented by a finite Markov chain.

It can be represented by a finite hidden Markov model, however. In particular, its ǫ-machine

provides the most compact presentation—a two-state hidden Markov model. Causal state

A corresponds to pasts that end with an even block of 1s, and state B corresponds to pasts

that end with an odd block of 1s. (See Fig. 2d.) Since the probability distribution over states

is the same as that of the Golden Mean Process, the Even process has Cμ ≈ 0.918 bits

of statistical complexity and hμ ≈ 0.918 bits per step. In contrast, the excess entropy and

statistical complexity are equal: E = Cμ. The Even Process is not cryptic.

3 Input–Output Processes and Channels

Up to this point, we focused on a stochastic process and a particular canonical presentation

of a mechanism—the ǫ-machine—that can generate it. We now turn to our main topic,

generalizing the ǫ-machine presentation of a given process to a presentation of a controlled

process—that is, to input–output (I/O) processes. I/O processes are related to probabilistic

extensions of Moore’s sequential machines [23,24], probabilistic extensions of codes from

symbolic dynamics [25], and, perhaps more naturally, to Shannon’s communication channels

[26]. And so, we refer to them simply as channels. There are important differences from how

channels are developed in standard treatments [12], though. The principal difference is that

we consider channels with memory, while the latter in its elementary treatment, at least,

typically considers memoryless channels or channels with restricted forms of memory 1. In

addition, with an eye to applications, the framework here is adapted to reconstruct channels

from observations of an input–output process. (A topic to which we return at the end.) Finally,

the development places a unique emphasis on detecting and analyzing structure inherent in

I/O processes. Our development parallels that for ǫ-machines; see Ref. [1, and citations

therein].

To begin, we define I/O processes. To make these concrete, we provide several example

channels, leveraging the example processes and their ǫ-machines already described. The

examples naturally lead to the desired extension—the ǫ-transducer. The development then

turns to the main properties of ǫ-transducers.

Loosely speaking, a channel defines a coupling between stochastic processes. It can be

memoryful, probabilistic, and even anticipate the future. In other words, the channel’s current

output symbol may depend probabilistically upon its past, current, and future input and

output symbols. As such, we will be led to generalize the memoryless and anticipation-free

communication channels primarily studied in elementary information theory [12].

1 Though see Ref. [72, Ch.7] and for early efforts Refs. [73] and [74]
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412 N. Barnett, J. P. Crutchfield

Definition 1 A channel
↼⇀
Y

∣∣↼⇀X with input alphabet X and output alphabet Y is a collection

of stochastic processes over alphabet Y , where each such process
↼⇀
Y |↼⇀x corresponds to a

bi-infinite input sequence in
↼⇀
X :

↼⇀
Y |

↼⇀
X ≡ {

↼⇀
Y |↼⇀x }↼⇀x ∈

↼⇀
X

(6)

That is, each fixed realization ↼⇀x = . . . x−1x0x1 . . . over input alphabet X is mapped to a

stochastic process
↼⇀
Y |↼⇀x =

↼⇀
Y | . . . x−1x0x1 . . . over alphabet Y .

If we are given a process
↼⇀
X —an input process—then a channel maps this distribution

over sequences to a joint process
↼−−⇀
(X, Y ), which can be marginalized to obtain a process

↼⇀
Y —the output process. We can characterize a channel by an indexed set P of conditional

word probabilities:

P(Yt :t+L |↼⇀x )

≡
{
P
(
Yt :t+L = yt :t+L

∣∣↼⇀X = ↼⇀x
)}

yt :t+L∈YL ,↼⇀x ∈
↼⇀
X

.

Equivalently, we can represent a channel as a distribution over bi-infinite sequences (output)

conditioned on a particular bi-infinite sequence (input). In other words, a channel can be

characterized by an indexed set:

P
(↼⇀

Y
∣∣↼⇀x

)
≡

{
P
(↼⇀

Y ∈ σ
∣∣↼⇀X = ↼⇀x

)}
σ⊆

↼⇀
Y ,↼⇀x ∈

↼⇀
X

.

Given an input process’ distribution P(
↼⇀
X ) and a channel’s distribution P

(↼⇀
Y |↼⇀x

)
for all

inputs ↼⇀x , we obtain the output process’ distribution as follows:

P
(↼⇀

Y
)

=

∫
P
(↼⇀

Y ,↼⇀x
)

d↼⇀x

=

∫
P
(↼⇀

Y |↼⇀x
)
P(↼⇀x ) d↼⇀x ,

where the first integrand shows the appearance of the intermediate joint process
↼−−⇀
(X, Y ).

Let’s say a few words about definitional choices made up to this point. As defined, the

channels we consider are total (defined for every possible input sequence). One could extend

the definition to allow for partial channels (defined only for a subset of possible sequences),

but we do not consider such channels in what follows. This is the primary reason for defining a

channel’s domain in terms of bi-infinite sequences rather than say, collections of finite words.

Such channels would not necessarily be total. Also, requiring that channels be defined for

every finite input word is restrictive, as even the simplest channels may not have well defined

behavior for say, a single symbol input word. We could instead define channels over a subset

of all finite input words and explicitly add in the restriction that the channel be total, but this

is still more restrictive than the
↼⇀
X definition above. Consider, for example, the channel that

outputs all 1s if its input sequence contains at least one 1 and outputs all 0s otherwise. Such

a channel is undefined for any finite input word that consists of all 0s, but is well defined for

any bi-infinite binary sequence. It is also true that any total channel defined over finite input

words can be trivially defined over bi-infinite sequences by appending an arbitrary infinite

past and future to each finite word (without changing the channel’s output behavior).

Stationarity is as useful a property for channels as it is for processes.
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Definition 2 A channel is stationary if and only if its probability distributions are invariant

under time translation:

P(Yt :t+L |↼⇀xt ) = P(Y0:L |↼⇀x0) and

P(
↼⇀
Y t |

↼⇀xt ) = P(
↼⇀
Y0|

↼⇀x0),

for all t ∈ Z, L ∈ Z
+, and every input sequence ↼⇀x .

An immediate consequence is that stationary channels map stationary input processes to

stationary output processes:

Proposition 1 (Stationarity Preservation) When a stationary channel is applied to a station-

ary input process, the resulting output process is also stationary.

Proof One calculates directly:

P(
↼⇀
Y t ) =

∫
P(

↼⇀
Y t |

↼⇀xt )P(↼⇀xt )d
↼⇀xt

=

∫
P(

↼⇀
Y0|

↼⇀x0)P(↼⇀x0)d
↼⇀x0

= P(
↼⇀
Y0),

where the second equality follows from stationarity of both input process and channel, once

we note that . . . dxt−1dxt dxt+1 . . . = . . . dx−1dx0dx1 . . ., since under shifted indexing the

relationships between xi and infinitesimals dxi are preserved and the latter themselves do

not change. ⊓⊔

We also primarily restrict our discussion to ergodic channels [27].

Definition 3 An ergodic channel is a channel that maps any ergodic input process
↼⇀
X to an

ergodic joint process
↼−−⇀
(X, Y ).

Another important channel property is that of causality.

Definition 4 A causal channel is anticipation-free:

P(Yt :t+L |
↼⇀
X ) = P(Yt :t+L |

↼−
Xt+L ).

That is, the channel has well defined behavior on semi-infinite input pasts and is completely

characterized by that behavior.

Channel causality is a reasonable assumption when a system has no access to future

inputs. However, as a note of caution in applying the following to analyze, say, large-scale

systems with many components, the choice of observables may lead to input–output processes

that violate causality. For example, treating spatial configurations of one-dimensional spin

systems or cellular automata as if they were time series—a somewhat common strategy—

violates causality. In the following, though, we assume channel stationarity and causality,

unless stated otherwise.

It is worth noting that causality is often not a severe restriction. Specifically, the following

results extend to channels with finite anticipation—channels whose current output depends

upon N future inputs. When both the input process and channel are stationary, one delays

the appearance of the channel output by N time indices. This does not change the output

process, but converts finite anticipation to finite channel memory and delayed output. In this

way, it is possible to apply the analysis to follow to channels with anticipation directly, but

the optimality theorems established must be modified slightly.
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4 Example Channels and Their Classification

To motivate our main results, consider several example stationary causal channels with binary

input and output. Figure 3 illustrates the mapping from input words {x0:L = x0x1 . . . xL−1}

to output words {y0:L = y0 y1 . . . yL−1} for the example channels. The wordmaps there treat

each input–output pair (x0:L , y0:L) as a point p = (px , py) in the unit square, where the input

(output) word forms the binary expansion of px = 0.x0x1 · · · xL−1 (py = 0.y0 y1 · · · yL−1).

Since the channels are defined for all inputs, the plots show every input word.

We organize the examples around a classification scheme paralleling that used in signal

processing to highlight memory and the nature of feedback [28].

We describe channel behavior using recurrence relations of the form:

Yt ∼ r (
↼−
X t ,

↼−
Yt , X t ) ,

where r(·) is either a logical function, in simple cases, or a distribution. Note that the next

output Yt depends only on the past—the channels are causal.

In general, such a recurrence relation only captures the channel’s present behavior. For-

tunately, a causal channel’s future behavior is summarized by its present behavior:

P(Yt :t+L |
↼−−−
(X, Y )t , X t :t+L )

= P(Yt |
↼−−−
(X, Y )t , X t :t+L )P(Yt+1|

↼−−−
(X, Y )t , X t :t+L , Yt ) · · · P(Yt+L−1|

↼−−−
(X, Y )t , X t :t+L , Yt :t+L−1)

(a)
= P(Yt |

↼−−−
(X, Y )t , X t :t+L )P(Yt+1|

↼−−−
(X, Y )t+1, X t+1:t+L ) · · · P(Yt+L−1|

↼−−−
(X, Y )t+L−1, X t+L−1)

(b)
= P(Yt |

↼−−−
(X, Y )t , X t )P(Yt+1|

↼−−−
(X, Y )t+1, X t+1) · · · P(Yt+L−1|

↼−−−
(X, Y )t+L−1, X t+L−1)

(c)
= P(Yt |

↼−−−
(X, Y )t , X t )P(Yt |

↼−−−
(X, Y )t , X t ) · · · P(Yt |

↼−−−
(X, Y )t , X t )

= P(Yt |
↼−−−
(X, Y )t , X t )

L ,

where in (a) we merge individual variables into pasts to obtain new pasts, in (b) we remove

input variables that have no effect due to causality, and (c) follows from stationarity.

4.1 Memorylessness

The Memoryless Binary Channel’s (MBC’s) current output depends only on its current input;

the analog of an IID process in that its behavior at time t is independent of that at other times.

The MBC includes as special cases the Binary Symmetric Channel (BSC) and the Z Channel

[12]. We can summarize the MBC’s behavior with a simplified recurrence relation of the

form Yt ∼ r (X t ) and its conditional probabilities factor as follows:

P(Yt :t+L |
↼⇀
X ) = P(Yt |X t )P(Yt+1|X t+1) · · · P(Yt+L−1|X t+L−1).

The first three wordmaps of Fig. 3 illustrate the behavior of memoryless channels. We

see that the Identity Channel (Fig. 3a) always maps a word to itself. Whereas, the All-is-Fair

Channel (Fig. 3b) maps each input word uniformly to every output word. We immediately

see that deterministic channels have wordmaps with a single filled pixel per plot column.

The Z Channel wordmap is shown in Fig. 3c. It transmits all 0s with no noise, but adds

noise to all 1s transmitted. The wordmap shows the maximal noise case, where all 1s are

replaced with the output of a fair coin. We see that even memoryless channels have nontrivial

word mappings. In this case, the latter forms a self-similar Sierpinski right triangle [29] in

the unit square.
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4.2 Finite Feedforward

Now, consider channels whose behavior depends only on a finite input history. Their behavior

on input is analogous to those of order-R Markov chains. They can also be thought of as

stochastic, anticipation-free sliding block codes [25] with finite memory or as generalized

finite impulse response filters [28]. These channels’ behavior can be summarized with a

recurrence relation of the form Yt ∼ r(X t−M :t , X t ), where M is a finite input history length

such that M > 0.

The Delay Channel simply stores its input at time t − 1 and outputs it at time t . Its

wordmap is shown in Fig. 3d. Those familiar with one-dimensional iterated maps of the

interval will recognize the word mapping as the shift map, capturing the fact that delayed

output corresponds to a binary shift applied to the input word. Note that when viewed as a

function on the space of processes, the Delay Channel acts as the identity.

The Feedforward NOR Channel’s output at time t results from performing a logical NOR

(↓) on its inputs at times t and t − 1:

yt = xt−1 ↓ xt .

The wordmap for the Feedforward NOR Channel is shown in Fig. 3e. There, we see that

although the channel is deterministic, the wordmap’s self-similarity makes it difficult to see

that the mapping is a function—that there is, in fact, a single output word for each input.

The additional complexity of the remaining examples does not lead to new types of

apparent graphical structure beyond that seen in the existing wordmaps. So, wordmaps will

be omitted for now. With additional theory developed, we return to illustrate these channels,

but using a more advanced form of wordmap.

