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Abstract. Osteoporotic vertebral fractures (VFs) are under-diagnosed,
creating an opportunity for computer-aided, opportunistic fracture iden-
tification in clinical images. VF diagnosis and grading in clinical practice
involves comparisons of vertebral body heights. However, machine vi-
sion systems can provide a high-resolution segmentation of the vertebrae
and fully characterise their shape and appearance, potentially allowing
improved diagnostic accuracy. We compare approaches based on ver-
tebral heights to shape/appearance modelling combined with k-nearest
neighbours and random forest (RF) classifiers, on both dual-energy X-
ray absorptiometry images and computed tomography image volumes.
We demonstrate that the combination of RF classifiers and appearance
modelling, which is novel in this application, results in a significant (up
to 60% reduction in false positive rate at 80% sensitivity) improvement
in diagnostic accuracy.

Keywords: Osteoporosis, vertebral fracture, shape modelling.

1 Introduction

Osteoporosis is a common skeletal disorder characterised by a reduction in bone
mineral density (BMD). This is commonly assessed using dual-energy X-ray ab-
sorptiometry (DXA); a T-score of < −2.5 (i.e. more than 2.5 standard deviations
below the mean in young adults) [1] is used as a criterion suggesting osteoporo-
sis. It significantly increases the risk of fractures, most commonly occurring in
the hips, wrists or vertebrae. Approximately 40% of postmenopausal Caucasian
women are affected, increasing their lifetime risk of fragility fractures to as much
as 40% [1]. Osteoporosis therefore presents a significant public health problem
for an ageing population. However, between 30−60% of vertebral fractures (VFs)
may be asymptomatic and only about one third of those present on images come
to clinical attention; they are frequently not reported by radiologists [2]. Many of
these cases involve images acquired for other clinical indicators, so identification
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Fig. 1. Example vertebrae visualized on GE Luna iDXA images. (a) Mild scoliosis or
incorrect positioning of the patient may cause tilting of the vertebrae relative to the
beam direction, leading to the appearance of end-plate curvature although no fractures
are present. (b) Osteoporotic vertebral fractures lead to loss of vertebral height and
changes in texture due to the presence of micro-fractures; the upper end plate is not
symmetrical with the lower and appears blurred. (c) Spondylosis also results in changes
in vertebral shape and texture, due to the growth of osteophytes on the anterior portion
of the end-plates and sclerosis, i.e. the high-intensity region within the vertebral body,
below the anterior portion of the upper end-plate.

may be opportunistic. For example, computed tomography (CT) is arguably the
ideal modality for opportunistic identification, due to the large number of pro-
cedures (4.3 million per year within the UK National Health Service [3]) and
high image quality. However, a recent audit at the Manchester Royal Infirmary
(MRI) revealed that only 13% of VFs visible on CT images were identified [4],
similar to rates reported in the literature [2]. Proposed reasons for such low
rates [2] include the difficulty of identifying vertebral height reduction on axial
images. Routine coronal and/or sagittal reformatting has been proposed, and
is being adopted, but reporting rates remain low [2, 5]. The potential utility of
computer-aided VF assessment (VFA) systems is therefore considerable.

Several authors have investigated the use of methods based on statistical
shape models (SSMs) [6] to segment vertebrae in both radiographs, e.g. [7],
and DXA images, e.g. [8, 9]. In particular, the random-forest regression voting
constrained local model (RFRV-CLM) [10] has been used for both semi- and
fully automatic vertebral body segmentation in both DXA [11–13] and CT [14]
images, providing superior segmentation accuracy on more severely fractured
vertebrae compared to previous work using active appearance models (AAMs)
[15]. However, all of these approaches share the common aim of providing a high-
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resolution segmentation of the vertebrae, typically as landmarks annotated on
the vertebral body outline.

