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ABSTRACT:
Accurate detection of somatic copy number variations (CNVs) is an essential part 

of cancer genome analysis, and plays an important role in oncotarget identifications. 
Next generation sequencing (NGS) holds the promise to revolutionize somatic CNV 
detection. In this review, we provide an overview of current analytic tools used for 
CNV detection in NGS-based cancer studies. We summarize the NGS data types used 
for CNV detection, decipher the principles for data preprocessing, segmentation, and 
interpretation, and discuss the challenges in somatic CNV detection. This review aims 
to provide a guide to the analytic tools used in NGS-based cancer CNV studies, and to 
discuss the important factors that researchers need to consider when analyzing NGS 
data for somatic CNV detections. 

Tumors usually rise from normal cells with tissue 
specific acquired mutations or aberrations in their genomic 
materials [1]. Copy number variation (CNV) is one of 
the most important somatic aberrations [1-4]. CNV was 
initially defined as the amplification or deletion of genetic 
materials in the size of >1kb [5, 6], then was widened to 
include much smaller events (>50 bp) [7] on accounting 
of the greatly improved resolution of detection methods. 
Tumor genomes usually acquire somatic CNVs during 
carcinogenesis, and the amplification of oncogenes or 
deletion of tumor suppressor genes are usually pathogenic, 
as the expression level of a gene is highly correlated to its 
copy number [8]. In searching for oncotargets, genomic 
regions with recurrent CNVs in tumor genomes are 
believed to have high probability of containing cancer 
genes [9]. Indeed, quite a few cancer-related genes have 
been identified to be affected by somatic CNVs [4, 10-

13]. This list of CNV related oncotargets includes ERBB2, 
EGFR, MYC, PIK3CA, IGF1R, FGFR1/2, KRAS, CDK4, 
CCND1, MDM2, MET, CDK6 for amplification, and RB1, 
PTEN, CDKN2A/B, ARID1A, MAP2K4, NF1, SMAD4, 
BRCA1/2, MSH2/6, DCC, CDH1 for deletion. Different 
patterns of somatic mutations may divide one type of 
cancer into different subgroups, and the prognostics 
and treatment responses of the subgroups could be very 
different [8, 14]. For example, Trastuzumab is effective 
only to breast cancers in which ERBB2 is amplified and 
over expressed [15-18]. The identification of such somatic 
events should facilitate prognosis and treatment decision 
[14]. Therefore, accurate CNVs detection is an essential 
part of cancer genome analysis, which holds great promise 
to improve cancer diagnosis and treatment decision. 

An ideal CNV detection method should accurately 
quantify the copy numbers in all genomic segments and 
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delineate their breakpoints across the whole genome. 
Currently, several platforms with different achievable 
throughputs, coverage, and resolutions are available, 
including Fluorescence In Situ Hybridization (FISH) [19, 
20], NanoString’s digital detection technology [21-23], 
array comparative genomic hybridization (array CGH) 
[24], Single Nucleotide Polymorphism (SNP) array [7], 
and Next Generation Sequencing (NGS) [25-33]. In this 
Review, we focus on NGS-based approaches, as they have 
been emerging as the primary means of interrogating the 
CNV in recent investigations. Somatic CNV detection 
in cancer is our primary focus, as the characteristics of 
somatic CNVs need special consideration in algorithms 
and strategies in which germline CNV detection programs 
are usually not suited for. We begin by briefly reviewing 
the NGS studies and outlining the existing computational 
programs for somatic CNV detection. We then cover the 
primary types of NGS data that could be used in CNV 
detection, followed by deciphering and summarizing the 
principles under data preprocessing, segmentation, and 
interpretation. The key similarity and difference between 
different computational programs are described. We 
continue by providing some discussion of the challenges in 
somatic CNV detection, and we conclude with an outlook 
on the near future of this fast evolving field. The aims of 
this article are to provide a guide to the analytic tools used 
in NGS-based cancer CNV studies, and to discuss the 
important factors that researchers need to consider when 
analyzing NGS data for somatic CNV detections.

NGS Studies

NGS is a technology that parallelly sequences 
massive amounts of short DNA strands from randomly 
fragmented copies of a genome [25-33]. A typical 
NGS run will generate millions to billions of reads, 
which are assumed to be random representations of the 
targeted regions or the whole genome. The widespread 
availability of NGS technology provides an unprecedented 
opportunity to systematically screen for CNVs. NGS is 
flexible in that it can be adapted to cover either the whole 
genome or targeted regions of interest (for example, the 
exome, defined as the complete set of coding regions of 
human genome). NGS-based CNV studies frequently 
fall into Whole Genome Sequencing (WGS) studies and 
Whole Exome Sequencing (WES) studies, and they are 
both considered in this Review. 
WGS. 