4.3 Infinite Feedforward

Generally, channels depend on infinitely long input histories. This behavior is analogous

to the long-range dependence seen in typical hidden Markov models [30,31] or in strictly

sofic subshifts [25]. Channels with dependence upon infinitely long input histories alone can

also be interpreted as generalized infinite impulse response filters [28]. The behavior of such

channels can be summarized by a recurrence relation of the form Yt ∼ r (
↼−
Xt , Xt ).

The Odd NOT Channel stores the parity (even or odd) of the number of ones observed in

its input since the last zero observed; much like the Even Process. If the parity is currently

even, it behaves as the Identity Channel. If the parity is odd, it outputs the bitwise NOT (bit

flip) of its input. Since the channel’s behavior depends on the parity of its input, it cannot be

characterized by finite input histories alone.

A channel can depend, however, on past outputs as well as inputs. Such feedback can

allow one to replace the infinite-history recurrence relation with one that includes only a

finite history of inputs and outputs. Consider again the Odd NOT Channel described above.

Note that its behavior is determined entirely by the current input value, as well as the parity

of the number of ones observed on input. In fact, the parity at time t can be summarized by

the input and output at time t − 1. If xt−1 = 0, the parity will always be even. If xt−1 = 1,

and yt−1 = 0 we know that the parity was odd, since the bit was flipped, but since a 1 was

just observed on input, the parity is now even. Finally, if xt−1 = 1 and yt−1 = 1, we know

that the parity was previously even, and the newly observed 1 makes the current parity odd.

Summarizing, we have that:

(x, y)t−1 = (0, 0) ⇔ Even input history parity,

(x, y)t−1 = (0, 1) ⇔ Even input history parity,
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(x, y)t−1 = (1, 0) ⇔ Even input history parity, and

(x, y)t−1 = (1, 1) ⇔ Odd input history parity. (7)

By allowing feedback, we can therefore summarize the behavior of the Odd NOT Channel

with a recurrence relation that depends only upon finite history (of length M = 1): Yt ∼ r

(X t−1, Yt−1, X t ).

An interesting observation is that the Odd NOT channel maps the Even Process to a

bit-flipped Golden Mean Process. However, a single process-to-process mapping does not

uniquely define a channel. There are an infinite number of channels, in fact, that map the

Even Process to the bit-flipped Golden Mean Process.

4.4 Finite Feedback

As seen in the previous section, allowing for even a finite amount of output feedback can can

lead to substantial simplifications in the description of a channel. Let’s consider channels

that depend on a finite output history on their own terms.

The most trivial case would be channels that depend solely on output histories, with

no dependence on inputs. Since there is effectively no input, these channels reduce to the

output-only stochastic processes (generators) discussed earlier. Consider, for example, the

All is Golden Channel that outputs the Golden Mean Process, regardless of what input it

receives.

A less trivial example is the Feedback NOR Channel, similar to the Feedforward NOR

Channel, except the output at time t is the logical NOR of its current input and previous

output:

yt = xt ↓ yt−1.

This channel’s behavior is clear in this feedback form. It might be desirable, however, to find

a purely feedforward presentation for the channel. The recurrence relation for the Feedback

NOR Channel can be solved recursively to give a feedforward presentation that is defined

for almost every input history. We recurse in the following way:

yt = xt ↓ yt−1

= xt ↓ (xt−1 ↓ yt−2)

= xt ↓ (xt−1 ↓ (xt−2 ↓ yt−3))

= · · · ,

and so on, until reaching sufficiently far into the input past that a 1 is observed. When this

happens, the recursion terminates as the output of the NOR function is always 0 when either

argument is 1. We can therefore construct a purely feedforward recurrence relation, but

the input histories can be arbitrarily long—corresponding to arbitrarily long input histories

consisting entirely of 0s. The resulting feedforward recurrence relation is defined for all

histories, except for the infinite history of all 0s.

Note that such ill-defined behavior for certain infinite histories is typical in systems that

have infinite memory lengths and is not a problem specific to channels. One can be careful

to explicitly define behavior for such cases, but this is beyond the scope of our current work,

and these pathological histories typically occur with zero probability.
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In contrast, consider replacing the logical NOR in the Feedback NOR Channel with an

exclusive OR (XOR or ⊕), thus giving the Feedback XOR Channel:

yt = xt ⊕ yt−1. (8)

In this case, solving for a pure-feedforward relation fails since the output of a logical XOR

is never determined by a single argument. This channel illustrates the fact that a presentation

which includes feedback cannot always be reduced to a pure-feedforward presentation.

4.5 Infinite Feedback

Just as we can define channels whose behavior depends upon infinite input histories, we

can define channels whose behavior depends upon infinite output histories. In fact, we have

already studied a channel that can be represented this way. Consider a channel that stores

the parity (even or odd) of the number of ones observed in its output since the last zero

observed. If this parity is currently even, it behaves as the Identity Channel. If the parity is

odd, it outputs the bitwise NOT (bit flip) of its input. This appears to be very similar to the

Odd NOT Channel defined above, but with a dependence on infinite output histories and the

present input, rather than infinite input histories. In fact, this is simply a different presentation

of the Odd NOT Channel.

It suffices to show that the feedback presentation of the Odd NOT Channel can be reduced

to the same finite history presentation as with its feedforward presentation. Proceeding as

before, we observe that if yt−1 = 0, the output parity is always even. If xt−1 = 0 and

yt−1 = 1, the previous parity was odd (the bit was flipped), but the 1 observed on output

makes the output parity even. Finally, if xt−1 = 1 and yt−1 = 1, the output parity was

even, and the 1 observed makes the output parity odd. Summarizing, we obtained the same

presentation as the feedforward presentation specified by Eq. (7).

4.6 Infinite Feedforward-Feedback

We just examined an example channel whose presentation depends upon infinite histories

when only feedforward or feedback is allowed, but only a finite history when both feedfor-

ward and feedback are allowed. The following example shows that finding a finite history

presentation is not always possible. Channels of this form are perhaps the most natural channel

generalization of infinite Markov order (strictly sofic) processes.

The Odd Random Channel stores the parity of its input history just as the Odd NOT

Channel does, and it again behaves as the identity when the parity is currently even. When

the parity is odd, the channel outputs a 0 or 1 with equal probability. Like the Odd NOT

Channel, this has an infinite feedback presentation that stores the channel’s output history

parity. The channel does not have any finite history presentation, however. If one attempts to

construct a finite presentation via the recursion unrolling procedure used for the Odd NOT

Channel, it is simple to obtain the following relationships:

(x, y)t−1 = (0, 0) ⇔ Even input history parity,

(x, y)t−1 = (0, 1) ⇔ Even input history parity, and

(x, y)t−1 = (1, 0) ⇔ Even input history parity.

The problem arises from the fact that when xt−1 = 1 and yt−1 = 1, the input history

parity is uncertain. The channel could have been operating as the identity (even parity) or

giving random output (odd parity). Looking at progressively longer histories can resolve
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this uncertainty, but only once a 0 has been observed (on either input, output, or both). This

ambiguity requires that we specify arbitrarily long joint histories to determine the behavior of

the channel in general. It is therefore not possible to construct any finite-history presentation

of the Odd Random Channel.

4.7 Irreducible Feedforward-Feedback

As a final example, consider a channel that has a finite presentation when both feedforward

and feedback are allowed, but has no pure-feedforward or pure-feedback presentation. The

Period-2 Identity NOT Channel alternates between the identity and bit flipped identity at

each time step. This channel’s present behavior is completely determined by whether the

previous input and output bits, xt−1 and yt−1, match. When the bits match, the channel was

in its “identity” state and is therefore now in its “NOT” state. The opposite is clearly true

when the bits do not match. The channel therefore has a recurrence relation of the form

Yt ∼ r(X t−1, Yt−1, X t ).

Since the behavior does not depend on the particular values of the input or output, but

whether or not they match, there is no way to construct a pure-feedforward or pure-feedback

presentation of the channel. This channel therefore illustrates the notion of irreducible output

(or input) memory—dependence upon past output (input) that cannot be eliminated even by

including dependence upon infinite past outputs (inputs).

4.8 Causal Channel Markov Order Hierarchy

It turns out that the set of examples above outlines a classification scheme for causal chan-

nels in terms of their Markov orders [32] that we now make explicit. Just as Markov order

plays a key role in understanding the organization of processes, it is similarly helpful for

channels. Channel Markov orders are the history lengths required to completely specify a

causal channel’s behavior, given certain constraints on knowledge of other histories.

Definition 5

1. The pure feedforward Markov order Rpff is the

smallest M such that Yt ∼ r (X t−M :t , X t ); i.e.,

P (Yt |
↼−−−
(X, Y )t , X t ) = P (Yt |X t−M :t , X t ).

2. The pure feedback Markov order Rpfb is the

smallest M such that Yt ∼ r (Yt−M :t , X t ); i.e.,

P (Yt |
↼−−−
(X, Y )t , X t ) = P (Yt |Yt−M :t , X t ).

3. The channel Markov order R is the smallest M

such that Yt ∼ r (X t−M :t , Yt−M :t , X t ); i.e.,

P (Yt |
↼−−−
(X, Y )t , X t ) = P (Yt |X t−M :t , Yt−M :t X t ).

4. The irreducible feedforward Markov order Riff is

the smallest M such that Yt ∼ r (X t−M :t ,
↼−
Y t , X t , ); i.e.,

P (Yt |
↼−−−
(X, Y )t , X t ) = P (Yt |X t−M :t ,

↼−
Y t , X t ).

5. The irreducible feedback Markov order Rifb is the

smallest M such that Yt ∼ r (
↼−
X t , Yt−M :t , X t ); i.e.,

P (Yt |
↼−−−
(X, Y )t , X t ) = P (Yt |

↼−
X t , Yt−M :t , X t ).

For example, we showed that the Odd NOT Channel’s presentation requires an infinite

history when only feedforward or feedback is allowed. And so, it has Rpff = Rpfb = ∞.

However, it only requires finite history when both are allowed: R = 1. If we have full
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knowledge of the output past, we still need one symbol of input history in order to characterize

the channel, so Riff = 1. Similarly, we have Rifb = 1.

Note that the irreducible feedforward Markov order Riff will only be nonzero if the pure

feedback order Rpfb is undefined. Similarly, the irreducible feedback Markov order Rifb will

only be nonzero when the pure feedforward order Rpff is undefined. In words, if a channel

has irreducible feedback (feedforward), the channel has no pure feedforward (feedback)

presentation. Moreover, the channel Markov order R bounds the pure Markov orders from

below and the smallest of the two irreducible Markov orders bounds the channel Markov

order from below:

min(Riff, Rifb) ≤ R ≤ min(Rpff, Rpfb).

In a sequel, we address input and output memory using information-theoretic quanti-

ties. There, we characterize different amounts of input and output memory and how they

relate, whereas here in discussing Markov orders we considered lengths of input and output

sequences. We also focused on causal channels, which allowed us to restrict our discussion to

present behavior and memory lengths. In the case of anticipatory channels, we must explicitly

consider future behavior, as well as anticipation lengths. However, this is best left to another

venue, so that we do not deviate too far from the path to our goal.

4.9 Causal-State Channels

There is a natural and quite useful channel embedded in any ǫ-machine presentation of a

stationary process—the causal-state channel—that identifies structure embedded in a process

via the ǫ-machine’s causal states.

Consider a process and its ǫ-machine M . Previously, we described M as a generator of the

process. An ǫ-machine, however, is also a recognizer of its process’s sequences. Briefly, M

reads a sequence and follows the series of transitions determined by the symbols it encounters.

The output of the causal-state channel is then the sequence of causal states. The operation of

this channel is what we call causal-state filtering. Notably, the induced mapping is a function

due to the ǫ-machine’s unifilarity.

In this way, the channel filters observed sequences, returning step-by-step associated causal

states. Given an ǫ-machine, the causal-state filter has the same topology as the ǫ-machine,

but input symbols match the ǫ-machine transition symbols and output symbols are the state

to which the transition goes.

The recursion relation for causal-state filtering is:

St ∼ r (X t−1, St−1) .

As just noted, r(·) is a (nonprobabilistic) function, determined by the ǫ-map:

St = ǫ(
↼−
X t )

= ǫ(X t−1,
↼−
X t−1)

= ǫ(X t−1, St−1).

Thus, the pure feedback order is Rpfb = 1, as is the channel Markov order R = 1. The

pure feedforward order Rpff, however, is the original process’s Markov order. For methods

to determine the latter see Ref. [32].

In this way, an ǫ-machine can be used to detect the hidden structures captured by the

causal states. For example, causal-state filtering has been used to great effect in detecting
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emergent domains, particles, and particle interactions in spatially extended dynamical sys-

tems [33], single-molecule conformational states [34], and polycrystalline and fault structures

in complex materials [35].

5 Global ǫ-Machine

Before introducing channel presentations, we first frame the question in the global setting

of the ǫ-machine of joint (input–output) processes. This, then, grounds the ǫ-transducer in

terms of an ǫ-machine.

