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Abstract
This article is a critical review of computational techniques used to model, analyse and simulate signalling networks.
Wepropose a conceptual framework, and discuss the role of signalling networks in threemajor areas: signal transduc-
tion, cellular rhythms and cell-to-cell communication. In order to avoid an overly abstract and general discussion,
we focus on three case studies in the areas of receptor signalling and kinase cascades, cell-cycle regulation andwound
healing.We report on a variety of modelling techniques and associated tools, in addition to the traditional approach
based on ordinary differential equations (ODEs), which provide a range of descriptive and analytical powers. As the
field matures, we expect a wider uptake of these alternative approaches for several reasons, including the need to
take into account low protein copy numbers and noise and the great complexity of cellular organisation. An advantage
offered by many of these alternative techniques, which have their origins in computing science, is the ability to
perform sophisticatedmodel analysis which can better relate predicted behaviour and observations.
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INTRODUCTION
The discipline of dynamic systems modelling

originated in engineering and physics, but is

increasingly being applied to biochemical problems.

A dynamic model defines a fixed set of rules by

which the temporal behaviour of the system and its

variables can be traced.

Figure 1 depicts some biological systems to which

dynamic modelling approaches have been applied.

Applications range from the sub-molecular to
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population level (Figure 1A). The fundamental

elements of biochemical networks are biomolecules

such as proteins (signalling networks), nucleic acids

(gene regulatory networks) or small organic com-

pounds (metabolic networks). In contrast, molecular

dynamics simulations, in which conformational

changes or interactions of a molecule result from

the modelling of forces between its individual atoms,

operate on a smaller scale. On a larger scale the

entities of population dynamics models can be cells,

individual organisms or people. The variables in a

model of any such system generally describe

a state (e.g. concentration or coordinates) of their

basic entities. Although this article focuses on the

modelling of signalling networks, we will address

the problem of multiscaleness in intercellular

communication.

Signalling networks, which are largely based on

interactions between proteins, implement a variety

of cellular functions: Signal transduction is the

process by which a cell converts an external signal

or stimulus into an appropriate cellular response.

Cellular rhythms are periodic biological processes,

such as the cell cycle or day–night cycles (circadian

rhythms) of animals and plants. In multicellular

organisms complex behaviour emerges from these

basic cellular processes. Cells are organised to build

an organism, defend it against pathogens (immune

system) or repair wounded tissue.

In any of these areas computer-based modelling

approaches are motivated by the inherent complex-

ity of the system. Of all biochemical networks,

signalling networks exhibit the highest degree of

complexity. This is not only due to their non-linear

network topology, but also because of the different

types of interactions that these proteins can undergo:

protein associations, enzymatic catalysis and revers-

ible or irreversible protein modification, to name

only the most common types.

Kinase networks, for example, are an important

subclass of signalling networks. Kinases are enzymes

that catalyse the covalent attachment of phosphate

groups to various amino acid residues of proteins.

These modifications can have a dramatic impact on

the protein’s enzymatic activity or its ability to

participate in other interactions (allosteric effects).

Cellular control systems exploit these effects to

achieve complex signal processing tasks required in

signal transduction or cellular rhythms. Diseases that

arise from defects in signalling systems are usually not

attributed to a single gene and are difficult to

diagnose or treat in the absence of an accurate

theoretical understanding of the underlying control

system.

The terms ‘pathway’ and ‘network’ tend to be

used interchangeably in the literature, with pathway

being implicitly taken to be a part of a more general

network. In this article, we follow the generally
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Figure 1: An ontological viewof biological dynamic systems towhichmodelling approaches havebeen applied.While
not meant to be exhaustive, this diagram gives an overview of the context, in which signalling networks are situated
(A, B). Each of the three cellular functions in this diagram (C) is discussed in one of the three central sections of this
review with concrete biological applications (D).
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accepted use of the term pathway to refer to the core

of a biochemical network, comprising a sequence of

activities, for example a kinase cascade. Thus, we will

describe the extracellular signal regulated kinase

(ERK) pathway as being embedded in a more

general signal transduction network, and that the

ERK pathway is a member of a large family of MAP

kinase pathways.

In biology and biotechnology, dynamic systems

modelling refers to attempts that aim to model,

analyse and simulate biological systems and processes

using techniques from mathematics, computing and

information technology. In contrast to modelling

techniques that provide a more or less static view of

the studied system, dynamic systems modelling

facilitates the computational capture and rendition

of the dynamic behaviour of the system or process in

question. Dynamic models provide a powerful

framework for hypothesis generation and testing,

and the identification of inconsistencies in a model.

They are often used by life scientists as a means to

explore their ideas about the organisation of a

system.

In most cases, however, simulation is not the final

stage. Dynamic models permit a range of analytical

techniques that give insight about system-level

features that emerge from the model’s elementary

interactions. Emergent properties such as bifur-

cations, robustness or oscillations are not obvious

from the network topology and their discovery

requires computational methodologies. Finally,

analytical results can suggest novel pathways and

interactions and thus inspire new research.

