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Abstract: By the sufficiency principle, the probability density of a sequential test

statistic under certain conditions can be factored into a known function that does

not depend on the stopping rule and a conditional probability that is free of un-

known parameters. We develop general theorems and propose a unified approach

to analyzing and evaluating various properties of sequential tests and post-test es-

timation. The proposed approach is of practical value since it allows for effective

evaluation of properties of special interest, such as the bias-adjustment of post-test

estimation after a sequential test, and the probability of discordance between a

sequential test and a nonsequential test.
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1. Introduction

Sequential hypothesis testing was first developed for use in traditional ac-
ceptance sampling and process control, with the goal of improving the efficiency
of testing (Wald (1947)). For ethical and economical reasons, sequential test-
ing now plays an important role in the design and analysis of clinical studies.
The last two decades have witnessed the development of various sequential and
group sequential procedures, some of which came into real applications (see, e.g.,
DeMets and Lan (1994), Whitehead (1997), Jennison and Turnbull (2000)). The
difficulty in evaluating sequential tests and post-test estimation has limited the
use of these methods (Siegmund (1985)). Analytical solutions are not generally
available, especially for tests with nonlinear and discrete boundaries. Analytical
solutions or asymptotic approximations of the classical operating characteristics
(e.g., type I and II errors, average sample number (ASN)) have been obtained
for sequential procedures of nontruncated linear boundaries (Wald (1947)), trun-
cated linear boundaries (Anderson (1960), Samuel-Cahn (1974)), and classes of
nonlinear boundaries (e.g., Lai and Siegmund (1977, 1979), Lai and Wijsman
(1979)). Asymptotic approximations are usually difficult and are not generally
applicable because the requirement of large sample size contradicts the very goal
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of early stopping in sequential tests. Numerical methods reported by Aroian
(1968) and Armitage, McPherson and Rowe (1969), based on recursive convo-
lutions of sequential probability distributions, provided numerical solutions for
evaluating sequential tests. An alternative numerical method was provided by
Jennison (1994) involving integration of a multivariate normal density. Although
these methods can be used to evaluate basic characteristics of sequential tests,
they cannot effectively evaluate the characteristics that have probabilistic com-
plexity. The reader is referred to Lai (2001) for a recent comprehensive survey
of sequential analysis.

Many sequential tests have virtually the same type I and II errors; thus, other
properties must be examined to select the most appropriate sequential design.
Properties of sequential tests other than the classical operating characteristics
may also be of interest in practice. For example, a sequential test having a
smaller ASN requires a larger (maximum) sample size. Therefore, minimizing
ASN should not be the only criterion used to select sequential designs if both the
ASN and the (maximum) sample size are to be minimized. It is also of interest
to know the probability of discordance, which measures the probability that the
sequential test does not agree with a nonsequential test to be performed through
the planned end of the sequential test, or the probability that the sequential
test does not agree with a nonsequential test of equivalent significance level and
power. Such properties are of special interest in sequential clinical trials, where
common sense dictates that sampling be stopped early if the interim conclusion
is unlikely to be reversed should the trial have continued to its planned end. In
general, to select a sequential test with the desired characteristics and to make
valid inference, we must evaluate the properties of sequential designs and the
post-test estimation of parameters. In this paper, using the sufficiency principle,
we develop theorems for a class of sequential tests, based on which a unified
approach is proposed to effectively evaluate various characteristics of interest.

In Section 2, we introduce a sufficiency identity and give a general equation
for evaluating sequential procedures. We give recursive formulas for computing
the fundamental eigenvalue function l(n, s) which is free of unknown parameters.
In Section 3, we develop methods for obtaining various characteristics of sequen-
tial procedures, such as the bias-adjusted estimate and its expectation, and the
probability of discordance.

2. Main Results

The following setup is considered throughout this paper. Let X1, . . . , be
a sequence of variables, not necessarily independent or identically distributed.
Assume that for any n, the joint distribution of X1, . . . ,Xn depends on the
parameter θ, and that Sn = g(X1, . . . ,Xn) is a sufficient statistic for θ. Here Xn,
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Sn, and θ can be scalars or vectors. Let N be a stopping time, i.e., for any n

the event (N ≤ n) depends only on X1, . . . ,Xn, not on Xn+1,Xn+2, . . .. Assume
Pθ(N < ∞) = 1 and let n1 < n2 < · · · be such that, for each nk, Pθ(N = nk) > 0
for some θ, and Pθ (N �∈ {n1, n2, . . .}) = 0 for all θ.