Given a stationary process
↼⇀
X and a channel

↼⇀
Y

∣∣↼⇀X with output process
↼⇀
Y , form a joint

random variable Z t = (X, Y )t over input–output symbol pairs with alphabet Z = X × Y .

For example, if X = {a, b} and Y = {c, d}, then X × Y = {ac, ad, bc, bd}.

Definition 6 The process
↼⇀
Z over Z defines the channel’s I/O process.

Definition 7 A stationary channel’s global ǫ-machine is the ǫ-machine of its I/O process.

In this setting, the next section asks for a particular decomposition of the global ǫ-machine,

when one has selected a portion of Z t as “input” and another as “output”. The input process
↼⇀
X is then described by the marginal distribution of the joint process that projects onto “input”

sequences. The same also holds for the output process
↼⇀
Y . In this way, the following results

not only provide an analysis for specified input and output processes, but also an analysis

of possible input-to-output mappings embedded in any process or its ǫ-machine. Leveraging

this observation and anticipating the sequels, we also note here that the global ǫ-machine also

provides the proper setting for posing questions about information storage and flow within

any given process.

6 ǫ-Transducer

Computational mechanics’ fundamental assumption—only prediction matters—applies as

well to channels as to processes. In the case of channels, though, we wish to predict the

channel’s future output given the channel’s past inputs and outputs and the channel’s future

input. This leads to a new causal equivalence relation ∼ǫ over joint pasts ↼−z =
↼−−−
(x, y):

↼−−−
(x, y) ∼ǫ

↼−−−
(x, y)′ ⇐⇒

P
(−⇀

Y
∣∣−⇀X ,

↼−−−
(X, Y ) =

↼−−−
(x, y)

)
(9)

= P
(−⇀

Y
∣∣−⇀X ,

↼−−−
(X, Y ) =

↼−−−
(x, y)′

)
.

Compare Eq. (4) applied to the I/O process. The equivalence classes of ∼ǫ partition the set
↼−
Z =

↼−−−−
(X , Y) of all input–output pasts. These classes are the channel’s causal states, denoted

S . The ǫ-map is a function ǫ :
↼−−−−
(X , Y) → S that maps each joint past to its corresponding

channel causal state or, equivalently, to the set of joint pasts to which it is causally equivalent:

ǫ
(↼−−−
(x, y)

)
= σi =

{↼−−−
(x, y)′ :

↼−−−
(x, y) ∼ǫ

↼−−−
(x, y)′

}
.

The dynamic over causal states is again inherited from the implicit dynamic over joint

pasts via the ǫ-map, resulting from appending the joint symbol zt = (x, y)t , as shown in
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· · ·
↼−−−
(x, y)t−1

↼−−−
(x, y)t

↼−−−
(x, y)t+1 · · ·

· · · st−1 st st+1 · · ·

(x, y)t−2 (x, y)t−1 (x, y)t (x, y)t+1

(x, y)t−2 (x, y)t−1 (x, y)t (x, y)t+1

ǫ ǫ ǫ

Fig. 4 ǫ-Transducer dynamic induced by the causal states st = σi ∈ S from a channel’s joint pasts via the

ǫ-map: st = ǫ(. . . (x, y)t−2(x, y)t−1)
(x,y)t
−−−−→ st+1 = ǫ(. . . (x, y)t−2(x, y)t−1(x, y)t )

Fig. 4. Since state transitions now depend upon the current input symbol, we specify the

dynamic by an indexed set of conditional-symbol transition matrices:

T ≡
{

T (y|x)
}

x∈X ,y∈Y
,

where T (y|x) has elements:

T
(y|x)

i j = P(S1 = σ j , Y0 = y|S0 = σi , X0 = x).

While the causal states for a stationary process have a unique stationary distribution,

each stationary input to a channel can drive its causal states into a different stationary state

distribution. The ǫ-map from joint histories to the channel’s causal states can also be seen

as a function that maps a distribution over joint histories to a distribution over the channel’s

causal states. Since each input history specifies a particular distribution over output histories

(via the channel’s conditional word probabilities), it follows that a distribution over input

histories also specifies a distribution over output histories. When this input history distribution

is specified via a particular input process, we obtain a unique distribution over causal states

via its ǫ(·) function. We write this input-dependent state distribution πX as:

πX (i) = PX (S0 = σi )

= PX

(
ǫ
(↼−−−
(X, Y )

)
= σi

)
,

where the subscript X indicates that the input process has a specific, known distribution. The

distribution over joint histories is stationary by assumption here and, since the ǫ-map is time

independent, πX is stationary. We therefore refer to πX as the (input-dependent) stationary

distribution.

When both the input process and channel are stationary and ergodic, we can calculate this

stationary distribution from the input and channel’s causal-state transition matrices using a

generalization of the algorithm found in Ref. [17]. We save an in-depth discussion of this

algorithm for a sequel.

Definition 8 The tuple (X , Y , S, T )—consisting of the channel’s input and output alpha-

bets, causal states, and conditional-symbol transition probabilities, respectively—is the

channel’s ǫ-transducer.

Note that in the causal equivalence relation for channels, we condition on the input future
−⇀
X , as a channel is defined by its output behavior given input. Requiring causal equivalence

for the output future alone (or the joint future for that matter) requires knowledge of a

particular input process as well. In particular, if we do have knowledge of the input process

we can extend the standard causal equivalence relation to an equivalence relation involving
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σi σj

y|x : p

Fig. 5 Generic transition from ǫ-transducer causal state σi to state σ j while accepting input symbol x and

emitting symbol y with probability p = T
(y|x)
i j

joint pasts and joint future morphs, giving us the global (joint) ǫ-machine of the preceding

section.

As with ǫ-machines, it is useful to consider channels whose ǫ-transducers have a finite

(or countable) number of causal states. This restriction again allows us to represent an

ǫ-transducer as a labeled-directed graph. Since transitions between causal states now depend

on inputs as well as outputs, we represent a transition from state σi to state σ j while accepting

input symbol x and emitting symbol y as a directed edge from node σi to node σ j with edge

label y|x : p, where p = T
(y|x)

i j is the edge transition probability. This is illustrated in Fig. 5.

7 Structural Complexity

To monitor the degree of structuredness in an ǫ-transducer, we use the Shannon information

captured by its causal states, paralleling the definition of ǫ-machine statistical complexity.

The stationary distribution over ǫ-transducer states allows one to define an ǫ-transducer’s

input-dependent statistical complexity:

CX = H[πX ].

(Note that X replaces the previously subscripted measure μ in ǫ-machine statistical com-

plexity to specify the now-relevant measure.) While quantifying structural complexity, CX ’s

dependence on input requires a new interpretation. Some processes drive a transducer into

simple, compressible behavior, while others will lead to complex behavior. Figure 6 illustrates

this.

Input dependence can be removed by following the standard definition of channel capac-

ity [12], giving a single number characterizing an ǫ-transducer. We take the supremum of

the statistical complexity over input processes. This gives an upper bound on ǫ-transducer

complexity—the channel complexity:

Cμ = sup
X

CX ,

where the maximizing input measure μ is implicitly defined. Note that not all transducers

can be driven to a uniform distribution over states. Thus, recalling that uniform distribu-

tions maximize Shannon entropy, in general Cμ ≤ C0 ≡ log2 |S |—the topological state

complexity.

8 Reproducing a Channel

To establish that the ǫ-transducer is an exact presentation of the causal channel it models, we

must show that it reproduces the channel’s conditional word probabilities. We first establish

some needed notation.
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Recall that the ǫ-map takes a distribution over joint histories to a distribution over the

ǫ-transducer’s causal states and that a particular input history defines a distribution over a

channel’s output history. It follows that a particular input history defines a distribution over

joint histories and, therefore, also defines a distribution over an ǫ-transducer’s causal states

via the ǫ-map. We call this distribution τ :

τ(i) = PX

(
S0 = σi

∣∣↼−X 0 = ↼−x
)

= PX

(
ǫ
(↼−−−
(X, Y )0

)
= σi

∣∣↼−X 0 = ↼−x
)
.

Note that while the ǫ-map takes a particular joint history to a unique state, the distribution

over states induced by a particular input history need not be concentrated on a single state.

When the input process is known and stationary, the ǫ-transducer’s stationary distribution

πX can be determined. This provides a starting distribution for the ǫ-transducer, which is

updated by the ǫ-transducer’s symbol transition matrices as each input symbol is observed

and each output symbol is generated. We can therefore calculate the final state distribution

P(SL = σm |x0:L , S0 ∼ πX ) that results from starting states in distribution πX and observing

finite input word x0:L :

P(SL = σm |x0:L , S0 ∼ πX )

=
∑

y0:L

∑

i, j,k,··· ,l

πX (i)T
(y0|x0)

i j T
(y1|x1)

jk · · · T
(yL−1|xL−1)

lm .

We then obtain τ from the ǫ-transducer by shifting this distribution by L and taking the

limit as L → ∞:

τ(i) = PX

(
S0 = σi

∣∣↼−X 0 = ↼−x
)

= lim
L→∞

P
(
S0 = σi

∣∣x−L:0, S−L ∼ πX

)
.

We can now establish that the ǫ-transducer is an exact presentation of the causal channel

that it models.

Proposition 2 (Presentation) A causal channel’s ǫ-transducer exactly (and only) reproduces

the channel’s conditional word probabilities P(Y0:L |
↼−
XL).

Proof Recall that a causal channel’s output words do not depend on any inputs occurring after

the output word. Therefore, the ǫ-transducer must reproduce all of a channel’s conditional

word probabilities of the form P(y0:L |↼−xL). As discussed above, an input history induces a

distribution τ over the ǫ-transducer’s causal states. So, we calculate the word probabilities

directly via repeated application of the ǫ-transducer’s symbol transition matrices:

P(y0:L |↼−x L) =
∑

i, j,k,··· ,l,m

τ(i)T
(y0|x0)

i j T
(y1|x1)

jk · · · T
(yL−1|xL−1)

lm . (10)

⊓⊔

In fact, we can transduce a finite input word even when the channel’s behavior depends

upon arbitrarily long input histories. By simply starting the ǫ-transducer in its stationary

distribution πX , we have:

P(y0:L |x0:L) =
∑

i, j,k,··· ,l,m

πX (i)T
(y0|x0)

i j T
(y1|x1)

jk · · · T
(yL−1|xL−1)

lm .
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In either case, we can multiply these conditional word probabilities by the input’s word

probabilities to obtain joint word probabilities:

P((x, y)0:L) = P(y0:L |x0:L)P(x0:L).

Summing over input words then gives output word probabilities:

P(y0:L) =
∑

x0:L∈X L

P((x, y)0:L).

We can also start the ǫ-transducer with other, arbitrary state distributions when certain

initial behavior is desired or if the current internal configuration of the ǫ-transducer is known.

This can be very useful in practice, but the resulting generated behavior is no longer guaran-

teed to be stationary or to match the original channel’s behavior. One use of arbitrary state

distributions is real-time transduction of symbols, where a state distribution ν is repeatedly

updated each time-step after a single input symbol xt is transduced to an output symbol yt :

P
(
St+1 = σi

∣∣(x, y)t , St ∼ ν
)

=
∑

i, j

ν(i)T
(yt |xt )

i j .

9 Optimality

We now establish that the ǫ-transducer is a channel’s unique, maximally predictive, mini-

mal statistical complexity unifilar presentation. Other properties, analogous to those of the

ǫ-machine, are also developed. Several proofs parallel those in Refs. [18,19], but are extended

from ǫ-machines to the ǫ-transducer. For this initial development, we also adopt a caveat

from there concerning the use of infinite pasts and futures. For example, the semi-infinite

pasts’ entropy H[
↼−
Y ] is typically infinite. And so, to properly use such quantities, one first

introduces finite-length chains (e.g., H[Y0:L ]) and at the end of an argument one takes infinite-

length limits, as appropriate. Here, as previously, we do not include these extra steps, unless

there is subtlety that requires attention using finite-length chains.

Proposition 3 (Causal States Proxy the Past) When conditioned on causal states, the future

output given input is independent of past input and past output:

P
(−⇀

Y 0

∣∣−⇀X 0,
↼−−−
(X, Y )0, S0

)
= P

(−⇀
Y 0

∣∣−⇀X 0, S0

)
.

Proof By construction, the causal states have the same future morphs as their corresponding

pasts:

P
(−⇀

Y 0

∣∣−⇀X 0,
↼−−−
(X, Y )0

)
= P

(−⇀
Y 0

∣∣−⇀X 0, S0

)
.

Since the causal states are a function of the past—S0 = ǫ (
↼−−−
(X, Y )0)—we also have that:

P
(−⇀

Y 0

∣∣−⇀X 0,
↼−−−
(X, Y )0, S0

)
= P

(−⇀
Y 0

∣∣−⇀X 0,
↼−−−
(X, Y )0

)
.