The ‘correctness’ of a model can be established

in several ways. Model checking establishes whether

a set of formal properties hold for a model, and

is often automated using computer programs.

Biological model validation establishes whether a

model does not contradict our knowledge of

a biological system, and hence requires some kind

of data about the system. A biologically valid

model can be incomplete and hence not describe

all the observations we can make of a system, but

should not incorrectly describe behaviours of the

system.

In this review we will describe a range of

methodologies for modelling and analysing signal

transduction networks, ranging from discrete

approaches such as discrete Petri nets and logic

based descriptions, through continuous approaches

such as ordinary differential equations (ODEs),

to stochastic descriptions based on modelling at the

molecular level.

Figure 2 illustrates the modelling methods

presented throughout this article using a simple

example. It shows various representations of a basic

enzyme catalysed biochemical reaction, where a

substrate is transformed into a product. Two

alternative formulations of this reaction are presented

(Figure 2A and B). Dynamic representations of

such reactions (Figure 2C–F) are the building blocks

of any signalling network model.

RECEPTOR SIGNALLINGAND
SIGNALTRANSDUCTION
CASCADES
Cells can receive external signals in a variety of

forms, such as growth factors and hormones, which

stimulate a plethora of cell surface receptors, such as

G protein coupled receptors (GPCRs) and receptor

tyrosine kinases (RTKs). In most cell types, signalling

through RTKs and GPCRs activates mitogen

activated protein kinase (MAPK) cascades, which

appear to function as central integration modules in

signal processing. MAPK modules are evolutionarily

conserved in cells from yeast to mammals. They

typically consist of three kinases, forming a three

tiered cascade, which are activated by sequentially

phosphorylating each other in response to stimuli [1].

The kinase in the first tier of the cascade is typically

activated at the plasma membrane, whereas the third

kinase is typically translocated from the cytoplasm to

the nucleus upon activation, where it can regulate

gene transcription through affecting chromatin

structure and modifying the activity of transcription

factors. Although the structure of the core MAPK

cascade appears to be relatively simple, it can be used

by the cell to generate a wide range of different

cellular responses. The classical example of this is in

PC12 cells where the transient activation of ERK

by epidermal growth factor (EGF) triggers cellular

proliferation while the sustained activation of ERK

by nerve growth factor (NGF) triggers neuronal

differentiation [2]. ERK is itself a MAPK and forms a

three-tier MAPK cascade consisting of Raf, MEK

and ERK.

Signal transduction pathways have traditionally

been drawn as separate linear entities, reflecting

the history of how they were discovered rather

than their functional context. However, signalling

pathways are extensively interconnected and

embedded in networks with common protein
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components and a multitude of links and crosstalk

between pathways. Owing to the complexity of

these networks, computational modelling techniques

are required in order to explain in detail how

they function and predict possible behaviours.

ODEmodels of the ERK signalling
pathway
The ERK pathway is implicated in various diseases,

including cancer, making it an important drug target

and has therefore been intensively studied in the

laboratory and using computational models [1].

A large number of these models of this pathway

are based on the ODE approach [3]. They have

increased in both size and complexity through the

years and have been used to investigate various

aspects of the biological behaviour of this system,

such as:

(i) Ultrasensitivity of the ERK cascade as a result of

a two-step distributive activation mechanisms

[4–6].

(ii) Oscillatory behaviour of the ERK cascade due

to embedded negative feedback loops [7].

(iii) The effects of receptor location, trafficking and

degradation on downstream ERK signalling

[8, 9].

(iv) The dynamic differences between the transient

and sustained activation of ERK by different

growth factors. [10, 11].

(v) The influence of Raf kinase inhibitor protein

(RKIP) on the ERK pathway [12].

While the ODE method is not the most visually

intuitive, it interfaces well to higher- level modelling

tools and graphical formalisms, which have been

used to describe biochemical networks [13–16].

ODE modelling takes a population view of a

system rather than modelling the stochastic behav-

iour of individual proteins, and requires exact

knowledge of reaction rates and concentrations of

the proteins. Partial differential equations (PDEs), the

spatial counterpart to ODEs, have been used by

Eungdamrong and Iyengar [17] to model spatially

restricted reactions in signalling networks, taking into

account spatial diffusion processes as well as chemical

reactions.

