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Abstract

A computational procedure is presented for the solution of frictional contact

problems for aircraft tires. A Space Shuttle nose-gear tire is modeled using a two-

dimensional laminated anisotropic shell theory which includes the effects of varia-

tions in material and geometric parameters, transverse-shear deformation, and geo-

metric nonlinearities. Contact conditions are incorporated into the formulation by

using a perturbed Lagrangian approach with the fundamental unknowns consisting of

the stress resultants, the generalized displacements, and the Lagrange multipliers

associated with both contact and friction conditions. The contact-friction algorithm is

based on a modified Coulomb friction law. A modified two-field, mixed-variational

principle is used to obtain elemental arrays. This modification consists of augmenting

the functional of that principle by two terms: the Lagrange multiplier vector associ-

ated with normal and tangential node contact-load intensities and a regularization

term that is quadratic in the Lagrange multiplier vector. These capabilities and com-

putational features are incorporated into an in-house computer code. Experimental

measurements were taken to define the response of the Space Shuttle nose-gear tire to

inflation-pressure loads and to inflation-pressure loads combined with normal static

loads against a rigid flat plate. These experimental results describe the meridional

growth of the tire cross section caused by inflation loading, the static load-deflection

characteristics of the tire, the geometry of the tire footprint under static loading con-

ditions, and the normal and tangential load-intensity distributions in the tire footprint

for the various static vertical loading conditions. Numerical results were obtained for

the Space Shuttle nose-gear tire subjected to inflation pressure loads and combined

inflation pressure and contact loads against a rigid flat plate. The experimental mea-

surements and the numerical results are compared.

Introduction

Contact-friction problems are inherently nonlinear

and path dependent. Nonlinearity occurs partly because

both the contact area and the contact-load intensities are

not known beforehand and vary during the loading his-

tory. Path dependency is a result of the nonconserva-

tive (irreversible dissipative) character of the frictional

forces.

A review of static contact problems presented in ref-

erence 1, which includes a bibliography of approxi-

mately 700 papers, points out that contact problems are

important to thermomechanical stress analyses, fracture

mechanics, mechanical problems involving elastic foun-

dations, the mechanics of joints, geomechanics, and tires.

Contact problems occupy a position of special

importance in aircraft tire mechanics because the contact

zone is where the forces are generated that support,

guide, and maneuver the airplane. Distributions of con-

tact loads and frictional forces define the moments and

shears that are applied to the landing gear system (ref. 2).

Under rolling conditions, the distribution of sliding

velocities within the tire footprint combined with the

frictional forces developed by the tire defines the rate of

energy dissipation associated with the loading conditions

and provides a measure of tire wear (refs. 3 and 4). In the

case of the Space Shuttle orbiter, this wear mechanism is

strong enough to cause tire failures during individual

landing operations (refs. 5 and 6). Therefore, an under-

standing of these tire friction forces and the resulting slip

velocities is critical to the design of aircraft tires for the

next generation of high-performance aircraft, such as the

National Aero-Space Plane and the High-Speed Civil

Transport.

Modeling contact phenomena in the tire footprint is a

formidable task partly because of difficulty of modeling

tire response. Distribution of tractions and the footprint

geometry are both functions of normal, frictional, and

inflation tire loads. Moreover, the complex mechanisms

of dynamic friction, which allow the tire to develop the

necessary steering and braking forces for aircraft control

during ground operations, are not fully understood

(ref. 7). The tire analyst thus is forced to choose among

several friction theories. When the tire contact problem

includes frictional effects, the solution becomes path

dependent and a unique solution is not guaranteed.

The aircraft tire is a composite structure of rubber

and textile constituents that exhibit anisotropic and non-

homogeneous material properties. Normal tire operating

conditions create loads that can produce large deforma-

tions. Elevated operating temperatures from the com-

bined effects of material hysteresis and frictional heating

can cause variations in the material characteristics of the



tire constituents(refs.8-10).Thelaminatedcarcassof
the aircrafttire is thick enoughto allowsignificant
transverse-sheardeformations.

Thesefactsandattendantdifficultiesemphasizethe
needto developmodelingstrategiesandanalysismeth-
odsthatincludeefficient,powerfulandeconomiccontact
algorithms.Intenseresearchhasrecentlyfocusedonnon-
linearanalysesofstaticanddynamicproblemsinvolving
contact.Noveltechniquesthathaveemergedfromthese
effortsincludesemianalyticfinite-elementmodelsfor
nonlinearanalysisof shellsof revolution(refs. 11
and12),reducedmethods(refs.13and14),andoperator
splittingtechniques(refs.15-17).References14,17,
and18summarizeapplicationsof thesenewtiremodel-
ingtechniques.

Objectives and Scope

NASA Langley Research Center tire modeling

research concentrates on developing an accurate and effi-

cient strategy for predicting aircraft tire responses to a

variety of loading conditions. This research focuses on

developing tire contact modeling techniques, and the

specific objectives of this research are (1) to develop a

contact algorithm with friction effects included to predict

tire response to combined inflation-pressure and static

vertical-loading conditions, (2) to demonstrate the capa-

bilities of this algorithm through numerical studies, and

(3) to validate these numerical results with experimental

data. Distribution of normal and frictional forces in the

tire contact zone (or footprint area) is of particular

interest.

The contact algorithm is incorporated into a mixed-

formulation, two-field, two-dimensional finite-element

model based on the moderate-rotation Sanders-

Budiansky shell theory, including the effects of

transverse-shear deformations, laminated anisotropic

material response, and nonhomogeneous shell character-

istics (refs. 19 and 20). A perturbed Lagrangian formula-

tion (refs. 21 and 22) is the basis for this contact

algorithm. The Lagrangian formulation uses the precon-

ditioned conjugate gradient (PCG) iteration procedure

(refs. 23-25) to determine contact area, distribution of

normal force intensities, and allocation of friction force

intensities. A modified version of the Coulomb friction

law is incorporated into the contact algorithm in which

the friction coefficient at the onset of sliding differs from

that during sliding. This algorithm also monitors the

energy dissipated within the sliding portion of the contact

zone. In this investigation it will be assumed that the tire

is loaded on a surface that is much stiffer than the tire,

thus the surface will be treated as rigid. Hence, the static

tire contact problem will be treated as a unilateral contact

problem. Reference 26 summarizes the characteristics of

this algorithm.

Numerical studies presented for an inflated Space

Shuttle nose-gear tire under static load on a fiat surface

demonstrate the capabilities of the analysis techniques.

These analyses incorporate both friction and frictionless

contact. Detailed studies are made of the effects of tire

tread pattern on the contact-force intensities, the influ-

ence of friction coefficient variations on the distribution

of tire contact-force intensities, the convergence charac-

teristics of the contact algorithm, and the history of

energy dissipation in the static footprint.

Experimental measurements were carried out on the

Space Shuttle orbiter nose-gear tire to define its response

to combined inflation-pressure and static vertical-loading

conditions. Experimental procedures used to define the

tire structural response to loading conditions and to mea-

sure the footprint-force intensities, and empirical proce-

dures used to define the geometry and construction

details of the tire for modeling purposes are discussed.

Finally, the analytical results are compared with the

experimental measurements.

Reference 27 describes numerical studies, experi-

mental measurements, and comparisons between analyti-

cal results and experimental measurements. This report

describes development of this contact algorithm.

Nomenclature

Act

Anode

Aquad

all, a22, a12,

ass, ao0, aso,

bll, b22, bl2,

gll' g22' gl2

¢

C G, C u

c ij' d ij, f ij

C44, C45, C55

nodal contact area with variable

weighting function (see eq. (20))

nodal contact area (see eq. (19))

area of finite-element quadrant

(see eq. (18) and fig. 4)

shell compliance coefficients

(see eq. (4))

number of nodal points in contact

within element

portions of shell boundary where

tractions and displacements are

prescribed

tire stiffness coefficients

(i,j= 1,2,6)

transverse-shear stiffness coeffi-

cients of tire (see eq. (At0))



es, eo

iF]

{G(X)}

{_(X)}

{_(X)}

_',,o''_vo''_Wo

{go}

{n}

h

[k]

M s, M O, MsO

{M(H, X)}

m

N

N s, N 0, Nso

n

rlcl

rls, n o

Pn' Pu' Pv

P

{p}

{?}

P0

Ps, P0, P

[QI, IRI

tangential unit vectors in meridional

and circumferential directions

flexibility matrix for an individual

element

vector defined in equation ( 11 )

vector of nonlinear terms

(see eq. (7))

vector of nonlinear terms

(see eqs. (8) and (9))

vector of nonlinear contributions to

the global equations (see eqs. (11 ))

current gaps

initial gaps

vector of initial gaps for contact

element

vector of stress-resultant parameters

total thickness of tire

nondimensional thickness of tire

(see fig. 4)

global linear stiffness matrix

(see eq. (11))

bending and twisting stress resultants

(see fig. 1)

vector of nonlinear terms

(see eq. (7))

number of displacement nodes in

element

shape functions used for approximat-

ing generalized displacements and

Lagrange multipliers

extensional stress resultants

total number of degrees of freedom

peripheral node degrees of freedom

(see eq. (20))

unit normal to reference surface

nodal (contact) force

load parameter

normalized external load parameter

global vector of normalized external

loads and initial gaps

intensity of inflation pressure

intensity of external loading in coor-

dinate directions (see fig. I)

elemental matrices associated with

contact condition and regularization

term in functional

Qs, Qo

R l, R 2

r

Is]

S

IT]