Combining these two equalities gives the result. ⊓⊔

In other words, when predicting a channel’s future behavior from its past behavior, it

suffices to use the causal states instead.
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Proposition 4 (Causal Shielding) Past output
↼−
Y0 and future output

−⇀
Y0 given future input

−⇀
X0

are independent given the current causal state S0:

P
(↼⇀

Y0

∣∣−⇀X0, S0

)
= P

(↼−
Y0

∣∣−⇀X0, S0

)
P
(−⇀

Y0

∣∣−⇀X0, S0

)
.

Proof We directly calculate:

P
(↼⇀

Y0

∣∣−⇀X0, S0

)
= P

(↼−
Y0

∣∣−⇀X0, S0

)
P
(−⇀

Y0

∣∣−⇀X0,
↼−
Y , S0

)

= P
(↼−

Y0

∣∣−⇀X0, S0

)
P
(−⇀

Y0|
−⇀
X0, S0

)
.

Where the second equality follows from applying Prop. 3 to the second factor. ⊓⊔

In the following, depending on use, we refer to either of the previous propositions as

causal shielding.

Proposition 5 (Joint Unifilarity) The current causal state S0 and current input–output sym-

bol pair (X, Y )0 uniquely determine the next causal state. In this case:

H[S1|(X, Y )0, S0] = 0.

Proof If two pasts are causally equivalent, then either (i) appending a new symbol pair (x, y)

to both pasts results in two new pasts that are also causally equivalent or (ii) such a symbol

pair is never observed when in S0. We must show that the two new pasts have the same future

morph:

↼−−−
(x, y) ∼ǫ

↼−−−
(x, y)′ �⇒ P

(−⇀
Y1

∣∣−⇀X1,
↼−−−
(x, y)(a, b)

)
= P

(−⇀
Y1

∣∣−⇀X1,
↼−−−
(x, y)′(a, b)

)
,

where we have a ∈ X and b ∈ Y and
↼−−−
(x, y)(a, b) = (↼−x a,↼−y b), and the futures

−⇀
Y1 and

−⇀
X1 denote those immediately following the associated conditioning pasts

↼−−−
(x, y)(a, b) and

↼−−−
(x, y)′(a, b), respectively. Or, we must show that the input–output pair (x, y) is forbidden.

First, let
↼−−−
(x, y) ∼ǫ

↼−−−
(x, y)′. Since causal equivalence applies for any joint future, it applies

to the particular future beginning with symbol pair (a, b):

P
(
b
−⇀
Y1

∣∣a−⇀
X1,

↼−−−
(x, y)

)
= P

(
b
−⇀
Y1

∣∣a−⇀
X1,

↼−−−
(x, y)′

)
.

Factoring:

P
(
b
−⇀
Y1

∣∣ ·
)

= P
(−⇀

Y1

∣∣Y0 = b, ·
)
P
(
Y0 = b

∣∣ ·
)

gives:

P
(−⇀

Y1

∣∣Y0 = b, a
−⇀
X1,

↼−−−
(x, y)

)
P
(
Y0 = b

∣∣a−⇀
X1,

↼−−−
(x, y)

)

= P
(−⇀

Y1

∣∣Y0 = b, a
−⇀
X1,

↼−−−
(x, y)′

)
P
(
Y0 = b

∣∣a−⇀
X1,

↼−−−
(x, y)′

)
.

The second factors on both sides are equal by causal equivalence. So, there are two cases:

These factors either vanish or they do not. If they are positive, then we have:

P
(−⇀

Y1

∣∣Y0 = b, a
−⇀
X1,

↼−−−
(x, y)

)
= P

(−⇀
Y1

∣∣Y0 = b, a
−⇀
X1,

↼−−−
(x, y)′

)
.

Rewriting the conditional variables with the symbol pair (a, b) attached to the joint past then

gives the first part of the result:

P
(−⇀

Y1

∣∣−⇀X1,
↼−−−
(x, y)(a, b)

)
= P

(−⇀
Y1

∣∣−⇀X1,
↼−−−
(x, y)′(a, b)

)
.
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In the other case, when the factors vanish, we have:

P
(
Y0 = b

∣∣a−⇀
X1,

↼−−−
(x, y)

)
= P

(
Y0 = b

∣∣a−⇀
X1,

↼−−−
(x, y)′

)
= 0.

This implies that:

P
(
Y0 = b

∣∣X0 = a,
↼−−−
(x, y)

)
= P

(
Y0 = b

∣∣X0 = a,
↼−−−
(x, y)′

)

= 0.

In other words, Y0 = b is never observed following either past, given X0 = a. That is, (a, b)

is forbidden.

It then follows that:

H[S1|S0, (X, Y )0] = 0,

which is equivalent to joint unifilarity when there is a finite number of causal states. ⊓⊔

Unifilarity guarantees that once we know the process is in a particular causal state—we are

“synchronized” [32]—we do not lose synchronization over time. This is an important property

when using causal states to simulate or predict a system’s behavior. Using presentations that

are nonunifilar, typically it is necessary to keep track of a distribution over states.

Unifilarity is also a useful property to have when attempting to infer an ǫ-transducer from

data. Inference of nonunifilar transducers can be challenging, partly due to the existence

of multiple possible state paths given a particular start state. Unifilar transducers avoid this

problem, effectively reducing the difficulty to that of inferring a Markov chain from data [36].

Finally, unifilarity plays a key role, as a sequel shows, in calculating channel information

quantities.

The next theorem shows that ǫ-transducers are input-dependent hidden Markov models.

Proposition 6 (Markovity) A channel’s causal states satisfy the conditional Markov prop-

erty:

P
(
St

∣∣X t−1,
↼−
St

)
= P(St |X t−1, St−1).

Proof Since the causal-state transitions are unifilar, there is a well defined set of output

symbols Z ⊆ Y that causes a transition from state σ j to state σk . We therefore have:

P
(
St = σk

∣∣X t−1, St−1 = σ j ,
↼−
St−1

)

= P
(
Yt−1 ∈ Z

∣∣X t−1, St−1 = σ j ,
↼−
St−1

)
.

Causal shielding applies to finite futures as well as infinite. This, combined with the obser-

vation that
↼−
St−1 is purely a function of the past, allows us to use St−1 to causally shield Yt−1

from
↼−
St−1, giving:

P
(
Yt−1 ∈ Z

∣∣X t−1, St−1 = σ j ,
↼−
St−1

)

= P(Yt−1 ∈ Z|X t−1, St−1 = σ j )

= P(St = σk |X t−1, St−1 = σ j ).

The final equality is again possible due to unifilarity. ⊓⊔

The following theorem shows that the causal states store as much information as possible

(from the past) about a channel’s future behavior—a desirable property for any predictive

model.
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Definition 9 The prescience of a set R of rival states—equivalence classes of an alternative

partition of pasts—reflects how well the rival states predict a channel’s future behavior.

Quantitatively, this is monitored by the amount of information they share with future output,

given future input:

I
[
R ;

−⇀
Y

∣∣−⇀X
]
,

where R is the associated rival-state random variable.

Note that it is sometimes simpler to prove statements about conditional entropy than it

is for mutual information. Due to this, we will transform statements about prescience into

statements about uncertainty in prediction in several proofs that follow. Specifically, we will

make use of the identity:

I
[
R0 ;

−⇀
Y0

∣∣−⇀X0

]
= lim

L→∞
I
[
R0 ; Y0:L

∣∣−⇀X0

]

= lim
L→∞

(
H

[
Y0:L

∣∣−⇀X0

]
− H

[
Y0:L

∣∣−⇀X0, R0

])
,

where H
[
Y0:L

∣∣−⇀X0, R0

]
is the finite-future prediction uncertainty. Note that the infinite-future

prediction uncertainty H
[−⇀

Y0

∣∣−⇀X0, R0

]
typically will be infinite, but rewriting the prescience

in terms of the limit of finite-future prediction uncertainty allows us to continue to work with

finite quantities.

Theorem 1 (Maximal Prescience) Among all rival partitions R of joint pasts, the causal

states have maximal prescience and they are as prescient as pasts:

I
[
S ;

−⇀
Y

∣∣−⇀X
]

= I
[↼−−−
(X, Y ) ;

−⇀
Y

∣∣−⇀X
]

≥ I[R ;
−⇀
Y |

−⇀
X ].

Proof We will prove the equivalent statement that the causal states minimize finite-future

prediction uncertainty for futures of any length L and have the same finite-future prediction

uncertainty as pasts; i.e., that for all L:

H
[
Y0:L

∣∣−⇀X0, S0

]
= H

[
Y0:L

∣∣−⇀X0,
↼−−−
(X, Y )0

]

≤ H
[
Y0:L

∣∣−⇀X0, R0

]
,

Like the causal states, rival states—equivalence classes of an alternative partition R of

pasts—are a function of the past:

R = η
(↼−−−
(X, Y )

)
.

By the Data Processing Inequality [12], we have:

H
[
Y0:L

∣∣−⇀X0,
↼−−−
(X, Y )0

]
≤ H

[
Y0:L

∣∣−⇀X0, R0

]
.

The causal states share future morphs with their corresponding pasts. By simple marginal-

ization, the same is true for finite-future morphs:

P
(
Y0:L

∣∣−⇀X0, S0

)
= P

(
Y0:L

∣∣−⇀X0,
↼−−−
(X, Y )0

)
�⇒ H

[
Y0:L

∣∣−⇀X0, S0

]
= H

[
Y0:L

∣∣−⇀X0,
↼−−−
(X, Y )0

]
.

⊓⊔
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Note that the causal equivalence relation can also be applied directly to a channel that

anticipates its future inputs, but the resulting ǫ-transducer has outputs that depend not only

upon the current state and input symbol, but some set of future input symbols. If the set is finite,

then one uses the previous construction that transforms finite anticipation into additional

transducer memory (statistical complexity). In this case, the causal states still capture all of

the information from the past needed for prediction. That is, they have maximal prescience.

Any additional future input dependence, though, must be encoded in the machine’s transitions.

Definition 10 A prescient rival is an indexed set R̂ of states (with elements ρ̂i and random

variable R̂) that is as predictive as any past:

I
[
R̂ ;

−⇀
Y

∣∣−⇀X
]

= I
[↼−−−
(X, Y ) ;

−⇀
Y

∣∣−⇀X
]
.

Lemma 1 (Refinement) The partition of a prescient rival R̂ is a refinement (almost every-

where) of the causal-state partition of the joint input–output pasts.

Proof Since the causal states’ future morphs include every possible future morph of a channel,

we can always express a prescient rival’s future morph as a (convex) combination of the causal

states’ future morphs. This allows us to rewrite the entropy over a prescient rival (finite-length)

future morph as:

H
[
Y0:L

∣∣−⇀x , ρ̂k

]
= H

[
P
(
Y0:L

∣∣−⇀x , ρ̂k

)]

= H

⎡
⎣∑

j

P
(
Y0:L

∣∣−⇀x , σ j

)
P(σ j |ρ̂k)

⎤
⎦ . (11)

Since entropy is convex, we also have:

H

⎡
⎣∑

j

P
(
Y0:L

∣∣−⇀x , σ j

)
P(σ j |ρ̂k)

⎤
⎦ ≥

∑

j

P(σ j |ρ̂k) H
[
Y0:L

∣∣−⇀x , σ j

]
. (12)

Therefore:

H
[
Y0:L

∣∣−⇀X0, R̂0

]
=

∑

k

P(ρ̂k) H
[
Y0:L

∣∣−⇀X0, ρ̂k

]

≥
∑

k

P(ρ̂k)
∑

j

P(σ j |ρ̂k) H
[
Y0:L

∣∣−⇀X0, σ j

]

=
∑

j,k

P(σ j , ρ̂k) H
[
Y0:L

∣∣−⇀X0, σ j

]

=
∑

j

P(σ j ) H
[
Y0:L

∣∣−⇀X0, σ j

]

= H
[
Y0:L

∣∣−⇀X0, S0

]
,

where the inequality follows from Eqs. (11) and (12). Since the rival states R̂ are prescient,

we know that equality must be attained in this inequality for each L . Equality is only possible

when P(σ j |ρ̂k) = 1 for exactly one value of j and vanishes for every other j . That is, if

a rival state is prescient, it is contained entirely within a single causal state, aside from a

set of measure zero. Thus, the partition of the prescient rival states is a refinement of the

causal-state partition almost everywhere. ⊓⊔
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Theorem 2 (Minimality) For any given input process X, causal states have the minimal

conditional statistical complexity among all prescient rival partitions R̂:

CX (S) ≤ CX

(
R̂
)
.

Proof Since a prescient rival partition is a refinement almost everywhere, there exists a

function f defined almost everywhere that maps each rival state to the causal state that

(almost everywhere) contains it:

f (ρ̂i ) = σ j .

Then, we have:

HX

[
R̂
]

≥ HX

[
f
(
R̂
)]

= HX [S].

⊓⊔

Corollary 1 Causal states minimize the channel complexity Cμ.