E + P 
k3

E + S ES

k1

k2

dt

E

S P

d[P]

kcat = k3

k3

k1+k2Km =

Km+[S]

kcat[E][S]
=

dt

d[P]
dt

d[E]

d[ES]
dt

d[S]

= k3[ES]
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Figure 2: A single enzyme-catalysed reaction in various modelling representations. The left column shows
Michaelis^Menten approximations, the right column mass-action kinetics, explicitly featuring an enzyme-substrate
complex. (A, B) Conventional notation of the chemical reactions and kinetic constants. (C, D) A possible ODE
(ordinary differential equations) representation. The differential equations mathematically describe the temporal
change of each molecular species. (E, F) Discrete Petri net description.Circular nodes represent biochemical entities
andboxesrepresentreactions.Enzymatic catalysis in E is representedusing a special read arc (circledend).Themarking
of circular nodes with tokens indicates whether the biochemical entity is present in the state of themodel.Reactions
may occur if their preceding biochemical entities aremarked.
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Non-ODEmodelling approaches applied
to signal transduction pathways
Stochastic modelling approaches are based on

representing the individual behaviour of molecules

and hence variability in the overall behaviour of a

system. For example, Phillips and Cardelli [18] have

used the stochastic p-calculus to model the MAPK

pathway by simulating the behaviour of individual

molecules using the Gillespie algorithm. Their

approach has shown that the overall behaviour of

the system is highly robust to changes in reaction

rates. A stochastic p-calculus description of the

model enzymatic reaction is given in Figure 2B.

A related approach, the stochastic process algebra

PEPA (Figure 3A), was used by Calder et al. [19] to
model the influence of RKIP on the ERK signalling

pathway. This method can handle imprecise data,

where concentrations are represented by levels rather

than by exact values, and also permits different

alternative formulations of a model to be formally

compared. PEPA models can be simulated using

the Gillespie algorithm or ODE solvers: Calder et
al.[20] have shown how to automatically derive

ODEs from process algebra models. A description in

PEPA of the model enzymatic reaction is given in

Figure 3A.

Calder etal. [21] have also used the PRISM model

checker [85] to perform quantitative analysis of these

PEPA models. Examples are: steady-state analysis of

stability of a protein, for instance that a protein

reaches and then remains within certain bounds, or

that a protein is more likely to be stable for certain

reaction rates, and transient analysis of protein

activation sequences i.e. concentration peak ordering.

Thus biochemists can directly pose queries of

interest about a system, rather than attempt to

manually interpret simulations, which may be very

complex.

Petri nets (Figure 2E and F) are graphical

notations for modelling concurrent systems, in

which several processes can occur at the same

time, and are widely used to analyse biochemical

networks. These graphs give an immediate repre-

sentation of the topology of a biochemical network;

whilst the underlying mathematics may be compli-

cated, their presentation is very intuitive for the

life scientist. Yup-Lee et al. [22] have used Petri

nets to model the molecular mechanisms of

cell signalling and their pathological implications,

applying their approach to modelling the IL-1b
and TNF-a-induced signalling system. Several types

of automated analyses can be performed on discrete

Petri nets, for example structural properties which

are independent of the marking, and behavioural

properties. Gilbert and Heiner [23] have applied

such analyses to a Petri net model of the influence

of RKIP on the ERK signalling pathway, and

have also shown how that analysis can be used to

A. PEPA

EH = (r1,k1).EL

EL = (r2,k2).EH + (r3,1).EH

SH = (r1,k1).SL

SL = (r2,k2).SH

SEH = (r2,k2).SEL+(r3,k3).SEL

SEL = (r1,k1).SEH

PL = (r3,k3).PH

PH = (stop,1).PH

SH � (SEL � EH) � PL
{r1,r2} {r1,r2,r3} {r3}

B. Stochastic p-calculus 

run 100 of E(a) | S(a)

S(k1)=?k1(k2,k3).(!k2.K(k1)+!k3.P())

E(k1)=nk2nk3!k1(k2,k3).(?k2.E(k1) + ?k3.E(1))

∆

∆

Figure 3: Stochastic representations of the single
enzyme-catalysed reaction. (A): Stochastic process alge-
bra description in PEPA; the upper part defines the bio-
chemical components, where the concentrations of each
one can be either high or low (e.g. for the substrate
either SH or SL). The reactions are referred to by the
labels r1,r2,r3 and k1,k2,k3 represent the rates. The last
line describes how the components are composed
together to form the model. Simulations are via ODEs
or the Gillespie algorithm and queries about the model
can be made with the PRISM model checker. (B):
Stochastic p-calculus description; the first two lines are
rules describing the behaviours of the enzyme and sub-
strate respectively. The product is also defined in the
second rule. The third line is the instruction to simulate
the model with 100 molecules each of the enzyme and
substrate using the Gillespie algorithm.
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derive the sets of initial concentrations required by

the corresponding continuous ordinary differential

equation model.

CELL-CYCLE REGULATION
Eukaryotes use a highly conserved process to divide

and create new cells, called the cell cycle. This periodic
process comprises the replication of chromosomal

DNA (S phase), the division of the nucleus, called

mitosis (M phase). Each of these stages is preceded

by a gap phase (G1 and G2). Cytokinesis, the physical
separation of the mitotic cell, ends with two

daughter cells in G1, concluding the cycle.