2.1. Fundamental identity

Theorem 2.1. Let pθ(n, s) ≡ Pθ(N = n, SN = s) (or lim∆s→0 Pθ(N = n, s <

Sn < s + ∆s)/∆s) be the probability mass (or density) function of test statistic
(N,SN ). Then for any (n, s), the mass (or density) function pθ(n, s) can be
factored as

pθ(n, s) = fθ(n, s)l(n, s), (1)

where fθ(n, s) ≡ fn
θ (s) = Pθ(Sn = s) and

l(n, s) = P (N = n|Sn = s), (2)

which does not depend on θ.

Proof. For any (n, s) in the support of (N,SN ) (i.e., Pθ(N = n, SN = s) > 0) we
have Pθ(N = n, SN = s) = Pθ(N = n, Sn = s) = Pθ(Sn = s)P (N = n|Sn = s),
because SN (ω) = Sn(ω) for any ω ∈ (N = n); hence (1) holds. For any (n, s) not
in the support of (N,SN ) (i.e., in continuation region), (N = n) ∩ (Sn = s) = ∅;
thus, pθ(n, s) = 0 and l(n, s) = 0, which indicates that (1) still holds. Because
Sn is a sufficient statistic for θ by assumption, then for any event A measurable
to sigma field Fn = σ{X1, . . . ,Xn}, the conditional probability Pθ(A|Sn = s)
does not depend on θ. In particular, the event (N = n) is measurable to Fn by
the definition of N and l(n, s) = P (N = n|Sn = s) does not depend on θ.

Although this derivation is relatively straightforward using the well known
sufficiency principle, (1) can lead to development of novel and effective meth-
ods for evaluating sequential tests and post-test estimation when combined with
numerical algorithms. This approach was first proposed in Xiong (1991), and
further developed in Xiong (1992, 1996). Here we establish a general framework
upon which we develop methods applicable for solving difficult problems. The
importance of (1) is that fθ(n, s) depends on θ but not on the stopping rule,
and that the conditional probability l(n, s) depends on the stopping rule but not
on θ when Sn is a sufficient statistic for θ. We refer to l(n, s) as the eigenvalue
function of the sequential statistic since it plays a role similar to the eigenvalue
in linear algebra. From Theorem 2.1 we get the following corollary, by which
calculation involving the sequential statistic (N,SN ) becomes one involving only
non-sequential statistics {Snk

}k≥1.
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Corollary 2.1. For any function H(n, s), if Eθ[H(nk, Snk
)] exists for any pos-

sible values nk of N , then

h(θ) ≡ Eθ{H(N,SN )} =
∑
nk

Eθ{H(nk, Snk
)l(nk, Snk

)}, (3)

where l(n, s) is defined by (2). Moreover,

h′(θ) = Eθ

[
H(N,SN )

∂

∂θ
{log fθ(N,SN )}

]
. (4)

Equation (3) is a direct consequence of (1). Because ∂
∂θ {log pθ(N,SN )} =

∂
∂θ {log fθ(N,SN )} by (1), we have (4), which can be evaluated by using (3)
with H∗(n, s) ≡ H(n, s) ∂

∂θ{log fθ(n, s)}. Having h′(θ) available is useful for solv-
ing the equation h(θ) = const using Newton-Ralphson, an application of which
is given in Section 3.2.

2.2. Eigenvalue function

For practical computation, we exclude those points that can never be passed
or reached by (N,SN ), which motivates the following definition.

Definition 2.1. For a sequential statistic (N,SN ), the stopping region and
continuation region are defined, respectively, as B = {(n, s) : Pθ(N = n, Sn =
s) > 0 for some θ} and

C = {(n, s) : Pθ(N > n,Sn = s) > 0 for some θ}, (5)

where Pθ(N = n, Sn = s) and Pθ(N > n,Sn = s) are interpreted, in the con-
tinuous case, as lim∆s→0 Pθ(N = n, s < Sn < s +∆s)/∆s and lim∆s→0 Pθ(N >

n, s < Sn < s+∆s)/∆s, respectively.

As Sn = g(X1, . . . ,Xn) is sufficient for θ, we restrict attention to those
stopping rules N for which {N = n} depends on X1, . . . ,Xn only through Sn

given {N > n− 1}. Such a stopping rule N (assuming values of n1, n2, . . . only)
may be identified with a stopping set B = ∪k{nk} × Bnk

, where Bnk
is a subset

of the range of Snk
; more precisely N = inf{nk : (nk, Snk

) ∈ B}, the first hitting
time of B. Note that B ∩ C = ∅ for this N and

Pθ(N > nk−1, Snk
= s) =

{
Pθ(N = nk, Snk

= s) if (nk, s) ∈ B
Pθ(N > nk, Snk

= s) if (nk, s) ∈ C. (6)

In addition, we assume for Snk
’s that, for any event A ∈ σ(Sn1 , . . . , Snk

),

P (A|Snk
, Snk+i

) = P (A|Snk
) for any k, i ≥ 1. (7)
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It can be shown that (7) holds if the Snk
’s form a Markov sequence.