Proof Immediate from the preceding theorem. ⊓⊔

In words, we established the fact that the causal states store all of the information contained

in the past that is necessary for predicting a channel’s future behavior and as little of the

remaining information “overhead” contained in the past as possible. Given an input process,

ǫ-transducer causal states maximize I[
−⇀
Y ; S|

−⇀
X ] while minimizing I[

↼−−−
(X, Y ); S].

The final optimality theorem shows that any states which have these properties are in fact

the causal states.

Theorem 3 (Uniqueness) The ǫ-transducer is the unique prescient, minimal partition of

pasts. If CX

(
R̂
)

= CX (S) for every input process
↼⇀
X , then the corresponding states R̂ and S

are isomorphic to one another almost everywhere. And, their equivalence relations ∼η and

∼ǫ are the same almost everywhere.

Proof Again, the Refinement Lemma (Lemma 1) says that S = f
(
R̂
)

almost everywhere.

It therefore follows that HX

[
S
∣∣R̂

]
= 0. Moreover, by assumption HX [S] = HX

[
R̂
]
. Com-

bining these with the symmetry of mutual information gives:

IX

[
S; R̂

]
= IX

[
R̂; S

]

HX [S] − HX

[
S
∣∣R̂

]
= HX

[
R̂
]
− HX

[
R̂
∣∣S

]

HX [S] − 0 = HX [S] − HX

[
R̂
∣∣S

]

HX

[
R̂
∣∣S

]
= 0.

The latter holds if and only if there is a function g such that R̂ = g(S) almost everywhere.

By construction g is the inverse f −1 of f almost everywhere. We have that f ◦ η = ǫ and

f −1 ◦ ǫ = η.
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Finally, the two equivalence relations ∼ǫ and ∼η are the same almost everywhere:

↼−−−
(x, y) ∼ǫ

↼−−−
(x, y)′

�⇒ ǫ

(
↼−−−
(x, y)

)
= ǫ

(
↼−−−
(x, y)′

)

�⇒ f −1 ◦ ǫ

(
↼−−−
(x, y)

)
= f −1 ◦ ǫ

(
↼−−−
(x, y)′

)

�⇒ η

(
↼−−−
(x, y)

)
= η

(
↼−−−
(x, y)′

)

�⇒
↼−−−
(x, y) ∼η

↼−−−
(x, y)′,

and

↼−−−
(x, y) ∼η

↼−−−
(x, y)′

�⇒ η

(
↼−−−
(x, y)

)
= η

(
↼−−−
(x, y)′

)

�⇒ f ◦ η

(
↼−−−
(x, y)

)
= f ◦ η

(
↼−−−
(x, y)′

)

�⇒ ǫ

(
↼−−−
(x, y)

)
= ǫ

(
↼−−−
(x, y)′

)

�⇒
↼−−−
(x, y) ∼ǫ

↼−−−
(x, y)′.

⊓⊔

ǫ-Transducer uniqueness means that CX is the conditional complexity of a channel and,

therefore, justifies calling Cμ the channel complexity.

10 Global ǫ-Machine Versus ǫ-Transducer

Given a particular joint process or its global ǫ-machine, it is possible (provided that the input

process satisfies certain requirements) to construct the ǫ-transducer that maps input
↼⇀
X to

output
↼⇀
Y , such that

↼−−⇀
(X, Y ) =

(↼⇀
X , f (

↼⇀
X )

)
, where f is the transducer and f

(↼⇀
X

)
desig-

nates the output of the transducer, given input process
↼⇀
X . Sequels address the relationship

between a joint process’ global ǫ-machine and corresponding ǫ-transducer at both the process

(channel) level and at the automata (ǫ-machine and ǫ-transducer) level. There, we provide

algorithms for “conditionalizing” a joint process or ǫ-machine to obtain the corresponding

channel or ǫ-transducer, as well as algorithms for obtaining input or output marginals, apply-

ing an ǫ-transducer to an input ǫ-machine, composing multiple ǫ-transducers, and inverting

an invertible ǫ-transducer.

Note that the ability to construct an ǫ-transducer from a joint process can be useful when

attempting to infer an ǫ-transducer from data, as such data will typically come from a system

driven by some particular (possibly controllable) input; i.e., the data is a sample of a joint

process.

11 History ǫ-Transducer Versus Generator ǫ-Transducer

The preceding focused on the history specification of an ǫ-transducer, where a machine is

obtained by partitioning a channel’s histories (joint pasts). We can also consider the generator

specification, where we instead start with a machine that produces a stationary, ergodic
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channel. Taking this perspective, an ǫ-transducer is an input-dependent, strongly connected,

aperiodic hidden Markov model with unifilar transitions and probabilistically distinct states.

The history and generator specifications of an ǫ-transducer are likely equivalent—as they are

with ǫ-machines [21]—but we leave such a proof to future work.

12 Examples Revisited

With the ǫ-transducer defined, we can revisit the example channels examined above. We

display channel structure via its ǫ-transducer’s state transition diagram, as well as a wordmap

that now colors each joint history based on its corresponding causal state. Input and output

history projections are also shown. Histories that are not mapped to a single causal state are

colored black. Recall that causal states partition joint histories, so input or output histories

alone need not correspond to a unique causal state. We will discuss Markov orders for these

channels, but we leave it to the reader to construct an exhaustive list of Markov orders for

each channel.

Since the Identity (Fig. 7), All is Fair (Fig. 8), and Z (Fig. 9) Channels are memoryless,

their behavior does not depend on the past. As a result, there is a single causal state containing

every past and so their wordmaps are monochromatic. Since they have a single causal state,

CX = Cμ = 0.

In contrast, the Delay Channel (Fig. 10) has two causal states and so two colors corre-

sponding to pasts in which the input ends on a 0 (left half of the wordmap) or a 1 (right

half of the wordmap). This partitioning into halves is a characteristic of channels with a

pure feedforward Markov order Rpff = 1. We also see that the output words are colored

black, illustrating the fact that the output tells us nothing about the current causal state. The

channel’s pure feedforward Markov order of 1 can be seen in the channel’s ǫ-transducer

Fig. 7 Identity Channel:

ǫ-Transducer and causal-state

colored wordmap. See text for

explanation

A
0|0 :1
1|1 :1
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Fig. 8 All-Is-Fair Channel:

ǫ-Transducer and causal-state

colored wordmap
A

0|0 :1/2, 1|0 :1/2
0|1 :1/2, 1|1 :1/2

Fig. 9 Z Channel: ǫ-Transducer

and causal-state colored

wordmap
A

0|0 :1
0|1 :1/2, 1|1 :1/2

state-transition diagram by observing that all transitions on input symbol 0 lead to state A

and all transitions on input symbol 1 lead to state B. Since the Delay Channel is undefined for

outputs alone (Rpfb is undefined), it is the first example channel with a nontrivial irreducible

feedforward order: Riff = 1. The causal states of the Delay Channel simply store a single

bit of input, their entropy therefore matches the length-1 block entropy of the input process:
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Fig. 10 Delay Channel:

ǫ-Transducer and causal-state

colored wordmap A B0|0 :1

0|1 :1

1|1 :1

1|0 :1

CX = H [X0]. Maximizing the latter over input process gives us Cμ = 1, attained with Fair

Coin Process input.

The Feedforward NOR Channel (Fig. 11) also stores the previous input symbol and,

therefore, partitions input histories the same way (Rpff = 1). We see in the wordmap that

there is again an ambiguity of causal state given output histories alone and there is, therefore,

no pure feedback presentation for the channel. Specifically, we see that the ambiguity arises

for histories where the output ends on two 0s (lower quarter of the wordmap). This can be

verified in the channel’s ǫ-transducer by observing that a 1 on output always leads to state

A, but a 0 on output only leads to a unique state if it is followed by a 1 on output. A single

symbol of input is always needed to guarantee well defined behavior (Riff = 1). Since the

Feedforward NOR Channel’s causal states store the same information as the Delay Channel,

we can again drive the channel with the Fair Coin Process to attain Cμ = 1 bit.

The wordmap for the Odd NOT Channel (Fig. 12) has projected input (and output) par-

titions with structure at all scales. This is the signature of states that depend upon infinite

histories—one must provide an arbitrarily long binary expansion to specify the location of

the causal state boundaries and, therefore, the causal states themselves. If we observe both

inputs and outputs, we only need to specify in which quadrant a joint history lies in order to

determine its causal state. That is, the Odd NOT Channel is sofic on both input and output

alone (infinite pure feedforward and pure feedback Markov orders, Rpff and Rpfb, respec-

tively), but Markovian when both input and output are considered (finite Markov order R).

We also see that the causal states store the same information (parity) about input histories as

they do output histories, by observing the symmetry along the diagonal. Since the Period-2

Process generates sequences that always alternate between even and odd parity, we can drive

the channel with this process to induce a uniform distribution over its causal states. Therefore,

we have Cμ = 1 bit, again.
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Fig. 11 Feedforward NOR

Channel: ǫ-Transducer and

causal-state colored wordmap A B1|0 :1

0|1 :1

0|1 :1

0|0 :1

Fig. 12 Odd NOT Channel:

ǫ-Transducer and causal-state

colored wordmap A B0|0 :1

1|1 :1

1|0 :1
0|1 :1
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Fig. 13 All-Is-Golden Channel:

ǫ-Transducer and causal-state

colored wordmap

A B
1|0 :1/2
1|1 :1/2

0|1 :1/2
0|0 :1/2

1|0 :1
1|1 :1

We see that the All-Is-Golden Channel (Fig. 13) has a pure feedback Markov order of

Rpfb = 1. Since it ignores its input, however, input histories tell us nothing about in which

causal state the channel is. We also see that the wordmap is horizontally symmetric due to

this lack of input dependence. Since the state transitions depend only on output, the state

distribution and, therefore, the statistical complexity are independent of input. In particular,

the channel’s statistical complexity is that of the Golden Mean Process (GMP): CX = Cμ =

Cμ(GMP) ≈ 0.918 bits.

The wordmap for the Feedback NOR Channel (Fig. 14) clearly shows that it has infinite

pure feedforward Markov order Rpff, but finite Markov R and pure feedback Markov Rpfb

orders. Contrast this with the wordmap for the Feedback XOR Channel (Fig. 15) clearly

showing that the causal state, and so the channel’s behavior, cannot be determined by input

alone. Observe that the Feedback NOR Channel is in state A with probability 1 when a 1

is observed on input and oscillates between states A and B if the channel is driven with a

period-2 cycle of 0s and 1s from that point on. We can therefore induce a uniform distribution

over causal states by driving the channel with the Period-2 Process. We can also induce a

uniform distribution over the Feedback XOR Channel’s causal states by driving the channel

with the Fair Coin Process, which causes all state transitions to occur with equal probability.

In both cases, Cμ = 1 bit.

The Odd Random Channel (Fig. 16) has infinite pure feedforward and pure feedback

Markov orders (Rpff = Rpfb = ∞), but unlike the Odd NOT channel, the Markov order R

is infinite. In the Odd NOT channel, we saw structure at all scales in the input and output

projections of the wordmap, but a partitioning into quadrants in the complete wordmap. Now,

we see that there is no such simple partition in the complete wordmap, and there is structure at
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Fig. 14 Feedback NOR

Channel: ǫ-Transducer and

causal-state colored wordmap A B0|1 :1

1|0 :1

0|0 :1
0|1 :1

Fig. 15 Feedback XOR

Channel: ǫ-Transducer and

causal-state colored wordmap A B0|0 :1

1|1 :1

1|0 :1

0|1 :1
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Fig. 16 Odd Random Channel:

ǫ-Transducer and causal-state

colored wordmap A B0|0 :1

1|1 :1

0|0 :1/2, 1|0 :1/2
0|1 :1/2, 1|1 :1/2

Fig. 17 Period-2 Identity NOT

Channel: ǫ-Transducer and

causal-state colored wordmap

A B

1|0 :1
0|1 :1

0|0 :1
1|1 :1
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all scales in the coloring of histories. In other words, one must specify arbitrarily long pairs of

binary expansions (input and output) in order to identify a causal state. Specifically, knowing

that a past ended in (x, y)t = (1, 1) does not uniquely determine a causal state. This can be

seen as multiple colors appearing in the upper-right quadrant of the wordmap. If, however,

we know that the previous pair was (0, 0), (0, 1), or (1, 0), we see that the history maps to

causal state B; corresponding to the upper-left, lower-left, and lower-right subquadrants of

the upper-right quadrant, respectively. Similarly, if the previous pair was (1, 1), we are left

with an ambiguity in state; corresponding to the upper-right subquadrant of the upper-right

quadrant. Therefore, we require an arbitrarily long past to determine the channel’s causal

state in general. Since the causal states store the same parity as the Odd NOT channel, we

can again drive the channel with the Period-2 Process to induce a uniform distribution, giving

us Cμ = 1 bit.

The Period-2 Identity NOT Channel (Fig. 17) has a Markov order of R = 1, but we clearly

see that neither input nor output alone determines the channel’s causal state (Riff = Rifb = 1).

Since the states have a uniform distribution regardless of input, we have CX = Cμ = 1 bit.