The cell cycle is a biological example of a

periodic chemical reaction, such as the famous

Belousov-Zhabotinsky reaction. This chemical

system is capable of performing self-sustained

oscillations, which can be visualised using a chemical

indicator. It was the first chemical oscillator to be

mathematically described as a set of differential

equations in the 1950s [24–26]. Since then,

oscillatory cellular processes such as circadian

rhythms in animals and plants, cardiac and respiratory

rhythms or oscillations in metabolic systems have

gained wide interest [27]. The elucidation of the

core molecular mechanisms of the central cell cycle

‘engine’, comprising interactions of cyclins with

cyclin-dependent kinases (CDKs), has triggered

intensive modelling efforts in the last decades

[28–30].

CDKs and their activators, the periodically

expressed cyclin proteins, trigger important cell

cycle specific events. The complex of cyclin and its

specific CDK is catalytically active and phosphor-

ylates serine and threonine residues in target proteins,

some of which feed back to the cyclin-CDK system.

Early cell-cycle models showed that this simple

system can perform self-sustained oscillations [31,

32]. More recently it has been discovered that cell-

cycle regulation consists of a number of self-

contained, but interlinked modules [33–35]. This

organisation facilitates open-loop approaches, in which

subsystems are decoupled from the larger, complex

closed-loop system, enabling a detailed study of the

subsystem’s behaviour.

ODEs represent the predominant approach

in cell-cycle modelling. As with signalling cascades,

dynamic models of cell-cycle kinase networks are

constructed from basic kinetic building blocks of

enzymatic reactions (Figure 2). This is known as a

bottom-up approach. Its aim is to deduct physiological

behaviour by simulating underlying molecular

details. From the analysis of the basic equations,

higher-level phenomena arise in the form of emergent
properties [36]. In contrast, top–down modelling

is concerned with inferring lower-level mechanisms

and parameters from information at system level.

The differential equations in Figures 2C and D

contain non-linear terms: the system variables are

contained in products and fractions. An analytical

approach to integrating or characterising even a

simple system with only two or three reactions can

be nearly impossible, and numerical methods are

needed. Schmidt and Jacobsen [37] on the other

hand, have developed a method for reducing

non-linear ODE systems to a set of interacting,

linearised subsystems. The application of their

technique to a previously published cell-cycle

model allowed them to attribute roles to particular

sub-networks regarding the dynamic behaviour they

implement: two sub-networks consisting of three

components each create sustained oscillations and

bistability, respectively.

As a continuous modelling method, the appli-

cability of ODEs to modelling cellular signalling

processes has been questioned. In cases where

proteins are expressed in low copy numbers, the

assumption of continuous variables may not hold

[38]. As an extreme example, a system described by

Vilar et al. [39] oscillates only in the presence of noise

for a given set of parameters.

Emergent behaviour
Even simple non-linear ODEs can exhibit complex

and sometimes chaotic behaviour. ODEs are ame-

nable to symbolic or numerical analysis techniques,

including bifurcation analysis. These techniques aim

to characterise the emerging behaviour in either a

qualitative or quantitative sense.

Bistability is now recognised as an important

pattern in cellular signalling pathways, and specifi-

cally in the cell cycle. Bistable systems can assume

either one of two discrete equilibrium states and

allow for switching between them. Han et al. [40]
employed an analytical study of a two-variable cell-

cycle model to determine the importance of

hysteresis and bistability. Using a random parameter

search they showed that bistable systems were more

likely to display dynamic instabilities, which are

essential for sustained oscillations. In a series of

computational and in vitro experiments, Pomerening
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and colleagues [41] have established a relationship

between bistability, hysteresis and oscillations in the

biological model system Xenopus. Their findings

add to the evidence that bistability is an essential

phenomenon for robustness of biological signalling

systems, in particular for oscillating systems. Their

work also addresses the critical task of experimental

model validation.

A phenomenon that is less frequently found in

signalling systems is excitable behaviour. Excitable

systems, such as the neural membrane potential,

modelled in the classical study by Hodgkin and

Huxley [42], are generally characterised by a

transient response to a sufficiently large stimulus

and a global resting state, which the system returns to

after an excitation. A recently published model

analysis of the Src tyrosine kinase subsystem, which

is connected to CDK activity, has shown that Src

activity can be excited in this way [43].

Applications of cell-cycle models
Cell-cycle models also have an impact on drug

discovery. Chassagnole et al. [44] employed a cell-

cycle model to quantitatively predict cytotoxicity of

a set of kinase inhibitors based on IC50 values, which

were measured in vitro. The results allowed them to

assess the pharmaceutical value of these inhibitors as

anti-cancer therapeutics.