T
n

T
r

T u, T v

U

Uslipu' Uslipv

Uslipu, Uslip,,

b/_ V_ W

Uslip' Vslip

Uslip' Vslip

W

{x}

{2}

X, y, Z

x 3

{z}

Ag u, Ag v

E t, E n

Erelax

e s, e 0, 2es0

transverse-shear stress resultants

(see fig. l)

principal radii of curvature in meridi-

onal and circumferential directions

normal distance from tire axis to ref-

erence surface

strain-displacement matrix for an

individual element

meridional coordinate of tire

(see fig. l)

transformation matrix

intensity of contact force acting nor-

mal to contact surface

resultant contact friction force

(see eq. (2a))

intensity of contact friction forces

tangent to contact surface

strain energy density (strain energy

per unit area)

energy dissipated during slip at each

iteration (see eqs. (27))

energy dissipated during slip

over all iterations in a load step

(see eqs. (28))

displacement components of refer-

ence surface of tire in meridional,

circumferential, and normal

directions (see fig. l)

tangential slip for each iteration (see

eqs. (25))

total tangential slip for each load step

(see eqs. (26))

external work

vector of nodal displacements in

shell coordinate system

vector of nodal displacements in

Cartesian coordinate system

Cartesian coordinate system

coordinate normal to tire reference

surface (see fig. 1)

global response vector

slip distances in tire footprint

penalty parameters in tangential and

normal directions (see eq. (6))

relaxation parameter (see eqs. (16))

extensional strains of reference sur-

face of tire
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Superscripts:

(e)

i,j

transverse shear strains of tire

circumferential (hoop) coordinate of

tire (see fig. 1)

bending strains of tire

Lagrange multiplier, representing

intensity of contact load normal to

contact surface

Lagrange multipliers, representing

intensity of contact friction loads

tangent to contact surface

Lagrange multipliers, representing

sliding friction load intensities

vector of nodal values of Lagrange

multipliers

static coefficient of friction

dynamic coefficient of friction

dimensionless coordinates along

meridian (see fig. 4)

functionals

rotation about normal to tire refer-

ence surface (see eq. (A9))

rotational components of reference

surface of tire (see fig. 1)

element domain

contact surface

angle defined by ratio of two friction

forces (see eq. (2d))

=-_/_s

first variation

individual elements

indices of shape functions for

approximating Lagrange multipliers

index of shape function for approxi-

mating generalized displacements

(i = 1, m)

number of iteration cycles

matrix transposition

Mathematical Formulation

The analytical formulation for contact of aircraft

tires is based on a form of moderate-rotation Sanders-

Budiansky shell theory and includes the effects of large

displacements and transverse-shear deformation. A

mixed formulation is used in which the fundamental

unknowns consist of five generalized displacements and

eight stress resultants. Figure 1 (a) gives sign convention

for the generalized displacements and stress resultants

and figure l(b) shows a free body diagram of applied

loads, torques, and contact forces. Fundamental equa-

tions of the shell theory used herein are given in refer-

ences 19 and 20 and are summarized in appendix A.

Normal Contact Force Formulation

Figure 2 shows the geometry of contact of a shell

pressed against a fiat surface. Figure 2(a) shows sche-

matically normal gaps between the tire carcass and the

flat surface. In the figure, _c refers to the contact

region; _w ° is the initial normal gap between the tire

shell and the plate; gw is the current normal gap; and T n

is the normal traction on _c" Both _w 0 and gw are

defined to be in the direction of the normal to f_c and are

measured relative to the inflated profile of the tire. Tire

constraints normal to the contact surface can be

expressed in terms of the following inequalities and

equation that must be satisfied at each point on the con-

tact surface f2 c :

_w>O (la)

T n < 0 (lb)

Tn_ w = 0 (lc)

The first inequality (eq. (la)) represents the kine-

matic condition of no penetration of the contact surface

(gw = 0 for the points in contact). The second inequal-

ity (eq. (lb)) is the static condition of compressive (or

zero) normal tractions. The third equation (eq. (lc))

states that there is zero work done by the normal contact

stresses (i. e., the normal contact stresses exist only at the

points where the tire is in contact with the rigid plate).

The following inequalities are henceforth referred to as

the inactive contact conditions:

gw > 0 (ld)

T n > 0 (le)

Equations (1) must be satisfied for both frictionless and

frictional contact.

Tangential Contact Force Formulation

Equations (1) define the normal tire contact con-

straint conditions and are augmented to include friction

constraints associated with the Coulomb friction law

when friction forces are considered. The Coulomb fric-

tion law is modified to include a static friction coefficient

associated with the nonskidding or "stick" friction con-

straint, and a dynamic friction coefficient associated with



theslipconditionwhenthestaticfrictionconstraintis
violated.

The"stick"conditiondefiningthestaticfrictioncon-
straintis

/ 2 2 T
',l( Tu + Tv)/ n < Pstatic (2a)

T u = cos(_)Tn_tdynami c (2b)

T v = sin(_)Tn_dynami c (2c)

represent the slip condition when equation (2a) is vio-

lated, where Tu and T v are the tangential tractions on the

friction surface representing the friction forces. The

angle _ defines the ratio between the two friction force

components for the slip condition and is expressed as:

= abs arctan
L k u./A

(2d)

where Tu and Tv in equation (2d) are the computed tan-

gential traction components that exist whenever the static

friction constraint in equation (2a) is first violated. The

following inequalities also hold on the friction surface:

_dynamic < _static (2e)

TuA_, u < 0 (2f)

Tv A_, v < 0 (2g)

Inequality (2e) simply states that the dynamic

friction coefficient cannot be greater than the static

friction coefficient. Inequalities (2f) and (2g) state that

the energy dissipated by sliding is never positive since

the friction forces always oppose slipping in the tire

footprint.

Figure 2(b) shows schematically the relationship

among the various tangential gap definitions. Initial gaps

_u 0 and _vo represent the tangential displacement of the

inflated tire from the uninflated configuration. Current

gaps gu and gv represent the displacement of the current

contact solution from the inflated configuration. Delta

gaps A_u and A_, v represent the tangential slip distances

from the previous tire contact "stick" location in the tire

footprint. For nodes not currently in contact with the flat

plate, the initial gaps and current gaps represent the

orthogonal projections of the gap expressions on the con-

tact surface. Delta gaps are defined only after contact has

been established.

Governing Finite-Element Equations

Discrete equations governing the response of the tire are obtained by applying a modified form of the two-field,

Hellinger-Reissner mixed-variational principle. This principle can be expressed in the following form:

5HHR( Ns' NO' Nso' Ms' MO' Mso' Qs' Qo' u, v, w, ¢Ps' ¢Po) = 5FI - 5W (3)

where

!{Ns[_sU _1 _(u __sW _ _¢2]+ [_s r + w lv+ r_OW ) +_2]

Mso[_OCs+(_ s _r\ l )¢] u v+_c]oW+¢o)

[_ N 2 2 2 2 2 2- (all s+a22No+gllMs+g22Mo+assQs+aooQo)+a12NsNo+bllNsMs+b12NsMo

+b12NoMs+b22NoMo+g12MsMo+asoQsQo]}d _
(4)



and

+u,+ + +°o,+.........................*

(5)

In equations (4) and (5), a, b, and g are shell compliance coefficients which are the inverse of the shell stiffness

coefficients given in appendix A; _ is the rotation about the normal to the shell and is also given in appendix A; Ps, P0,

and p are the intensities of the external distributed loads in the meridional, circumferential, and radial directions, respec-

tively; f_ is the shell domain; and c_ and c u are the portions of the boundary over which tractions and displacements

are prescribed. Quantities with a tilde (~) denote prescribed boundary stress resultants and generalized displacements;

the underlined terms in equations (4) and (5) represent nonlinear contributions; and ns and n O are unit normals to the

boundary.

Modification to the variational principle consists of augmenting the functional of that principle by two terms: the

Lagrange multiplier associated with the nodal contact pressures and a regularization term which is quadratic in the

Lagrange multipliers. References 21, 22, and 28 give a detailed discussion of the perturbed and the augmented

Lagrangian formulations.

The modified functional has the following form:

l-I= I-IHR+ rr 1 7| 1_.___.:_(_,)2| d&q

f/c

(6)

where Fltt R is the functional of the Hellinger-Reissner variational principle; _. is the Lagrange multiplier; and E is the

penalty parameter associated with the regularization term. Note that the addition of the regularization term amounts to

approximating the rigid plate by continuously distributed springs with stiffness of E, for sufficiently large e. As 1/_

approaches zero, the continuous springs become the rigid plate.

Shape functions used in approximating the generalized displacements and the Lagrange multipliers are selected to

be the same and differ from those used in approximating the stress resultants. Moreover, because of the nature of the

functional FI in equation (6), the continuity of neither the stress resultants nor the Lagrange multiplier is imposed at the

interelement boundaries.