13 Infinite-State ǫ-Transducers: The Simple Nonunifilar Channel

The example channels were chosen to have a finite number of causal states (typically two),

largely to keep the analysis of their structure accessible. We can see that even with a few states,

ǫ-transducers capture a great deal of behavioral richness. Nonetheless, many channels have

an infinite number of causal states. Consider, for example, the Simple Nonunifilar Channel.

This channel’s behavior is captured simply by the finite-state presentation shown in Fig. 18.

Fig. 18 Simple Nonunifilar

Channel: Nonunifilar transducer

presentation and state colored

wordmap A B
0|0 :1/2
1|1 :1/2

0|0 :1/2
1|1 :1/2

0|0 :1/2
1|1 :1/2

1|0 :1/2
0|1 :1/2
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When in state A, the channel behaves as the identity and has an equal probability of staying

in state A or transitioning to state B. When in state B, the channel will either behave as the

identity and transition back to state B or behave as the bit flipped identity and transition to

state A, each with equal probability.

Observe that the transducer shown is nonunifilar and is, therefore, not the ǫ-transducer

for the channel. For example, the joint symbol (0, 0) can cause state A to transition to either

itself or state B. This nonunifilarity manifests in the wordmap as large blocks of black points.

These indicate joint histories that lead to a mixture of transducer states. This illustrates the fact

that an observer cannot typically retain synchronization to a particular state of a nonunifilar

transducer—a problem not present when using unifilar transducers.

It is possible to construct the ǫ-transducer for the Simple Nonunifilar Channel, but doing

so results in a transducer with a countably infinite set of states. This minimal, unifilar

ǫ-transducer can be seen in Fig. 19. Since any channel with a finite Markov order (and

finite alphabet) will have a finite number of causal states, a channel with an infinite num-

ber of causal states will have infinite Markov order. This is also evident in the causal-state

wordmap for the Simple Nonunifilar Channel, as one needs infinite resolution (in general) to

determine to which causal state a joint past leads. In fact, even if we know either the infinite

input or output past, we still need to know the full output or input past, respectively, in order

to characterize the channel’s behavior. This is therefore the first example we have seen with

Riff = Rifb = ∞.

Observe that while the Simple Nonunifilar Channel’s output clearly depends upon its input,

its state-to-state transitions do not. Its statistical complexity is therefore independent of the

input process chosen. In fact, the causal states and transitions between them are identical to the

Simple Nonunifilar Source [22]. The statistical complexity is therefore equal to the statistical

complexity of the Simple Nonunifilar source: CX = Cμ ≈ 2.71 bits. Even though there are

an infinite number of states, the Bi states are occupied with probability that decreases quickly

with i , thus allowing for a finite Shannon state entropy. Note that if one were to use Fig. 18’s

nonunifilar presentation for the Simple Nonunifilar Channel, the statistical complexity would

be underestimated as CX = Cμ = 1 bit.

14 Discussion

Previously, we described computational mechanics in the setting of either generating or

controlling processes [15]. As noted there, generation and control are complementary. Here,

we developed computational mechanics in a way that merges both control (the input process)

and generation (the output process), extending the ǫ-machine to the ǫ-transducer. With this

laid out, we describe how the ǫ-transducer overlaps and differs from alternatives to modeling

input–output processes. We then turn to discuss applications, which incidentally elucidate

our original motivations, and suggest future directions.

14.1 Related Work: Modeling

Following the signposts of earlier approaches to modeling complex, nonlinear dynamical

systems [2,37], we are ultimately concerned with reconstructing a transducer when given a

general channel or given a joint process, either analytically or via statistical inference. And

so, when discussing related efforts, we distinguish between those whose goal is to extract a

model, which we review now, and those that analyze types of transductions, which we review

next. After this, we turn to applications.
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Fig. 19 Simple Nonunifilar

Channel: ǫ-Transducer and

causal-state colored wordmap
A B1

B2

B3

...

B∞

0|0 :1.00
1|1 :1.00

0|0 :0.75
1|1 :0.75

0|0 :0.67
1|1 :0.67

0|0 :0.63
1|1 :0.63

0|0 :0.50
1|1 :0.50

0|0 :0.50
1|1 :0.50

1|0 :0.25
0|1 :0.25

1|0 :0.33
0|1 :0.33

1|0 :0.37
0|1 :0.37

1|0 :0.50
0|1 :0.50

For statistical estimation we note that the recently introduced Bayesian Structural Infer-

ence (BSI) [36] allows one to estimate the posterior probability that ǫ-machines generate a

given, even relatively short, data series. BSI’s generality allows it to be readily adapted to

infer ǫ-transducers from samples of an input–output process. This turns on either developing

an enumeration of ǫ-transducers which parallels that developed for ǫ-machines in Ref. [38] or

on developing a list of candidate ǫ-transducers for a given circumstance. And, these are also
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readily accomplished. A sequel provides the implementations. Previously, inferring causal

states, and so causal-state filters, had also been addressed; see, for example, Refs. [36,39,40].

Optimal transducers were originally introduced as structure-based filters to define hierar-

chical ǫ-machine reconstruction [22,41] in terms of causal-state filtering, to detect emergent

spatiotemporal patterns [42–45], and to explore the origins of evolutionary selection pressure

[46] and the evolution of language structure [47]. These causal-state transducers were first

formalized in Ref. [48] and several of those results are reproduced in Ref. [49]. Appendix

shows that the definition there, which makes additional assumptions compared to that here,

are equivalent. The more-general development is more elegant, in that it establishes unifi-

larity, for example, rather than assume such a powerful property. Likely, in addition, the

generality will allow ǫ-transducers to be more widely used.

Throwing the net wider—beyond these, most directly related, prior efforts—there have

been many approaches to modeling input–output mappings. We will use the fact that most

do not focus on quantitatively analyzing the mapping’s intrinsic structure to limit the scope

of our comments. We mention a few and then only briefly. Hopefully the list, nonetheless,

suggests directions for future work in these areas.

Today, many fall under the rubric of learning, though they are rather more accurately

described as statistical parameter estimation within a fixed model class. Probably, the most

widely used and developed methods to model general input–output mappings are found in

artificial neural networks [50,51] and in the more modern approaches that employ kernel

methods [52], statistical physics [53], and information theory [54,55]. Often these methods

require IID-drawn samples and so do not directly concern mappings from one temporal

process to another. Unlike ǫ-transducers, they are also typically limited to model classes—

e.g., feedforward and directed acyclic graph structures—that do not allow internal feedback

or dynamics.

That said, neural networks that are recurrent are universal approximators of dynamical

systems and, per force, are channels with feedback and feedforward memory [56]. They are

well known to be hard to train and, in any case, rarely quantitatively analyzed for the structures

they capture when successfully trained. In the mathematical statistics of time series, for com-

parison, AutoRegressive-Moving-Average model with eXogenous inputs model (ARMAX

models) are channels with feedback and feedforward memory, but they are linear—current

output is a linear combination of past inputs and outputs. The nonlinear generalization is the

Nonlinear AutoRegressive eXogenous model (NARX), which is a very general memoryful

causal channel. At some future time, likely using ǫ-transducers extended to continuous vari-

ables as recently done for ǫ-machines in Ref. [57], we will understand better the kinds of

structure these channels can represent.

14.2 Related Work: Classification

Beyond developing a theoretical framework for structured transformations, one that is suf-

ficiently constructive to be of use in statistical inference, there are issues that concern how

they give a new view, if any, of the organization of the space of structured processes itself.

Specifically, computational mechanics up to this point focused on processes and devel-

oped ǫ-machines to describe them as stochastic sets. ǫ-machines are, most simply stated,

compact representations of distributions over sequences. With the ǫ-transducers introduced

here, computational mechanics now has formalized stochastic mappings of these stochastic

sets. And, to get to the point, with sets and mappings one finally has a framework capable of

addressing the recoding equivalence notion and the geometry of the space of processes pro-

posed in Ref. [58]. A key component of this will be a measure of distance between processes
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that uses a structural measure from the minimal optimal mapping (ǫ-transducer) between

them. This would offer a constructive, in the sense we use the word, approach to the view of

process space originally introduced by Shannon [13,59,60].

This then leads to the historically prior question of structurally classifying processes—

paralleling schemes developed in computation theory [24]. Indeed, our development is much

closer to input–output processes from the earliest days of dynamical systems and automata

theory—which were concerned with exploring the range of behaviors of mechanical systems

and the then-new digital computers.

Briefly, ǫ-transducers are probabilistic endomorphisms of subshifts as studied in symbolic

dynamics [25]. The (nonprobabilistic) endomorphisms there were developed to explore the

equivalence of processes via conjugacies. Notably, this area grew out of efforts in the 1920s

and 1930s by Hedlund, Morse, Thue, and others to define symbolic dynamical systems that

were more analytically tractable than continuum-state systems [61]. Their efforts played a

role in forming the logical foundations of mathematics and so eventually in the emergence of

a theory of computation via Church, Gödel, Post, and Turing [62–65]. This led eventually to

Moore’s abstractions of sequential machines and transducers [66] and to Huffman’s concept

of a minimal implementation [67] and information lossless automata [68–70]. Today, though

expositions are increasingly rare, finite-state transducers are covered by several texts on

computation theory; see, for example, Ref. [71].

Once one allows for distributions over sequences, though, then one shifts from the overtly

structural approach of symbolic dynamics and automata to Shannon’s information sources

and communication channels [26] and a strong emphasis on stochastic process theory. As

noted in the introduction, one principal difference is that here we considered channels with

memory, while the latter in its elementary treatments considers memoryless channels or

channels with very restricted forms of memory. Finite-state channels have been developed

in limited way, though; for example, see Ref. [72, Ch.7] and for very early efforts see Refs.

[73] and [74]. There are also overlaps, as we attempted to show in the selected examples,

with classifications developed in digital filter theory [75].

There are also differences in focus and questions. Whereas information theory [12,26]

studies quantities of information such as intrinsic randomness and informational correlation,

computational mechanics [1] goes an additional step and attempts to quantify the information

itself —the computational structure or memory within a system. This is achieved not by

assuming a class of model directly, but by making a simple assumption about modeling itself:

The only relevant information is that which contributes to prediction—the “difference that

makes a difference” to the future [76]. Via the causal equivalence relation, this assumption

leads directly to the unique, maximally predictive, and minimally complex model of our

measurement data—the ǫ-machine. Another way to express this is that ǫ-transducers give a

constructive way to explore the information theory of channels with and without memory.

14.3 Applications

Our development of ǫ-transducers was targeted to provide the foundation for several related

problems—problems that we will address elsewhere, but will briefly describe here to empha-

size general relevance and also to suggest future directions.

14.3.1 Inference Versus Experimentation

If all data collected is produced by a measuring device, then any model formed from that

data captures both the structure of the system and sensor in combination. Is there a natural
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separation of measuring instrument from system measured? We can now pose this precisely

in terms of ǫ-transducers: Are there optimal decompositions of a process’s ǫ-machine into a

possibly smaller ǫ-machine (representing the hidden process) composed with a ǫ-transducer

(representing the measuring instrument)?

14.3.2 Information Flow Within and Between Systems

In nonlinear dynamics and in information theory there has been a long-lived interest in

how information “flows” and how such flows relate to a system’s mechanical organization;

see Refs. [77–80], to mention only a few. These employ specializations of Eq. (5)’s excess

entropy, being various forms of conditional mutual information. The transfer entropy [81] and

the earlier directional information [82,83] are two such. The main issue concerns how one

process affects another and so this is a domain in which ǫ-transducers—as optimal models

of the structured transformations between processes—can help clarify the issues.

In particular, there has been recent criticism of the use of these as measures of information

flow and, specifically, their relation to the structural organization of the flows [84]. We can

now do better, we believe, since ǫ-transducers give a canonical presentation with which to

describe and extract the structure of such mappings. And this, in turn, allows one to explicitly

relate how causal-state structure supports or precludes information flows. We address this

problem in a sequel [85].

14.3.3 Process Decomposition

Given a process, we can now analyze what internal components drive or are driven by other

internal components. As one example, Is a subset of the measurement alphabet the “output”

being driven by another subset that is “input”? The question hints at the solution that one

can now provide: Produce the ǫ-transducer for each bipartite input–output partitioning of

the global ǫ-machine alphabet, giving a set of candidate input–output models. One can then

invoke, based on a notion of first principles (such as parsimony) or prior knowledge, a way

to choose the “best” input–output, driver-drivee decomposition.

14.3.4 Perception-Action Cycles

Probably one of the most vexing contemporary theoretical and practical problems, one that

occurs quite broadly, is how to describe long-term and emergent features of dynamic learning

in which a system models its input, makes a decision based on what it has gleaned, and takes an

action that affects the environment producing the inputs. In psychology and cognitive sciences

this problem goes under the label of the perception-action cycle; in neuroscience, under

sensori-motor loop [7,8]. The problem transcends both traditional mathematical statistics and

modern machine learning, as their stance is that the data is not affected by what is learned.