A single experiment of WGS can produce 
multidimensional information for discovering CNVs in a 
genome-wide scale. First, as the frequency of a genomic 
region being represented by reads is linear correlated to 
its copy number in a broad range after correcting some 
systematic bias (such as GC bias and mappability bias), 
the analysis of relative number of reads falling in a region 

can reveal its copy number. Second, the numbers of reads 
covering both alleles at a single nucleotide polymorphism 
(SNP) locus could be used to estimate the allele specific 
absolute copy numbers, determine copy neutral regions 
of loss of heterozygosity (LOH), and infer the amount 
of normal cells in a tumor population. Third, reads that 
capture the sequences of boundary regions can serve 
as signatures of structural variations, and identify the 
breakpoints of structure variations at base pair resolution. 
Fourth, as pair-end and mate-paired sequencing are often 
employed, the pairs of reads with spans and/or orientations 
are inconsistent with the reference genome can facilitate 
the determination of structure variations. A more detailed 
discussion about these data types is followed. The quality 
and richness of data make WGS by far the most powerful 
approach for CNV detection. 
WES.

The cost of a WGS experiment has dropped 
substantially in the past several years, but it is still 
relatively expensive (>$5,000 per sample), and the 
resultant data requires substantial investment in 
computational resources for processing and storage. To 
balance the cost and output, WES approach can be used 
when WGS is not financially affordable. The exome 
represents a highly function-enriched subset of the 
human genome, and CNVs in exome are more likely 
to be pathogenic than those in nongenic regions [34, 
35]. In WES experiments, DNA fragments belonging 
to the exome can be enriched from fragmented genome 
sample by hybridization with designed probes or by PCR 
amplification with designed primers, and then parallel 
sequencing is applied to the selected fragments. Compared 
with WGS, WES cannot reach base pair resolution in 
determining breakpoints falling into non-coding regions 
due to the discrete nature of exome regions, and its CNV 
calling results are only reliable in exon-rich regions 
because of the uneven distribution of exons across the 
genome. Nevertheless, WES is ideal for searching for 
gene-harboring CNVs in a cost-efficient and analytic-
effective manner. As the data types from WES are similar 
to WGS, similar data processing is usually conducted. 

Somatic CNV Detection Programs for NGS data

Sophisticated computational algorithms are crucial 
to accurately retrieve segmental copy number and breaking 
points from NGS data. Although the NGS technology was 
only emerging and applied to cancer studies during the 
past several years [36-56], a number of somatic CNV 
detection programs for NGS data have been developed. 
In table 1, we list 11 publicly available programs and their 
websites. SegSeq [41], ReadDepth [57], BICseq [58], 
Patchwalk [59], OncoSNP-SEQ [60], HMMCOPY, and 
CONSERTING were designed for WGS data; ExomeCNV 
[61], VarScan2 [62], and HAPSEG/ABSOLUTE [63, 64] 
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Table 1: Available programs for detecting copy number variation in cancer genome using next 
generation sequencing data
Platform Program Website Ref. Year Language

WGS

SegSeq http://www.broadinstitute.org/cancer/cga/Home [41] 2009 MATLAB
ReadDepth http://code.google.com/p/readdepth/ [57] 2011 R

BIC-seq http://compbio.med.harvard.edu/Supplements/PNAS11.
html [58] 2011 Perl/R

Patchwork http://patchwork.r-forge.r-project.org/ [59] 2013 R
OncoSNP-SEQ https://sites.google.com/site/oncosnpseq/ [60] 2013 MATLAB
HMMcopy http://compbio.bccrc.ca/software/hmmcopy/ / / R
CONSERTING http://www.stjuderesearch.org/site/lab/zhang / / R

WES

ExomeCNV https://secure.genome.ucla.edu/index.php/ExomeCNV_
User_Guide [61] 2011 R

VarScan2 http://varscan.sourceforge.net/ [62] 2012 Java
HAPSEG/
ABSOLUTE http://www.broadinstitute.org/cancer/cga/Home [63, 64] 2012 R

WGS&WES Control_FREEC http://bioinfo-out.curie.fr/projects/freec/#documentation [65, 66] 2011 C

Figure 1: The workflow chart that computational methods fall in for calling somatic copy number variations from next 
generation sequencing data.
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can be applied to WES data. Control-FREEC [65, 66] can 
analyze the data from both WES and WGS platforms.  