Finite-element equations for each individual element can be cast in the following compact form:

! S •

t

• a

ot R

(e)

t t(e) I }(e) tH G(X) • t (e)
X + M(H, X) - PP

_" • go

= 0 (7)



where{H }, { X }, and { _, } are the vectors of the stress-resultant parameters, nodal values of the generalized displace-

ments, and nodal values of the Lagrange multipliers, respectively, IF] is the matrix of linear flexibility coefficients,

[S] is the strain-displacement matrix, [Q] and [R] are the matrices associated with the contact condition and the regu-

larization term in the functional, respectively, { G(X)} and { M(H, X)} are vectors of nonlinear terms, and { go } is the

vector of initial gaps in the contact region f_c. A dot refers to a zero submatrix or subvector, superscript (e) refers to indi-

vidual elements, {P} is the normalized external load vector, and p is a load parameter. As the load is incremented, only

the value of the load parameter p changes and the normalized load vector { P } is constant. Appendix B gives the formu-

las for the elemental arrays [F], [S], {G(X)}, {M(H, X)}, [Q], [R], {P}, and {go}"

Note that the sizes of the coefficient matrices [Q], [R], and {go} vary with the number of active contact condi-

tions. The difficulty associated with an equation system whose size varies during the solution process is alleviated by

allowing the Lagrange multipliers to be discontinuous at interelement boundaries and then eliminating them on the ele-

ment level. If the stress-resultant parameters and Lagrange multiplier parameters are eliminated from equation (7) then

the following equations in terms of nodal displacements { X } are obtained:

(e)

[s]t[F]-I[s]_E[Q][R]-I[Q]t I {x}(e)+{_(X)}(e)+£[Q][e]-l{g0}(e)_p{P}(e) =0 (8)

where

{G(X)} (e) = [Slt[F]-I{G(X)}(e) + {M(H, X)} (e) (9)

and the vector { H } in { M (H, X)} is replaced by its expression in terms of { X }. Equation (8) is the tangent operator for

the Newton-Raphson iterative solution procedure used in this investigation and is derived in detail in appendix C.

To simplify the treatment of the contact conditions, the displacement components are transformed from shell coordi-

nates (s, 0, x3) to the global Cartesian coordinates (x, y, z) before assembly. The relations between the displacement

vector in the shell coordinates {X} (e) and the corresponding vector in Cartesian coordinates {,_}(e) can be written in

the following compact form:

{X} (e) = [T]{_'} (e) (10)

where [ T] is the transformation matrix. The different arrays in the finite-element equations are transformed accordingly.

Appendix D gives the explicit form of the transformation relations.

Solution of Nonlinear Algebraic Equations

Discrete equations governing the response of the tire

are obtained by assembling the elemental contributions

in equation (6) or (7) and can be written in the following

form:

{?(Z,p)} = [K]{Z}+{G(Z)}-p{?} = 0 (11)

where [_7] is the global linear stiffness matrix of thetire;

{G(Z)} is the vector of nonlinear contributions; {P} is

the global vector of normalized external loads and initial

gaps; and {Z} is the global response vector of the tire

obtained by assembling the contributions from the sub-

vectors { H }, { X }, and { _, }.

The nonlinear algebraic equation (eq. (8)) is solved

and the contact region and the contact-load intensities are

determined by using an incremental-iterative technique

(i.e., a predictor-corrector computation method) in which

the response vector {Z }, corresponding to a particular

value of the load parameter p, is used to calculate a suit-

able approximation (predictor) for {Z} at a different

value of p. This approximation is then chosen as an ini-

tial estimate for {Z} in a corrective iterative scheme

such as the Newton-Raphson technique. In each Newton-

Raphson iteration the contact conditions are checked and

updated.

Computational Procedures to Determine

Contact-Load Intensities, Contact Areas,

and Energy Dissipated During Slip

This section describes the contact algorithm used to

assess the state of contact in the tire footprint and to

implement the modified Coulomb friction law. Descrip-

tions of the algorithms used to approximate the area of

contact and the energy dissipated during slip are also

included. Finally, the computational procedures used to

determine the displacement, stress-resultant, and contact-

load intensity solutions at each iteration and load step are

outlined.

Nonlinearities due to large displacements (moderate

rotations) and the contact condition are combined into a



singleiterationloop.Reference23advocatesatwo-level
(nested)iterationscheme.Forthistwo-levelscheme,the
inneriterationloopaccountsfor thecontactconditions
associatedwiththecontact-loadintensities,andtheouter
iteration loop uses the Newton-Raphsoniteration
scheme.Numericalexperimentsdemonstratethat for
frictionlesscontactproblemsthe two-leveliterative
schemerequiresmoreiterationsthanthe single-level
schemeutilizedin thepresentstudy.(Seeref.29.)

Contact Algorithm With Friction

Figure 3 schematically shows the contact algorithm

developed for this investigation. Three possible contact

states are possible for each contact node in this algo-

rithm: (1) open or no contact, denoted by the contact flag

set to 0; (2) stick contact where the contact node adheres

to the contact surface, denoted by the contact flag set

to 1; and (3) slip contact where the contact node slides on

the contact surface, denoted by the contact flag set to 2.

The algorithm is built on a two-level logical if-statement

scheme. The first level interrogates the status of the pre-

vious contact flags for each contact node. The second

level interrogates the status of the current normal gap gw

of nodes not previously in contact to determine whether

or not contact has been established for that particular

node; for nodes which were previously in contact, the

second level interrog_ates both the sign of the normal

Lagrange multiplier Xw, which represents the normal

contact load intensity, and the Coloumb friction law con-

straints to determine the current nodal contact status.

For nodes not previously in contact, stick contact is

assumed whenever the normal gap gw is positive or 0,

i.e., inequality equation (la) is satisfied, and no contact

is assumed whenever gw is negative. For nodes previ-

ously in contact, stick contact is assumed if both the

static condition of compressive (or 0) normal tractions

(eq. (lb)) and the static friction constraint (eq. (2a)) are

satisfied; slip contact is assumed if the compressive nor-

mal tractions condition is satisfied but the friction con-

straint is not satisfied at a node. If the compressive

normal tractions condition is not satisfied at a node, then

that node is removed from the list of active contact

nodes.

When an open nodal contact condition is encoun-

tered the contact flag is set to 0; if the previous contact

condition was either stick or slip then the three load

intensities {_.u, _.v, _.w} for that node are set to 0. When

a stick nodal contact condition is encountered the contact

flag is set to 1, the number of boundary condition nodes

is incremented, and incremental tangential nodal dis-

placements Au and Av are set to 0. When a slip nodal

contact condition is encountered the contact flag is set

to 2. The dynamic friction-force load intensities are com-

puted from the following equations:

_'u, slip ---- c°s(_l/)_'n_tdynami c (12a)

_'v, slip = sin (_)_'n_dynamic (12b)

Incremental friction-force load intensities required to

bring the friction-force load intensities back into compli-

ance with the Coulomb friction law constraint are com-

puted from

A_u = _'u, slip - _u (13a)

A_v = _-v, slip - _-v (13b)

The delta gaps associated with the sliding friction condi-

tion are computed as follows

( { rlbar } - A_,u)

Agu = {dlbar } (14a)

({ rlbar } - A_,v)

Agv = { dlbar } (14b)

where equations (14) are derived from equation (C44) in

appendix C and the delta gaps replace the displacement

solution. The vectors {rlbar} and {dlbar} are defined in

appendix C. The incremental friction-force load intensi-

ties (eqs. (13)) are used to update the contact solution

_c -c -c= _'u + A_'u (15a)

_C --C --C= _v + A_,v (15b)

and the delta gaps (eqs. (14)) are used to update the dis-

placement solution

c c c (16a)u = u + ErelaxAg u

C vC c
v = + erelaxAg v (16b)

where Erela x is a relaxation parameter with a magnitude

0 < erelax < 1. The function of erelax is to enhance the

convergence characteristics of the contact algorithm.

Index c ranges from 1 to the number of contact nodes.

Determination of Contact Area

To obtain an accurate approximation of the contact

area of the Space Shuttle nose-gear tire under static load-

ing conditions, an algorithm was developed which

employs information from the initial geometry of the tire

footprint and updates this geometry to accommodate

footprint deformations associated with contact. Figure 4



illustratesmajorfeaturesof thiscontactareaalgorithm.
The9-nodedelementis convenientlysubdividedinto
fourquadrantswithanodeon thecornersof eachquad-
rant.Coordinatesofthequadrantcornersaredefinedas

i i i

x = x 0 + u (17a)

i i i

= Y0 + v (l 7b)Y

where x_) and y_) are the initial coordinates of the node

and u i and v t are the tangential nodal displacement

components. Index i ranges from 1 to the number of

nodes in the element. As figure 4 indicates, the area of a

typical quadrant is

Aquad = 0.5(xay b - xby a + xby c _ xCy b + xCy a _ xay c

a c c a c d d c d a ayd+x y -x y +x y -x y +x y -x ) (18)

where the superscripts a, b, c, and d denote the four cor-

ners of the quadrant, starting from the lower left and

advancing counterclockwise around the quadrant. Nodal

areas associated with contact nodes within a 9-noded ele-

ment are

I 1

Anode = 0.25Aquad

2 2Anode = 0.25(A uad + Aquad)

3 2

Anode = 0.25Aquad

4 2 3
Anode = 0.25(Aquad + Aquad)

5 3

Anode = 0.25Aquad

6 3q 4Anode = 0.25(A uad +Aquad)

a 7 4qnode ----- 0.25A uad

8 4 1

Anode = 0.25(Aquad + Aquad)

9 1 2 3 4

Anode = 0.25(Aquad + Aquad + Aquad + Aquad)

(19)

When there is only partial contact within an element,

i.e., only some nodes are in contact, then a variable

weighting function is used to modify the nodal contact

areas as follows:

?'lC I

r
A i = 0.5 1.0+ la ik--l_

ct nct I "node

(20)

i

where Act is the modified contact area associated with a

node in contact, and ct k is defined as

k _ 1 if node k is in contact

ct = _ (21)
0 if node k is not in contact

where node k is a node on the periphery of the quadrant or

quadrants defining the nodal areas. For the corner nodes

of the 9-noded finite element shown in figure 4, net is 3;

for the midside nodes nct is 5; and for the interior node

net is 8. The peripheral nodes associated with corner node

1 are (2, 8, 9); the peripheral nodes for midside node 2

are (1, 3, 4, 8, 9); and the peripheral nodes for the interior

node 9 are (1, 2, 3, 4, 5, 6, 7, 8). Finally, the nodal areas

from each element are assembled into a global contact

node array so that the nodal areas reflect the contribu-

tions from all shared elements.