Several procedures for manual VFA have been described in the literature; see
[16] for a recent review. Most attempt to remove the subjectivity of qualitative
assessment [17] by defining fractures in terms of height reduction at the posterior,
middle and anterior parts of the vertebral bodies, e.g. [18]. However, non-fracture
deformities can affect vertebral shape, as shown in Fig. 1. In particular, tilting of
the vertebrae can mimic the appearance of depressed end-plates. VFA therefore
requires a subjective assessment of whether any apparent shape change is due
to osteoporotic fracture or some other cause. The algorithm-based quantitative
(ABQ) method for VFA [19] defined a heuristic for this process. The result is a
complex procedure that involves consideration of multiple, interacting factors,
including the apparent shape of each vertebra and the spine as a whole, which
is difficult to translate into a machine vision algorithm.

Whilst machine vision based VFA methods suffer from difficulties in terms of
replicating such complex, heuristic approaches, they have a potential advantage
in that techniques based on SSMs can provide a precise mathematical descrip-
tion of the entire shape of a vertebra, and quantitatively compare this between
vertebrae. We investigate the interaction of these two effects by constructing VF
classifiers based on comparing the parameters of shape and appearance mod-
els of vertebrae using both k-nearest neighbours (kNNs) and random forests
(RFs) [20]. These methods are compared to simple, height-based classifiers on
two data sets; 320 DXA VFA images and spinal mid-line sagittal images pro-
jected from 402 CT volumes. When RFs were used to classify appearance model
parameters, significant reductions in false positive rate (FPR) of ≈ 30% and
≈ 60% were achieved at 80% sensitivity for VF identification from automatic
and manual landmark annotations, respectively, on both data sets.

2 Method

2.1 Data Collection and Manual Annotation

The picture archiving and communication server (PACS; Centricity Universal
Viewer, GE Healthcare, Little Chalford, Buckinghamshire, UK) at the MRI was
queried to produce a list of CT scans acquired during May and June 2014 and
January to September 2015. Scans from non-trauma patients that included any
part of the thoracic or lumbar spine and were of patients over 18 years of age,
were selected. This gave a list of 868 patients’ scans. The PACS was also queried
for non-trauma CT scans during January to April and July to December 2014
in patients over 60 years of age that contained osteoporotic VFs, producing a
second list of 132 patients. The sagittal reformatted volumes from both lists were
downloaded in DICOM format. 402 volumes were selected to form a training set,
including the 132 fracture-rich images to ensure high fracture prevalence. The
remaining images were reserved for future validation purposes. The 402 image
list was divided into quarters for four-fold cross validation, with the fracture-rich
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Fig. 2. (a) An example coronal maximum intensity projection of a computed tomog-
raphy volume. (b) Manual annotations of the neural arch. (c) Extrapolated piecewise-
linear curve and the ±5mm range (dashed line) over which sagittal rasters were
summed to produce the sagittal projection (d). (e) Manual landmark annotation.

images distributed evenly. Each volume was up-sampled to give isotropic voxel
dimensions using tri-cubic interpolation.

To avoid the difficulties of performing a high-resolution annotation of land-
marks on vertebral bodies in 3D, analysis was limited to a single, two-dimensional
(2D) image produced from each volume using the procedure described in [14].
The orientation of the subject within the CT scanner was highly constrained, al-
lowing production of a maximum intensity projection showing an approximately
anteroposterior view without registration. Landmarks were manually annotated
on the MIP images at the distinctive, U-shaped structure on each vertebra where
the laminae join to form the spinous process of the neural arch (Fig. 2(a),(b)).
A piecewise-linear curve was defined through the points and extrapolated ver-
tically to the boundary of the volume (Fig. 2(c)). For each axial slice from the
original volume, all anteroposterior raster lines (i.e. rasters of sagittal slices)
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that passed within Dt of this curve were averaged to give a single raster line
of a sagittal image. Repeating for all axial images gave a single, thick-slice,
2D sagittal image that showed the midplane of each vertebra (Fig. 2(d)). The
thickness Dt = ±5mm was chosen by manual inspection to optimise endplate
visualisation.

The images derived from CT volumes were projected onto the spinal mid-
line, and so were unaffected by issues such as mild scoliosis. DXA images are
projections through the full body, and so will show the tilting of the vertebrae
encountered in this condition, making accurate diagnosis based on vertebral
shape more difficult. Therefore, a second data set of 320 DXA VFA images
scanned on various Hologic (Bedford, MA, USA) scanners was also used. This
comprised: 44 patients from a previous study [21]; 80 female subjects in an
epidemiological study of a UK cohort born in 1946; 196 females attending a
local clinic for DXA BMD measurement, for whom the referring physician had
requested VFA (approved by the local ethics committee).