A somatic CNV detection program generally follows 
the flow chart illustrated in Figure 1. It may take one or 
more data types as inputs. The core of a computational 
algorithm can be broadly divided into three modules: data 
preprocessing, segmentation, and interpretation. Different 
strategies could be used in each module. Depending on 
the embedded algorithms, the programs output the results 
at different level of details. Some programs only report 
the segments with copy number gain or loss, some report 
segments with total or allele specific copy number, and 
others provide further information including tumor purity, 
ploidy, and even heterogeneity. The major features of each 
program have been summarized in Table 2, and we will 
discuss them with more details in the following.

Data Types 

In this section, we describe the types of data that 
could be used in NGS-based CNV detection. These 
data types include read counts (RC) or read depth (RD), 
B Allele Frequency (BAF), soft-clipped reads, and 
discordant read pairs.
RD or RC. 

A normal human cell usually has two copies of its 
genetic materials (Homologues 1 and 2), with one copy 

from each parent (Figure 2A). When a CNV event happens 
in a genomic region, it becomes aneuploid, i.e. its copy 
number deviates from 2. The event could be a deletion 
(loss of genetic material), or amplification (gain of genetic 
material). Figure 2B shows a simple case with tandem 
amplification. NGS technology is capable of producing 
short reads of 100-150 bases in length, which will be 
mapped to the reference genome. A basic hypothesis in 
NGS is that each read is a random representation of the 
targeted regions or the whole genome, thus the mean or 
median read depth (RD) or read counts (RC) of a genomic 
region should be proportional to its abundance, or say, 
its copy number (Figure 2C). Here, read depth (RD) is 
defined as the number of reads covering a specific locus 
in the alignment file; read count (RC) is the number of 
reads falling into a region in the reference genome. RD 
and RC are two different ways to describe the frequency 
of a genomic unit (base pair or segment) being represented 
in sequencing data. They are usually represented in the 
log2 scale and relative to a selected reference value, and 
called Log RD Ratio or Log RC Ratio (LRR). LRR is the 
primary information used in most NGS-based analytic 
tools for extracting copy number. In principle, LRR 
provides enough information for CNV detection. However, 
inherited data bias, intrinsic sample characteristics, and 
random experimental variations make it problematic to 
call CNV solely on LRR. Other information, especially 
B Allele Frequency or Fraction (BAF), could aid CNV 
detection. 

Figure 2: Diagram of detecting somatic CNV from sequencing data. (A) A normal human genome usually has two copies of its 
chromosomes (each copy or homologue from either parents), and contains loci with different genotypes (AA, AB, BA, and BB for loci 1-4, 
respectively). (B) A somatic CNV event (tandem duplication here) alters copy number of some genomic regions. (C) Pileup view of mapped 
reads. Altered relative read depth or read counts can be observed. Depending on copy numbers of two homologues in tumor genome, shifted 
B allele frequency might be observed at heterozygous loci (see the table. CN, copy number; BAF, B allele frequency).
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BAF.

As illustrated in Figure 2A, BAF is the estimation 
of allelic fraction at a SNP locus. Alleles are assigned 
arbitrarily, but usually the allele with the same nucleotide 
as the reference genome is assigned as ‘A’ allele, and 
the allele with different nucleotide from reference is 
called ‘B’ allele. BAF is calculated as b/(a+b) at each 
SNP locus, where a and b are copy number of A and B 
allele, respectively. There are four genotype possibilities 
for a SNP locus in a normal genome: AA, AB, BA, and 
BB, and their BAFs are 0, 0.5, 0.5, and 1, respectively 

(Figure 2). Genotypes AB and BA are not distinguishable 
from their BAFs. When the copy number is away from 
2, BAF has other possibilities, which depend on allelic 
copy number. As illustrated in Figure 2c, if there are m 
copies of Homologue 1 and n copies of Homologue 2 in 
a tumor genomic region, BAF has possibilities of 0, m/
(m+n), n/(m+n), and 1 (table in Figure 2). Comparing 
tumor and normal genome, the BAF at heterozygous loci 
(Loci 2 and 3 in Figure 2) may shift away from 0.5 in 
tumor genome. A CNV segment usually contains many 
heterozygous SNP loci, so the BAF plot of heterozygous 