Special Treatment for Tread Grooves

To facilitate adequate modeling of the 3-

circumferential groove tread pattern of the Space Shuttle

nose-gear tire, modifications were made to the vector of

initial normal gaps {_w0} and to the variable weighting
function used to define the contact area. For nodes in the

region of a tread groove, a positive number was added to

_w 0 to prevent that node from contacting the surface. For

this investigation the following modification was made:

_,g = _,g +3.1 (22)
14'0 W 0

where the superscript ranges over the node numbers

associated with tread groove locations. Nodal areas for

contact nodes adjacent to the center groove were com-

puted directly from equations (19) and the variable

weighting function (eq. (20)) was not used for those

nodes. Nodal areas for contact nodes adjacent to either of

the remaining tread grooves were computed with the

variable weighting function (eq. (20)) modified to reflect

fewer peripheral contact nodes. For example, suppose the

right edge of the finite element shown in figure 4 coin-

cides with the left edge of a tread groove such that nodes

(3, 4, 5) are in the groove and never contact the surface.

For this situation nct for midside nodes (2, 6) is 3, and

their peripheral nodes are (1, 8, 9) and (7, 8, 9), respec-

tively. For the interior node (9) nct is 5, and the periph-

eral nodes are (1, 2, 6, 7, 8).

Evaluation of Contact Forces From Load

Intensities

Solution of the governing discrete equations of

the entire structure generates the nodal displacements,

the stress-resultant parameters, and the values of the

Lagrange multipliers at the contact nodes. For each



individualelementin contact,the intensityof the
contact-loadintensitiesatanode{T u, Tv, Tn } are equal

to the values of the Lagrange multipliers { ku, kv, kw } at

the same node. Reference 30 states the contact-load

intensities may be expressed as a function of the nodal

forces {pi ply, pi } as follows:
U _ n

f pi

U

i
Pv

i
Pn

_ NiNJd_,

T i
U

T j

J
T n

(23)

where N i are the shape functions used in approximating

the Lagrange multipliers and the generalized displace-

ments, and _(e) is the domain of the contact element. The

indicated numerical integration in equation (23) was

implemented with a Newton-Cotes quadrature formula-

tion. The range of both i and j in equation (23) is from 1

to the number of displacement nodes in the element. Ref-

erences 29, 31, and 32 use this method in the analysis of

frictionless contact problems. This method of extracting

contact forces from the load intensities is consistent with

the finite-element formulation of the problem.

A possible drawback of this method is the fact that

the shape functions N i are computed only for the un-

deformed tire and may not reflect contact area variations

associated with tire deformations at the tire-pavement

interface. An alternative method of obtaining contact

forces from the load intensities that alleviates this draw-

back is expressed in the following equation:

Iact'C1pC = (ActTv)C

P: ( ActTn) c

(24)

where c ranges from 1 to the number of contact nodes.

Reference 30 discusses other approaches for determining

the contact forces.

Evaluation of Energy Dissipated During Slip

For contact problems involving friction it is impor-

tant to account for any slip that occurs in the contact area.

In this investigation the slip at each contact node is

approximated for each iteration with the following

equations:

c(k)
Uslip = Ag:(k)Erelax (25a)

10

c(k) _ c(k)_
Vslip = agv Erelax (25b)

where Uslip and Vslip represent the tangential slip in the

tire meridional and circumferential directions, respec-

tively. Index c ranges from 1 to the number of contact

nodes and the index k ranges from 1 to the number of

iterations at each load step. For a given contact node, the

total slip associated with a load step is

iter

UsClip: Z UslipC(k) (26a)

k=l

iter

Pslip Z c(k) (26b)= Vslip

k=l

-C -C

The magnitude of these total slip values Uslip and Vslip

should increase monotonically over the iterations that

involve sliding contact. Energy dissipated through slip

was computed at each iteration for each contact node as

uc(k)
slip u = [Act(UslipTu)(k)] c (27a)

uC(k)
slip_ = [Act(VslipTv) (k)]c (27b)

where the energy dissipation expressions (Uslipu , Uslipv )

should always be negative since the friction forces

(TuAct, TrAct ) oppose the slip. Energy expressions

(eqs. (26)) are summed over the number of iterations to

obtain an estimate of the total energy dissipated through

sliding at each contact node and load step as follows:

iter c

UsliPu = ct ( )(k) (28a)

iter ,(k)lCUClipv = Act E (VslipTv)
k=l J

(28b)

Computational Procedures for Solving Tire

Contact Problem

The computational procedure used in the present

study is summarized as follows:

Preprocessing and Initial Calculation Phases

Step 1. Model tire geometry, evaluate stiffness coeffi-

cients (ref. 31), and generate input data includ-

ing transformation matrices.

Step 2. Select estimates for the penalty parameters and

assume the contact status at the selected con-

tact nodes.



Step3.

Step4.

Step5.

Step6.

Step7.

Step8.

Step9.

Generatelinearelementarrays.

SolutionPhase

Solveinflation-pressurecasewithoutcontact
usingNewton-Raphsoniterationscheme.

Generateinitial normalgap betweenthe
inflatedtire configurationandflat surfaceat
designatedcontactnodes.

• Begindisplacementincrementationloop.

• Begin combinedcontactand Newton-
Raphsoniterationloop.

Generatenonlinearelementarrays,eliminate
thestressresultantsandtheLagrangemultipli-
ersfromtheelementalequations,andassemble
theleft-andright-handsidesoftheequations.

Solve equation(8) for the incremental
displacements.

Updatetheresponsevectorfordisplacements,
stressresultants,andtheLagrangemultipliers:

{z(r+ 1)} = {z(r)} + {AZ(r)} (29)

Cheek the contact status and modify the con-

tact conditions at each node as needed:

if _'w < 0 and _w < 0, then the constraint is
active

if g'w > 0 or _'w > 0, then the contact constraint
is inactive

if r r = J(r2u + r2)< rnlastatic then the con-

tact condition is stick

if T r = J(T2u + T2)> Tnktstatic then the con-

tact condition is slip

When the previous normal contact constraint is

inactive, proceed as follows:

a. If the current normal contact constraint is

also inactive, then continue.

b. If the current normal contact constraint

is active, add the active contact contri-

bution to the list of nodes with stick con-

tact, increment boundary conditions, and

continue.

When the previous contact constraint condition

is stick or slip, proceed as follows:

a. If the current contact constraint is

stick, increment boundary conditions and

continue.

Step 10.

e _

b. If the current contact condition is

slip, define dynamic friction forces and

continue.

c. If the current normal contact constraint is

inactive, remove the node from the list of

active constraints, zero out contact forces,

and continue.

If any current contact constraints are different

from the previous constraints or if there are any

active slip constraints, return to step 6.

Cheek the convergence of the Newton-

Raphson iterations:

[ {AZ}t{ AZ}/{z}t{ z} ]1/2
< Tolerance (30)

n

where n is the total number of degrees of free-

dom in the model and the tolerance is pre-

scribed. If convergence is achieved, then

compute the contact forces at each contact

node with equation (24) or with the following:

pi

U

i

Pv

i

Pn

I )= f NiN j -j

_(e) [ -J

d_ (31)

and continue. Otherwise return to step 6.

Step 11. If the prescribed displacement is greater than

the specified maximum displacement, then

stop. Otherwise, add additional displacement

and return to step 6.

The mixed-formulation finite elements used in this

study have nine displacement nodes and four stress-

resultant nodes and are designated as M9-4 elements in

table 1.

Comments on Mixed Models, Perturbed

Lagrangian Formulation, and Computational

Procedure

The following comments regarding the mixed mod-

els, the perturbed Lagrangian formulation, and the com-

putational procedure used herein are in order:

1. Nonlinear terms in the finite-element equations of the

mixed model (eq. (7)) have a simpler form than those

of the corresponding displacement model (eq. (9)).

2. Equation (7) includes both the Lagrange multiplier

approach and the penalty method as special cases, as

follows:

11



a. As the penalty parameters en and Et approach infin-

ity, equation (7) reduces to those of the Lagrange

multiplier approach.

b. When Lagrangian multiplier terms are eliminated

in equation (7), the resulting equations are identical

to the penalty method.

3. The perturbed Lagrangian formulation alleviates two

of the drawbacks associated with the Lagrangian mul-

tiplier approach and the penalty method, namely,

a. The regularization term in the functional results

in replacing one of the zero diagonal blocks in the

discrete equations of the Lagrangian multiplier

approach by the diagonal matrix [R]/E in

equation (7).

b. The contact condition is satisfied exactly by trans-

forming the constrained problem to an uncon-

strained problem through the introduction of

Lagrangian multipliers (the terms

f_c _c lIc

in equation (6)) rather than approximately as in the

penalty method. However, the presence of the regu-

larization terms (the terms

in equation (6)) results in replacing the contact con-

dition by the perturbed condition:

_[RI{X} + - {go} = (32)[Q]t{x} 0

4. An important consideration in the perturbed

Lagrangian formulation and in any penalty formula-

tion is the proper selection of the penalty parameters

En and _t- With the foregoing mixed models the pen-

ahy parameters can be chosen independently of the

element size without adversely affecting the perfor-

mance of the model. Accuracy of the contact solution

increases with increasing values of the penalty param-

eter _n. However, for very large values of en, the equa-

tions become ill-conditioned and thus round off errors

increase. For small values of Et the tire footprint

becomes compliant, i.e., there is little or no slipping,

and the calculated friction forces are artificially low.

For very high values of _t the contact algorithm with

friction may become ill-conditioned.