Manual annotation of 33 landmarks on each visualized vertebra from T7 to
L4, for the DXA images, and T4 to L4, for the CT midline images (Fig. 2(e)),
was performed by a trained radiographer. The vertebrae were also classified by
an expert radiologist into five groups: normal; deformed but not fractured; and
mild (grade 1), moderate (grade 2) and severe (grade 3) fractures using the
Genant definitions [18]).

2.2 Height-Based Fracture Classification

A baseline for VF classification accuracy was derived by applying a simple clas-
sifier, based on six-point morphometry, as described in [13]. The anterior ha,
middle hm and posterior hp heights of each detected vertebra were calculated
from the relevant landmarks, together with a predicted posterior height hp′ , cal-
culated as the maximum of the posterior heights of the four closest vertebrae.
The wedge rw = ha/hp, biconcavity rb = hm/hp, and crush rc = hp/hp′ ratios
were derived, and the data were whitened by subtracting the medians of each
ratio and dividing by the square-root of the covariance matrix, calculated us-
ing the median standard deviation. The data contained far more normal than
deformed or fractured vertebrae, so this process whitened to the distribution of
the normal class. A simple fracture/non-fracture classification was performed by
applying a threshold tclass to r2c + r2b + r2w; deformed vertebrae were counted
correct when classified into either class.

2.3 Shape and Appearance Model Based Classifiers

SSMs provide a linear model of the distribution of a set of landmarks in an image.
The training data consists of a set of images I with manual annotations xl of a set
of N points l = 1, . . . , N on each. The images are first aligned into a standardised
reference frame using a similarity registration, giving a transformation T with
parameters θ. The concatenated, reference-frame coordinates of the points in
each training image define its shape. The SSM is generated by applying principal
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Fig. 3. Point sampling strategies, using (a) a single vertebra, (b) a triplet and (c) a
vertebra plus its neighbouring end-plates (nEP). Texture sampling strategies in the
single vertebra case. (d)–(f) Sampling using Delaunay triangulation with increasing
wframe. (g)–(i) Sampling using Delaunay triangulation with increasing wborder. (j)–
(l) Patch-based sampling with increasing wpatch.

component analysis (PCA) to the training shapes [15], generating a linear model
where the position of point l is given by

xl = Tθ(x̄l +Pslbs), (1)

where x̄l is the mean point position in the reference frame, Ps is a matrix of
modes of variation, Psl is the sub-matrix of Ps relevant to point l, and bs

encodes the shape model parameters. The matrix Ps is orthogonal and so

bs = PT
sl(T

−1
θ (xl)− x̄l). (2)

A compact description of the shape in a query image can therefore be derived by
annotating the landmarks, performing a similarity registration into the reference
frame of the model, and applying (2) to generate the vector bs.

The SSM considers only the distribution of landmarks on a shape. However,
with reference to osteoporosis and potentially confounding pathologies, informa-
tion is also present in the pixel intensities. Osteoporotic VF proceeds as a cascade
of micro-fractures in the vertebral end-plates [16] leading to a blurred appear-
ance (Fig. 1). Appearance models (APMs) such as those used by AAMs [15]
adopt the same PCA-based linear modelling approach as the SSM to character-
ize both shape and intensity information. Each training image is resampled into
the reference frame by applying Ir(m,n) = I(T−1

θ (m,n)), where (m,n) specify
pixel coordinates. The reference frame width wframe acts as a free parameter
controlling the resolution. The intensities of each pixel within an image patch
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covering the points are then concatenated into a vector g, and PCA applied as
before to generate a linear model based on modes of variation Pg

g = Tφ(ḡ +Pgbg) and bg = PT
g (T

−1
φ (g)− ḡ), (3)

where Tφ represents an intensity normalisation. Correlations may exist between
the shape bs and intensity bg parameters, and so the models are concatenated
and a further PCA performed to extract the independent modes of variation of
both shape and intensity Pc, referred to as appearance modes

b = Pcc where b =

(
Wsbs

bg

)
. (4)

The weights Ws scale the relative magnitude of the shape and intensity param-
eters, and are derived by sampling the change in g per unit change in bs in the
training images.