Table 2: Major features of programs for detecting copy number variation in cancer genome using 
next generation sequencing data1

Programs Data type Data preprocessing3 Segmentation Interpretation Sample 
information

SegSeq RC Matched normal;

Local change-
point analysis 
with a subsequent 
merging 
procedure

Optimized 
cutoffs /

ReadDepth
RD
Discordant 
read pairs

Mappability correction;
GC correction;
RD Negative-binomial distribution

CBS Optimized 
cutoffs /

BIC-seq RD Matched normal;
No data distribution assumption Minimizing BIC Empirical cutoffs /

Patchwork RD
BAF

Normal genome;
GC correction CBS

Pattern 
Recognition and 
empirical cutoffs

Tumor purity
Tumor ploidy

OncoSNP-SEQ RC
BAF

Matched normal;
Mappability correction;
GC correction
Mixture of uniform and binomial 
distribution

HMM HMM

Tumor purity
Tumor ploidy
Tumor 
heterogeneity

HMMcopy RC
Matched normal;
Mappability correction;
GC correction

HMM HMM /

CONSERTING

RD
BAF
Soft-clipped 
reads

Matched normal; 
Mappability filtering;
GC correction 

Regression Tree Empirical cutoff /

ExomeCNV RD2 Matched normal CBS Optimized cutoff Fixed tumor 
purity

VarScan2 RD Matched normal CBS Empirical cutoff /

HAPSEG/
ABSOLUTE

RD at SNP 
loci Matched normal probabilistic 

method

Pattern Matching 
and fit platform 
error model

Tumor purity
Tumor ploidy
Existence of 
sub-clone

Control_FREEC RC Matched normal and/or GC and 
Mappability correction; 

LASSO 
algorithm Empirical cutoff

Tumor purity
User inputs 
tumor ploidy

1 Abbreviations: RC, Read Counts; RD, Read Depth; BAF, B Allele Frequency; SNP, single nucleotide polymorphism; CBS, circular binary segmentation; 
HMM, hidden Markov model.
2 ExomeCNV uses only RD for calling CNV; it uses BAF for calling LOH.
3 The data is assumed to be in normal distribution if not specified. 
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SNP loci across the tumor genome segment may split 
into two bands at mean value of m/(m+n) and n/(m+n), 
respectively, while it is only one band at mean value of 
0.5 across the normal genome segment. Presumably, BAF 
is more sensitive to CNV events than LRR, since biases 
introduced by local nucleotide sequence (for example, GC 
bias) are canceled in BAF calculation. While BAF shifting 
away from mean value of 0.5 indicates a CNV event in 
the corresponding genomic region, BAF alone does not 
provide enough information to identify absolute tumor 
copy number especially when normal tissue contamination 
exists. Moreover, false negative calls are possible if CNV 
calling is solely based on BAF, since BAF remaining at 
mean value of 0.5 does not indicate lack of CNV events in 
the region. In the scenario of homozygous amplification, 
m equals n so that the BAF possibilities are the same 
as normal diploid genome, and LRR is necessary for 
determining copy number. Therefore, accurate CNV 
detection will likely benefit from the combination of LRR 
and BAF. 

As show in Table 2, all existing programs exploit 
the LRR (either RD or RC), and several have incorporated 
BAF information. Patchwork incorporates LRR and 
BAF for pattern recognition, as only certain LRR and 
BAF combinations are possible. HAPSEG/ABSOLUTE 
has the option of matching pattern of local relative 
DNA concentration to interpret the segments. The 
terms of local relative DNA concentration is equivalent 
to the combination of total copy number and BAF in a 
segment, since relative DNA concentration could be 
derived from total copy number and BAF, and vice versa. 
CONSERTING has the option to use regions with BAF 
equals 0.5 for determining diploid baseline. 
Soft-clipped reads and discordant read pairs. 

New nucleotide sequences often arise in the 
boundary regions when a CNV event occurs (Figure 2B). 
These new sequences might be captured by soft-clipped 
reads or discordant read pairs in WGS data, and the 
probability of them being captured by WES methodologies 
is low. Soft-clipped reads are reads whose sequences are 
mapped to discrete regions in the reference genome; 
discordant read pairs are read pairs whose spans and/or 
orientations are inconsistent with the reference genome. 
Though it is unlikely to determine segmental copy number 
solely based on soft-clipped reads and/or discordant 
read pairs, they could provide useful information to 
confirm CNV events and to refine the breakpoints. Soft-
clipped reads have been combined with LRR and BAF in 
CONSERTING to detect somatic CNVs. 