5. The elemental arrays [F], [S], {G(X)},

{M(H,X)}, and {P} are evaluated numerically

12

using a Gauss-12gendre formula. The arrays [Q],

[R], and {go} are evaluated using a Newton-Cotes

formula. In both cases the number of quadrature

points used is the same as the number of displacement

nodes in the dement. This results in under-integrating

the arrays [Q] and [R] and avoids the oscillatory

behavior of the contact-load intensity that has been

observed when the arrays are fully integrated. Note

that the use of Newton-Cotes formula allows the

contact-load intensities to be evaluated at the displace-

ment nodes. Appendix E gives details on the shape

functions for the Gauss-Legendre formula and the

Newton-Cotes formula.

Numerical Results

Description of Finite-Element Models

To develop the finite-element models used in the

analysis of the Space Shuttle nose-gear tire, the cubic

spline approximation of the outer meridional surface of

the tire half cross section was discretized into 75 poten-

tial node points as indicated in figure 5. From this popu-

lation of possible nodes, a smaller number of nodes was

chosen to approximate the tire cross section. To model

the tire inflation response, a single strip of 30 finite ele-

ments was used to approximate the complete tire cross

section. This model employed 61 nodes to characterize

the tire meridian, and 480 stress-resultant parameters and

293 nonzero generalized displacement parameters were

used to synthesize the tire inflation response.

Finite-element models employed to analyze the con-

tact behavior and friction characteristics of the Space

Shuttle nose-gear tire used 41 node points in one half of a

meridional cross section (81 nodes for the entire cross

section), and these nodes are denoted as the circular sym-

bols in figure 5. Nodes associated with the circumferen-

tial tread grooves are also highlighted in figure 5. In the

meridional direction, the tread area of the tire was mod-

eled with the highest density of nodes and the sidewall

and bead areas were modeled with progressively fewer

nodes. This meridional node pattern was used for each of

the two-dimensional finite-element tire models employed

in this investigation. The circumference of the tire was

divided into 240 possible node points, and a smaller

number of nodes was chosen from that population to con-

struct the tire finite-dement models. To refine the mesh

in specific areas such as the contact zone, a higher den-

sity of nodes was chosen from the population in the spe-

cific region of interest.

Figure 6 shows a map of elements and node loca-

tions for one of the models used to analyze the contact

problem. Figure 6 shows an array of elements with

40 elements in the meridional direction and 18 elements



in thecircumferentialdirection.Numbersin theleftand
rightmarginsof figure6 denotethebeginningandend-
ingelementnumbersin specificrows.Blackdotssuper-
imposedover thesquaregrid of elementsdenotethe
individualnodesof thefinite-elementmodel.Several
individualelementsare shadedand shownin an
expandedscaletoillustratethenodenumberingsequence
thatis usedto minimizethebandwidthfor thefinite-
elementmodels.Thecomplicatingfactorhereisthatthe
elementsin thecircumferentialdirectionarejoinedalong
thetopandbottomedge.Thenumberingschemethat
is illustratedin theexampleshownin figure6 provides
aminimumbandwidthfor thistiremodel.Forthisspe-
cificexamplethebandwidthis1635.Thesixrowsofele-
mentsin themiddleof thearray,containingelements1
through240,comprisethepossiblecontactregionfor
thismodel.Figure6 alsoshowsthelocationof thecir-
cumferentialtreadgroovesof theSpaceShuttlenose-
geartire.

Threedifferentmodelswereusedin theanalysisof
theSpaceShuttlenose-geartire in contactwitha flat
plate.Thesemodels,denotedasmodel1,model2, and
model3,aredepictedin figure7.Eachmodelemployed
480elementsin the regionoutsidethecontactzone
(0<0.2re,0 >0.27t).Model1included240elementsin
thecontactregionof thetire (-0.2rt< 0 < 0.2n) for a

total of 720 elements. (See fig. 6.) For model 1 there

were 14 076 nonzero generalized displacement parame-

ters, 23040 stress-resultant parameters, and 3159

contact-load intensity parameters. Model 2 used a refined

mesh within the contact region with 480 contact elements

and a total of 960 elements overall. For model 2 there

were 18 776 nonzero generalized displacement parame-

ters, 30720 stress-resultant parameters, and 6075

contact-load intensity parameters. Model 3 employed a

more refined mesh in the contact zone with 960 con-

tact elements and a total of 1440 elements. Model 3

employed 28 152 generalized displacement parameters,

46080 stress-resultant parameters, and 11 907 contact

load-intensity parameters. A single iteration for model 1

required about 12 min on a Cray 2 computer, and a single

iteration for model 3 required about 12 min on a Cray

Y-MP computer.

Convergence Characteristics and Performance of

Contact-Friction Algorithm

Relaxation parameter and penalty parameter

effects. Table 2 shows the effect of variations in the

relaxation parameter Erela x on the convergence character-

istics of the contact-friction algorithm. To study this

effect four values of Erela x were evaluated over seven

load steps. For a relaxation parameter value of 1.0 no

convergence was obtained within 40 iterations beyond

the second load step. It should be noted that the first load

step, which computed the inflation solution, involved no

contact and the second load step involved contact with no

sliding. Load steps 3-7 involved some tire sliding for the

conditions summarized in table 2. A relaxation parameter

value of 0.75 required a total of 104 iterations to obtain

converged solutions at the seven load steps; for a value of

rr.relax of 0.5, only 36 iterations were required to cover the

same load range; and a relaxation parameter value of

0.25 required a total of 149 iterations. It is obvious from

these results that the choice of the relaxation parameter

can have a profound effect on the convergence character-

istics of the contact-friction algorithm.

Data shown in table 3 illustrate the oscillating fric-

tional load intensities that were observed when the relax-

ation parameter was set to 0.75. In table 3 both the lateral

friction load intensity and the drag friction load intensity

are shown to change sign 13 times during the course

of the 28 iterations required to obtain a converged solu-

tion at the third load step. No oscillatory behavior was

observed for the friction-force load intensities when the

relaxation parameter was set to 0.5 or 0.25.

Table 4 summarizes the effect of tangential penalty

parameter variations on convergence characteristics of

the contact-friction algorithm. To evaluate this effect

four values of _t were studied over seven load steps. For

a tangential penalty parameter value of 1.0 a total of

31 iterations was required to obtain converged solutions

over the range of load steps tested. At a tangential pen-

alty parameter value of 1012 the number of iterations

required to obtain converged solutions over the same

load range increased to 45. Thus, approximately a

50 percent increase in iterations was required for con-

verged solutions when g t was increased by 12 orders of

magnitude.

The physical significance of the tangential penalty

parameter is that it represents the distributed tangential

stiffness of the tire-contact interface and therefore serves

a double role of penalty parameter and tire stiffness

parameter in the contact-friction algorithm. When _t is

set to a value of 1.0, the footprint of the contact-friction

algorithm is compliant; little or no slip occurs in the tire

contact zone and the predicted friction-force load intensi-

ties are very small. When gt is set to 1012 the footprint of

the contact-friction algorithm is extremely stiff, the tire

must undergo slip to satisfy the Coulomb friction law

constraint, and the calculated friction-force load intensi-

ties may be too high. To illustrate this point more clearly,

figure 8 shows the normalized tire slip dissipation ener-

gies in the lateral and drag directions for two values of Et.

Figure 8 indicates that the amount of energy dissipated

by the tire due to slipping in the footprint is strongly

influenced by the choice of Et. Data presented in figure 8
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alsoindicatethatthecontact-frictionalgorithmpredicts
muchmoreenergydissipatedfromlateralslippingbythe
tire thanfrom slippingin thedragdirectionfor static
loadingcasesstudiedin thisinvestigation.

Figure9 presentstheinfluenceof normalpenalty
parametermagnitudeon the accuracyof total strain

energy and total contact force. Total strain energy is the

integral of total strain energy density over the full extent

of the tire carcass, while total contact force is the integral

of normal contact-load intensity over the entire contact

zone. Strain-energy ratio, denoted by the solid line, and

contact-force ratio, denoted by the dashed line, are plot-

ted as a function of the base 10 logarithm of the penalty

parameter in figure 9. Results in figure 9 indicate that

total calculated strain energy and total contact force are

insensitive to variations in the normal penalty parameter

over the range of 106 to 1015. It should be noted that for

these tire-contact problems, total contact force is much

more sensitive to a poor choice in the penalty parameter

than total strain energy, as denoted by the percent errors

on the two ordinate axes.

Friction coej_icient and load step size effects.

Table 5 summarizes the effect of static and dynamic fric-

tion coefficient variations on convergence characteristics

of the contact-friction algorithm. Three different static

friction coefficients were evaluated to study these

effects, ktstatic = 0.3 represents a wet concrete runway

condition; P-static = 0.6 represents a dry concrete runway

condition; and _tstatic = 1.0 represents a maximum fric-

tion coefficient associated with aircraft tires in general.

The dynamic friction coefficient for each friction state

was taken to be 85 percent of the static value. These fric-

tion coefficient values are consistent with a substantial

aircraft tire friction database that has been acquired over

a number of years. Reference 33 gives further details on

experimental friction measurements for aircraft tires and

empirical relationships for predicting aircraft tire friction

responses. Data in table 5 indicate that about 30 percent

more iterations were required to obtain converged solu-

tions over the range of load steps tested for the low

friction surface and the high friction surface than for

the friction coefficients representative of the dry run-

way condition. These results indicate that the contact-

friction algorithm is robust enough to handle the range of

friction coefficients normally experienced in aircraft tire

applications.

Table 6 summarizes the effects of varying load step

size on the convergence characteristics of the contact-

friction algorithm. This study evaluates performance of

the algorithm over a normal tire deflection range from 0

to 0.6 in. In the first case the tire deflection range was

covered in 10 load steps; in the second case this deflec-
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tion range was covered in 5 load steps; and in the third

case the deflection range was covered in 4 load steps.