Does molecular modelling help us to gain a better

understanding of the cell cycle? While models of

molecular interactions certainly provide a systematic

way of determining gene functions, the way in

which the organisation of macroscopic cellular

events, such as cytokinesis, emerge from molecular

interactions, is an unresolved issue [45]. Biron

et al. [46] employed an ODE model to characterise

the contractile ring, whose contraction divides

the cell in two at cytokinesis. On a molecular

level, this model takes into account the interactions

between actin and myosin, two proteins from

which cellular fibres are built. It also includes

biophysical parameters, which describe the

forces experienced by the contractile ring. Spatial

characteristics of the ring are built into the

model, rather than arising from dynamics on

molecular level.

The gap between molecular and macroscopic is

an important challenge in systems biology. Some

approaches towards intercellular communication will

be discussed in the next section.

INTERCELLULAR SIGNALLING
A fundamental aspect of cellular signalling is to

respond appropriately to the cell’s environment,

which normally includes the presence of other cells.

The importance of the interaction of cells in

multicellular organisms is apparent when considering

the organism itself as an emergent property of the

interaction of the component individual cells.

Without this ability tissue repair, immunity or

homoeostasis would be impossible. Indeed, errors

in cellular information processing are responsible for

diseases such as cancer, autoimmunity, and diabetes.

The component processes of cell signalling

operate over orders of magnitude in size and time.

The ability to build models from the bottom up and

integrate them with models of different paradigms

and spatiotemporal dynamics is at the heart of what

has become one of the grand challenges of systems

biology. The bottom-up approach, despite being the

most accurate, is limited as the computational cost

increases rapidly with the number of interacting

elements. Using hierarchical models that abstract

the details of finer grain sub-models can mitigate

this problem [47, 48]. The success in modelling the

heart as a whole organ from numerous submodels

exemplifies this point [49]. These models have been

able to demonstrate a number of counterintuitive

mechanisms, such as the mechano-electrical feedback

in which the contractions of the heart influence its

electrical properties [50].

Spatiotemporal models
Various modelling techniques deal with spatial

dimensions, for example, partial differential equa-

tions. However, we will discuss here two discrete

methodologies, which are suitable for representing

intercellular communication [50].

The modelling paradigm based on cellular

automata (CA) is versatile, simple and scalable. CAs

map the space of interest as a regular lattice at a

dimension that is optimal for the model requirements

(Figure 4A). The representation of space within the

model will generally include a state, for example

empty or occupied, and will take into account the

states of the adjacent spaces. The approach can be

adapted for biophysical simulations [51] and to

explicitly represent molecular crowding. CA is

one of the computational frameworks that are

most efficiently parallelisable, as exemplified by

CyberCell [52].
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In contrast to CA, agent-based models represent

the discrete elements of the model as software agents

(Figure 4B). These entities incorporate the attributes

of elements [53] including time, spatial position and

often using various artificial intelligence capabilities.

The versatility of this paradigm, like CA, has lent

itself for biophysical simulations [54].

Here, we consider two models that address the

issue of wound healing in terms of cellular interac-

tions, first from an agent-based paradigm and then as

a CA. Both models accommodate multiscaleness in

time and space by operating at an appropriate scale

and abstracting a finer grained model to be

represented as a set of rules.

Agent-based simulation
The epitheliome project [57] aims to develop a

computational model that is able to predict the social

behaviour of cells in epithelial tissues. These tissues

form sheets of cells of approximately 10 cells thick

that serve as protective barriers. The lining of the

urinary tract, the urothelium, has attributes that

make it of particular interest to this study.

Urothelium cells in vivo multiply slowly but they

have a fast proliferative response to injury. When

tissue is injured, the ability of the urothelial cells

to self-organize into cell tissue appears to be an

emergent property that arises from the mutual

interaction of the cells.

Walker et al. [55, 56] have investigated some of

these mechanisms. The model tests the hypothesis

that global behaviour of the urothelial tissue can be

explained by cell-based rules of engagement

between neighbours. The agents, representing the

individual cells, adapt the rules which dictate

their behaviour through interaction with their

environment and with other agents. These rules

relate to proliferation and attachment. The virtual

cells are able to progress through the cell cycle and

divide, form calcium-dependent bonds with one

another, migrate, and die. In order to validate these

models, wounding assays were developed in vitro
for a parallel study. Urothelial monolayer cultures

were subjected to scratch wounds and their healing

monitored and compared with the model.

The computational modelling of wound

healing in parallel with in vitro assays has provided

a deeper insight into the mechanisms of

monolayer regeneration. In particular, modelling

and experimental results show that cells in low

calcium ion concentrations rapidly migrate into the

wound, whereas cells in physiological calcium ion

concentrations drift as confluent sheet, covering the

wound at a much slower rate. The model also

suggests that in low-calcium ion, the repair of scratch

wounds may be associated with increase in the

number of cells entering the mitotic cycle.