In short, NGS provides multidimensional data at 
base level resolution to reveal somatic CNVs. An accurate 
somatic CNV prediction could be supported by evidences 
at different levels, including LRR, BAF, soft-clipped 
reads, discordant read pairs, or their combination.

Data Preprocessing

The principle in most CNV detection programs is 
that larger or smaller than expected LRR in a genomic 
region reflects gain or loss of DNA in this region, 
respectively. However, random variations and systematic 
biases including mappability bias and GC-content bias 
(see below) deviates LRR from “correct” number. It is 
important to correct the biases and create a baseline for 
capturing the technical variation of a platform. Then 
a hypothesis of data (LRR and/or BAF) distribution is 
needed for segmentation. 
Matched normal. 

A typical strategy to cancel biases and variations 
in NGS-based cancer CNV studies is to use sequencing 
data from matched normal tissue or germline of the 
same patient (most programs) or another individual with 
majorly diploid genome (Patchwork) under the identical 
experimental conditions. This is required or preferred 
for all somatic CNV detection algorithms listed in Table 
2, except ReadDepth, which use only tumor NGS data 
for CNV detection. Though it is tempting to design an 
algorithm to detect somatic CNV from tumor sample 
alone, Xi et al oppose this conduction as they believe this 
would result in many false positive due to the fluctuation 
of reads distribution along the genome [58]. Moreover, it 
is important to have matched normal from same patient in 
somatic CNV detection, because the matched normal helps 
to identify heterozygous SNP loci for calculating BAF and 
to filter out benign CNV in patient. While the inclusion 
of match normal is a powerful strategy for somatic CNV 
detection, it might not cancel all the biases, and further 
corrections for mappability and GC-content biases are 
proposed in several programs.
Mappability bias.

NGS generates short reads in length of 100-150 
bases, which are mapped to a reference genome for 
downstream analysis. The great advantage of using short 
reads is that it can reach massively parallel sequencing 
with reasonably low error rate (< 0.1%). However, it 
brings challenges in mapping, as some reads cannot be 
uniquely mapped to the reference genome, which are 
called multi-reads. For a given genome, the ratio of multi-
reads in all reads from a platform depends mostly on 
the length of sequence reads, the number of mismatches 
allowed in mapping [67], and sequencing approach (pair-
end vs. single-end sequencing). Mappability is defined 
as the probability for a region in the reference genome 
that a read originating from it is unambiguously mapped 
back to it. It can be calculated by programs such as GEM 
mappability [68].  Regions with higher mappability have 
more unique sequences and produce less ambiguous 
reads, and vice versa.  Mutations and/or sequencing errors 
in just one or two positions in low mappability regions 
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may cause the reads to be mapped to wrong position. This 
is especially common for repetitive regions. Different 
strategies are used for dealing with multi-reads: (1) 
discarding the reads; (2) choosing a random position 
out of all of equally good match position; (3) reporting 
all possible positions. No matter what strategy is used, 
the ambiguous reads will likely create some biases in 
the read depth or read counts and might cause errors in 
CNV detection [69]. In theory, discarding multi-reads 
may lead to false positive deletion calls, while placing a 
multi-read at a random possible position may cause false 
negative deletion/amplification calls. The list of programs 
implementing mappability correction includes ReadDepth, 
Control-FREEC, HMMCOPY and CONSERTING. 
Control-FREEC and CONSERTING skip the regions 
with low mappability (default < 0.85 and 0.9 in Control-
FREEC and CONSERTING respectively), and only reads 
falling in high mappability regions are used to call CNVs. 
HMMCOPY and OncoSNP-SEQ correct mappability 
bias in read counts by dividing the raw read counts by 
regional mappability (Appendix, Equation 1). In this way, 
ambiguous reads will be discarded, and unambiguous 
reads in low mappability regions have bigger weight for 
CNV detection than reads in high mappability region. To 
prevent overcorrection, ReadDepth uses the same formula 
to correct RD data in only high mappability region (default 
>0.75) and ignores the RD data in low mappability region.
GC-content bias.