And in this, it transcends the time-worn field of experiment design [86,87] and the more

recent machine learning problem of active learning [53]. Though related to computational

mechanics via Ref. [40], the recent proposal [88] for interactive learning is promising, but is

not grounded in a systematic approach to structure. It also transcends control theory, as the

latter does not address dynamically building models, but rather emphasizes how to monitor

and drive a given system into given states [89].

ε-Transducers suggest a way to model the transduction of sensory input to a model and

from the model to a decision process that generates actions. Thus, the computational mechan-

ics representation of the perception-action cycle is two cross-coupled ǫ-transducers—one’s
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output is the other’s input and vice versa. Formulating the problem in this way promises

progress in analyzing and in quantifying structures in the space of models and strategies.

Physical applications of ǫ-transducers to analyze the information thermodynamics of

feedback control in Maxwellian Demons can be seen in Szilard’s Engine [4] and the Mandal-

Jarzynski ratchet [3,5].

15 Conclusion

Previously, computational mechanics focused on extracting and analyzing the informational

and structural properties of individual processes. The premise being that once a process’s

ǫ-machine had been obtained, it can be studied in lieu of other more cumbersome (or even

inappropriate) process presentations. Since the ǫ-machine is also unique and minimal for a

process, its structure and quantities were treated as being those of the underlying system that

generated the process. Strengthening this paradigm, virtually all of a process’s correlational,

information, and structural quantities can now be calculated in closed form using new methods

of ǫ-machine spectral decomposition [90].

By way of explaining this paradigm, we opened with a review of stationary processes and

their ǫ-machines, turning to broaden the setting to joint input–output processes and com-

munication channels. We then defined the (conditional) causal equivalence relation, which

led immediately to transducer causal states and the ǫ-transducer. A series of theorems then

established their optimality. To illustrate the range of possible transformations we consid-

ered a systematic set of example channels that, in addition, provided an outline of a structural

classification scheme. As an aide in this, we gave a graphical way to view structured transfor-

mations via causal-state wordmaps. With the framework developed, one sees that the same

level of computational mechanics’ prior analysis of individual processes can now be brought

to bear on understanding structural transformations between processes.

The foregoing, however, is simply the first in a series on the structural analysis of mappings

between processes. The next will address the information-theoretic measures appropriate to

joint input–output processes. We then will turn to an analysis that blends the present results on

the causal architecture of structured transformations and the information-theoretic measures,

showing how the internal mechanism expressed in the ǫ-transducer supports information

creation, loss, and manipulation during flow. From that point, the sequels will branch out to

address channel composition, decomposition, and inversion.

Given the diversity of domains in which structured transformations (and their understand-

ing) appear to play a role, there looks to be a wide range of applications. In addition to

addressing several of these applications, Sect. 14 outlined several future research directions.

The ǫ-transducer development leads, for example, to a number of questions that can now be

precisely posed and whose answers now seem in reach: How exactly do different measuring

devices change the ǫ-machine formed from measurements of a fixed system? What precisely

is lost in the measurement process, and how well can we model a system using a given mea-

suring device? When is it possible to see past a measuring device into a system, and how can

we optimize our choice of measuring device in practice?
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Appendix: Equivalence of Two ǫ-Transducer Definitions

We show the equivalence of two different ǫ-transducer definitions, that presented in the

main paper and an earlier version requiring additional assumptions. Since the ǫ-transducer

is determined by its causal equivalence relation, we show that the respective equivalence

relations are the same. The first is defined and discussed at length above and duplicated here

for convenience.

Definition 1 The causal equivalence relation ∼ǫ for channels is defined as follows:

↼−−−
(x, y) ∼ǫ

↼−−−
(x, y)′ ⇐⇒

P
(−⇀

Y
∣∣−⇀X ,

↼−−−
(X, Y ) =

↼−−−
(x, y)

)

= P
(−⇀

Y
∣∣−⇀X ,

↼−−−
(X, Y ) =

↼−−−
(x, y)′

)

The second definition is an implicit equivalence relation consisting of an explicit equiv-

alence relation, along with an additional unifilarity constraint that, of course, is quite strong

[48,49]. Here, we make both requirements explicit.

Definition 2 The single-symbol unifilar equivalence relation ∼1
ǫ for channels is defined as

follows:

↼−−−
(x, y) ∼1

ǫ
↼−−−
(x, y)′ ⇐⇒

(i) P
(
Y0

∣∣X0,
↼−−−
(X, Y )0 =

↼−−−
(x, y)

)

= P
(
Y0

∣∣X0,
↼−−−
(X, Y )0 =

↼−−−
(x, y)′

)

and:

(i i) P
(
Y1

∣∣X1,
↼−−−
(X, Y )0 =

↼−−−
(x, y), (X, Y )0 = (a, b)

)

= P
(
Y1

∣∣X1,
↼−−−
(X, Y )0 =

↼−−−
(x, y)′, (X, Y )0 = (a, b)

)
,

for all a ∈ X and b ∈ Y such that:

P
(
(X, Y )0 = (a, b)|

↼−−−
(x, y)

)
> 0

and:

P
(
(X, Y )0 = (a, b)|

↼−−−
(x, y)′

)
> 0.

The second requirement (ii) in the above definition requires that appending any joint symbol

to two single-symbol-equivalent pasts will also result in a pair of pasts that are single-symbol-

equivalent. This is unifiliarity. The second part of the second requirement ensures that we

are only considering possible joint symbols (a, b)—symbols that can follow
↼−−−
(x, y) or

↼−−−
(x, y)′

with some nonzero probability.

Proposition 7 The single-symbol unifilar equivalence relation is identical to the causal

equivalence relation.

Proof Let
↼−−−
(x, y) and

↼−−−
(x, y)′ be two pasts, equivalent under ∼1

ǫ . This provides our base case

for induction:

P
(
Y0

∣∣X0,
↼−−−
(x, y)

)
= P

(
Y0

∣∣X0,
↼−−−
(x, y)′

)
. (13)
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Now, let’s assume that
↼−−−
(x, y) and

↼−−−
(x, y)′ are equivalent for length-L − 1 future morphs:

P
(
Y0:L

∣∣X0:L ,
↼−−−
(x, y)

)
= P

(
Y0:L

∣∣X0:L ,
↼−−−
(x, y)′

)
. (14)

We need to show that
↼−−−
(x, y) and

↼−−−
(x, y)′ are equivalent for length-L future morphs by using

the unifilarity constraint. Unifilarity requires that appending a joint symbol (a, b) to both
↼−−−
(x, y) and

↼−−−
(x, y)′ results in two new pasts also equivalent to each other for length-L − 1

future morphs:

P
(
Y1:L+1

∣∣X1:L+1,
↼−−−
(x, y)(a, b)

)
= P

(
Y1:L+1

∣∣X1:L+1,
↼−−−
(x, y)′(a, b)

)
. (15)

Since this must be true for any joint symbol, we replace (a, b) with (X, Y )0 in Eq. (15),

giving:

P
(
Y1:L+1

∣∣X1:L+1,
↼−−−
(x, y), (X, Y )0

)
= P

(
Y1:L+1

∣∣X1:L+1,
↼−−−
(x, y)′, (X, Y )0

)

⇐⇒ (16)

P
(
Y1:L+1

∣∣X1:L+1,
↼−−−
(x, y), X0, Y0

)
= P

(
Y1:L+1

∣∣X1:L+1,
↼−−−
(x, y)′, X0, Y0

)
.

To arrive at our result, we need to multiply the left side of Eq. (16) by P
(
Y0

∣∣X1:L+1,
↼−−−
(x, y),

X0

)
and the right side by P

(
Y0

∣∣X1:L+1,
↼−−−
(x, y)′, X0

)
, which we can do when these quantities

are equal. Since our channel is causal, X1:L+1 has no effect on Y0 when we condition on the

infinite joint past and present input symbol. The two quantities, P
(
Y0

∣∣X1:L+1,
↼−−−
(x, y), X0

)

and P
(
Y0

∣∣X1:L+1,
↼−−−
(x, y)′, X0

)
, therefore reduce to P

(
Y0

∣∣↼−−−
(x, y), X0

)
and P

(
Y0

∣∣↼−−−
(x, y)′, X0

)
,

respectively. But these are equal by the single-symbol unifilar equivalence relation—the base

for induction. Multiplying each side of Eq. (16) by these two terms (in their original form)

gives:

P
(
Y1:L+1

∣∣X1:L+1,
↼−−−
(x, y), X0, Y0

)
× P

(
Y0

∣∣X1:L+1,
↼−−−
(x, y), X0

)

= P
(
Y1:L+1

∣∣X1:L+1,
↼−−−
(x, y)′, X0, Y0

)
× P

(
Y0

∣∣X1:L+1,
↼−−−
(x, y)′, X0

)

⇐⇒

P
(
Y1:L+1, Y0

∣∣X1:L+1,
↼−−−
(x, y), X0

)
= P

(
Y1:L+1, Y0

∣∣X1:L+1,
↼−−−
(x, y)′, X0

)

⇐⇒

P
(
Y0:L+1

∣∣X0:L+1,
↼−−−
(x, y)

)
= P

(
Y0:L+1

∣∣X0:L+1,
↼−−−
(x, y)′

)
.

The two pasts are therefore equivalent for length-L future morphs. By induction, the two

pasts are equivalent for arbitrarily long future morphs. ⊓⊔

References

1. Crutchfield, J.P.: Between order and chaos. Nat. Phys. 8(January), 17–24 (2012)

2. Packard, N.H., Crutchfield, J.P., Farmer, J.D., Shaw, R.S.: Geometry from a time series. Phys. Rev. Lett.

45, 712 (1980)

3. Mandal, D., Jarzynski, C.: Work and information processing in a solvable model of Maxwell’s Demon.

Proc. Natl. Acad. Sci. USA 109(29), 11641–11645 (2012)

4. Boyd, A.B., Crutchfield, J.P.: Demon dynamics: deterministic chaos, the Szilard map, and the intel-

ligence of thermodynamic systems. Santa Fe Institute Working Paper 15–06-019. arXiv:1506.04327

[cond-mat.stat-mech]

5. Boyd, A.B., Mandal, D., Crutchfield, J.P.: Identifying functional thermodynamics in autonomous

Maxwellian ratchets. Santa Fe Institute Working Paper 15-07-025. arXiv:1507.01537 [cond-mat.stat-

mech]

6. Rieke, F., Warland, D., de Ruyter, R., van Steveninck, Bialek, W.: Spikes: Exploring the Neural Code.

Bradford Book, New York (1999)

123

http://arxiv.org/abs/1506.04327
http://arxiv.org/abs/1507.01537


Computational Mechanics of Input–Output Processes. . . 449

7. Cutsuridis, V., Hussain, A., Taylor, J.G.: Perception-Action Cycle. Springer, New York (2011)

8. Gordon, G., Kaplan, D., Lankow, D., Little, D., Sherwin, J., Suter, B., et al.: Toward an integrated approach

to perception and action: conference report and future directions. Front. Syst. Neurosci. 5, 20 (2011)

9. Padgett, J.F., Lee, D., Collier, N.: Economic production as chemistry. Ind. Corp. Chang. 12(4), 843–877

(2003)

10. Crutchfield, J.P., Young, K.: Inferring statistical complexity. Phys Rev. Lett. 63, 105–108 (1989)

11. Gray, R.M.: Probability, Random Processes, and Ergodic Theory, 2nd edn. Springer, New York (2009)

12. Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. Wiley, New York (2006)

13. Yeung, R.W.: Information Theory and Network Coding. Springer, New York (2008)

14. Ellison, C.J., Mahoney, J.R., Crutchfield, J.P.: Prediction, retrodiction, and the amount of information

stored in the present. J. Stat. Phys. 136(6), 1005–1034 (2009)

15. Crutchfield, J.P., Ellison, C.J., Mahoney, J.R., James, R.G.: Synchronization and control in intrinsic and

designed computation: an information-theoretic analysis of competing models of stochastic computation.