Lemma 2.1. Assume (7) holds for the Snk
’s. For any (n, s), let

l∗(n, s) ≡ P (N > n|Sn = s). (8)

Then for any (nk, s) ∈ B, l∗(nk, s) = 0. For any (nk, s) ∈ C, if k = 1 then
l∗(n1, s) ≡ 1; if k ≥ 2 then

l∗(nk, s) = E{l∗(nk−1, Snk−1
)|Snk

= s}. (9)

Proof. For any (nk, s) ∈ B, if l∗(nk, s) > 0, then Pθ(N > nk, Snk
= s) > 0 for

some θ, which contradicts B∩C = ∅. Hence l∗(n, s) = 0. For (nk, s) ∈ C and k =
1, Pθ(N = n1, Sn1 = s) = 0 for any θ and thus Pθ(N > n1, Sn1 = s) = Pθ(N ≥
n1, Sn1 = s) = Pθ(Sn1 = s), which gives l∗(n1, s) = P (N > n1|Sn1 = s) = 1. For
(nk, s) ∈ C and k ≥ 2,

l∗(nk, s) = E(1(N>nk−1)|Snk
= s) = E[E{1(N>nk−1)|Snk−1

, Snk
}|Snk

= s] (10)

by (8) and (6), and by Theorem 34.4 in Billingsley (1986). By (7), we have
E{1(N>nk−1)|Snk−1

, Snk
} = E{1(N>nk−1)|Snk−1

} = l∗(nk−1, Snk−1
), and then (10)

yields (9).

Theorem 2.2. Assume (7) holds for the Snk
’s. For any (nk, s) ∈ C, l(nk, s) = 0.

For any (nk, s) ∈ B, if k = 1, then l(n1, s) ≡ 1; if k ≥ 2, then

l(nk, s) = 1−
k−1∑
i=1

E{l(ni, Sni)|Snk
= s}, (11)

l(nk, s) = E{l∗(nk−1, Snk−1
)|Snk

= s}. (12)

Proof. For any (nk, s) ∈ C, we have Pθ(N = nk, Snk
= s) = 0 because (nk, s) �∈

B, which implies l(nk, s) = 0. If (n1, s) ∈ B, then Pθ(N > n1, Sn1 = s) = 0 for
any θ because (n1, s) �∈ C. Hence Pθ(N = n1, Sn1 = s) = Pθ(Sn1 = s), which
gives l(n1, s) = 1. For (nk, s) ∈ B and k ≥ 2,

l(nk, s) = P (N = nk|Snk
= s) = 1−

k−1∑
i=1

E{1(N=ni)|Snk
= s}. (13)

As in Lemma 2.1, we have E{1(N=ni)|Snk
= s} = E{E(1(N=ni)|Sni , Snk

)|Snk
=

s} and E(1(N=ni)|Sni , Snk
) = E(1(N=ni)|Sni) = l(ni, Sni), by which (13) yields

(11). On the other hand,

l(nk, s) = P (N = nk|Snk
= s) = P{N > nk−1|Snk

= s}
= E[E{1(N>nk−1)|Snk−1

}|Snk
= s] (14)



1032 XIAOPING XIONG, MING TAN AND MICHAEL H. KUTNER

by (6) and (7). By the definition of l∗(nk−1, Snk−1
), (14) yields (12).

The density of (N,SN ), pθ(n, s), which can be obtained by (2) when l(n, s)
is known, can also be obtained directly from l∗(n, s) when Snk

has independent
increment, as in the theorem below.

Theorem 2.3. Suppose that for k ≥ 2, Snk
− Snk−1

is independent of Fnk−1
,

the sigma-field generated by X1, . . . ,Xnk−1
, and let qθ(d;nk−1, nk) ≡ Pθ(Snk

−
Snk−1

= d|Snk−1
) = Pθ(Snk

− Snk−1
= d). Then for (nk, s) ∈ B, the density of

(N,SN ) at (nk, s) is

pθ(nk, s) = Eθ{l∗(nk−1, Snk−1
)qθ(s− Snk−1

;nk−1, nk)}. (15)

Proof. (N > nk−1) = (N ≤ nk−1)c and is measurable to Fnk−1
, and thus

independent of Snk
− Snk−1

by assumption. For k ≥ 2 and (nk, s) ∈ B, by (6),
pθ(nk, s)=Pθ(N>nk−1, Snk

=s)=Eθ{Pθ(N>nk−1, Snk
−Snk−1

=s−Snk−1
|Snk−1

)}
=Eθ{Pθ(N > nk−1|Snk−1

)Pθ(Snk
− Snk−1

= s− Snk−1
|Snk−1

)}. (16)

Then we obtain (15) by joining (16) and P (N > nk−1|Snk−1
) = l∗(nk−1, Snk−1

)
and Pθ(Snk

− Snk−1
= s− Snk−1

|Snk−1
) = qθ(s− Snk−1

;nk−1, nk).

