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Abstract

“Sola dosis facit venenum.” These words of Paracelsus, “the dose makes the poison”, can lead to a 

cavalier attitude concerning potential toxicities of the vast array of low abundance environmental 

chemicals to which humans are exposed. Exposome research teaches that 80–85% of human 

disease is linked to environmental exposures. The human exposome is estimated to include 

>400,000 environmental chemicals, most of which are uncharacterized with regard to human 

health. In fact, mass spectrometry measures >200,000 m/z features (ions) in microliter volumes 

derived from human samples; most are unidentified. This crystallizes a grand challenge for 

chemical research in toxicology: to develop reliable and affordable analytical methods to 

understand health impacts of the extensive human chemical experience. To this end, there appears 

to be no choice but to abandon the limitations of measuring one chemical at a time. The present 

review looks at progress in computational metabolomics to provide probability based annotation 

linking ions to known chemicals and serve as a foundation for unambiguous designation of 

unidentified ions for toxicologic study. We review methods to characterize ions in terms of 

accurate mass m/z, chromatographic retention time, correlation of adduct, isotopic and fragment 

forms, association with metabolic pathways and measurement of collision-induced dissociation 

products, collision cross section, and chirality. Such information can support a largely 

unambiguous system for documenting unidentified ions in environmental surveillance and human 

biomonitoring. Assembly of this data would provide a resource to characterize and understand 

health risks of the array of low-abundance chemicals to which humans are exposed.

*Corresponding Author: Department of Medicine, Pulmonary Division, Emory University, 205 Whitehead Biomedical Research 
Building, 615 Michael Street, Atlanta, GA 30322. Tel: 404-727-5970. Fax: 404-712-2974. dpjones@emory.edu. 

Special Issue: Mass Spectrometry and Emerging Technologies for Biomarker Discovery in the Assessment of Human Health and 
Disease

Notes
The authors declare no competing financial interest.

HHS Public Access
Author manuscript
Chem Res Toxicol. Author manuscript; available in PMC 2017 March 31.

Published in final edited form as:
Chem Res Toxicol. 2016 December 19; 29(12): 1956–1975. doi:10.1021/acs.chemrestox.6b00179.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1. INTRODUCTION: THE “DARK MATTER” OF THE HUMAN EXPOSOME

Rachel Carson’s book, Silent Spring, published in 1962, awakened society to toxicological 

hazards from environmental exposures. As a result, procedures and regulatory policies to 

identify environmental hazards and risks of exposure were established to minimize health 

burden. The measures use technologies available decades ago and provide an affordable 

approach to minimize population risks from many hazardous chemicals. A consequence of 

this approach, however, is that most chemicals to which humans are exposed, the so-called 

“dark matter of the exposome”, are largely uncharacterized and have minimal or no 

evaluation concerning toxicity.

Current analytical capabilities provide an opportunity to approach the problem differently, 

i.e., to develop universal exposure surveillance procedures1,2 in which health risks are 

associated with chemicals measured in populations using advanced biomonitoring methods. 

Such an approach sets new goals for mass spectrometry and analytical chemistry built upon 

the recent explosive development of metabolomics capabilities. In this, environmental 

toxicologists have a critical role in guiding the development of reliable and affordable 

methods for detailed human biomonitoring. Specifically, environmental chemicals are often 

present in human samples at three to 4 orders of magnitude lower in abundance than 

intermediary metabolites. Thus, the environmental chemistry and toxicology challenge is to 

develop ways to scientifically study large numbers of unidentified, low abundance chemicals 

so that those associated with human disease can be isolated and identified.

The present review is focused on rapidly developing methods of computational 

metabolomics to address this challenge. Importantly for application to population 

surveillance and toxicology research concerning low abundance environmental chemicals, 

computational metabolomics uses a workflow that differs from more commonly used 

analytical methods which target analysis of known chemicals.3,4 At the most basic level, this 

difference involves distinguishing signal from noise, i.e., useful signal variation from 

nonuseful signal variation. Analytical chemistry is biased toward assurance that a specific 

signal is reflective of chemical of interest; for highly precise measurement, high qualitative 

and quantitative stringency requirements minimize error. In contrast, characterization of 

unidentified low abundance chemicals found in a small number of individuals cannot be 

achieved with the same rigor. The workflow for computational metabolomics is therefore 

biased toward inclusion of infrequent and less reliable signals. The expectation is that 

knowledge gain from the low abundance and uncharacterized signals will be cumulative, 

ultimately leading to an understanding of health risks and sources of exposure and directing 
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development of improved analytical methods for low abundance chemicals of concern. 

Hence, the present discussion addresses creation of a rigorous analytical chemistry data 

structure to facilitate systematic knowledge of the toxicology of currently uncharacterized 

low abundance chemicals found in humans. By necessity, such a goal will require use and 

integration of data from multiple analytical platforms and approaches; the headache created 

is a need to develop an unambiguous system to reliably designate tens of thousands of 

reproducible but unidentified mass spectral features so that the chemical toxicology research 

community can pursue more specific aspects of thresholds and dose for those with adverse 

health impact.

2. METABOLOMICS FOR ENVIRONMENTAL BIOMONITORING

A rapid rise in metabolomics has occurred since 2000 (Figure 1) when chemometric 

methods were applied to nuclear magnetic resonance (NMR) spectroscopy to facilitate the 

interpretation of complex spectra obtained from biological samples.5,6 Although the 

popularity of NMR is rapidly being supplanted by mass spectrometer-based methods (Figure 

1), extension of computational methods to mass spectrometry is delivering another 

transformation in analytical chemistry, from analysis of one chemical at a time in a targeted 

manner to probability-based approaches to measure thousands in a single analysis. This 

transition is loosely discussed in terms of two categories of metabolomics research: targeted 

metabolomics and untargeted metabolomics. Targeted metabolomics focuses on a defined 

set of metabolites or pathways, while untargeted metabolomics aims to provide global 

profiling of small molecules in a biological system in an unbiased manner.2,3 High-

resolution metabolomics (HRM) uses liquid chromatography (LC) or gas chromatography 

(GC) with high-resolution mass spectrometry and advanced data extraction algorithms to 

measure a broad spectrum of chemicals in biologic samples.7,8 In this, high-resolution mass 

spectrometry refers to instrumentation providing mass resolution of 30,0009 and includes 

Fourier-transform Ion-Cyclotron Resonance (FT-ICR) mass spectrometers, some 

Quadrupole-Time-of-Flight (Q-TOF) mass spectrometers, and specialized ion trap mass 

analyzers with an inner electrode that traps ions in an orbital motion (Orbitrap).10,11 FT-ICR 

and Orbitrap instruments are capable of higher mass resolution, e.g., 60,000 or more, and are 

also termed “ultra-high resolution” mass spectrometers. HRM is noteworthy because 

application to plasma and urine provides a practical way to obtain detailed exposure and 

metabolic health information for precision medicine and also an affordable way to study 

cumulative life-long exposures in human exposome research.1,12

Plasma and urine samples are commonly available during routine health examination, and 

HRM can be used with either to obtain information on environmental exposures, nutrient 

supply, central metabolic intermediates, metabolic wastes, and hormonal signals.1 In 

principle, such analyses can be used as an integrated measure of biologic responses, 

including effects of emotional stress, exercise, and other health behaviors.2,3 Technological 

advancements and improved algorithms for HRM now enable reproducible detection of tens 

of thousands of metabolic features in biological samples.13,14 The number of chemicals 

represented is unknown, but ion dissociation of randomly selected features and correlation 

analyses of features suggest that the number of chemicals is also in the tens of thousands, 

most of which are unidentified.
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Several studies have demonstrated the utility of HRM for human exposome research. In an 

untargeted metabolic profiling study, Go and Walker15 detected, confirmed, and quantified 

environmental chemicals present in plasma samples from 153 healthy humans. These 

included chemicals derived from food (caffeine and hippuric acid), insecticides 

(chlorobenzoic acid, chlorophenylacetic acid, pirimicarb, and xylylcarb), herbicide 

(chlorsulfuron), tobacco (cotinine), flame retardants (triethylphosphate, triphenylphosphate, 

and tris(2-chloropropyl)-phosphate), and other commercial products (octylphenol, dibutyl 

phthalate, dipropyl phthalate, styrene, and tetraethylene glycol). Less than half of these 

xenobiotics had previous publications reporting concentrations for human plasma. Roca and 

Leon,16 and Jamin and Bonvallot17 obtained similar results showing ability to detect a large 

number of environmental chemical metabolites using untargeted chemical analysis.