CHAOS 20(3), 037105 (2010)

16. Gray, R.M., Davisson, L.D.: The ergodic decomposition of stationary discrete random processses. IEEE

Trans. Inf. Theory 20(5), 625–636 (1974)

17. Billingsley, P.: Statistical methods in Markov chains. Ann. Math. Stat. 32, 12 (1961)

18. Crutchfield, J.P., Shalizi, C.R.: Thermodynamic depth of causal states: objective complexity via minimal

representations. Phys. Rev. E 59(1), 275–283 (1999)

19. Shalizi, C.R., Crutchfield, J.P.: Computational mechanics: pattern and prediction, structure and simplicity.

J. Stat. Phys. 104, 817–879 (2001)

20. Crutchfield, J.P., Ellison, C.J., Mahoney, J.R.: Time’s barbed arrow: irreversibility, crypticity, and stored

information. Phys. Rev. Lett. 103(9), 094101 (2009)

21. N. Travers and J. P. Crutchfield. Equivalence of history and generator ǫ-machines. Santa Fe Institute

Working Paper 11–11-051. arXiv:1111.4500 [math.PR]

22. Crutchfield, J.P.: The calculi of emergence: computation, dynamics, and induction. Physica D 75, 11–54

(1994)

23. Paz, A.: Introduction to Probabilistic Automata. Academic Press, New York (1971)

24. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation. Addison-

Wesley, Reading (1979)

25. Lind, D., Marcus, B.: An Introduction to Symbolic Dynamics and Coding. Cambridge University Press,

New York (1995)

26. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(379–423), 623–656

(1948)

27. Gray, R.M.: Entropy and Information Theory. Springer, New York (1990)

28. Oppenheim, A.V., Schafer, R.W.: Discrete-Time Signal Processing. Prentice-Hall Signal Processing

Series. Prentice Hall, Upper Saddle River (2010)

29. Mandelbrot, B.: Fractals: Form. Chance and Dimension. W. H. Freeman and Company, New York (1977)

30. Rabiner, L.R.: A tutorial on hidden Markov models and selected applications. IEEE Proc. 77, 257 (1989)

31. Elliot, R.J., Aggoun, L., Moore, J.B.: Hidden Markov Models: Estimation and Control. Applications of

Mathematics, vol. 29. Springer, New York (1995)

32. James, R.G., Mahoney, J.R., Ellison, C.J., Crutchfield, J.P.: Many roads to synchrony: natural time scales

and their algorithms. Phys. Rev. E 89, 042135 (2014)

33. Crutchfield, J.P., Hanson, J.E.: Turbulent pattern bases for cellular automata. Physica D 69, 279–301

(1993)

34. Li, C.-B., Yang, H., Komatsuzaki, T.: Multiscale complex network of protein conformational fluctuations

in single-molecule time series. Proc. Natl. Acad. Sci. USA 105, 536–541 (2008)

35. Varn, D.P., Canright, G.S., Crutchfield, J.P.: ǫ-Machine spectral reconstruction theory: a direct method for

inferring planar disorder and structure from X-ray diffraction studies. Acta. Cryst. Sec. A 69(2), 197–206

(2013)

36. Strelioff, C.C., Crutchfield, J.P.: Bayesian structural inference for hidden processes. Phys. Rev. E 89,

042119 (2014)

37. Crutchfield, J.P., McNamara, B.S.: Equations of motion from a data series. Complex Syst. 1, 417–452

(1987)

38. Johnson, B.D., Crutchfield, J.P., Ellison, C.J. McTague, C.S.: Enumerating finitary processes. Santa Fe

Institute Working Paper 10–11-027. arXiv:1011.0036 [cs.FL]

39. Shalizi, C.R., Shalizi, K.L., Crutchfield, J.P.: Pattern discovery in time series, Part I: Theory, algorithm,

analysis, and convergence. Santa Fe Institute Working Paper 02–10-060. arXiv:cs.LG/0210025

40. Still, S., Crutchfield, J.P., Ellison, C.J.: Optimal causal inference: estimating stored information and

approximating causal architecture. CHAOS 20(3), 037111 (2010)

123

http://arxiv.org/abs/1111.4500
http://arxiv.org/abs/1011.0036
http://arxiv.org/abs/cs.LG/0210025


450 N. Barnett, J. P. Crutchfield

41. Crutchfield, J.P.: Reconstructing language hierarchies. In: Atmanspracher, H.A., Scheingraber, H. (eds.)

Information Dynamics, pp. 45–60. Plenum, New York (1991)

42. Hanson, J.E., Crutchfield, J.P.: The attractor-basin portrait of a cellular automaton. J. Stat. Phys. 66,

1415–1462 (1992)

43. Crutchfield, J.P.: Discovering coherent structures in nonlinear spatial systems. In: Brandt, A., Ramberg,

S., Shlesinger, M. (eds.) Nonlinear Ocean Waves, pp. 190–216. World Scientific, Singapore (1992)

44. Hanson, J.E., Crutchfield, J.P.: Computational mechanics of cellular automata: An example. Physica D

103, 169–189 (1997)

45. McTague, C.S., Crutchfield, J.P.: Automated pattern discovery—an algorithm for constructing optimally

synchronizing multi-regular language filters. Theoe. Comp. Sci. 359(1–3), 306–328 (2006)

46. Crutchfield, J.P., Görnerup, O.: Objects that make objects: the population dynamics of structural com-

plexity. J. R. Soc. Interface 3, 345–349 (2006)

47. Crutchfield, J.P., Whalen, S.: Structural drift: the population dynamics of sequential learning. PLoS

Comput. Biol. 8(6), e1002510 (2010)

48. J. P. Crutchfield. Optimal structural transformations-the ǫ-transducer. UC Berkeley Physics Research

Report, 1994

49. Shalizi, C.R.: Causal architecture, complexity and self-organization in time series and cellular automata.

PhD thesis, University of Wisconsin, Madison (2001)

50. Hopfield, J.J.: Neural networks and physical systems with emergent collective behavior. Proc. Natl. Acad.

Sci. 79, 2554 (1982)

51. Hertz, J., Krogh, A., Palmer, R.G.: An Introduction to the Theory of Neural Networks. Lecture Notes,

vol. 1. Studies in the Sciences of Complexity. Addison-Wesley, Redwood City (1991)

52. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference,

and Prediction, 2nd edn. Spinger, New York (2011)

53. MacKay, D.J.C.: Information Theory. Inference and Learning Algorithms. Cambridge University Press,

Cambridge (2003)

54. Bialek, W., Nemenman, I., Tishby, N.: Predictability, complexity, and learning. Neural Comput 13, 2409–

2463 (2001)

55. Shalizi, C.R., Crutchfield, J.P.: Information bottlenecks, causal states, and statistical relevance bases: How

to represent relevant information in memoryless transduction. Adv. Comput. Syst. 5(1), 91–95 (2002)

56. Albers, D., Sprott, J.C., Crutchfield, J.P.: Persistent chaos in high dimensions. Phys. Rev. E 74(5), 057201

(2006)

57. Marzen, S., Crutchfield, J.P.: Informational and causal architecture of discrete-time renewal processes.

Entropy 17(7), 4891–4917 (2015)

58. Crutchfield, J.P.: Information and its metric. In: Lam, L., Morris, H.C. (eds.) Nonlinear Structures in

Physical Systems—Pattern Formation. Chaos and Waves, pp. 119–130. Springer, New York (1990)

59. Shannon, C.E.: The lattice theory of information. IEEE Trans. Inf. Theory 1, 105–107 (1953)

60. Li, H., Chong, E.K.P.: On a connection between information and group lattices. Entropy 13, 683–798

(2011)

61. Morse, M., Hedlund, G.A.: Symbolic dynamics. Am. J. Math. 60(4), 815–866 (1938)

62. Post, E.: Introduction to the general theory of elementary propositions. Am. J. Math. 43, 163–185 (1921)

63. Gödel, K.: On Formally Undecidable Propositions of Principia Mathematica and Related Systems. Dover

Publications, Mineola (1992)

64. Turing, A.: On computable numbers, with an application to the Entschiedungsproblem. Proc. Lond. Math.

Soc. 42, 43:230–265, 544–546 (1937)

65. Church, A.: A note on the Entscheidungsproblem. J. Symb. Log. 1, 40–41 (1936)

66. Moore, E.F.: Gedanken-experiments on sequential machines. In: Shannon, C., McCarthy, J. (eds.)

Automata Studies. number 34 in Annals of Mathematical Studies, pp. 129–153. Princeton University

Press, Princeton, New Jersey (1956)

67. Huffman, D.: The synthesis of sequential switching circuits. J. Frankl Inst. 257(161–190), 275–303 (1954)

68. Huffman, D.: Information conservation and sequence transducers. In: Proceedings of the Symposium on

Information Networks, pp. 291–307. Polytechnic Institute of Brooklyn, Brooklyn (1954)

69. Huffman, D.: Canonical forms for information-lossless finite-state logical machines. IRE Trans. Circuit

Theory 6, 41–59 (1959)

70. Huffman, D.: Notes on information-lossless finite-state automata. Il Nuovo Cimento 13(2 Supplement),

397–405 (1959)

71. Brookshear, J.G.: Theory of Computation: Formal Languages, Automata, and Complexity. Ben-

jamin/Cummings, Redwood City (1989)

72. Ash, R.B.: Information Theory. Wiley, New York (1965)

123



Computational Mechanics of Input–Output Processes. . . 451

73. Blackwell, D., Breiman, L., Thomasian, A.J.: Proof of Shannon’s transmission theorem for finite-state

indecomposable channels. Ann. Math. Stat. 29(4), 1209–1220 (1958)

74. Blackwell, D.: Exponential error bounds for finite state channels. In: Proceedings of the Fourth Berkeley

Symposium on Mathematical Statistics and Probability, vol. 1, pp. 57–63. University of California Press,

(1961)

75. Hamming, R.W.: Digital Filterns, 3rd edn. Dover Publications, New York (1997)

76. Bateson, G.: Mind and Nature: A Necessary Unity. E. P. Dutton, New York (1979)

77. R. Shaw. Strange attractors, chaotic behavior, and information flow. Z. Naturforsh., 36a:80, 1981

78. Ahlswede, R., Körner, J.: Appendix: on common information and related characteristics of correlated

information sources. In: Ahlswede R., Baumer, Cai N., Aydinian H., Blinovsky V., Deppe C., Mashurian

H. (eds.) General Theory of Information Transfer and Combinatorics. Lecture Notes in Computer Science,

vol. 4123, pp. 664–677. Springer, Berlin (2006)

79. Williams, P.L., Beer, R.D.: Generalized measures of information transfer. arXiv:1102.1507

80. Barnett, L., Barrett, A.B., Seth, A.K.: Granger causality and transfer entropy are equivalent for Gaussian

variables. Phys. Rev. Lett. 103, 238701 (2009)

81. Schreiber, T.: Measuring information transfer. Phys. Rev. Lett. 85, 461–464 (2000)

82. Marko, H.: The bidirectional communication theory—a generalization of information theory. IEEE Trans.

Commun. 21, 1345–1351 (1973)

83. Massey, J.L.: Causality, feedback and directed information. In: Proceedings of the 1990 International

Symposium on Information Theory and Its Applications, pp. 1–6. Waikiki, Hawaii, 27–30 Nov 1990

84. Sun, J., Bollt, E.M.: Causation entropy identifies indirect influences, dominance of neighbors and antici-

patory couplings. Physica D 267, 49–57 (2014)

85. Barnett, N., Crutchfield, J.P.: Computational mechanics of input-output processes: Shannon information

measures and decompositions. in preparation (2014)

86. Fedorov, V.V.: Theory of Optimal Experiments. Probability and Mathematical Statistics. Academic Press,

New York (1972)

87. Atkinson, A., Bogacka, B., Zhigljavsky, A.A. (eds.): Optimum Design 2000. Nonconvex Optimization

and Its Applications. Springer, New York (2001)

88. Still, S.: Information-theoretic approach to interactive learning. EuroPhys. Lett. 85, 28005 (2009)

89. Astrom, K.J., Murray, R.M.: Feedback Systems: An Introduction for Scientists and Engineers. Princeton

University Press, Princeton (2008)

90. Crutchfield, J.P., Riechers, P., Ellison, C.J.: Exact complexity: spectral decomposition of intrinsic com-

putation. Santa Fe Institute Working Paper 13–09-028. arXiv:1309.3792 [cond- mat.stat-mech]

123

http://arxiv.org/abs/1102.1507
http://arxiv.org/abs/1309.3792

	Computational Mechanics of Input--Output Processes: Structured Transformations and the ε-Transducer
	Abstract
	1 Introduction
	2 Processes and Their Presentations
	2.1 Stationary, Ergodic Processes
	2.2 Examples
	2.2.1 Biased Coin Process
	2.2.2 Period-2 Process
	2.2.3 Golden Mean Process
	2.2.4 Even Process

	2.3 Optimal Presentations
	2.4 Example Process ε-Machines

	3 Input--Output Processes and Channels
	4 Example Channels and Their Classification
	4.1 Memorylessness
	4.2 Finite Feedforward
	4.3 Infinite Feedforward
	4.4 Finite Feedback
	4.5 Infinite Feedback
	4.6 Infinite Feedforward-Feedback
	4.7 Irreducible Feedforward-Feedback
	4.8 Causal Channel Markov Order Hierarchy
	4.9 Causal-State Channels

	5 Global ε-Machine
	6 ε-Transducer
	7 Structural Complexity
	8 Reproducing a Channel
	9 Optimality
	10 Global ε-Machine Versus ε-Transducer
	11 History ε-Transducer Versus Generator ε-Transducer
	12 Examples Revisited
	13 Infinite-State ε-Transducers: The Simple Nonunifilar Channel
	14 Discussion
	14.1 Related Work: Modeling
	14.2 Related Work: Classification
	14.3 Applications
	14.3.1 Inference Versus Experimentation
	14.3.2 Information Flow Within and Between Systems
	14.3.3 Process Decomposition
	14.3.4 Perception-Action Cycles


	15 Conclusion
	Acknowledgments
	Appendix: Equivalence of Two ε-Transducer Definitions
	References