Corollary 2.2. Suppose that Snk
−Snk−1

is independent of Fnk−1
. Let vθ(nk, s) =

Pθ(N > nk, Snk
= s) and Cnk

= {s : (nk, s) ∈ C}. We have

pθ(nk, s) =
∫

t∈Cnk−1

vθ(nk−1, t)qθ(s− t;nk−1, nk)dt, for (nk, s) ∈ B, (17)

vθ(nk, s) =
∫

t∈Cnk−1

vθ(nk−1, t)qθ(s− t;nk−1, nk)dt, for (nk, s) ∈ C. (18)

Proof. Because vθ(nk, s) = l∗(nk, s)fθ(nk, s), we have (17) by (15), and (18)
follows by multiplying (9) by fθ(nk, s).

2.2.1. Special cases: the mean parameter

Assume that Xi, i = 1, 2, . . ., are observations from a population with mean
θ = Eθ(Xi) for any i, and that Sn =

∑n
i=1 Xi is the partial sum. For testing

H0 : θ ≤ θ0 vs. Ha : θ > θ0 (19)

sequentially, the statistic (N,SN ) usually has stopping and continuation regions,
respectively, as

B = {(n, s) : n = nk, s ≤ bnk
or s ≥ ank

for k = 1, 2, . . .},
C = {(n, s) : n = nk, bnk

< s < ank
for k = 1, 2, . . .}, (20)
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where the ank
’s and bnk

’s are known constants, −∞ ≤ bnk
≤ ank

≤ ∞.
For nj < nk, the conditional distribution of Snj given Snk

will be denoted as

pnj |nk
(t|s) ≡ P (Snj= t|Snk

=s). (21)

This does not depend on θ if Snk
is a sufficient statistic for θ.

Binomial or Hypergeometric distribution. Assume that Sn ∼ B(n, p) or ∼
H(n;M = pN,N). Then

pnj |nk
(t|s) = hnj |nk

(t|s) ≡
(s
t

)(nk−s
nj−t

)
(nk
nj

) . (22)

Normal distribution. Assume Sn ∼ N(nµ, nσ2) for any n. Then

pnj |nk
(t|s) = φnj |nk

(t|s) ≡
φ
(
(t− nj

nk
s)/
√
nj(1− nj

nk
)σ
)

√
nj(1− nj

nk
)σ

, (23)

where φ(x) is the density function of the standard normal distribution.
Poisson distribution. Assume Sn ∼ P(nλ) for any n. Then

pnj |nk
(t|s) = bnj |nk

(t|s) ≡
(
s

t

)(
nj

nk

)t (
1− nj

nk

)s−t

. (24)

Example 2.1. Let N be the first exit time to stopping region B in (20). If
Sn ∼ N(nθ, nσ2) for any n, then the conditional expectation in (11) can be
calculated by the conditional distribution in (23). In the continuation region, or
s ∈ (bnk

, ank
), we have l(nk, s) = 0 by Theorem 2.2. In the stopping region, or

s ∈ (bnk
, ank

)c,

l(nk, s) = 1−
k−1∑
i=1

{(∫ ∞

ani

+
∫ bni

−∞

)
l(ni, t)φni|nk

(t|s)dt
}

by (11) and (23). Similarly, by (12) and (23), l(nk, s) =
∫ ank−1

bnk−1
l∗(nk−1, t)

φnk−1|nk
(t|s)dt, where, for t ∈ (bnk−1

, ank−1
), l∗(nk−1, t) =

∫ ank−2

bnk−2
l∗(nk−2, τ)

φnk−2|nk−1
(τ |t)dτ by (9) and (23).