In other applications, HRM was used to evaluate metabolites associated with polycyclic 

aromatic hydrocarbon (PAH) exposures in the serum of military personnel.3,18 Correlations 

were observed for multiple metabolic products of naphthalene, pyrene, anthracene, and 

benzo(a)pyrene3 and also for metabolic pathways for linoleate, acyl carnitines, 

sphingolipids, methionine, and cysteine.18 Although some studies are available with 

concurrent air monitoring, measurements in blood and urine typically cannot discriminate 

sources of exposure. For instance, PAH may derive from air pollution, smoking, or 

consumption of charbroiled foods. A study of 400 military personnel classified individuals 

as smokers or nonsmokers based upon serum cotinine concentration.19 This study found 

correlations of hydroxycotinine and naphthalene-1,2-diol with cotinine, as well as 

associations with many of the same pathways as correlated with PAH’s. In principle, such 

analyses could be extended to examine exposures to dietary carcinogens, such as 2-amino-1-

methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and 2-amino-3-methylimidazo[4,5-

f]quinoline (IQ). Presently, however, this has not been evaluated for untargeted analyses 

using HRM.

An application of untargeted HRM to study of Parkinson’s disease (PD)20 showed 

associations to chemical features with accurate mass match to polybrominated diphenyl 

ether (PBDE), tetrabromobisphenol A, octachlorostyrene, and pentachloroethane. The 

chemical feature corresponding to PBDE was 1.5-fold higher in PD than controls, and a 

match to 2-amino-1,2-bis(p-chlorophenyl)ethanol was 1.5-fold higher in individuals with 

rapid disease progression compared to slow progression. Untargeted HRM also detected 94 

metabolic features associated with neovascular age-related macular degeneration 

(NVAMD),21 including a match to β-2,3,4,5,6-pentachlorocyclohexanol (β-PCCH), a 

hydroxylated metabolite of β-lindane in insecticide formulations. Other correlated features 

matched the37 Cl form of β-PCCH and other halogenated chemicals, suggesting a possible 

association for chemical exposures in NVAMD. Together, these studies show that 

contemporary HRM methods provide powerful approaches for biomonitoring of exogenous 

chemicals and studying their toxicities in epidemiological and laboratory research. The 

studies also emphasize that a large number of metabolic features in human samples are 

currently unidentified; whether these are natural or anthropogenic is unknown.

Detection of environmental chemicals within exposome research depends upon instrument 

sensitivity and response characteristics. The rapid advance in instrument quality is illustrated 
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by a recent HRM study showing that chemicals could be quantified that differed by 

approximately 8 orders of magnitude in absolute abundance.15 Thus, even though the best 

platforms for cost, coverage, and quantitative reproducibility are not well established, use of 

mass spectrometry protocols with simple protein removal, dual chromatography, dual 

electrospray ionization, and triplicate analyses3,22 provides far more healthrelated chemical 

information than contemporary blood chemistry, NMR methods, or other analytical 

procedures. This is not to imply that NMR spectroscopy and other methods have no place in 

health analyses, only that based on cost and extent of information provided, HRM offers 

advantages (discussed in Jones et al.).1,19 NMR spectroscopy is particularly important, for 

instance, in structure elucidation of chemicals and in noninvasive measurement of 

metabolites in vivo termed “magnetic resonance spectroscopy”, performed using MRI 

instruments. The key conclusion is that in health and medicine, HRM provides a powerful 

approach to evaluate low abundance environmental exposures as well as nutrition, genetic 

factors impacting metabolism, adaptations to prior exposures, and disease development and 

progression.

3. HUMAN METABOLOME

The human metabolome consists of (1) endogenous metabolites with molecular weight 

<2000 Da,23 including essential nutrients, amino acids, sugars, fatty acids, etc. and (2) 

exogenous exposures including chemicals derived from food, drugs, and pollution.3,8,24 The 

exogenous influences originating from our diet, behavior, and lifestyles are cumulative 

throughout our lifespan and make up the human exposome.25–27 Summation of these 

exposures indicates that humans are exposed to 1–3 million chemicals during their 

lifetime.28 These exposures are important because combined with genetic factors they 

contribute to interindividual metabolic variation and account for most human disease.29–31 

Multiple studies show that consumption of different diets contributes to interindividual 

metabolic variations.32–34

We define “million metabolome” as an aggregate of endogenous metabolites and products of 

exogenously derived exposures measured in individuals across time and collectively among 

geographic populations. In this, one must note that the term is at least partially symbolic; 

there is no way to precisely estimate the number of metabolites in the human metabolome, 

but there is recognition that the number is probably greater than a million and that capability 

to measure one million is necessary to characterize human exposures.1 Only a fraction of the 

million metabolome is part of the core human metabolome35 essential for life and preserved 

across populations. Most chemical experiences of individuals are highly variable, indicating 

that large populations may be needed to reach the million metabolome.

Although technological and computational advancements have facilitated the detection of 

tens of thousands of ions, metabolite identification remains one of the biggest challenges of 

available analytical methods.36–38 For the most powerful available methods, such as LCMS-

based HRM, there is a need for development of advanced computational methods for 

systematic characterization of collected data. Figure 2 illustrates the gap between current 

metabolite detection abilities and likely size of the human exposome. Most targeted LCMS 

and GCMS methods detect 300–700 metabolites in biological samples,39,40 with NMR-
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based methods detecting less than half this range in biologic samples. Advanced 

computational methods facilitate detection of more than 35,000 ions from biological 

samples by LCMS;13 feasibility studies show, however, that variation of data extraction 

parameters, e.g., increasing tolerance for coefficient of variation and % missing values, can 

allow detection of 250,000 to 800,000 mass-to-charge (m/z) features in human and animal 

samples.1

The ability to further analyze and characterize the human exposome in a fully automated or 

semiautomated manner requires the development of a computational framework that can 

process different types of mass spectrometry data (MS, MS2, MSn, ion mobility MS, and 

stereochemistry selective detection), provide predictions of metabolite identities, allow 

interpretation of metabolites using data-driven and knowledge-driven association methods, 

and combine orthogonal pieces of information to facilitate unambiguous characterization 

and designation of both low-abundance and high-abundance metabolites. Collection of data 

over time in a cumulative database would further support a lifecycle framework for study of 

the individual exposures as a foundation to understand disease, predict individual risk, 

monitor progression, and evaluate efficacy of interventions.8 Databases are less expensive 

and more stable than stored blood samples and could be useful to monitor individual health 

changes as well as disease trends in populations. Thus, HRM could evolve into a central 

component of healthcare. Although potential benefits from understanding the human 

exposome are obvious, barriers exist due to the large number of exposures, variations in 

duration and intensity, and costs associated with systematic study.

In the following sections, we review existing methods for MS with particular focus on 

LCMS, to develop a framework for the million metabolome. We include discussion of peak 

detection and alignment, quality assessment, metabolite annotation, network and pathway 

analysis, and metabolite identification, and propose inclusion of other measures to enhance 

metabolite identity prediction for both high-abundance and low-abundance metabolites.

4. FEATURE EXTRACTION, QUALITY ASSESSMENT, AND DATA 

CORRECTION

Various tools have been developed to automate the process of peak detection, noise removal, 

intensity estimation, and feature alignment.41–43 Figure 3 shows the typical steps involved in 

feature extraction, quality assessment, and data correction. None of these procedures can 

compensate for poor performance, chromatography instability, or mass spectrometry 

inaccuracy; consequently, quality control procedures are mandatory. Additionally, each 

sample constitutes a unique matrix so that replicate analyses, usually triplicate, are needed to 

verify analytical quality and ensure reliable quantification.