Two approaches for sampling the intensities contributing to g were tested
(Fig. 3). The first used a Delaunay triangulation of the landmarks to define a
region of interest, with an optional, additional border of width wborder to en-
sure the whole edge was included. However, most relevant intensity information
was expected to be located close to the end-plates i.e. the site of the fractures.
Therefore, an alternative strategy that involved sampling a square patch of width
wpatch around each landmark was also implemented. Multiple approaches for
defining the landmarks used were also tested (Fig. 3), including sampling from a
single vertebra, a triplet of neighbouring vertebrae, and a vertebra plus the clos-
est end-plates of its neighbours (nEP sampling). The latter were intended to aid
in identification of tilted vertebra, since these are distinguished from fractures,
in clinical practice, by the symmetry of adjacent end-plates (Fig. 1).

The SSM or APM extract all significant shape and intensity information
from an image as a compact vector of features. A variety of classifiers could
then be applied to compare the features of a query image to those of anno-
tated and diagnosed training images. Two were studied here. First, kNN was
applied, measuring Euclidean distance in the feature space of b or bs to identify
NkNN neighbours. However, kNN has the drawback that all features are con-
sidered; some will not be relevant to fracture status and so will potentially act
as confounding information. To determine whether this effect was significant,
classification was also performed using RFs. Since each split node considers a
single feature, an RF has the capability to identify only those features relevant
to the target. In both cases, the problem was treated as a regression task. The
gold-standard diagnosis was translated into a numerical score with 0=normal,
1=deformed but not fractured and 2, 3, and 4=mild, moderate and severe frac-
ture. The output of the kNN was the mean of this score across the identified
neighbours, and RFs were trained as regressors to predict the score. This created
a potential problem as it assumed that deformed vertebrae are intermediate in
shape between normal and fractured ones, which may not be the case. However,
it more accurately represented fracture status as a position within a continuum,
rather than discrete classes. The alternative, treating the problem as an explicit
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Fig. 4. Flow-chart summarising the various algorithmic choices. See main text for
description.

classification task, was investigated using a multi-class RF classifier. However,
this led to significantly worse accuracy and full results are not reported here. As
with the height-based classifier, a simple fracture/non-fracture classification was
performed by thresholding the kNN or RF output.

Fig. 4 summarises the various algorithmic choices that were evaluated. Dur-
ing testing, a 2D query image was input. This was either a DXA image or a
thick-slice sagittal midline projection from a CT volume, produced as described
in Sec. 2.1 using manual annotations of neural arch landmarks. The authors have
previously described an algorithm that can automatically produce these projec-
tions [14]. This was not considered here due to lack of space. Landmark points
outlining each visualised vertebral body, annotated either manually or using
an automatic approach as described in Sec. 3, were then input (choice 1). The
feature space (shape or appearance) and sampling procedure (single vertebra,
nEP or triplet) were then chosen as described in Sec. 2.3 (choice 2). Shape mod-
elling required sampling only from the landmark points; appearance modelling
required sampling from both the points and image intensities. For each visu-
alised vertebra in the query image, the chosen model was fitted to the sampled
data. The resultant shape or appearance features were then passed to a kNN
or RF classifier (choice 3) to obtain the final classification for each vertebra.
All combinations of feature space, sampling procedure and classifier were evalu-
ated. Model and classifier training was performed using manual annotations but
otherwise followed a similar work-flow.