Remark 2.1. By (1), the density of (N,SN ) for any θ is related to that for a
given θ0 by

pθ(n, s) = pθ0(n, s)r(n, s; θ, θ0), (25)

where r(n, s; θ, θ0) =
fθ(n,s)
fθ0

(n,s) . If Sn is the sum of i.i.d. Xi’s, then for Sn ∼
N(nθ, nσ2), r(n, s; θ, θ0)=exp{2s(θ−θ0)−n(θ2−θ2

0)
2σ2 }; for Sn∼B(n, p), r(n, s; p, p0)=(

p
p0

)s( 1−p
1−p0

)n−s
; for Sn ∼ P(nλ), r(n, s;λ, λ0) =

(
λ
λ0

)s
exp{−n(λ− λ0)}.
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Remark 2.2. The density of (N,SN ) can be obtained by four methods: First
by (1), in which l(n, s) can be obtained by (12); second by (15), in which l∗(n, s)
can be obtained by (9); third by (25), in which pθ0(n, s) can be obtained by (17)
(or other methods, e.g., multivariate normal integration); and fourth, directly by
equation (17). The first method does not require that Snk

−Snk−1
be independent

of Snk−1
for all nks of N , whereas the remaining methods do. The fourth method

is traditional, and first used by Aroian (1968) for the binomial distribution and
by Armitage (1969) for the normal distribution. However, because vθ(n, s) in
(17) depends on θ, the convolution (18) for vθ(n, s) has to be evaluated for each
θ. The third method improves on the fourth method by utilizing the relationship
between pθ(n, s) and pθ0(n, s), which has been used by Emerson and Fleming
(1990) for the normal distribution. The ratio of the two densities in (25) is
r(nk, s; θ, 0) = exp(sθ − nkθ

2/2) (assume θ0 = 0 and σ2 = 1), by which a small
round-off error in computing p0(nk, s) could result in a major error for pθ(nk, s).
For example, in testing (19) at significance level 0.025 with 0.95 power to detect
an alternative of θ = 0.5, we have p0.5(22, 20.5)/p0(22, 20.5) = 1808 by (25)
on point (nk, s) = (22, 20.5), which indicates that a round-off error for p0(nk, s)
would be amplified 1808 times for pθ(nk, s). As s increases, such an error increases
quickly (e.g., if s = 30, the error is amplified 208, 981 times). This error could
be fatal for those (nk, s) at which p0(nk, s) is close to 0 and pθ(nk, s) is large. In
the first and second methods, l(nk, s) and l∗(nk, s) are between 0 and 1 and do
not depend on θ, and l(nk, s) is small if and only if pθ(nk, s) is small for all θ.
Thus, evaluation of pθ(nk, s) is more accurate and effective by the first and the
second methods than by the third and fourth methods.

3. Evaluation of Sequential Tests and Post-Test Estimation

3.1. Classical operating characteristics

Assume N is the first exit time to B in (20) for testing the hypotheses in
(19). Setting H(n, s) = 1(s>an) in (3) yields the power function of the sequential
test

β(θ) = Pθ(SN ≥ aN ) = Eθ

{
1(SN≥aN )

}
=
∑
nk

Eθ

{
1(Snk

>ank
)l(nk, Snk

)
}
. (26)

SettingH(n, s) = n in (3) yields the expected sample size (average sample number
(ASN), traditionally)

ASN(θ) = Eθ(N) =
∑
nk

Eθ {nkl(nk, Snk
)} . (27)

Since the distribution of Snk
is known and l(nk, s) can be evaluated based on

theorems in Section 2.2, calculation in (26) and (27) is straightforward.
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3.2. Estimation after sequential tests

After a sequential test, θ is usually estimated by the maximum likelihood
estimator θ̂ml = θ̂ml(N,SN ) (e.g., θ̂ml = SN/N in the normal case) which is
well-known to be biased. A bias-adjusted estimator was suggested by Whitehead
(1986) and by Chang, Wieand and Chang (1989). We propose to evaluate the
bias-adjusted estimation by using the eigenvalue function, and demonstrate its
efficiency in this application.

Let B(θ) = Eθ{θ̂ml(N,SN )}−θ be the bias of the estimator θ̂ml(N,SN ) for a
given θ. An unbiased estimate of θ would be (θ̂ml)observed −B(θ) which depends
on the unknown θ. This motivates the equation θ̃ = (θ̂ml)observed − B(θ̃) that
determines a bias-adjusted estimator θ̃. By simple algebra, θ̃ is the solution of
the following equation for θ:

Eθ(θ̂ml) = (θ̂ml)observed, (28)

which may be viewed as estimation by the method of moments. Equation (28) can
be solved for θ by straightforward computation by incorporating the eigenvalue
function with the Newton-Ralphson method. By (3), the expectation of MLE as
a function of θ is

h(θ) = Eθ{θ̂ml(N,SN )} =
∑
nk

Eθ

{
θ̂ml(nk, Snk

)l(nk, Snk
)
}
. (29)