4.1. Peak Detection and Alignment

The first step involves peak detection in individual files, and only features that meet the 

signal-to-noise threshold and/or peak shape criteria are kept for further analysis. For 

instance, apLCMS uses a three-step process for feature detection that involves grouping of 

data points based on m/z cutoff, splitting each group of m/z features based on the retention 
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time dimension using kernel density estimation, and use of a run filter that takes into account 

the minimum length in the elution time dimension as well as proportion of time points in 

which the signal is detected to identify true peaks.43 XCMS uses signal-to-noise and 

filtering criteria based on minimum number of peaks detected with minimum intensity ≥ I 

for removing features along with a density and wavelet transformation based method for 

peak detection.42 Several other methods for noise removal and feature detection (centroid 

based, local maxima, recursive threshold, wavelet transform, and exact mass) in single files 

are implemented in MzMine2.41 Other tools such as MetSign perform peak deconvolution 

using a two-stage process where the first derivative of the smoothed data is used to detect the 

dominant peaks and the second derivative is used to detect the hidden or low abundance 

peaks.44 The performance of peak detection algorithms, especially for environmental 

exposures, can be improved by incorporating additional layers of information from 

biological and environmental databases, inhouse databases of reliable peaks, and across 

multiple runs of the same sample. For instance, methods that utilize preexisting knowledge 

such as information about known metabolites in the Human Metabolome Database 

(HMDB)23 and pathway information in the Kyoto Encylopedia of Genes and Genomes 

(KEGG)45 along with machine learning approaches can further enhance peak detection in 

biological samples.46 Additionally, current algorithms perform feature detection individually 

within each LC/MS run and do not incorporate information across one or more technical 

replicates of a sample. In principle, combining information from multiple analyses prior to 

feature extraction could provide another means to reduce noise and improve feature 

extraction. Feature quality evaluation criteria such as signal-to-noise ratio and coefficient of 

variation remain an important subject to enhance confidence in low abundance or exogenous 

metabolites that could be present in only a small number of samples and improve overall 

data quality prior to feature alignment.

After peak detection in individual LC/MS runs or profiles, alignment across all profiles is 

necessary to generate a combined feature set. Alignment is accomplished through m/z and 

retention time dewarping. The primary need is to correct the retention time dimension due to 

changes in pressure, column temperature, and column age over the course of an analytical 

run.47 Most existing methods include a nonlinear retention deviation estimation step, 

providing corrected retention times in individual profiles using the estimated deviation.43,47 

Pairwise alignment is then completed by reference to the profile with maximum number of 

detected features, and all other profiles are aligned with respect to the reference in a pairwise 

fashion using methods such as dynamic time warping, ObiWarp, and kernel 

smoothing.42,43,48

A limitation to the use of one sample as reference for aligning samples from multiple 

batches is that any distortions in retention time could affect the alignment results due to peak 

mismatching. The aligned features are normally represented by median (or mean) m/z and 

retention time postalignment. These estimates could be improved by following a hierarchical 

alignment procedure that first performs alignment of samples at a single sample level (across 

technical replicates), performs alignment within individual batches in the next step, and 

finally aligns all samples using the results from previous steps. Additionally, landmark peaks 

or use of “gold standard” metabolites as reference metabolites can improve retention time 

alignment and facilitate cross-laboratory comparisons.14
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4.2. Parameter Optimization

Parameter optimization is a crucial step in data extraction. Operational parameters of mass 

spectrometers differ, and fine-tuning of peak detection and alignment parameters is 

necessary for obtaining optimal results.13,36,37,49 xMSanalyzer is an R package that uses a 

scoring function based on number and quality of features determined based on coefficient of 

variation (CV) within technical replicates. xMSanalyzer is designed to work with apLCMS, 

XCMS, and other data extraction software. Another R package, IPO, is designed for 

optimizing peak picking, retention time correction, and peak grouping parameters in XCMS 

using replicate measures of a single sample and design of experiments framework.49 In 

principle, there are a broad range of options for improvement with an important limitation 

being the computational time required for performing multiple extractions, integrating data, 

and assessing quality of data with the different parameters.

4.3. Quality Assessment and Data Correction

Web-based tools and R packages such as MetaboAnalyst, xMSanalyzer, and MSPrep 

provide utilities for addressing quality assessment and correction.13,50,51 The quality of 

individual features and samples can be evaluated based on CV within technical replicates, 

variability across pooled reference/quality control (QC) samples, percent missing values, 

signal-to-noise ratio, principal component analysis to identify outliers and batch effects, and 

pairwise correlation within technical replicates to evaluate analytical reproducibility.13,36,50 

Various methods have been developed to address batch-effect problems. Dunn et al.36 

proposed QC-RLSC, a signal correction approach that fits a LOESS curve to the QC 

samples; the raw data for a feature is corrected relative to this interpolated correction 

curve.36 Several R packages including sva and MSPrep offer batch-effect correction 

procedures.51,52 Methods for correcting batch effect include ComBat, which uses an 

empirical Bayes approach, and surrogate variable analysis for removing batch-effects.52,53 

Most data processing workflows for metabolomics have been developed for biomarker 

studies where analytical errors such as batch-effect errors could dramatically impact results 

and interpretation; however, it is challenging to address batch-related effects in exposome 

studies due to effect size considerations. Thus, one of the critical needs is improved batch 

correction procedure to address features with infrequent occurrence. Specifically, if there is 

an m/z feature present in only one sample in a batch and that feature is not present in 

corresponding pooled reference materials, then there are needs to be able to quantitatively 

compare that intensity to the same feature detected on another day.

Accurate mass measurement error is another source of error and can occur due to 

temperature changes and improper instrument calibration.36,37 Mass accuracy plays a critical 

role during sample alignment and annotation. During the feature annotation process, 

measured m/z is compared to the theoretical m/z, and only metabolites that are within the 

user-defined mass tolerance level are selected. The number of false positives can 

dramatically increase as the mass accuracy deteriorates.37,54 Internal standards and 

annotated features based on reference metabolites can be used for tracking mass accuracy 

and estimating mass measurement error.55 Correction of mass errors can also improve 

alignment of data sets from multiple studies or batches.
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To summarize, various approaches are available to enhance extraction of information on ions 

measured by mass spectrometry. These approaches provide quality assessment and data 

correction for general metabolomics use. The tools have been rigorously developed and 

provide an outstanding range of useful options. In terms of chemical detection, however, the 

limitations must be considered. By having a high stringency for signal-to-noise, one protects 

against identifying noise as signal. However, the high stringency is accompanied by 

dismissal of real signals as noise. Thus, to expand detection of low abundance chemicals, 

additional efforts need to focus on identification and reduction of noise signals. Also, 

improved batch correction procedures are needed to address features that are detected 

infrequently, such as unidentified environmental chemicals found in a small fraction of a 

population.

5. DATA-DRIVEN CLUSTERING METHODS TO IDENTIFY SUBGROUPS OF 

RELATED FEATURES

5.1. Correlation-Based Network and Clustering Analysis

An important advantage of computational metabolomics lies in the use of correlations 

among ion signals to aid in determination of chemical identity. Metabolites are 

interconnected by a series of biochemical reactions, and this network of metabolites is 

organized in a hierarchical manner such that many small modules combine to form larger 

modules.56,57 Correlation-based network and modularity analysis is one approach to 

elucidate the association structure of metabolites. Although there are several mechanisms 

that could lead to correlations between metabolites, the association structure can be used to 

identify ions derived from the same metabolite,58–60 identify biotransformations,61 and 

detect associations between environmental exposures and endogenous metabolites.15

For high abundance unidentified chemicals, multiple spectral features arising from a single 

chemical provide valuable structural information to characterize a chemical. A network of 

ions where a pair of ions is linked if their correlation exceeds the significance threshold, e.g., 

|r| > 0.8, can be generated to identify isotopes, adducts, and in-source fragments associated 

with a chemical (Figure 4). A similar approach can be used to identify biotransformations 

and other related metabolites.60 Metabolome-wide association studies (MWAS) allow 

identification of associations between a specific target variable, e.g., cotinine levels in 

individuals, and metabolic profiles.8,62–64 In an MWAS, statistical tests are performed for 

association of a parameter (e.g., disease biomarker, chemical, or other measured parameter) 

with each m/z feature to test for significance of association. Application of targeted MWAS 

using correlation-based criteria identified choline-related metabolites and demonstrated 

similarity between correlation patterns of choline in different species (Figure 5).64

Correlation-based network analysis can also facilitate identification of in-source fragments. 

Gas-chromatography–mass spectrometry with electron ionization sources results in a large 

number of characteristic spectra indicative of chemical functional groups and structure.61,65 

Electrospray ionization can produce in-source fragmentation (e.g., loss of NH3, H2O, 

CHOOH, etc.) from electrical potentials or heat applied in the ion source.66,67 Because in-

source fragments can mimic accurate masses of other common metabolites, computational 
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methods that identify adducts, isotopes, and in-source fragments (based on clustering of 

highly correlated coeluting ions) increases the ability to correctly assign chemical identities. 