A cellular automata model of tissue
growth
A complimentary model to the aforementioned

utilises a three-dimensional scaffold to represent

a spatial matrix in which cells proliferate, migrate,

collide and adhere, and eventually reach confluence

state
t→t + 1

A B

cellular automaton agent-based model

Figure 4: Comparison of two spatial modelling methodologies. (A): Cellular automata consist of a number of
abstract elements (‘cells’) arranged in a grid. Each element is aware of its own state and the state of the adjacent
elements (arrows), on which the dynamic rules are built. The elements may represent actual biological cells or any
discrete volume of space. (B): In agent-basedmodels any state information is encapsulated in the position and proper-
ties of agents, which move (black arrows) and interact with each other (grey arrows) on a spatial matrix.The agents
may represent biological cells, with the state referring to intracellular signalling events.
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(i.e. maximum density) [57]. Although this model is

represented as a grid, functionally it represents space

in the same explicit manner as a CA.

The model builds on that by Chang et al. [58] in
that it takes into account the migration of the cells or

the effect of collision between cells. It also extends

Lee’s model [59] that quantified the competing

effects of migration and contact inhibition with a 2D

random walk CA model. This model, however,

includes an asynchronous cell population, whereby

the proliferation period and speed of migration

have a parametric distribution. This is regarded

as being important because it has been shown

that heterogeneity plays an important role in the

complexity of behaviour and functionality of

the model.

The spatiotemporal development takes place in a

100� 100� 100 matrix to represent the 3D arena of

cell population. The simulation starts with 0.1% of

the confluent population density with various initial

states of cell seeding distribution, random, uniform

or a state representative of a wound-healing model.

The different initial states also affect the outcome of

the simulation.

Throughout the simulation the cells migrate in a

random walk, dividing at intervals and occasionally

colliding with each other. The effect of contact

between the migratory cells is such that it will inhibit

proliferation and tissue growth. Epithelial cells may

adhere to each other irreversibly when they collide,

forming small colonies that eventually grow into

contiguous sheet of cells.

Fast cell migration mitigates the effects of

adhesion as it increases the probability that a cell

will move away from its neighbours and therefore

have room to divide. The migration process is

slowed down by cell collisions that either cause

a pause in movement or adhesion and the formation

of an aggregate.

Various parametric studies are conducted to test

the sensitivity of the model’s response to key

parameters. Cell motility and average cell-division

time both have a strong influence on time to

confluence, although the mechanisms are non linear

and complex. In general, after an initial lag phase

the simulation progresses rapidly until about 45%

confluence. At this point many cells are completely

surrounded, are unable to divide and here cell speed

has less of an effect on the simulation. Confluence

occurs between 4 and 11 days depending on

parameter values.

TOOLSANDRESOURCES
Several computational infrastructures, namely data-

bases and model repositories, support model creation

and exchange (Table 1). Databases like

TRANSPATH [60] and aMAZE [61] are primary,

searchable and annotated knowledge bases of

molecular interactions. Comprehensive information

concerning a variety of cellular processes can also be

obtained from KEGG (Kyoto Encyclopedia of

Genes and Genomes) [62]. BRENDA [63] and

KDBI (Kinetic Data of Biomolecular Interactions)

[64] are specialised databases collecting experimen-

tally determined kinetic data, the knowledge of

which is of major importance for biochemical

modelling. CellML [67] and SBML [76] are

markup languages which have been specifically

designed to describe biochemical networks with

the data required to perform ODE-based

simulations.

Recently, model repositories have been con-

structed which allow the storage, curation and

annotation of ready-to-use dynamic models.

Examples include BioModels [65], DOQCS

(Database of Quantitative Cellular Signalling)

[66] and the repositories on the CellML [67] and

SBML [76] websites. DOQCS, which is specific for

signalling pathways, not only provides links to the

GENESIS/Kinetikit simulator, but also allows

the user to perform queries for kinetic parameters

and reactions.

A large number of software tools are available for

simulation and analysis of cell- signalling models

specified in ODEs, Petri nets and p-calculus.
The software tools differ not only regarding their

underlying techniques, but also the capabilities that

they support. The majority of ODE-based tools

provide users with a graphical interface to construct

models. They allow users to define the network

topology and kinetic laws, from which ODEs are

generated and numerically solved. Most tools

provide a variety of numerical algorithms for

simulation and analysis.