Case 1 required 52 iterations and computed a tire load of

3998 lb for a fire deflection of 0.6 in. Case 2 required

28 iterations and case 3 required 26 iterations to obtain a

converged solution at a tire deflection of 0.6 in. The cal-

culated normal tire load for case 2 was 0.6 percent less

than the predicted load of case 1 and the calculated nor-

mal load for case 3 was 0.9 percent less than that for

case 1. It appears that the contact-friction algorithm can

operate over a range of step sizes without serious degra-

dation in performance.

Conclusions

A computational procedure is presented for the solu-

tion of frictional contact problems for aircraft tires.

The Space Shuttle nose-gear tire was modeled using a

two-dimensional laminated anisotropic shell theory

which includes the effects of variation in material and

geometric parameters, transverse-shear deformation, and

geometric nonlinearities. Contact conditions were incor-

porated into the formula by using a perturbed Lagrangian

approach with the fundamental unknowns consisting

of stress resultants, generalized displacements, and

Lagrange multipliers associated with contact and friction

conditions. The contact-friction algorithm is based on a

modified Coulomb friction law. A modified two-field,

mixed-variational principle was used to obtain elemental

arrays. This modification consists of augmenting the

functional of that principle by two terms: the Lagrange

multiplier vector associated with normal and tangential

node contact load intensities and a regularization term

that is quadratic in the Lagrange multiplier vector.

Shape functions used in approximating generalized

displacements and Lagrange multipliers were selected to

be the same and differ from those used to approximate

stress resultants. Stress resultants and Lagrange multipli-

ers were allowed to be discontinuous at the interelement

boundaries. Nonlinearities due to large displacements,

moderate rotations, and contact conditions were com-

bined into the same iteration loop and were handled by

using the Newton-Raphson iterative scheme.

Numerical results are presented for the Space Shuttle

nose-gear tire subjected to inflation pressure loads and

combined inflation pressure and contact loads against a

rigid flat plate.

Results from this investigation lead to the following

observations and conclusions: (1) the choice of the relax-

ation parameter is critical to the performance of the

contact-friction algorithm. If the parameter is too large,

oscillating friction load intensities occur; if the param-

eter is too small, many iterations are required for



convergence.(2)Thetangentialpenaltyparameteris a
measureof tangentialstiffnessof thetire-contactinter-
faceandhasastronginfluenceonenergydissipatedby
thetireduetoslip.Normalcontact-loadintensitydistri-
butionandstrainenergyareinsensitiveto variationsin
thenormalpenaltyparameter.(3) Thecontact-friction

algorithmisrobustenoughtohandletherangeof friction
coefficientsassociatedwithaircrafttireapplications.

NASALangleyResearchCenter
Hampton,VA23681-0001
January18,1996
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Appendix A

Fundamental Equations of Shell Theory Used in Present Study

Appendix A summarizes the fundamental equations of the Sanders-Budiansky type shell of revolution used in this

study. Effects of laminated, anisotropic material response and transverse-shear deformation are included in these

relationships.

Strain-Displacement Relationships

es =as"+_+_ -3sw +_
(AI)

3sr _ __w_w+1l_22 _ _ 1 2E0 :-7-u+ 30v+R2 _ - a0w +_*
(A2)

2,0 U (A3)

Ks = 3s_ s (A4)

W'O: 3srC_rs + _30_0 (A5)

2_sO = _30_)s + (3s-3sr'_+--7-ffO (g21 /_1)_1
(A6)

_ u + 3s w + _s (A7)
2_s3 R1

2e03 = -R2+ 30w+_0 (A8)

where Es and e0 are extensional strains in the meridional and circumferential directions, 2Es0 is the in-plane shear strain,

_¢sand K0 are bending strains in the meridional and circumferential directions, 2_¢s0 is the twisting strain, 2es3 and 2e03

3 _3

are transverse-shear strains, 3 s - %5-'30 = _0' and _ is the rotation around the normal to the shell, which is given by

(A9)

Nonlinear terms that account for moderate rotations are underlined with dashes in equations (A 1) to (A3).

Constitutive Relations

The shell is assumed to be made of a laminated, anisotropic, linearly elastic material. Every point of the shell is

assumed to possess a single plane of elastic symmetry parallel to the middle surface. The relationships between the

stress resultants and the strain measures of the shell are given by

16



N
s

N o

Nso

M
s

M o

Mso

as

Oo

Cll c12 @

c22

c66

Symmetric

fll f12

f12 f22

G@ f66 • •

dll d12

d22

d66

c44 J

_s

_0

2tZsO

K s

K0

2_CsO

2Es3

2E03

(A10)

where c O, fij, and dij (i, j = 1,2, 6) are shell stiffness coefficients. Nonorthotropic (anisotropic) terms are circled and

dots indicate zero terms.
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Appendix B

Formulas for Elemental Arrays [F], [S], [G(X)], [M(H, X)], [P], [Q], [R], and {go}

Appendix B gives explicit forms of the elemental arrays [F], IS], [G(X)], [M(H, X)], and [P]. The arrays are

partitioned into blocks corresponding to the contributions from individual nodes or stress-resultant approximation func-

tions. Expressions for the typical blocks are given in table B 1. The order of the swains is Es, ___,2Es0, _:s, w_, 2W,sO, 2_s3,

and 2E03" The order of the nodal displacement parameters is u, v, w, tps, and tpo.

In table B1, _k and _/l are shape functions associated with stress-resultant components; N i and N j are shape

functions for generalized displacements; s is the number of stress nodes in the element; m is the number of displacement

nodes in the element; and _(e) is the element domain. The range of the indices k and I is 1 to s; the range of the indices i

andj is 1 to m. Dots in the matrices refer to zero terms; _s = _, and _0 -= _00" Quantifies _1 and E2 are defined in terms

of

U

_1 = -_ll - OSw (BI)

_ u _30w (B2)
_:2 R2
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Table B1. Explicit Form of Typical Partitions of Arrays [F], [S], [G(X)], [M(H, X)], and [P]

Array

[F]kl

[S]kj

Number of

partitions

(or blocks)

sXs

s >(m

Typical partition

--k--l
NN=

_te)

all a12 a16

a22 a26

a66

Symmetric

bll b12 b16 ' • •

i

' bl 2 b22 b26 ' • •

i i

b16 b26 b66 . • •
i

gll g12 g16 • •

n

g22 g26 • •

n

g66 ' • •

ass aso

a88

--k
N

_s •

asr 1_
7 r °

I a _s r
r 0 _s--- r

1

R I

1

R2 • •

• • •

• Os •

a� la
• --7- r 0

1 1 1 -2 _s + • _2-r - 0 - r 0 , r

l
• _s l •

R 1

r o • 1• R2

df_

NJ d_
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Table B 1. Concluded

Array

{a(x)}k

{M(H,X)}j

{P}j

Number of

partitions

(or blocks)

m

m

Typical partition

i

i

1 2

£-](*)

1

_--_1(Nsl31 + Nse_: 2) - I(N s + NO)_3 0

1

R.___2(NsoEL1- + No,2)+r2(Ns+No),(_s+___)

- (Ns_ ] + NsO_2)_ s - _(Ns0_ ] + N0_2)0 0

Q

I

e$

Po

_ N j. d_P

NJ d_

i

2O



Appendix B also gives explicit forms of elemental arrays [Q], [R], and {go}" Table B2 gives expressions of typi-

cal partitions. In table B2, N t and N j are shape functions for Lagrange multipliers and generalized displacements and c

is the number of nodal points in contact within the element. The range of the indices i and j is from 1 to c, and the range

of the index i" is from 1 to rn; <_,w> is the unit ramp (or singularity) function defined as follows:

<gw >n

~tl

gw

0

(kw>0)

(g'w-<0)

(B3)

where _'w = -gw and n = 0 or 1. Vector {go} contains components gu, gv, and <gw > for each contact node. Com-

ponents gu and/¢v are defined in figure 2(b).

Table B2. Explicit Form of Typical Partitions of Arrays [Q], [R], and {go}

Number of partitions

Array (or blocks) Formula for typical partition

i' j - o[Q] mxc N N <gw > d_

" i j - oJR] c×c - N N <gw > d_

{go} f Ni gv
• df_
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Appendix C

Derivation of Newton-Raphson Tangential Operator Equations

Tayior's Series Preliminary Discussion

The governing differential equations for the tire contact problem are

t Sl • (e) 1 (e)

h _rnntxx *

11 • - pP = 0

qc x + mnlX h

t 9_ go
qc •

(CI)

In equation (C1))_ is the element flexibility matrix, dimensioned s8 x s8 and partitioned into s x s submatrices; s t is the

element linear strain-displacement matrix, dimensioned s8 x m5 and partitioned into s x m submatrices; rant is the ele-

ment stress-displacement displacement matrix, dimensioned s3m3 x m3 and partitioned into sm x m submatrices; and qc

and rc are matrices associated with contact, dimensioned m x c3 and c x c3 and partitioned into m x c and c x c sub-

matrices, respectively. Subvectors h, x, and _ representing stress, displacement, and contact-load intensity are dimen-

sioned s, m, and c3, respectively. The normalized external load vector P is dimensioned m5 and the vector of initial gaps

go is dimensioned c3. The penalty parameter is denoted as e and the loading parameter is denoted as p. Superscript t

denotes transpose and superscript (e) indicates that the equations are developed at the element level. Equation (C1) can

be expressed as three functions by carrying out the indicated multiplication:

1

f(h, x, _,) = - f lh + six + _mnlXX = 0
(C2)

g(h, x, _,) = stlh + qc _. + mnlxh - pP = 0 (C3)

j(h, x, _,) = qc x + + go = 0 (C4)