An example is the in-source formation of pyroglutamate from glutamine or glutamate.68 The 

identification of in-source fragments requires consideration of chromatographic conditions 

to separate possible coeluting chemicals, as well as ion source conditions. When using soft 

ionization techniques, in-source fragmentation is only commonly observed for highly 

abundant metabolites, many low abundance chemicals will generate only a single detectable 

signal.3,18 To ensure detected, unannotated ions are unique chemicals, it is important to 

perform targeted MWAS to exclude the possibility of a signal originating from source 

fragments, adducts, and/or isotopes. To increase confidence of chemical identification, 

alternative detection methods with increased sensitivity for unknown chemicals and methods 

for defining unknown ions will be needed.

In addition to characterizing ions arising from known chemicals, MWAS using univariate 

and multivariate approaches can be used to generate hypotheses about biochemical roles of 

features with no database matches. This process uses targeted MWAS with validated 

metabolites or xMWAS, where “x” corresponds to other–omes (transcriptome, microbiome, 

genome, etc.). Krumsiek et al. used a systems-level approach where they combined genome-

wide association analysis, knowledge-based pathway information, and metabolic networks 

to predict the identity of unknown metabolites.69 Other studies have used integrative 

methods based on partial least-squares regression (PLS) to determine correlations between 

the metabolome and the transcriptome,70 proteome,71 and microbiome.72 These methods 

combined with pathway and literature based information can provide alternative approaches 

for generating hypotheses about chemical identity, particularly for low abundance chemicals.

5.2. Retention Time

Retention time is the time between sample injection and appearance of the maximum ion 

signal after chromatographic separation.73 Chromatographic separation of complex mixtures 

is achieved by the differential rate of migration of chemicals through an analytical column. 

As chromatographic separation is dependent on column chemistry, choice of solvent, as well 

as physicochemical properties of a given chemical, the same chemical should have the same 

retention time (±few seconds) under the same chromatographic conditions over multiple 

injections. Application of kernel density estimation in the retention time dimension can be 

used for unsupervised grouping of features with similar chemical properties and assist in 

identifying adducts, isotopes, and in-source fragments when applied on distinct clusters of 

strongly correlated ions.58

5.3. Mass Defect

Mass defect is the difference between the accurate mass and nominal mass of an ion and is a 

useful measure to facilitate isotope pattern reconstruction and identification of metabolite 

biotransformations.74,75 For highresolution mass spectrometry, accurate mass information 

can be combined with mass defect filtering (MDF) techniques for finding isotopes, expected 

losses (−H2O, −2H2O, etc.), and biotransformations of known metabolites.61,75,76 

Furthermore, the MDF method can allow identification of features belonging to similar 

chemical classes, contain specific functional groups, and homologous series.77 In principle, 
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additional use of mass defect for chemical identification could be derived from theoretical 

predictions based upon known elemental compositions of chemicals in ChemSpider.

6. KNOWLEDGE-DRIVEN METHODS FOR NETWORK AND PATHWAY 

ANALYSIS FOR METABOLOMICS

Targeted metabolomics approaches often start with metabolite identification prior to 

pathway and network analysis. This is a valuable approach but can result in loss of 

information relative to chemicals without confirmed identity. In the present discussion, we 

consider pathway and network analysis prior to metabolite annotation and identification 

because computational metabolomics does not require a priori knowledge of m/z identity to 

obtain useful chemical information. Details of this alternate workflow are available.3,19 

Importantly, this computational metabolomics approach enables use of otherwise 

uncharacterized mass spectral data.

Several thousands of metabolic reactions are collected in various databases,78–81 which have 

been accumulated from biochemical research over many decades. The metabolic reactions 

are mostly interconnected by shared metabolites and are often organized into pathways of 

dedicated functions. By mapping metabolites to these pathways, one can contextualize the 

data, greatly facilitating interpretation; however, the identity of metabolites in mass 

spectrometry data is often difficult to obtain and hinders the downstream pathway analysis.

A novel approach, named mummichog, was designed by Li et al.82 to rewrite the 

conventional metabolomic workflow. Since the computational prediction of metabolites 

from spectral peaks often results in multiple possibilities (see Section 7), a “null” 

distribution can be estimated by how these predicted metabolites from a metabolomics 

experiment map to all known metabolite reactions. Even though most are false annotations, 

the biological meaning in the data drives enrichment of metabolite subsets. The enrichment 

pattern of real metabolites compared to the null distribution is then tested statistically. Thus, 

mummichog can predict significant pathways and network modules directly from untargeted 

metabolomics data. To test prioritized hypotheses from mummichog, researchers can focus 

on validating only a handful of metabolites.

Mummichog has become a powerful tool to accelerate the rate of scientific discovery.83–85 

Multiple mechanistic studies have been supported by the mummichog approach, including T 

cell memory formation86 and stress response in innate immune cells.87 Combined with 

common regression models and untargeted metabolomics, mummichog enables inclusion of 

metabolic pathway analysis in population studies. For example, using this combined 

approach, Hoffman et al.88 identified metabolic pathways associated with age, sex, and 

genotype, including pathways involving the carnitine shuttle, glycerophospholipid 

metabolism, neurotransmitters, and amino acid metabolism. Amino acid pathways, 

especially tyrosine metabolism, were also identified as associated with nonalcoholic fatty 

liver disease using mummichog combined with statistical selection of relevant m/z ions.89

The HRM workflow has thus expanded from targeted analyses of a relatively small number 

of metabolites (300–700) supported by most metabolomics cores to a much broader scope 
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including thousands of metabolites from >20,000 ions. Most metabolic pathways are 

included, and the prioritization is agnostic, defined by the measured data. Approaches can be 

refined by using a highly stringent false discovery rate (e.g., q < 0.05) to select for 

metabolites most likely to represent real differences or by using a raw p-value threshold of 

0.05, expecting that any metabolite could represent a real difference. The former protects 

against type I statistical error, while the latter protects against type II statistical error. 

Importantly, statistical tests for pathway enrichment using mummichog and a raw p-value 

threshold of 0.05 provide an effective compromise to protect against both type I and type II 

statistical error.

7. METABOLITE ANNOTATION

“Annotation” is defined as “a note of explanation or comment” and should not be confused 

with “chemical identification”. Chemical identification is ultimately required for mass 

spectral features of interest, but identification can be difficult and subject to different criteria 

for certainty.90,91 Importantly, metabolite identification is a major bottleneck in untargeted 

metabolomics.36,38 Most measured ions do not match known metabolites in databases using 

common adduct forms (Figure 6A). In HRM analyses of human diseases, MWAS show that 

the accurate mass m/z for more than half of the ions associated with human disease do not 

match any predicted ions for known chemicals in human metabolomic databases (Table 1). 

In recent years, several methods such as AStream, CAMERA, ProbMetab, and MetAssign 

have been developed for metabolite annotation.58,92–94 Most of these methods utilize m/z, 

retention time, adduct patterns, isotopes, and correlation/clustering methods for metabolite 

annotation. AStream takes as input the processed feature table and uses correlation within 

m/z features, isotope patterns, retention time, and adduct patterns to annotate features using 

HMDB.58 CAMERA uses a graphclustering approach that incorporates correlation within 

raw signals, retention time, and adduct patterns for grouping ions derived from a single 

metabolite.93 MetAssign and ProbMetab use Bayesian methods for assigning probabilities to 

annotations.92,94

Additional information such as mass defect, modular network structure, pathway 

associations, elemental information, and isotope ratios can improve confidence in identity 

prediction.56,82,95 Methods utilizing multiple layers of information along with data-driven 

clusters (correlation-based, retention time, and mass defect as described in section 4) can 

further improve metabolite annotation and allow suspect screening for environmental 

exposures by assigning confidence levels to annotation. Ion dissociation analysis of 

metabolites annotated using the criteria described above shows that 80% of predicted 

identities are correct, and overall >2,000 metabolites can be routinely annotated in human 

studies (Figure 6B). Various factors including m/z accuracy, selection of adducts, selection 

of database, consideration of isotopic forms, elemental, and isotopic ratio checks influence 

the performance of annotation algorithms. Development of algorithms that use machine 

learning to predict retention time, adduct and isotope probabilities, relative intensity, and 

various physical properties of previously validated metabolites, ionization modes, and 

columns could potentially improve performance of existing identity prediction methods.61
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The capabilities for annotation and pathway mapping with these computational methods are 

truly advanced from just a few years ago, allowing simultaneous testing of most metabolic 

pathways for associations with any exposure, disease biomarker, or measured health 

outcome.2 Computational metabolomics has advanced analytical chemistry to a new level, 

one in which there is no longer a need to guess which pathways might be affected but rather 

to confidently interrogate most of the known metabolic pathways in a single step. At the 

same time, this accomplishment directs attention to the fact that known metabolites may 

represent less than half of the chemicals measured in a single experiment. Thus, as analytical 

chemistry moves beyond a one-chemical-at-a-time framework, the need for a better 

framework to address unidentified chemicals in the million metabolome becomes apparent.