3 Evaluation

Throughout the evaluation, classifiers were trained and tested in a leave-1/4-
out procedure using the data from all vertebral levels. During SSM and APM
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training, the number of modes of variation was constrained to model 98% of the
variation in the data. Free parameters were empirically optimised on the CT
midline images and manual annotations, such that the DXA images served as
an independent evaluation set. Initially, the shape and appearance model pa-
rameters were optimised in combination with a kNN classifier. The latter had
only one free parameter, NkNN , greatly reducing the dimensionality of the pa-
rameter space compared to using a RF. Receiver operator characteristic (ROC)
curves showing sensitivity against false positive rate (FPR) were generated by
varying tclass, and the parameters leading to the highest value at which sen-
sitivity equalled FPR were selected, giving wframe = 80 pixels, wborder = 30
pixels for triangulated intensity sampling, wpatch = 24 pixels for patch-based
sampling, and NkNN = 10. This was repeated for all sampling strategies de-
scribed in Sec. 2.3, and the optimae were consistent. In general, dependence on
the parameters was weak for all except wframe. A second round of parameter
optimisation focused on the RF, using the optimised parameters for SSM/APM
described above. The same ROC-curve based pattern search procedure was used
to optimise the number of trees ntree, the maximum depth of each tree Dmax,
and the minimum number of training samples nmin allowed at a split node,
leading to ntree = 200, Dmax = 30 and nmin = 1.

Finally, semi-automatic annotation of the vertebrae in both the DXA and
CT midline images, the latter projected using the manual neural arch annota-
tions, was performed using a RFRV-CLM, initialised using manual annotations
of vertebral centre points, following the procedure described in [12] and [14].
The classifiers were then applied to the automatic annotations using the opti-
mised parameters. Classification accuracies for the optimised procedure with all
combinations of features, classifier, patch and intensity sampling procedure and
manual or automatic annotation were then compared.

Fig. 5 and 6 show the evaluation of various sampling, feature extraction and
classification procedures for the CT and DXA images, respectively, compared
to baselines established by the six-point morphometry approach. A universal
trend was noted across all experiments; accuracy for triplet sampling was al-
ways significantly worse than the alternatives (full results are not shown for this
reason). Triplet sampling results in more modes of variation and so more fea-
tures in b and bs, and adding the neighbouring vertebrae spreads the training
data across the feature space depending on the fracture status of the neighbours.
Both reduce data density. In contrast, whilst 6-point morphometry benefits from
comparison of posterior vertebral heights between neighbours to identify crush
fractures, where the height is reduced throughout a vertebral body, shape models
can extract equivalent information from a single vertebra through quantification
of its aspect ratio. Triplet sampling therefore adds little information, but makes
it more difficult for a classifier to extract the information present.

Differences between the remaining sampling/modelling/classification proce-
dures were usually small and frequently not significant, but the optimal proce-
dure was always significantly better than 6-point morphometry. Several trends
emerged from the results. On CT images (Fig. 5), there was little evidence of ad-
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Fig. 5. Receiver operator characteristic curves for vertebral classification on computed
tomography midline images. (a),(b) Point sampling from single vertebrae. (c),(d) Point
sampling from vertebrae plus neighbouring end-plates. “Tri” refers to intensity sam-
pling from Delaunay triangulated regions, “patch” to sampling from patches around
each landmark point, “shape” to shape and “app” to appearance features.

ditional information in appearance compared to shape features. The kNN clas-
sifier showed a marked reduction in performance when triangulated intensity
sampling was used, adding large numbers of uninformative appearance features
(Fig. 5(a),(c)). The RF classifier also showed some evidence of this effect, with
the combination of triangulated nEP sampling and appearance features result-
ing in performance no better than the baseline (Fig. 5c). However, the RF, in
general, resulted in better accuracy than the kNN classifier and did not lose ac-
curacy when nEP sampling was used, or when using appearance features if the
number of features was controlled using patch-based sampling (Fig. 5(b),(d)).

DXA images (Fig. 6) represented a more challenging task since, being pro-
jections of the full vertebral body, the shape as visualised in the images was
more complex, and the image quality was lower. Increased noise on individ-
ual features resulted in kNN outperforming RF when single-vertebra sampling
was used (Fig. 6(a),(b)), with accuracy gains resulting from using appearance as
long as the length of the feature vector was controlled by using patch-based sam-
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Fig. 6. Receiver operator characteristic curves for vertebral classification on dual-
energy X-ray absorptiometry images. (a),(b) Point sampling from single vertebrae.
(c),(d) Point sampling from vertebrae plus neighbouring end-plates. “Tri” refers to in-
tensity sampling from Delaunay triangulated regions, “patch” to sampling from patches
around each landmark point, “shape” to shape and “app” to appearance features.

pling (Fig. 6(b)). However, using shape information from neighbouring vertebrae
through nEP sampling, to deal with cases where the vertebrae were tilted relative
to the beam direction, allowed the RF to achieve equal or better performance
on shape alone (Fig. 6(d)).