Consider a point x 0 "reasonably" close to a root of a functionflx). Taylor's series expansion about x 0 is

' (l _ xo)2 f"(Xo)f(x) = f(x o) + (x - Xo)f (%) + x - + ... (C5)

Iff(x) is set to zero, then x is a root of the right-hand side of the Taylor series expansion about x 0 (taking linear terms

only):

0 = f(xo) + (x-Xo)f'(Xo) (C6)

(X-Xo)f (x O) = -f(xo) (C7)

f(x O)

x = X0
f (XO)

(C8)

or

x-x 0 = _ - f(xo),

f (x O)

(C9)
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x represents an improved estimate of the root to replace x 0

x(n+ 1) = xn+_)(n+ 1) (ClO)

Taylor's series expansion of equation (C l) about h o, x0, and _o, considering the linear terms only, leads to the following:

f(h, x, _,) = f(h O, x0, _'0) + (h - h0)_-_fh + (x _ x0)_xOf + (_ _ _'0)_-_Of (C1 l)

0g _g + (_. _g
g(h,x,_.) = g(ho, xo,_.o)+(h-ho)_-_+(X-Xo)-_x -Z0)_-- _ (C12)

_J _J _J (C13)
j( h, x, _ ) = j( h O, x O, _'0) + ( h - ho)_- _ + (X - Xo)_x + (_. - _0)_-_

Case l--No Contact

Consider first the case for no contact where equation (C 1) is reduced to

and rearranging the nonlinear terms

-ft
(Stl + mnlX)

II1h + _mnlxx _ •

x mnlX h pP

1

- fl h + six + _mnlXX = 0

stlh + mnlXh- pP = 0

ls I + _mnlX .)=0
x pP

Applying the Taylor series expansion yields the following equations:

Let

and

= 0 (C14)

1

- flho + six 0 + _mnlXOX 0 - (h - ho)fl + (x - Xo)(S l + mnlXO) = 0

Stlho + _ tm nlXOh 0 pP + (h - ho)(S l + mnlXO) + (x- xo)mnlh 0 = 0

( h - ho) = Ah

(x - x0) = Ax

(C15)

(C16)

(C17)

(C18)

(C19)

(C20)

(C21)
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Equations(C18)and(C19)become

-f l (s! + mnlX 0 Ah = f lho - SlXo - _mnlXOXo = rh (C22)

[Stl + mnlXO) mnlh 0 j t Ax t rx- Slh 0 - ranlXOh 0 + pP

Equation (C22) defines the tangent operator for the Newton-Raphson iterative solution procedure for problems that do

not involve contact. Looking at the first part of equation (C22) where

1

- flAh + (s l + mnlXO)AX = flho -stx 0 - _mnlXOXo = rh (C23)

then multiplying by the inverse of the flexibility matrix

1 -1

- Ah + fll(St + mntxo)Ax = h 0 - fllslxo - _fl mnlXOXo = fl lrh (C24)

and then substituting into the second part of equation (C22) yields

(Stl + mnlXO)f t I (s I + mnlXO)AX + mnlhOAx = -Stlho-mnlXoho + pP-(stl + mnlXO)f tlrh = rx- (stl + m nlXO)fllrh

(c25)

Equation (C25) is the governing differential equation for problems that do not involve contact with the stresses elimi-

nated. Equation (C25) can be rewritten by defining the following terms that are employed in the tire modeling code used

in this investigation:

[k22] = mnlh o (C26)

[kl2bar] = f ll (sl + mnlXO) (C27)

[kl2S] t = (s I + mnlXO) (C28)

(rhbar) = f/lrh (C29)

and equation (C25) now becomes

([kl2S]t[kl2bar] + [k22])Ax = (rx) - [kl2S]t (rhbar) (C30)

Case II---Contact

Next consider the case of contact by reintroducing the contact terms into equation (CI 7)

1

-f l (Sl + 72mnlX) •

(Stl + mnlX) • qc

l FC

• qc E

x - PP_, go

= 0 (C31)

Applying the Taylor series expansion yields

1

- flho + slx 0 + _mnlXOX 0 - (h - ho)fl + (x - Xo)(S l + mnlXO) = 0 (C18)
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stlho + mnlXOh 0 + qc_.O - pP + (h - ho)(st! + mnlXO) + (x - xo)mnlh 0 + (_. - _'o)qc = 0 (C32)

r

t _
qcX°+ e o-go

t rc

+ (X-Xo)qc+ (_'-_'0)-_ = 0
(C33)

Let

(;_ - ;%) = AX (C34)

Equations (C18), (C32), and (C33) become

-fl (st + mnlXo) •

t

(st + mntXO) • qc

r
t c

• qc E

Ah
Ax

Ak f 11f
f lho - six 0 - _m nlXoX 0

rh
t

= - slh 0 - mnlXOh 0 - qc_.O + pP = rx

t rc _ + r_.
- qcXO--_AO go

(C35)

The contact equation (the last part ofeq. (C35)) can be written as

rt t c_
_" = -qcAx-qcX°- a o +gO (C36)

and solving for A_. yields

(_1 tAX (rc)-I t (E)-IA_. = - qc - (_ ) qcXO + go-go
(C37)

Substituting equation (C37) into the second part of equation (C35) redefines the governing differential equation to

account for contact terms

t -1 fr,.yl t t t -I (rc'_-I t

(st + mnlXo) f l (st + mntXO) Ax + mnlho Ax- qc_-_ ) qc Ax = - Slho- mntxoho + PP - (st + mntxo)ft rh - qc_-_ ) (go - qcXo )

z -1 (rcyI
= rx- (s l + mntXo)fl rh - qc(_) (go - qtcxo) (C38)

where the underlined terms are those associated with contact. Equation (C38) is identical to equation (8) in the main

body of the paper. The following terms are associated with the contact solution in the tire modeling code used in this

investigation:

IU'[dlbar] = qc (C39)

(rc_-l, t ,

(rlbar) = (,_-) tg0 - qcXo ) - _'0 (C40)

(rc'_- I . t

(rib) = _._) (go-qcXo)
(C41)

and equation (C38) can be rewritten as

([kl2S]t[kl2bar] + [k22 ] -qc[dlbar])Ax = (rx)- [kl2S]t(rhbar)- qc(rlb) (C42)
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wheretheunderlinedtermsareassociatedwithcontact.Thestressesarerecoveredfromthedisplacementsolution
throughthefollowingequation:

(h) = (rhbar)- [kl2bar](x) (C43)

andthecontact-loadintensitiesarerecoveredfromthedisplacementsolutionwith

(_.)= (rlbar)- [dlbar](x) (C44)
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Appendix D

Transformation of Elemental Arrays From Shell Coordinates to Global Cartesian Coordinates

Transformation of the displacement components from the shell coordinates (s, 0, x3) to the global Cartesian coordi-

nates (x, y, z) is expressed by the following equation:

{X} (e) = [T]{X} (e) (D1)

where [T] is a block-diagonal transformation whose submatrix at each node is given by

es eo _s × _eo 0 0

[T] (n)

(5x5)
_-0

! 0

0 1

(D2)

where e s and e 0 are tangennal umt vectors in the s- and 0-directions, respectively, 0 is the null vector, and {X} (e)

and { X }(e) are generalized displacements in shell coordinates and global Cartesian coordinates, respectively. Note that

rotation components 0s and 00 are not transformed since the outer surface of the tire was chosen as the reference surface;

therefore, 0s and 00 do not appear in the contact conditions.

Elemental matrices [S] and -_ and the external load vector {P} are transformed from the shell coordinates to

the global Cartesian coordinates as follows:

[S] ---> [SI[TI (D3)

----_[ ] [_--_I[T] (D4)

{P} _ [TIt{p} (DS)

Nonlinear vectors {G(X)} and {M(H, X)} are evaluated with displacement vector {X} expressed in terms of

{ X } at the end of each iteration cycle.
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Appendix E

Details of Shape Functions for M9-4 Finite-Element Model

Appendix E presents the expressions for the shape functions used in the M9-4 finite-element model in terms of the

local quadrilateral (or natural) coordinates _ and r I. In figure E1 the open circular symbols denote the nine nodes for the

generalized displacements and Lagrange multipliers, and the filled symbols denote the interior nodes for the stress

resultants. Figure E1 also lists the coordinates of the four comer nodes.

4

3

1 (1, -1)

(-1, -1)

Figure El. Schematic of the M9-4 finite element.
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Shape functions for the biquadratic approximations are given by the following system of equations:

N 1 = _TI( _-l)(r I-1)

N 2 1
= ,_rl(1 _ _2)(,q _ 1)

N 3 = _rl(_+ 1)(r I- 1)

N 4 = _(_+1)(1-t"12)

N 5 = _1](_ + 1)(i I + 1)

N 6 1
= ,_rl(l -_2)(r I + l)

U 7 = l_rl(_- 1)(rl + 1)

N 8 = _(_- 1)(1 -1"12)

N 9 = (1-_2)(1-q2) (El)



When the stress nodes are located at the center of each element quadrant, the corresponding bilinear shape functions

for the stress resultants are given by

-1' 1

N = 3(1 -2_-2"q +4_rl)

-2' 1

U = 3(1 +2_-2rl-4_rl)

-3' 1

N = 3(1+2_+2rl+4_rl)

-4' 1

N = 3(1 -2_+ 2r I-4_rl) (E2)

Elemental arrays [F], IS], {G(X)}, {M(H, X)}, and {P} are evaluated numerically using a Gauss-Legrendre

formula, and the arrays [Q], [R], and {go} are evaluated using a Newton-Cotes formula. Reference 34 describes these

numerical quadrature formulas.
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Table 1. Characteristics of Mixed Finite-Element Models Used in Numerical Studies

Number of

Number of Maximum number of parameters per Number of

Designation displacement nodes Lagrange multipliers stress resultant quadrature points*

M9-4 3x3 3x3 2x2 3x3

*All elemental arrays are evaluated using Gauss-Legendre quadrature formulas except for [ Q], [ R], and { go }' which are evaluated us-
ing Newton-Cotes formulas.