8. ION CHARACTERIZATION AND DESIGNATION USING KNOWLEDGE-

DRIVEN APPROACHES

8.1. Metabolite Identification

As discussed above, detected m/z ion and database matching is not sufficient for 

unambiguous identification. Multiple chemicals often exist for the same elemental formula, 

and positional isomers with very similar properties can pose a particular challenge for LC-

MS and GC-MS identification. For high abundance ions likely to be metabolic 

intermediates, the preferred metabolomics databases are HMDB and KEGG. However, in 

analysis of human samples, five features with accurate mass identical to phenylalanine were 

observed. Searching ChemSpider96 and METLIN97 using the +H adduct of phenylalanine at 

a mass error threshold of ±0.002 Da identified 1,742 and 15 matches, respectively. Because 

of the presence of redundant database entries in Metlin and a large number of synthetic 

chemicals in ChemSpider, this example most likely overestimates the number of unique 

chemicals that can be detected in a single human sample; however, it highlights the vastness 

of chemical space and difficulty in designating identities based on accurate mass alone. 

While rule-based annotation, retention time prediction, and comparison to retention time 

index chemicals acting as landmarks improve confidence, complementary information, such 

as retention time matching and molecular dissociation patterns relative to authentic 

standards are required to verify chemical identity. Ultimately, very rigorous standards are 

required for reliable assignment of correct configurations of very similar isomers.90,91 

Different schemes have been proposed for ranking identification confidence of chemicals 

detected using high-resolution mass spectrometry, many of which rely upon comparison to 

reference spectra and molecular dissociation.91,98,99 Specifically, the levels proposed by 

Schymanski et al.91 provide a clear framework for describing identification confidence of 

metabolites.

8.2. Ion Dissociation

In untargeted metabolomics, the most common methodology for confirming the identity of 

detected chemicals is through comparison of the ion dissociation pattern (MS2) obtained for 

a given precursor mass to reference standards or spectral databases. Ion dissociation is 

typically achieved through ion collision with inert gas and increased molecular vibrational 

energy, which disrupt covalent bonds and create charged fragments that are then detected by 

Uppal et al. Page 13

Chem Res Toxicol. Author manuscript; available in PMC 2017 March 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



a mass analyzer. For soft ionization techniques, such as electrospray or chemical ionization, 

the precursor ion is typically the most abundant adduct (i.e., +H and +Na), and the detected 

fragments (referred to as MS2 spectra) are consistent with loss of specific functional 

groups.100 When trap-based mass filters are in use, extra levels of fragmentation can be 

achieved through fragmentation of ions obtained in the MS2 spectrum (MSn). The resulting 

fragment trees provide additional structural information and are useful for characterizing 

unknown molecules.101 Thus, MS2 and MSn spectra are an intrinsic property of a molecule 

and represent an important dimension of ion definition in multivector space (Figure 7). 

Assembling the million metabolome will require computational approaches for processing, 

characterizing, and utilizing MS2 spectra.

8.3. Deconvolution of MS2 Spectra

Except for the most abundant chemicals, MS2 software tools are required to generate clean 

spectra that accurately reflect fragments corresponding to a given precursor mass (MS2 

deconvolution). While fragments are detected using a high-mass accuracy analyzer, ion 

selection prior to fragmentation is typically achieved using unit resolution mass filters. To 

maximize the number of ions selected for fragmentation, a mass selection window of ±1–2 

m/z is often used, resulting in coisolation of interfering ions that are also fragmented. Using 

the example described above, a theoretical isolation window of ±1 m/z for generating 

spectra corresponding to the +H adduct of phenylalanine resulted in 28,485 matches in the 

ChemSpider database. Therefore, it can be expected as a rule, not an exception, that 

coeluting compounds will be present during MS2 analysis.

While many data preprocessing software packages can process MS2 data,34,41,102,103 only a 

limited number provide deconvolution capable of generating sufficiently pure spectra of low 

abundance ions. To improve the quality of MS2 data collected in biological samples, Smith 

et al.104 developed decoMS2 to remove interfering peaks and assign specific fragments to 

precursor ions detected in full scan mode. Deconvolution of MS2 fragments is achieved with 

variable isolation windows to introduce variations in ions detected using full scan and MS2 

data; fragments are matched to ion peak shape by fitting a cubic spline. Application of 

decoMS2 to untargeted metabolomics provided improved detection of fragments and 

spectral matching scores; however, the need to use four separate scans for generating 

adequate data limits throughput and application in high-resolution instruments with slower 

scan speeds. Recently, sequential windowed acquisition of all theoretical fragments 

(SWATH) approaches have become available for deconvoluting fragments collected using 

large isolation windows and multiple scan events.105–107 MS-DIAL is a standalone 

preprocessing software environment and includes functions for full scan and MS2 peak 

picking, alignment, deisotoping, MS2 deconvolution, and mass spectral searching.108 Data 

can be processed from both data-dependent and data-independent scan events, with the latter 

useful for characterizing specific ions of interest and completing untargeted MS2 analysis.

8.4. Clustering Algorithm Improves MS2 Deconvolution

Both of the software tools described above require differences in chromatographic retention 

time of precursor ions for accurate deconvolution from a single extracted ion chromatograms 

(EIC) data file. Because of the large number of chemical species that will need to be 
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characterized for the million metabolome, chromatographic resolution alone will be 

insufficient for collecting accurate MS2. Algorithms incorporating biological variation 

naturally observed in human populations, as well as analytical variation, can be used to 

enhance detection of spectral fragments by employing full scan and MS2 alignment followed 

by the correlation network approach described above. This functionality is available in 

RamClustR, which was developed by Broeckling et al.59 as an open source software 

package for clustering untargeted, multiscan event high-resolution MS data. RamClustR 

provides a critical advance in processing MS2 data. Through use of clustering in the 

intensity and time dimensions, spectral features from both full (isotopes, ionization 

fragments, and adducts) and MS2 (precursor ion fragments) scan data can be grouped based 

upon correlation and elution profile, providing an additional level of peak assignment not 

available when considering individual data files. In addition, RamClustR is compatible with 

a number of different input files, including XCMS objects and text based peak tables, 

enabling use with different data processing workflows. Currently, the clustering approach 

used in RamClustR is purely data-driven. Incorporating orthogonal information, such as 

isolation mass, mass defect and suspected chemical structures based upon full scan data will 

improve ability to generate sufficiently pure spectra for characterizing chemicals in the 

million metabolome. To date, no software packages offer all of these capabilities for MS2 

data. Additionally, one can envisage development of knowledgebase tools to further enhance 

speed and reliability for unidentified features.

8.5. Ongoing Need for Semiautomated and Automated Approaches

While advances have been made in algorithms providing extraction and deconvolution of 

MS2 data in untargeted metabolomics, there is a pressing need for continued refinement of 

semiautomated computational approaches. Of the many software tools currently available, 

none provide the throughput or capabilities required for the large-scale characterization of 

the million metabolome. Specifically, algorithms capable of accurately assigning fragments 

to precursor m/z ions with intensity values orders-of-magnitude lower than coeluting 

metabolites must be developed. The resulting spectra will be required for uniquely defining 

chemical vectors in the million-metabolome space. Approaches for characterizing acquired 

spectra are discussed below.

8.6. Spectral Databases

Databases containing both GC-MS and LC-based MS2 spectral data are available, providing 

an important reference for identification and classification of features with MS2 

data.23,97,109–116 Database chemical spectra are typically acquired using pure standards, 

although in some cases spectra acquired from authentic reference standards are 

complemented with in silico generated fragmentation patterns.112 Matching is accomplished 

by calculating the similarity between the experimental fragmentation pattern and database 

spectra. The likelihood of a correct match is assessed with either a similarity or probabilistic 

score, which can be determined using a number of different calculation and weighting 

schemes that include information such as fragment masses, relative intensity, number of 

database chemicals with similar fragmentation patterns, neutral losses, and precursor 

m/z.38,117 While MS2 spectral matching provides greater confidence of identification than 

available from accurate mass matching alone, it is important to recognize that considerable 
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overlap exists in fragmentation patterns due to the limited set of low energy pathways 

responsible for ion collision during dissociation.117 Thus, spectral matching often results in 

false positives; complementary information and analyst expertise are often needed when 

evaluating the correctness of a spectra match. Improved computational strategies to integrate 

complementary data and decrease reliance upon analyst expertise will be needed to improve 

reliability and throughput for environmental biomonitoring.