Fig. 7 shows results from the optimised procedure, using patch-based sam-
pling and RF classification, for both manual and automatic annotations on both
image sets. Each experiment was repeated five times, using the stochastic nature
of RF training to support error estimation, and the figures show the mean and
(where shown) standard deviation of the repeats. As described above, nEP sam-
pling resulted in increased accuracy for both image types when classifying from
manual annotations (Fig. 7(a),(c)). However, this requires accurate annotations
of all vertebrae in the triplet, increasing the risk of a fit failure being present
in the automatic annotations. Single-vertebra sampling was therefore more ac-
curate on RFRV-CLM annotations of CT images and appearance provided no
additional information over shape (Fig. 7(b)). However, the difficulties of the
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Fig. 7. Receiver operator characteristic curves for random forest classification with
patch sampling in computed tomography midline (a),(b) and dual-energy X-ray ab-
sorptiometry (c),(d) images, from manual (a),(c) and RFRV-CLM (b),(d) annotations,
compared to 6-point morphometry. “Shape” refers to shape and “app” to appearance
features.

classification task in DXA images, described above, resulted in higher accura-
cies when nEP sampling and appearance parameters were used, to disambiguate
tilted vertebra and confounding pathologies (Fig. 7(d)). At 80% sensitivity, the
optimal classifier reduced the FPR from 4.4% to 1.7% for manual and from 12.7%
to 8.8% for automatic DXA annotations. For CT images, FPR was reduced from
8.9% to 3.3% for manual and 9.7% to 7.0% for automatic annotations. These
equate to a significant (p < 0.01) reduction in FPR of ≈ 30% for automatic, and
≈ 60% for manual annotations.

4 Conclusion

We have evaluated several different methods for osteoporotic VF classification in
DXA VFA and CT midline images. In this context, the 6-point morphometry ap-
proach can be viewed as the construction of a low-parameter shape model based
on hand-crafted modes of variation. Since these reflect the clinical definitions
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used in fracture grading [18] they are guaranteed to be informative. A SSM or
APM can extract all statistically significant shape and appearance information
from the images as a compact feature vector, but not all of these features are
guaranteed to be informative in terms of fracture classification. The way in which
the subsequent classifier handles non-informative dimensions of the feature space
therefore influences accuracy. Straightforward application of kNN considers all
features equally, whilst a RF considers only the most informative at each split
node, and so is more robust to non-informative features.

The results showed that statistically significant gains in classification accu-
racy can be achieved by applying kNN or RF classifiers to shape or appearance
model features. The optimal procedure across both CT and DXA was to apply
a RF classifier to features sampled from a vertebra and the closest end-plates
of its neighbours with manual landmark annotations, but fitting errors in au-
tomatic annotations resulted in single vertebra sampling being more accurate
for CT images. Evidence for improved performance when using appearance, as
opposed to shape, features was generally weak and inconsistent. However, it did
not result in significant reductions in classifier performance. In conclusion, the
combination of appearance features and RF classification with patch-based nEP
sampling, for manual annotations, and single vertebra sampling, for automatic
annotations, provided optimal results. Significant accuracy gains compared to 6-
point morphometry were achieved for both manual and automatic annotations
on both DXA VFA and CT images using these approaches.

This work used a single model/classifier for all vertebral levels between T4
(for CT) or T7 (for DXA VFA) and L4, inclusive. Vertebral shape varies gradu-
ally across the spine, and so further improvements in accuracy might be gained
through using multiple, level-specific classifiers. Roberts et al. [9] achieved higher
classification accuracies on DXA VFA images using this approach, and so we in-
tend to investigate this in future work. However, the use of level-specific classifiers
requires a reasonably accurate method of level detection if combined with an au-
tomatic vertebral segmentation method, which may prove challenging given the
similarity between vertebra.
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