It is well known that average read depth of a bin 
or read count in a region has a unimodal relationship 
with its GC content, regardless of the chosen bin/region 
size or average coverage [70-72].  Bins with high or low 
GC-content have lower mean read depth than bins with 
medium GC-content (40% to 55% GC). This is believed 
partially due to PCR efficiency in amplification [71] and 
sequencing. What makes correcting the bias even harder is 
while read depth v.s. GC-content curves are all unimodal, 
different samples or even repeated experiments have 
different slopes, locations of modes, and variances [71]. 
Benjamini and Speed developed a correction method 
based on the fragment and fragment-length models to 
remove most GC-dependent fragment count variation 
[71]. The method has been implemented in HMMCOPY 
program, which is based on read counts. When it is applied 
to read depth but not read counts, increased overall read 
depth variance was observed [69]. In currently available 
read depth based programs including CONSERTING, 
ReadDepth, and Patchwork, the GC bias is corrected 
in a fashion described by Teo et al [69] and Yoon et al 
[72] (Appendix, Equation 2). Regions with extreme GC 
content (high or low) might be excluded from the analysis. 
Control-FREEC and OncoSNP-SEQ uses this way for 
correcting GC bias too, though they are read counts based 
methods. 

Other biases. 

Besides mappability and GC-content, there might 
be additional biases in NGS data which haven’t been 
explicitly corrected in existing CNV detection programs.  
For example, A and T are more common near the fragment 
ends, and fragments are much more likely to start with 
a CpG dinucleotide than any other dinucleotides when 
the fragment libraries are prepared following Illumina 
procedure [71]. These local biases near fragment ends 
might imply that the fragmentation is not truly random. 
Moreover, it is not clear how Phred-score  filtering of 
sequence reads affect CNV detection [69].  Further 
investigations are necessary for systematical bias 
correction in NGS-based cancer CNV studies [73-76]. 
Assumption of data distribution.

Supposing all the biases are removed from NGS 
data, an assumption of data distribution is needed to 
model the data variation for segmentation in most CNV 
detection programs (except BIC-seq which uses Bayesian 
Information Criterion (BIC) as merging and stopping 
criterion).  Since the sequence reads are assumed to be 
chosen randomly from the genome, the RC or RD in a 
region should follow a Poisson distribution with mean 
directly proportional to the size of the region and to 
the copy number [41]. In most of the programs, the 
hypothetical Poisson distribution is approximated to 
normal distribution. However, Miller et. al. found that the 
observed distribution violates the Poisson distribution’s 
assumption of equal mean and variance, and negative-
binomial distribution is a better approximation for the over 
dispersed Poisson distribution [57]. As a result, negative 
binomial distribution is used for bias corrected NGS data 
in the ReadDepth program. In OncoSNP-SEQ, a mixture 
of uniform and binomial distribution is used. Overall, an 
improved understanding of NGS data distribution will 
likely improve the detection accuracy. 

Segmentation

Segmentation is the process that combines all the 
reads from same continuous region into a segment with 
determined boundaries. The challenge in segmentation is 
that the algorithm needs to distinguish the data variation 
caused by genuine CNV from that by random effects.   
Several strategies have been used for this purpose. Two 
of the most widely used segmentation modules in CNV 
detection algorithms for array CGH and SNP array, 
Circular Binary Segmentation (CBS) [77-79] and Hidden 
Markov Model (HMM) [80-82], have been adapted into 
programs for NGS data. CBS is used in Patchwork, 
ExomeCNV, and VarScan2; HMM is implemented into 
OncoSNP-SEQ and HMMCOPY. The key idea of CBS 
is joining the ends of a chromosome to make a circle 
and then iteratively computing segments to minimize 
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the variance within segments and maximize the variance 
between segments. HMM simultaneously classify each 
window into a fixed number of possible states based on 
the read count in the window via an emission distribution 
(usually Guassian), and make segmentation by combining 
consecutive windows with same states. Under HMM, 
segmentation and classification can promote each other 
by allowing probabilistic parameters in model efficiently 
learnt from data through algorithms like Expectation 
Maximization (EM). However, OncoSNP-SEQ uses fixed 
parameters obtained by off-line training in the model, 
because the iterative application of the forward-backward 
algorithm for HMM is not computational trivial due to 
the sequence length and dynamic range. Besides CBS and 
HMM, some new algorithms have been developed based 
on NGS data in the past several years: Xi et al developed 
the BIC-seq algorithm for read depth segmentation via 
minimizing  Bayesian Information Criterion (BIC) by 
merging the appropriate neighboring bins [58]; Chen 
et al designed a regression tree algorithm based on 
WGS data to integrate read depth change with structure 
variation sequence signature to determine segments in 
CONSERTING; Carter et al built a probabilistic method 
by partitioning the genome into segments of distinct 
copy number and modeling the four distinct genotypes 
into each segment in HAPSEG/ABSOLUTE [63, 64]; 
Chiang et al used a local change-point analysis with a 
subsequent merging procedure in SegSeq [41]; Boeva et 
al adapted Lasso algorithm in Control-FREEC to catch 
the change points [66]. These segmentation algorithms 
offered a good amount of choices for segmentation, and 
a systematic evaluation of them using NGS data will be 
valuable to help researcher choose an appropriate one for 
their research projects. 