8.7. Collision Cross-Section (CCS)

Ion mobility spectrometry–mass spectrometry (IMS-MS) provides complementary structural 

information to improve confidence in chemical identification118 and separation of isomers 

with the same atomic composition but different structures. In IMS-MS, movement of ions in 

the gas phase in an electric field is countered by collision of the ions with a buffer gas. 

Because separation is based on gas-phase mobility and not limited by constraints of solvent 

or stationary phase, IMS can separate species not easily separated by LC and GC. Uses have 

included analysis of lipids,119 metabolites,120 air pollutants,121 and pharmaceuticals,122 

suggesting a promising future for applications in environmental toxicology research.

The benefit of IMS for environmental exposure research is illustrated by separation of 

isobaric isoprene epoxy diols (IEPOX) in organic aerosol samples (Figure 8).121 Organic 

aerosol species constitute a major fraction of airborne particles contributing to air pollution 

and impacting human health. The complex mixtures of organic aerosol species are difficult 

to resolve by commonly used LC-MS methods. In IMS-MS, ions with greater collision 

cross-section (CCS) move more slowly and are separated from those moving more rapidly. 

IMS separation occurs over a millisecond time frame and is orthogonal to separation by LC 

or GC so that it adds resolving power. The resolving power is in the range of 20 to 200 for 

different instruments, but improvements are ongoing. In the studies described in Figure 8, 

aerosol filters from different environmental monitoring locations were extracted and treated 

to convert isoprene epoxy diols (IEPOX) to hydroxysulfate esters. The results show that 

three different IEPOX isomers were sufficiently resolved to estimate combinations in the 

different samples. Note that the top bars indicate the uncertainty in drift time for each peak. 

The signal from the SOAS ambient filter, which does not align well with the other samples, 

may be due to the uncertainty in drift time. Such limitations can be resolved by improved 

instrumentation, additional study, and improved computational methods. Thus, IMS-MS is 

expected to become a critical approach for resolution and identification of isobaric species in 

complex mixtures. Additionally, as discussed below, measured values for CCS, obtained 

from IMS-MS, could provide information to aid in unambiguous designation of unknown 

ions.

9. UNAMBIGUOUS ION CHARACTERIZATION AND DESIGNATION: 

CURRENT PROGRESS AND FUTURE DIRECTIONS

For successful detection of a million metabolome, a new contextual construct is required to 

escape the limitations of studying only known chemicals with annotation databases. 

Rappaport emphasized that environmental chemicals are often 4–5 orders of magnitude 

lower in abundance than endogenous metabolites.123 Thus, under conditions where MS2 is 
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useful for confirmation of identity of endogenous metabolites, this creates challenges for ion 

dissociation studies of environmental chemicals. Additionally, MS2 spectra for many 

environmental chemicals are not available in databases. Unlike accurate mass m/z, used for 

annotation and easily calculated by knowledge of the chemical formula and adduct form, 

there are no computational tools available with sufficient throughput to provide accurate 

estimation of MS2 spectra. As a result, considerable selection bias exists when using MS2 

databases for annotation or identification. Many of these databases were established for 

specific classes of chemicals, such as natural products, environmental chemicals, lipids, and 

human metabolites124

9.1. Multivector Space

The ion characterization methods described above provide the basis for a new contextual 

construct to designate ions through definition in multivector space. Such an approach will 

require assembly of data for unidentified ions into recurrent spectral databases.125 Robust 

measures will be needed to define accurate mass m/z, retention time, MS2 spectra, collision 

cross-section (CCS), and chirality, with each parameter providing a vector to uniquely define 

an ion within a multivector space of the million metabolome. In this framework, ion 

designation can be unambiguous even though chemical identity is unknown. Chemical 

identity (defined as 3-dimensional chemical structure) can be added as this becomes 

available, with priority established when dictated by relevance.

9.2. Accurate Mass m/z

Mass analyzers are widely available to support measurement of m/z within 1 ppm. Such 

information can be particularly useful as a robust characteristic to describe unidentified ions. 

Mass resolution is important to ensure that m/z reflects a single ion, and mass calibration is 

essential to ensure the accuracy of the stated m/z.

9.3. Retention Time

In LC, chemicals are separated based on partitioning between the stationary and mobile 

phase. Gradient-based chromatography methods manipulate mobile phase pH and aqueous 

or organic content over the course of a chromatographic run to elute chemicals from the 

column. Coeluting chemicals generally possess similar properties, such as lipophilicity, 

hydrophobicity, ionic strength, and acid dissociation constant.126 Therefore, the retention 

times of chemicals with known structures and physicochemical properties could serve as a 

reference to deduce qualitative physicochemical properties of an unknown metabolite.127 

For example, chemical retention in reversed phase chromatography is based on a chemical 

octanol/water partitioning coefficient, a measure of chemical lipophilicity. As lipophilicity 

increases, a chemical will have greater affinity for the stationary phase, resulting in greater 

retention times relative to other chemicals. By building a regression model (based upon the 

physicochemical properties and retention times of known index chemicals), the properties of 

an unknown chemical could be inferred based on absolute and relative retention time. 

Extending this concept to other modes of chromatography is also possible. In addition, if an 

unidentified m/z is detected with two orthogonal chromatographic separation techniques 

(i.e., reversed phase (C18) and HILIC, or anion exchange and C18), metabolite associations 

and retention time indexing can be cross-validated between multiple platforms.
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9.4. Characterizing Unknowns by MS2

Numerous tools exist for characterizing MS2 fragmentation patterns and predicting 

identification based upon spectral features. Interpretation is completed using a combination 

of different strategies and computational approaches. When using spectral information to 

characterize detected unknowns, it is useful to classify the underlying methodology as either 

top-down (in silico) or bottom up (structural elucidation). Top-down approaches use 

theoretical models, often calibrated to experimentally collected MS2 data, to predict 

fragmentation patterns based upon bond dissociation energies, ion physics, rearrangement, 

and molecular functional groups. While there are currently no algorithms available 

providing high-accuracy MS2 for all the different methods of dissociation, there are multiple 

heuristic methods that provide sufficient spectra that can be used for improving confidence 

in annotation and classifying characteristics of fragmented m/z ions. Many of the approaches 

combine in silico fragmentation with experimentally collected MS2 data for fragment 

annotation and ranking likelihood of a correct identification.

With the recognition that current MS2 spectra databases are insufficient for annotation of 

many of the chemical species detected during untargeted profiling, the availability of in 
silico approaches has increased.128 MetFrag,129 which was recently updated to improve 

fragmentation handling, increase computation speed, expand the number of available adduct 

forms, include suspect screening lists, and incorporate retention time information,130 is 

capable of providing predicted fragmentation patterns in both large (PubChem and 

ChemSpider) and specific databases (HMDB, KEGG, and NORMAN). CFM-ID provides 

estimated fragmentation based upon a probabilistic, generative model. This provides 

functionalities for spectra prediction based upon ionization type and chemical IUPAC 

International Chemical Identifier (InChI), fragment peak annotation given chemical structure 

and spectra collected at low, medium, and high energy settings and compound identification 

based upon comparison of predicted MS2 spectra to experimentally collected data.131,132 

Hybrid approaches have also been developed that leverage existing MS2 spectral databases 

in combination with in silico fragmentation for reducing the number of suspected 

identifications. For example, MetFusion combines MS2 spectral databases from MassBank 

and METLIN and in silico prediction using MetFrag, providing improved ranking of the 

correct chemical structure compared to that available from database matching or predicted 

fragmentation alone.133 Improvement in identification accuracy is achieved through merging 

chemical similarity information, making possible the determination of in silico 
fragmentation accuracy when compared to experimentally generated MS2 spectra. 