MATLAB is a general-purpose mathematical

environment that is widely used in the physical

and engineering sciences, but recently program

extensions for systems biology have become available

[68], and a specialised toolbox is available for

modelling, simulating and analysing biochemical

networks. A major benefit of the MATLAB

environment is the comprehensive library of

mathematical and graphical functions, enabling
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Table 1: A selection of databases and tools formodelling signalling networks

Databases
Name Content Website
TRANSPATH [62] Signalling pathways www.biobase.de/pages/index.php?id¼39
aMAZE [63] Annotated protein interactions www.amaze.ulb.ac.be
KEGG [64] Annotated metabolic and signalling pathways www.genome.ad.jp/kegg
BRENDA [65] Enzyme function and kinetic data www.brenda.uni-koeln.de
KDBI [66] Kinetic data xin.cz3.nus.edu.sg/group/kdbi/kdbi.asp
BioModels [69] Dynamic model repository www.ebi.ac.uk/biomodels
DOQCS [70] Dynamic model repository doqcs.ncbs.res.in
CellML model repository [67] Dynamic model repository www.cellml.org/models

Tools
Name Category Model Representation Function URL
MATLAB, with SimBiologyToolbox [71] Continuous and stochastic Mathematical (e.g.ODE) General-purpose mathematical

environment, simulation and analysis
www.mathworks.com

XPPAut Continuous and stochastic ODE General purpose; simulation,
analysis

www.math.pitt.edu/�bard/xpp/xpp.html

Copasi [73] Continuous and stochastic ODE Simulation and analysis www.copasi.org
Virtual Cell [75] Continuous and stochastic ODE-based, PDE Simulation and parameter

sensitivity analysis
www.nrcam.uchc.edu

Systems Biology Workbench [76],
including Jarnac and JDesigner

Discrete, continuous and stochastic ODE/SBML Data-exchange framework for
modelling, simulation and analysis

sbw.kgi.edu

Narrator [15] Continuous and stochastic Graphical, ODE-based Modelling and simulation www.narrator-tool.org
STOCHSIM [78] Stochastic Probabilistic General-purpose biochemical

simulator
www.pdn.cam.ac.uk/groups/comp-cell/
StochSim.html

E-CELL [77] Continuous Object-oriented Modelling and simulation www.e-cell.org
SPiM [83] Stochastic �-calculus Simulation http://www.doc.ic.ac.uk/�anp/spim/
BioSigNet [85] Discrete Graphical Reasoning, hypothesis testing www.public.asu.edu/�cbaral/biosignet
BIOCHAM [84] Discrete and continuous Logical þkinetic models Simulation and analysis contraintes.inria.fr/BIOCHAM
PRISM [24] Discrete Stochastic process algebra General purpose; Analysis

(model checking)
www.cs.bham.ac.uk/�dxp/prism

PEPAWorkbench [20] Discrete Stochastic process algebra General purpose; Analysis www.dcs.ed.ac.uk/pepa/tools
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convenient visualisation, analysis and optimisation of

biochemical models. MATLAB also allows for

stochastic simulation, although some manual work

is required. Another widely used tool for simulation

and analysis of ODE models from all fields is

XPPAut, particularly due to its interface to

the bifurcation analysis tool AUTO [68].

On the other hand, tools specifically designed for

biochemical modelling offer some advanced analysis

techniques. Copasi [70], an updated and portable

version of Gepasi [71], supports continuous and

stochastic simulation, parameter estimation and

optimisation, metabolic control analysis and linear

stability analysis of biochemical models. Virtual Cell

[72] uses PDEs to model and simulate the spatial

aspects of cells and provides tools for sensitivity

analysis and an interface to external kinetic

and pathway databases. The Systems Biology

Workbench [73] is a software framework permitting

the combination of a wide variety of heterogeneous

modelling tools. It incorporates Jarnac, a language for

manipulating cellular system models and JDesigner,

an open source visual design tool for building

signalling, metabolic and gene networks.

E-CELL [74] is a software platform for modelling,

simulation and analysis of complex, heterogeneous

and multiscale systems like the cell. It provides

a unified and object-oriented framework for inte-

grative simulation of cellular process on several levels,

and an advanced graphical interface allowing users

to observe the cell’s state and conduct virtual

experiments in silico.
STOCHSIM [75] is dedicated to stochastic

simulation, where molecules are treated as individual

objects that react according probabilities computed

using user-defined parameters.

All the above tools, including MATLAB,

now support SBML [76], an XML-based model

description language, designed with the aim of

achieving compatibility among simulation packages.

SBML accounts for dynamic features of pathways

and allows quantitative data to be stored. Proposals

for extensions to the current version of SBML

incorporate the ability to include display and layout

information in a model. SBML is also the basis of the

Systems Biology Workbench (SBW), an effort to

build a common infrastructure to develop, share and

evaluate models effectively.

INA (Integrated Net Analyser) [77] and PEP

(Programming Environment based on Petri nets)

[78] are general-purpose tool packages supporting

the analysis of traditional, coloured and time

Petri nets. Both incorporate features like transition

invariants and structural analysis. The former also

supports place invariants and performance analysis,

such as simulation with time and Markov chains,

while it fails to edit and represent nets graphically.

TimeNET (Timed Net Evaluation Tool) [79]

permits the user to perform modelling with

continuous as well as discrete time. An overview of

existing tools for Petri nets is available from the Petri

nets Tools Database [80].