Segments Interpretation

An ideal segmentation approach will merge adjacent 
data points with same copy number into one segment and 
divide regions with different copy numbers into different 
segments. Further step of interpretation is needed to 
determine the copy number state of each segment, except 
for HMM based programs (i.e., HMMcopy), which 
simultaneously classify each data point to a state and 
merges the points to segments through EM algorithm. To 
assign a copy number state to each segment, quantitative 
criteria are necessary. As shown in Table 2, most of the 
currently available programs interpret the copy number 
based on specified LRR cutoffs. Some of the programs, 
including CONSERTING, Control-FREEC, BIC-seq, 
and VarScan2, set empirical cutoff values to define 
copy number states. Some other programs, including 
ExomeCNV, SegSeq, and ReadDepth, optimize the 
cutoffs to reach the desired sensitivity and specificity. If a 
segment does not have sufficient coverage to achieve the 
desired sensitivity/specificity, no call will usually make in 

order to prevent false call from inferior data quality. The 
LRR versus BAF pattern has been used in Patchwork for 
assigning copy number state.  As LRR versus BAF pattern 
involves two data types, cutoff values of LRR and BAF 
corresponding to different copy number states are needed. 
In Patchwork, the empirical cutoff values will be specified 
by the users. HAPSEG/ABSOLUTE fits observed data to 
a platform-dependent error model to determine the cutoffs.  

Challenges in Somatic CNV Detection

In theory, ‘digital karyotyping’ is simple and 
powerful to asses CNV in designated regions from WGS 
or WES data [83-85]. However, accurate determination 
of somatic CNVs is still a great challenge, largely due to 
the complexities of tumor samples. First, CNVs are very 
extensive and diverse in tumor genome. Second, tumor 
samples are inevitably contaminated by normal tissues 
without known fractions. Third, the ploidies of tumor 
cells are usually unknown. Fourth, multiple clones in 
tumor sample are possible, owing to subclonal evolution. 
These issues are further confounded by signal variation 
caused by local sequence content and by sample quality 
and experiment conditions, which are proven to be hard to 
deconvolute in germline samples [86]. 
Extensive and diverse CNV events in tumor genome. 

Germline and somatic CNVs are very different 
in their extensities and diversities in genome. Overall, 
germline CNVs covers about 3.7% [35] to 12% [87] of 
the genome and they often overlap in genomes of different 
people, while somatic CNVs could compass the whole 
genome and recurrent ones are at relative low rate. It is 
usually assumed that non-recurrent and sharp read depth 
changes are due to technical variations in normal genome 
sequencing data, but this assumption could be fallacious 
for tumor samples. These features make some excellent 
germline CNVs detection programs, such as ERDS [34], 
JointSLM [88], and CoNIFER [89], not suitable for 
somatic CNV detection. For example, modeling across 
samples may improve the performance of germline CNV 
detection by removing non-recurrent signals variation [88, 
90], but this strategy may increase false negative rate in 
somatic CNV detection because non-recurrent ones are 
more common in tumor genome. 
Tumor purity.

Normal cell contamination in tumor sample will 
diminish the observed LRR changes caused by CNVs, and 
shift BAFs away from presumed values. This introduces 
difficulties in determining segmental copy number based 
on LRR and BAF, as the cutoff values will depend on 
tumor purity which is usually unknown. As overall RD 
or RC of a sample is the linear combination of RD or 
RC of tumor and normal genomes, fitting measured LRR 
and/or BAF values across the genome to different tumor 
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percentage could help determine the most likely tumor 
purity.  
Tumor ploidy.