Computational approaches for creating fragmentation trees of in silico fragmentation 

patterns are also available, which are useful for further characterizing fragment structures 

and in structural elucidation. CSI:FingerID, which was developed to assist in annotating the 

“dark-matter of the metabolome”,134 uses a machine learning approach and reference 

chemical data set to compute similarities between molecular fingerprints and fragmentation 

trees for predicting chemical structures based upon user provided MS2 through MSn.135 The 

molecular fingerprints consist of 1,415 molecular properties, which are obtained from 

PubChem and Klekota–Roth fingerprints and used to identify possible matches based upon 

support vector machine (SVM) predictions.
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There is a long history of using ion dissociation mass spectra for structural elucidation of 

organic molecules.65,136 As discussed above, spectral data are consistent with molecular 

structure; both fragments and neutral losses can be used to infer molecule properties. A wide 

range of techniques and software are available for interpretation of features present in mass 

spectra.61 For example, Mass Frontier contains libraries of fragmentation schemes from 

more than 100,000 individual reaction mechanisms, in addition to functionalities for 

analyzing and interpreting MS2 and MSn spectra.137 Characterization of neutral losses can 

be used to identify functional groups, characterize transformation products, predict structure, 

and determine chemical classification. To incorporate common neutral losses into 

computational spectrum interpretation, Ma et al.100 developed MS2Analyzer, which enables 

searching of MS2 spectra based upon user-defined parameters, including neutral losses, m/z 
differences, product, and precursor ions. The authors provide a list of 147 literature-reported 

neutral losses, which were used in validation studies of previously collected MS2 data.

Molecular networking of MS2 data138 will also be important for the development of the 

million metabolome. Molecular networking, which was originally developed as a 

dereplication strategy for natural product identification, uses a similarity network determined 

from spectrum relatedness to identify structurally similar chemicals. The resulting network 

can be used to identify chemicals sharing similar structural components and 

biotransformations.139 Further development of molecular networking to include ion 

definition parameters in multivector space will be an important component of 

crosslaboratory and cross-platform assembly of the million metabolome.

9.5. Collision Cross-Section

As indicated above, CCS provides an important complementary property to aid chemical 

identification. Similarly, for unambiguous designation of unidentified ions, CCS provides a 

useful characteristic that is independent of MS2 and retention time and partially independent 

of m/z. IMS technology is well developed, and applications of IMS are extensive; recent 

introduction of IMS-MS from multiple manufacturers offers new opportunities for 

environmental chemical research (see Figure 8). Because separation is based upon different 

principles than GC or LC separation, IMS-MS can provide additional characterization not 

otherwise available. Several computational algorithms such as the trajectory method, exact 

hard sphere scattering method, and the projection approximation method have been 

developed for computationally predicting CCS values.140–143 Recent studies have shown 

that combination of experimental CCS values obtained from IMS-MS, molecular modeling 

techniques, and theoretical CCS values obtained using MOBCAL or Sigma can aid in 

structural identification of drug metabolites, lipids, small molecules, and unknown structural 

isomers.118,144–146 Importantly, development of automated frameworks to use IMS-MS to 

determine CCS in combination with computational methods would greatly facilitate 

unambiguous ion designation for large numbers of unidentified ions.

9.6. Stereochemistry

Stereoisomers of biomolecules are well-known147 and, despite extensive study in chemistry, 

have been largely ignored in development of high-throughput metabolomics methods. When 

assembling the million metabolome, the ability to differentiate between forms will be an 
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essential requirement due to enzyme selectivity and difference in biological effects.148 For 

environmental chemicals, toxic interaction of chemicals with biological macromolecules 

also can be stereoselective so that different stereoisomers can have different toxicity profiles. 

For instance, L-and D-amino acids exist in human plasma at a ratio of >100:1. If the two 

coelute by chromatography, the higher abundance form predominates so that changes in the 

abundance of the toxic, low-abundance form are not measured. This informs the broader 

challenge to environmental chemical analysis, i.e., a higher abundance form could mask the 

toxicity of a lower abundance stereoisomer. Consequently, separation and characterization of 

ion configuration are required for defining ions in multivector space.

Diastereomers, which are stereoisomers with different configurations of related 

stereocenters, will often exhibit different chromatographic behavior or molecular volumes. 

Therefore, it will often be possible to provide vector characterization for diastereoisomers 

based upon retention time relative to landmark ions and CCS. Standard chromatographic and 

mass spectrometer operating conditions do not provide sufficient selectivity for enantiomer 

detection, however, and additional analytical procedures will probably be required for 

defining chirality of many environmental chemicals.

The challenge is illustrated in Figure 9, where chiral chromatography was used to separate 

(R)- and (S)-forms of L-methionine-sulfoxide. Anion exchange (AE) chromatography 

provided insufficient separation of the two enantiomers, but chiral chromatography detected 

both forms. Ion dissociation of the two enantiomers, performed at low resolution in the ion 

trap, showed identical fragmentation patterns, highlighting the need for chiral separation. 

Chiral chromatographic phases are available for LC, GC, and capillary electrophoresis 

platforms for a wide range of applications.149,150

Mass spectrometer operational parameters can also be altered to provide entantiomer 

discrimination.151 Enantiomer selective chemical ionization is well developed,152 but 

reagent gases must be selected for specific applications, and this limits use in untargeted 

measures. In the study by Yao et al.,153 addition of chiral-selector chemicals to 

chromatographic mobile phase (including L- or D-N-tert-butoxycarbonylphenylalanine, Lor 

D-N-tert-butoxycarbonylproline, and L- or D-N-tert-butox-ycarbonyl-O-benzylserine) 

enabled chiral recognition of 19 common amino acids due to enantiomer-specific 

disassociation efficiency of the diastereometric complex ions formed during ionization. 

Enantiomer selective detection is also possible through relative ion mobility in the presence 

of a chiral reagent drift gas.154 Continued development of IMS- and selector-based measures 

for chirality is expected to vastly improve the ability to provide untargeted assessment of 

stereochemistry.

10. CONCLUSIONS AND PERSPECTIVE

Substantial advances in analytical chemistry have occurred through application of 

computational metabolomic methods to improve data extraction, reliability, and 

interpretation of data from high-resolution mass spectral analyses of biological samples. The 

methods developed for computational metabolomics have built upon the important 

accomplishment of providing high confidence measures of 300–700 metabolites through 
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targeted metabolomics; the expanded capabilities now enable moderate to high confidence 

measures of >2000 metabolites with representative metabolites in most metabolic pathways. 

Although advancements have been made, as illustrated in Figure 1, metabolomics is still in 

its early stages of development.

These knowledge-based approaches are limited by an inability to address the extensive range 

of chemicals to which humans are exposed. The greatest limitation lies in cost for targeted 

analyses, which cannot reasonably be expected to support measurement of tens of thousands 

of chemicals in large populations. Regulatory policies use risk assessment to minimize 

hazardous exposures and reduce the need for biomonitoring. As a result, most high 

production chemicals (30,000–40,000) are not monitored in the general population. Without 

known hazards, there is also little justification for studying the large diversity of natural 

chemicals to evaluate their health risks. Similarly, health risks of many chemicals originating 

from dietary, microbiome, therapeutic, commercial, and environmental sources have not 

been evaluated, largely due to the costly and/or limited coverage of contemporary methods.

A second limitation of knowledge-based approaches lies in the mass spectral data libraries, 

which are highly biased and limited in coverage. HMDB contains 42,000 metabolites, which 

have accumulated at a rate of about 6,000 per year since inception. To obtain chemical 

identities of one million metabolites at this rate would take about 158 years. Consequently, 

there is a need for prioritization of ions for identification to maximally benefit society. A 

third limitation exists in the abundance of ions detected, many of which are too low to allow 

MS2. Improved computational algorithms and noise reduction methods will be critical to 

address this challenge.

To address these limitations, we propose development of a multivector grid to designate 

unidentified and low abundance ions in terms of accurate mass m/z, indexed 

chromatographic retention time, intensity, MS2, collision cross-section, and chiral form. 