SPiM [81] is a modelling and simulation tool

based on the stochastic p-calculus that can be used to

simulate models of biochemical systems, and uses

the Gillespie algorithm [82] as the basis of its

computational engine. BIOCHAM (Biochemical

Abstract Machine) [83] is a programming environ-

ment for modelling biochemical systems, making

simulations and querying models in temporal logic.

Finally, a number of tools are specifically

concerned with model checking and validation.

BioSigNet [84] is a knowledge-based reasoning

system for signalling networks. It allows the user to

generate and test hypotheses about pathways

based on experimental observations and biochem-

ical knowledge. The PRISM probabilistic model

checker [85] and the PEPA Workbench [86]

are generic tools designed for the modelling and

analysis of probabilistic systems and are used to

simulate biochemical models specified using stochas-

tic process algebra. These tools utilise temporal logic

for the analysis of the models.

CONCLUSIONS
We have presented a variety of computational

techniques for modelling, simulation and analysis

of signalling networks exemplified by modelling

approaches from three biological fields. Table 2

summarises the main properties of the presented

methodologies.

The classical, differential equation approach in the

form of ODEs and PDEs is currently the most

prevalent. However, there are several reasons why

alternative techniques may be of increased interest in

the future.

First of all, there is a need for both discrete and

stochastic approaches, because the validity of con-

tinuous representation of biochemical networks is

disputed. Modellers will need to address this issue

by transferring their continuous models to an
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environment that takes into account low protein

copy numbers and noise.

Secondly, the characterisation of behaviour emerging

from molecular interactions not only includes

basic dynamic phenomena, such as limit cycle

oscillations and multistability. It is commonly

accepted that macroscopic cellular and intercellular

events emerge from basic molecular processes, but

due to the enormous complexity at the molecular

level sophisticated computational methods, such as

hierarchical models, are needed to bridge the gap.

In fact, the most important challenges in bioinfor-

matics and systems biology are concerned with

bridging the gap between different levels of cellular

organisation.

Model analysis is an important activity, which is

often neglected by modelling tools. Frequently,

theoretical models are only amenable to biological

validation of an indirect nature, due to the lack of the

experimental means to observe the behaviour of

specific entities within the model. Sophisticated

analysis steps are thus required to better relate

predicted behaviour and observations.

The field of systems biology has attracted a great

number of researchers from biological and

computational backgrounds. The contribution of

the latter is a new range of modelling techniques that

has not been previously applied to biological

signalling. New methodologies, such as intuitive,

graphical modelling formalisms aim to bring the two

scientific fields closer together.

Table 2: Comparison ofmethods for description, simulation and analysis of biochemical systems

Method Depiction/model Simulation Analysis

Pathway chart Biochemical reactions/no
formal model

None None

Ordinary differential
equations (ODEs)

Mathematical equations Deterministic numerical solution:
time-discretisation

Symbolic and numerical
analysis (e.g. bifurcation analysis)

Partial differential
equations (PDEs)

Mathematical equations Deterministic numerical solution:
space-time-discretisation

Symbolic and numerical analysis

Stochastic differential
equations

Mathematical equations
with random terms

Stochastic numerical simulation:
time-discretisation

Symbolic and numeric analysis

Discrete Petri nets Graph, labelled transition
system

Animation via tokens Qualitative: structural
analysis and temporal logic

Continuous Petri nets Graph, labelled transition
system, rate information

Via ODEs See ODEs

SBML-based graphical
formalisms

Graph, rate information Various (e.g.ODEs,Gillespie) Various, tool-dependent

Stochastic p-calculus Algebraic formulae Stochastic numerical simulation
via Gillespie algorithm

None

Process algebra (PEPA) Algebraic terms, stochastic
temporal logic

Stochastic numerical simulation
via Gillespie algorithm;
simulation from logical analysis

Quantitative, via temporal
logic over models

Cellular automata Spatiotemporal explicit
model based on
state and simple rules

Step-wise application of rules
to discrete space state

Analysis of emergent properties

Agents Spatiotemporal explicit
model based on
autonomous intelligent
object behaviour

Representation of object(s) behaviour
determined by history of encounters
with environment

Analysis of emergent properties

Key Points
� Signalling networks can be modelled by a variety of continuous,

stochastic and discrete techniques. The traditional modelling
approach is based on differential equations, but several alterna-
tivemodelling techniqueshavemorerecentlybeen adapted from
approaches in computing science andmathematics.

� The various modelling techniques have distinct advantages and
disadvantages in terms of comprehensibility of the models, the
power of their descriptions, and the kinds of simulation and
analysis that can be performed.

� There are a large number of computational systems that are
available to support biochemical system model construction,
simulation and analysis.

� We describe several of these modelling approaches and show
how they have been applied to signalling networks ranging from
intracellular (receptor signalling and cell-cycle regulation) to
intercellular (wound healing) signalling.
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