Aneuploidy of tumor genome creates difficulties in 
determining the copy number state of LRR baseline. NGS 
experimental protocol constrains the amount of DNA, not 
the number of cells. Therefore, instead of corresponding 
to diploidy as in normal human cells, the LRR baseline 
is corresponding to the average ploidy, which is usually 
unknown in tumor sample. Combining LRR and BAF 
information might be able to reveal the average ploidy, 
since different ploidy has different possibilities of BAF 
pattern. For example, diploidy has BAF possibilities 
of 0, 0.5, and 1; tetraploidy has BAF possibilities of 0, 
0.25, 0.5, 0.75, and 1. Since tumor purity and ploidy 
confound with each other, solving them coordinately will 
likely provide important information to make accurate 
CNV calls. Patchwork, OncoSNP-SEQ and ABSOLUTE 
provide function to evaluate tumor purity and ploidy. 
Control-FREEC asks users to input sample ploidy, and 
it can estimate tumor purity. If ploidy is not known, it is 
suggested to run the program several times with possible 
ploidy values and compare the results. 
Tumor heterogeneity.

Multiple clones of tumor cells could coexist in 
one tumor [91], and subclones are important to tumor 
evolution and cancer relapse. Due to their low percentage 
in a sample, it is hard to determine the subclones. While 
increasing the depth of sequencing can help to capture 
the substantial subclone, the accuracy also depends on 
the properties of tumor sample and the complexity of 
tumor genomic being investigated. OncoSNP-SEQ and 
ABSOLUTE provide the feature to detect heterogeneous 
events. 

For a given copy number state, only certain LRR 
and BAF combinations are possible. Therefore, the 
number of LRR vs BAF patterns is limited. The deviations 
from these patterns are usually caused by tumor impurity, 
aneuploidy, tumor heterogeneity, or their combinations. 
The observed LRR and BAF of a tumor sample are the 
linear combinations of LRR and BAF of its components 
[64], when there are admixtures of normal contamination 
and multiple clones of tumor cells. From the deviation of 
patterns, it is possible to deconvolute the tumor impurity, 
aneuploidy, and tumor heterogeneity. 
Lack of gold standard.

Another challenge in somatic CNV detection 
algorithm development is the lack of gold standard 
controls or samples to benchmark CNV calling results. 
Though all the published NGS based somatic CNV 
detection programs have been tested by some sort of 
benchmark, such as in silico simulated data or calls 
from SNP arrays on the same set of tumor samples, the 
generality of such benchmark is less clear. While several 

simulators, such as ART [92], pIRS [93], GemSIM [94], 
and Wessim [95], have been developed to simulate 
NGS data by reproducing known biases from sequence 
context and empirical platform-dependent error, there is 
no comprehensive tumor genome simulator that captures 
all the features of tumor genome mentioned above. 
Meanwhile, it has been shown that there is a striking 
lack of reproducibility and concordance for array-
based platforms and calling algorithms based on recent 
assessment [86].  Without a well controlled reference set, 
it will be difficult to further understand the advantages 
and disadvantages associated with each program. As a 
result, the choice of NGS based CNV detection algorithm 
relies more on factors such as the algorithm’s technique 
descriptions instead of its performances with a common 
benchmark. Therefore, it is necessary for the community 
to establish better benchmark datasets, which compass the 
complexity of tumor genome, for algorithms evaluation 
and further development. 

CONCLUSIONS AND OUTLOOKS

One of the most important somatic aberrations, CNV 
in tumor genomes is believed to have high probability of 
harboring oncotargets. The widespread availability of 
NGS technology provides an unprecedented opportunity 
to systematically screen for somatic CNVs. Accurate 
detection of somatic CNV from massive amount of raw 
sequence data for each individual requires sophisticated 
computational algorithms. Read depth or read counts, 
BAF, soft clipped reads, and discordant reads pairs derived 
from sequence read mapping are the primary input for 
CNV determination. During the past several years, a 
number of computational algorithms have been developed 
to retrieve copy number from one or more of these data 
types. In this article, we reviewed 11 existing programs 
for determining somatic CNV from NGS data, described 
their similarity and difference in types of data using, data 
preprocessing, data segmentation, and data interpretation, 
and highlighted challenges associated with the analysis 
of NGS data for CNV detection in cancer studies   Our 
review serves as a timely and practical guide to the 
analytic tools used in NGS-based cancer CNV studies.

Due to the special characteristics of tumor samples 
and the extraordinary complexity of tumor genomes, 
accurate detection of somatic CNVs is still a great 
challenge for the community. Improved computational 
frameworks are required to take full use of NGS data in 
order to tackle the tumor purity, ploidy, and heterogeneity 
coordinately for allele specific copy number calling. 
Meanwhile, standard protocols, quality control measures, 
and benchmark are much needed for better further 
understanding of the advantages and disadvantages 
associated with existing programs, and to foster the 
development of next-generation analytic tools. 
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