Development of a multivector ion definition grid will require a computational framework 

that can merge information from multiple data sources and enhance the identification 

process for low and high abundance ions. Furthermore, hybrid network and pathway 

analysis approaches can be used to characterize unidentified ions by taking advantage of 

datadriven network structure, relationship of unidentified ions with other–omic measures, 

and preexisting knowledge in pathway databases. Such a multidimensional system to 

characterize the million metabolome will facilitate chemical identification and improve 

understanding of environmental causes of human disease.
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ABBREVIATIONS

CCS collision cross-section

CV coefficient of variation

EIC extracted ion chromatogram

GC gas chromatography

HRM high-resolution metabolomics

IMS-MS ion mobility spectrometry-mass spectrometry

InChI International Chemical Identifier

LC liquid chromatography

MDF mass defect filtering

MS mass spectrometry

MWAS metabolome-wide association studies

m/z mass-to-charge ratio

PLS partial least squares

QC quality control

SVM support vector machine
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Figure 1. 
Increase in metabolomics publications over the last 15 years. Searches of PubMed for 

“metabolomics” or “metabonomics” with mass spectrometry (MS) or nuclear magnetic 

resonance (NMR) spectroscopy showed that the pioneering applications of chemometrics to 

NMR analysis of biological samples resulted in a rapid increase in MS-based studies.
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Figure 2. 
Gap between analytical need and current capabilities for metabolomics analysis of human 

samples. The human metabolome is estimated to contain 1–3 million chemicals. Most 

targeted liquid chromatography and gas chromatography based mass spectrometry methods 

detect 300–700 metabolites, underscoring the substantial need for improved methods to test 

for chemical exposures associated with human disease. Analytical coverage is improved by 

probabilitybased methods providing moderate to high confidence scores for annotations of 

more than 2000 metabolites. Advanced computational methods facilitate the detection of 

more than 35,000 ions, and feasibility studies show the detection of 250,000 to 800,000 ions 

is possible.
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Figure 3. 
High-resolution metabolomics data processing. Similar data processing procedures are used 

for peak picking and alignment. In xMSanalyzer, which is illustrated here, step one involves 

noise removal, peak detection, integration, and alignment at multiple parameter settings. In 

step two, feature and sample quality assessment are performed at each parameter 

combination. Next, an optimization procedure is performed by merging and evaluating 

results from different parameter settings to improve data quality and detection coverage as 

data extraction using only one setting could give suboptimal results. The merged results are 

then used for additional quality assessment and correction such as evaluation of internal 

standards and reference metabolites, mass calibration, and batch-effect correction in step 4. 

Step 5 involves m/z based annotation of features using HMDB, KEGG, T3DB, and 

LipidMaps.
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Figure 4. 
Correlation-based network analysis to identify related ions and metabolites. Data-driven 

network analysis can be used to identify modules/clusters of strongly associated ions. Some 

of these associations are a consequence of analytical correlations, such as multiple adducts 

formed from a single chemical, while other associations are a consequence of biological 

relationships. In the example shown here for the anesthetic ketamine, each subcluster shows 

strong associations between the primary form, adducts, isotopes, and ionization fragments 

derived from the same metabolite. Secondary correlations exist between biologically related 

metabolites, ketamine and its metabolites, norketamine, and hydroxyketamine. Data are 

from the studies of Jones et al. and Uppal et al.19,64
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Figure 5. 
Metabolome-wide association study for metabolite identification. Choline correlation in 

different species illustrates preservation of metabolic association structures, supporting 

metabolite annotation.64 The network structures for humans and the common marmoset 

contain metabolites exhibiting similarly significant correlations with choline. Like 

correlations of adducts formed from a chemical during ionization, the existence of network 

correlations of metabolites in biological systems provides a parameter for establishing 

confidence in identification, even for low abundance metabolites without quality MS/MS 

spectra. The figure was reproduced with permission from ref 64. Figure as originally 

published in Uppal K., Soltow Q. A., Promislow D. E. L., Wachtman L. M., Quyyumi A. A. 

and Jones D. P. (2015) MetabNet: an R package for metabolic association analysis of high-

resolution metabolomics data. Front. Bioeng. Biotechnol. 3:87. DOI: 10.3389/fbioe.

2015.00087.
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Figure 6. 
Computational identity prediction. (A) Distribution of metabolic features in a human data set 

with or without database matches in HMDB using common adduct forms showed that more 

than half of the ions reproducibly detected in human plasma did not have matches to known 

metabolites in HMDB. (B) Evaluation of results for medium-to-high confidence matches 

from a healthy human data set using a clustering approach based on correlation between ions 

across all samples, retention time, mass defect, adducts and isotopes pattern using MS/MS 

showed that 80% of matches are correct. Thus, methods are improving for the identification 

of high abundance metabolites, with moderate to high confidence annotation for over 2000 

chemical species. Despite the ability to characterize such a large number of metabolites, a 

much larger number of ions are without matches in databases, creating a major challenge for 

biological interpretation. Methods are needed to provide unambiguous designation of these 

ions to facilitate identification, especially for unidentified ions linked to human disease (e.g., 

see Table 1).
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Figure 7. 
Ion definition in multivector space. Assembling the million metabolome will require an 

unambiguous system for defining detected, unidentified ions. In this framework, 

experimental measures including high-accuracy mass-to-charge ratio (m/z), retention time 

relative to landmark chemicals, correlation structure, ion dissociation spectra, collision 

cross-section (CCS) from ion mobility spectrometry, and enantiomer selective detection are 

combined to uniquely position an ion in chemical space. This is arbitrarily visualized here in 

terms of three-dimensional plots; expression could be made in terms of six or more one-

dimensional vectors from a common origin. In this figure, three dimensions are designated 

in a way that leverages the capabilities of currently available analytical and computational 

approaches while enabling incorporation of future advances. The dimensions of Plot 1 on the 

left includes untargeted profiling on high-resolution, accurate mass (HRAM) mass 

spectrometers coupled with chromatographic separation prior to detection. The use of 

landmark chemicals provides retention time indices for relative elution and metabolic 

correlation structure, which is anchored against the accurate m/z. Plot 2 in the middle is 

largely defined by structural characteristics of the molecule, which are designated by ion 

dissociation of precursor m/z from Plot 1 and CCS. Plot 3 on the right is defined by relative 

quantification of enantiomers. Several chiral methods are available but will require 

development for automated use in ion characterization.
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Figure 8. 
Separation of isobaric environmental chemicals by ion mobility spectroscopy (IMS)-mass 

spectroscopy. Organic aerosol species constitute a major fraction of airborne particles 

contributing to air pollution and adversely impacting health of humans and other species. 

The complex mixtures of organic aerosol species are difficult to resolve by conventional 

analytical methods, and little information is available concerning the levels or distribution of 

these chemicals in humans and other mammalian species. This figure from a recent 

application of IMS-MS to samples from the Southern Oxidant and Aerosol Study (SOAS) 

shows the utility of IMS-MS for this challenging environmental issue. IMS-MS was 

performed for hydroxysulfate esters (HSE; C5H11O7S−) of isoprene epoxydiols (IEPOX) in 

four different aerosol filter samples. Dashed vertical lines designate signals for three 

different IMS peaks of isoprene epoxydiols (IEPOX) after conversion to respective 

hydroxysulfate esters. Different stereoisomers of IEPOX are formed by radical reactions 

from isoprene hydroxyhydroperoxide intermediates. The stereoisomers are sufficiently 

resolved to allow discrimination of the different species. The bars on the top denote the 

uncertainty in the drift time dimension for each peak and were determined from the standard 

error of the mean of a mobility calibration compound from its average drift time. Additional 

details are provided in the original publication (Figure 4) by Krechmer et al.121 This figure 

was reproduced with permission granted by the original authors and Creative Commons 

Attribution 3.0 License.
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Figure 9. 
Developmental need exists for enantiomer-selective designation. Many environmental 

chemicals exist as stereoisomers, and this presents a challenge for chromatography and 

detection methods which do not resolve stereoisomers. Analytical data for S- and R-

enantiomers of L-methionine sulfoxide illustrate the need for enantiomer-selective 

designation of ions. (A) Anion exchange (AE) chromatography was unable to separate 

enantiomers of L-methionine-sulfoxide prior to detection, resulting in one peak representing 

the sum of the two enantiomers. Use of a chiral column that resulted in specific R- and S-

interactions with the two enantiomers separate L-methionine(S)sulfoxide from L-

methionine(R)sulfoxide, enabling quantification of each. (B,C) Ion dissociation (MS2) of the 

two enantiomers showed identical fragmentation patterns and are indistinguishable when 

defined by accurate mass, retention time, and MS2 spectra. Thus, there is a need to develop 

methods to enable enantiomer-specific designation for ions in the million metabolome. 

Available analytical methods include chiral selectors, ion mobility with chiral gases, and 

chromatographic separation using enantiomer specific retention mechanisms.
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Table 1

Summary of Disease-Associated Ions without Matches in Metabolomics Databases

no. of significant ions no. of unmatched ions %, unmatched ions/significant ions reference

glaucoma 41 12 29 155

AMD 40 (from 94) 26 65 21

HIV 20 7 35 156

Parkinson’s disease 259 215 83 20

tuberculosis 61 29 47 157

average 84.2 57.8 51.8

a
Results from human disease studies show that half of the ions significantly associated with disease do not match predicted ions of known 

metabolites in human metabolic databases.
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