By (3) and (4),

h′(θ) =
∑
nk

Eθ

[
θ̂ml(nk, Snk

)
∂

∂θ
{log fθ(nk, Snk

)} l(nk, Snk
)
]
. (30)

The bias-adjusted estimate, or the solution of equation (28), is the limit of θ̃i

where

θ̃i = θ̃i−1 − h(θ̃i−1)− (θ̂ml)observed

h′(θ̃i−1)
, (31)

i = 1, 2, . . ., and initial value θ̃0 = (θ̂ml)observed. The bias-adjusted estimate θ̃ is
a function of θ̂ml, or θ̃ = θ̃(θ̂ml). The bias-adjusted estimate θ̃ still has a bias,
B∗(θ) = Eθ{θ̃(θ̂ml(N,SN ))} − θ. This tends to be substantially smaller than
B(θ). From (3) we have

Eθ

{
θ̃(θ̂ml(N,SN ))

}
=
∑
nk

Eθ

{
θ̃(θ̂ml(nk, Snk

))l(nk, Snk
)
}
. (32)

Evaluation of θ̃(θ̂ml(nk, s)) for each (nk, s) in (32) requires a converging sequence
in (31). Therefore, the efficiency for evaluating B∗(θ) is much improved by
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repeated use of l(nk, s) in (29), (30) and (32), as compared with the traditional
method (i.e., the fourth method in Remark 2.2).

3.3. Probabilities of discordance

When early stopping of a clinical trial is considered, it is important to find
the probability that a different decision would be reached should we have con-
tinued to collect data to the end (maximum information time) and then used
a nonsequential test. We say that a sequential procedure and a nonsequential
test are comparable if the probability of discordance P (D) is negligible, where
D is the event that the sequential test and the nonsequential test lead to dif-
ferent rejection/acceptance decisions when both are used on the same sequence
of observations. Here we develop methods for deriving various probabilities of
discordance by using the proposed approach.

Let Ba and Br be the acceptance and rejection regions for (N,SN ) for testing
hypotheses H0 : θ ∈ Θ0 vs. Ha : θ ∈ Θa. Let B be the sequential stopping
region for (N,SN ) as in (5), then B = Ba∪Br. Let Ra and Rr be the acceptance
and rejection regions for a nonsequential test based on Sm for testing the same
hypotheses, where m, the sample size of Sm, is constant. Define events

Da = {(N,SN ) ∈ Br, Sm ∈ Ra} and Dr = {(N,SN ) ∈ Ba, Sm ∈ Rr}. (33)

Da is the event that the null hypothesis is accepted by the nonsequential test,
but is rejected by the sequential test; similarly, Dr is the event with opposite
actions. Hence D = Da∪Dr and the probability of discordance between the test
statistics (N,SN ) and Sm is

ρ(θ) ≡ Pθ(D) = Pθ(Da) + Pθ(Dr). (34)

Noting that Pθ(D) = Pθ(D∩(N ≤ m))+Pθ(D∩(N > m)), we present expressions
for Pθ(D ∩ (N ≤ m)) in Theorem 3.1, and for Pθ(D ∩ (N > m)) in Theorem 3.2.

Theorem 3.1. Let Ba
nk
= {s : (nk, s) ∈ Ba} and Br

nk
= {s : (nk, s) ∈ Br}. Then

Pθ(D ∩ (N ≤ m)) = Eθ{P (D ∩ (N ≤ m)|Sm)}, (35)

P (D∩(N≤m)|Sm) =

{∑
nk≤m E{1(Snk

∈Ba
nk

)l(nk, Snk
)|Sm} if Sm ∈ Rr,∑

nk≤m E{1(Snk
∈Br

nk
)l(nk, Snk

)|Sm} if Sm ∈ Ra.
(36)

Proof. Equation (35) is clear. We need only show (36). For any s ∈ Rr, we
have Da ∩ (Sm = s) = ∅ by (33); hence P (Da|Sm = s) = 0. Thus

P (D ∩ (N ≤ m)|Sm = s) = P (Dr ∩ (N ≤ m)|Sm = s)



COMPUTATIONAL METHODS FOR EVALUATING SEQUENTIAL TESTS 1037

= P ((N,SN ) ∈ Ba, N ≤ m|Sm = s) =
∑

nk≤m

E{1(Snk
∈Ba

nk
)1(N=nk)|Sm = s}

=
∑

nk≤m

E[E{1(Snk
∈Ba

nk
)1(N=nk)|Snk

}|Sm = s]

=
∑

nk≤m

E[1(Snk
∈Ba

nk
)E{1(N=nk)|Snk

}|Sm = s]. (37)

Joining (37) and E{1(N=nk)|Snk
} = l(nk, Snk

), we have the first equation in (36).
The second equation in (36) can be obtained similarly.

3.3.1. Discordance between sequential and nonsequential conclusions

When a sequential boundary is crossed, a natural question is whether the
conclusion would be reversed if we did not stop but continued to the end. The
chance of this event can be measured by the probability of discordance between
a sequential test and the nonsequential test at the last stage of the sequential
test. In a sequential test, we may want to ignore an early boundary crossing
and continue to gather observations until a later stage, either to obtain a bet-
ter estimate of the unknown parameter with a larger sample size, or to avoid
early stopping caused by unexpected dependence among observations. If the
probability of discordance is small, we will be less concerned with the possibility
that the conclusion at early stopping will be reversed at later stages. Exam-
ples of sequential procedures that have a very small probability of discordance
with their last stages are those based on stochastic curtailing (Lan, Simon, and
Halperin (1982)) and those based on the sequential conditional probability ratio
tests (Xiong (1995)).

Let ρs ≡ P (D|Sm = s) be the conditional probability of discordance given
Sm = s, where Sm is the observation at the final stage of the sequential test.
Because P (N > m) = 0 by the definition ofm, we have P (D) = P (D∩(N ≤ m))
and

ρs ≡ P (D|Sm = s) =

{∑
nk≤m E{1(Snk

∈Ba
nk

)l(nk, Snk
)|Sm = s} if s ∈ Rr,∑

nk≤m E{1(Snk
∈Br

nk
)l(nk, Snk

)|Sm = s} if s ∈ Ra,

by (36). Given a true θ, by averaging out the conditioning values of Sm, the
overall probability of discordance between the sequential and nonsequential test
is

ρ(θ) = Eθ

[
1(Sm∈Rr)

∑
nk

E{1(Snk
∈Ba

nk
)l(nk, Snk

)|Sm}
]

+Eθ

[
1(Sm∈Ra)

∑
nk

E{1(Snk
∈Br

nk
)l(nk, Snk

)|Sm}
]
. (38)
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The probabilities of discordance ρs and ρ(θ) measure the probability that the
sequential test contradicts the nonsequential test. For ρs, the probability is
conditional on Sm = s and does not depend on θ. For ρ(θ), the probability
averages out Sm, but depends on θ. Let ρ = maxs ρs and ρmax = maxθ ρ(θ).
Then ρs ≤ ρ for any s; ρ(θ) ≤ ρmax ≤ ρ for any θ. ρ and ρmax can be used for
design and evaluation of a sequential test.

3.3.2. Discordance with comparable non-sequential test

The significance level and/or the power of a sequential test could be dif-
ferent from those of the nonsequential test at the last stage of the sequential
test. A nonsequential test that has the same significance level and power as a
given sequential test may be more appropriate for comparison with the sequen-
tial test. This nonsequential test design is called the reference fixed sample size
test (RFSST). The maximum sample size of a sequential procedure is usually
larger than the sample size of its RFSST. Let m be the sample size of the nonse-
quential test and m∗ be the maximum sample size of the sequential test design,
then m ≤ m∗. Let D be the event that a sequential test and RFSST lead to
a different rejection/acceptance decision when both tests are used on the same
sequence of observations. Since Pθ(D) = Pθ(D ∩ (N ≤ m)) + Pθ(D ∩ (N > m)),
and Pθ(D ∩ (N ≤ m)) can be obtained by equations (35) and (36), we need only
evaluate Pθ(D ∩ (N > m)), see Theorem 3.2 below. First a few lemmas.

Lemma 3.1. Let B and C be defined as in (5). If nk−1 ≤ m < nk, then for any
set I in the range of Sm and for (nk, s) ∈ C,

P (N>nk, Sm∈I|Snk
=s)=

{
E[1(Sm∈I)E{l∗(nk−1, Snk−1

)|Sm}|Snk
=s] if nk−1<m,

E{1(Sm∈I)l
∗(nk−1, Snk−1

)|Snk
=s} if nk−1=m,

(39)
where l∗(nk−1, s) is defined as in (8). For (nk, s) ∈ B,

P (N=nk, Sm∈I|Snk
=s)=

{
E[1(Sm∈I)E{l∗(nk−1, Snk−1

)|Sm}|Snk
=s] if nk−1<m,

E{1(Sm∈I)l
∗(nk−1, Snk−1

)|Snk
=s} if nk−1=m.

(40)

Proof. For any(nk, s)∈C, P (N>nk, Sm∈I|Snk
=s)=P{N>nk−1, Sm∈I|Snk

=s}.
If nk−1<m, then P{N>nk−1, Sm∈I|Snk

=s}=E[1(Sm∈I)E{1(N>nk−1)|Sm}|Snk
=

s], which yields the first equation in (39) because E{1(N>nk−1)|Sm} = E{l∗(nk−1,

Snk−1
)|Sm}. If nk−1 = m, then P (N > nk−1, Sm ∈ I|Snk

= s) = E[1(Sm∈I)

E{1(N>nk−1)|Snk−1
}|Snk

= s], which yields the second equation in (39) because
E{1(N>nk−1)|Snk−1

} = l∗(nk−1, Snk−1
). Equations in (40) can be obtained simi-

larly.
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Lemma 3.2. For nk > m and any (nk, s), define

l∗a(nk, s)≡P (N>nk, Sm∈Ra|Snk
=s) and l∗r(nk, s)≡P (N>nk, Sm∈Rr|Snk

=s).
(41)

Then for nk > m and (nk, s) ∈ B, we have l∗a(nk, s) = 0 and l∗r(nk, s) = 0. For
nk > m and (nk, s) ∈ C, if nk−1 > m, then

l∗a(nk, s)=E{l∗a(nk−1, Snk−1
)|Snk

=s} and l∗r(nk, s)=E{l∗r(nk−1, Snk−1
)|Snk

=s};
(42)

if nk−1 ≤ m < nk, then for (nk, s) ∈ C, l∗a(nk, s) and l∗r(nk, s) are given by the
right side of (39) with I = Ra and I = Rr, respectively.

Proof. The proof is similar to that for (9), except for the case of (nk, s) ∈ C and
nk−1 ≤ m < nk which follows from Lemma 3.1.

Lemma 3.3. For nk > m and any (nk, s), define

la(nk, s)≡P (N=nk, Sm∈Ra|Snk
=s) and lr(nk, s)≡P (N=nk, Sm∈Rr|Snk

=s).
(43)

For nk > m and (nk, s) ∈ C, we have la(nk, s) = 0 and lr(nk, s) = 0. For nk > m
and (nk, s) ∈ B, if nk−1 > m, then

la(nk, s)=E{l∗a(nk−1, Snk−1
)|Snk

=s} and lr(nk, s)=E{l∗r (nk−1, Snk−1
)|Snk

=s},
(44)

where l∗a(nk, s) and l∗r(nk, s) are given as in (41). If nk−1 ≤ m < nk, then
la(nk, s) and lr(nk, s) are given by the right side of (40) with I = Ra and I = Rr,
respectively.

Proof. The proof of this lemma is parallel to that of Lemma 3.2. by interchang-
ing (nk, s) ∈ C with (nk, s) ∈ B.
Theorem 3.2. Let Ba

nk
and Br

nk
be defined in Theorem 3.1. Then

Pθ{D∩(N>m)}=
∑

nk>m

[Eθ{1(Snk
∈Ba

nk
)lr(nk, Snk

)}+Eθ{1(Snk
∈Br

nk
)la(nk, Snk

)}], (45)

where lr(nk, Snk
) and la(nk, Snk

) are given as in (44); and Ba
nk
= {s : (nk, s) ∈

Ba} and Br
nk
= {s : (nk, s) ∈ Br}.

Proof. By (34), we have

P{D ∩ (N > m)} = Pθ{Dr ∩ (N > m)}+ Pθ{Da ∩ (N > m)}. (46)

The first term on the right side of (46) is

Pθ{Dr ∩ (N > m)} =
∑

nk>m

Pθ{N = nk, (nk, Snk
) ∈ Ba, Sm ∈ Rr}

=
∑

nk>m

Eθ[1{(nk ,Snk
)∈Ba}E{1(N=nk ,Sm∈Rr)|Snk

}]=
∑

nk>m

Eθ{1(Snk
∈Ba

nk
)lr(nk, Snk

)}.
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Similarly, the second term in (46) is Pθ{Da ∩ (N > m)} =∑nk>m Eθ{1(Snk
∈Br

nk
)

la(nk, Snk
)}. Hence, (45) holds.

Let nk∗ be the largest possible value of N less than or equal to the sample
size m of the nonsequential test. Then the probability that the sequential test
needs more samples than the nonsequential test is Pθ (N > nk∗) = Eθ{P (N >

nk∗|Snk∗ )} = Eθ{l∗(nk∗ , Snk∗ )}. Numerical examples for the probability of dis-
cordance and the above probability can be found in Tan, Xiong and Kutner
(1998).
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