Table 2. Effect of Relaxation Parameter on Convergence of Contact-Friction Algorithm

[en = 1.0 E+12; Et = 1.5 E+06; _dstatic = 0.6; _dyrtamic = 0.51]

Step Erela x Normal deflection, in. Normal load, lb Iterations

1.01

2

3

4

5

6

7

0

.025

.05

.1

.2

.3

.33

0

86.63

221.43

515.07

1256.76

2112.22

2315.18

6

4

(a)

(a)

(a)

(a)

(a)

Total 10a

0.75 0

86.63

221.43

515.07

1256.76

2112.22

2315.18

0

.025

.05

.1

.2

.3

.33

6

4

28 b

15 b

22 b

25 b

26 b

Total 126 b

0.5 0

.025

.05

.1

.2

.3

.33

0

86.63

221.43

515.07

1256.76

2112.22

2315.18

6

4

4

3

7

8

4

Total 36

0.25 0

.025

.05

.1

.2

.3

.33

Total

0

86.63

221.43

515.07

1256.76

2112.22

2315.18

6

4

32

20

27

28

32

149

aDid not converge in 40 iterations.

bOscillating friction forces.
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Table3.IterationHistoryforContactNode36IllustratingOscillatingFriction-LoadIntensities

[_eiax=0.75;e n = 1.0 E+12; et = 1.5 E+06; _tstatic = 0.6; _dynamic = 0.51; Normal deflection = 0.05 in.]

Iteration

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Contact flag Kw, psi Xu, psi Xv, psi

0.0000 E+O0

.1238 E+01

.1412 E+01

.1413 E+01

.1326 E+01

.1326 E+01

.1370 E+01

.1370 E+01

.1348 E+01

.1348 E+01

.1359 E+01

.1359 E+01

.1353 E+01

.1353 E+01

.1356 E+01

.1356 E+01

.1354 E+01

.1354 E+01

.1355 E+01

.1355 E+01

.1354 E+01

.1354 E+01

.1355 E+01

.1355 E+01

.1354 E+01

.1354 E+01

.1354 E+01

.1354 E+01

0.0000 E+O0

.6313 E+00

.6313 E+00

-.7206 E+00

-.7206 E+00

.6759 E+00

.6759 E+00

-.6982 E+00

-.6982 E+00

.6871 E+00

.6871 E+00

-.6927 E+00

-.6927 E+00

.6899 E+00

.6899 E+00

-.6913 E+00

-.6913 E+00

.6902 E+00

.6902 E+00

-.6907 E+00

-.6907 E+00

.6905 E+00

.6905 E+00

-.6906 E+00

-.6906 E+00

.6905 E+00

.6905 E+00

-.4183 E+00

0.0000 E+00

.2232 E-01

.2232 E-01

-.2548 E-01

-.2548 E-01

.2390 E-01

.2390 E-01

-.2469 E-01

-.2469 E-01

.2430 E-01

.2430 E-01

-.2449 E-01

-.2449 E-01

.2439 E-01

.2439 E-01

-.2444 E-01

-.2444 E-01

.2441 E-01

.2441 E-01

-.2442 E-01

-.2442 E-01

.2442 E-01

.2442 E-01

-.2442 E-01

-.2442 E-01

.2442 E-01

.2442 E-01

-.1479 E-01

Lateral friction

slip energy,

in-lb

0.0000 E+00

-.7834 E-04

.0000 E+O0

-.4470 E-04

.0000 E+00

-.2096 E-04

.0000 E+00

-. 1082 E-04

.0000 E+O0

-.5327 E-05

.0000 E+00

-.2685 E-05

.0000 E+00

-. 1337 E-05

.0000 E+00

-.6700 E-06

.0000 E+00

-.3345 E-06

.0000 E+00

-. 1673 E-06

.0000 E+00

-.8365 E-O7

.0000 E+O0

-.4183 E-07

.0000 E+O0

-.2091 E-07

.0000 E+00

.0000 E+00

Drag friction

slip energy,

in-lb

0.0000 E+00

-.9799 E-07

.0000 E+00

-.5591 E-07

.0000 E+00

-.2622 E-07

.0000 E+00

-. 1354 E-07

.0000 E+00

-.6663 E-08

.0000 E+00

-.3359 E-08

.0000 E+00

-. 1672 E-08

.0000 E+00

-.8380 E-09

.0000 E+00

-.4183 E-09

.0000 E+00

.0000 E+00

.0000 E+00

.0000 E+00

.0000 E+O0

.0000 E+00

.0000 E+00

.0000 E+00

.0000 E+00

.0000 E+00

Total -. 1655 E-03 -.2066 E-06
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Table4.EffectofTangentialPenaltyParameteronConvergenceofContact-FrictionAlgorithm

[g--relax=0.5;En = 1.0 E+12; [,tstatic = 0.6; [.l,dynamic = 0.51]

Step et Normal deflection, in. Normal load, lb Iterations

1.01

2

3

4

5

6

7

0

.025

.05

.1

.2

.3

.33

0

86.63

221.43

515.07

1256.76

2112.22

2315.18

Total 31

1.5 E+03 0

.025

.05

.1

.2

.3

.33

1

2

3

4

5

6

7

0

86.63

221.43

515.07

1256.76

2112.22

2315.18

Total 34

1.5 E+061

2

3

4

5

6

7

0

.025

.05

.1

.2

.3

.33

0

86.63

221.43

515.07

1256.76

2112.22

2315.18

Total 36

1.0 E+12 0

.025

.05

.1

.2

.3

.33

1

2

3

4

5

6

7

0

86.63

221.43

515.07

1256.76

2112.22

2315.18

Total 45
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Table5.Effectof StaticandDynamicFrictionCoefficientsonConvergenceof Contact-FrictionAlgorithm

[Erelax=0.5;En = 1.0 E+12; Et = 1.5 E+03]

Step Friction coefficient Normal deflection, in. Normal load, lb Iterations

_static = 0.3

_tdynami c = 0.26

0

.025

.05

.1

.2

.3

.33

0

86.63

221.43

515.07

1256.76

2112.22

2315.18

6

7

7

5

8

8

4

Total 45

_tstatic = 0.6

_dynamic = 0.51

0

86.63

221.43

515.07

1256.76

2112.22

2315.18

0

.025

.05

.1

.2

.3

.33

6

4

4

3

7

5

5

Total 34

0

86.63

221.43

515.07

1256.76

2112.22

2315.18

_static = 1.0

ladynamic = 0.85

0

.025

.05

.1

.2

.3

.33

6

6

7

5

8

8

4

Total 44
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Table6.Effectof LoadStepSizeonConvergenceofContact-FrictionAlgorithm

[Erelax=0.5;Et = 1.5 E+03; e n = 1.0 E+12; _tstatic = 0.6; t,tdynamic = 0.51]

Step Normal deflection, in. Normal load, lb

1

2

3

4

5

6

7

8

9

10

Total

1

2

3

4

5

0

.025

.05

.1

.2

.3

.33

.4

.5

.6

0

.025

.2

.4

.6

0

86.63

221.43

515.07

1256.76

2112.22

2315.18

2806.26

3435.70

3998.32

0

86.63

1255.77

2779.85

3974.51

Iterations

52

Total 28

1 0 0 6

2 .025 86.63 4

3 .3 2110.36 7

4 .6 3962.25 9

Total 26
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x3, P

w _ s, Ps

V

U

%

Generalized displacements

0, Po

External

loading

Qo

Nso

o

Mso

M s

Mso

Stress resultants

x 3

(a) External loading, generalized displacements, and stress resultants.

Figure 1. Two-dimensional model of tire and sign convention.
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PO Overturning torque

I

Drag

torque

Lateral load

/J

Aligning torque

PO

Zll

Tire footprint

(b) Free body diagram of applied loads, torques, and contact forces.

Figure 1. Concluded.
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Inflated profile

Contact surface

Deformed under contact

(a) Normal gaps.

Contact region and
normal contact

load intensity

1

/-- Inflated profile Contact surface --7Uninflated profile _ . /

_ _ Deformed under contact / /._i_ d_!__

_u,_ _ _@_ _'
Contact surface

Tire footprint _i/_ ?_ _'_

Contact point after slip

_gv

Figure 2.

Initial contact point

(b) Transverse gaps.

Schematic representation of gap terms associated with tire contact problems.
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( s_t )

cnmgs=, [ V [ cntflgs=O ]

set Au, Av = 0 [ I I / ',,

I I yes /_d_/_ no
I

ret.
//_ "N/ I stick-stick _ N/ / N

• 'es / _ no I _ cntflgs = I .... / _.

[---_w > 0_-----_ [set Au, Av = 0 setau, A v = 0 [_-_;Z_ > 0_-_

N/ . I slip-°P en I _/

Isetcnmgs= 0 _ Isetcntngs= OI
/ Lu' _%' _ = 0 set cntflgs = 2 I _' Xv,_ =ol set cntflgs = 2

i set A_, A_ v L J set A_, A,_v

set A_u, Ag-x_ set Ag u, Ag v

update {x},{M

I

update {x}, {_.}1

Figure 3. Schematic diagram of contact-friction algorithm logic.
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Finite element:

7

1

Typical quadrant:

(x 8, y8)

6 5

a4

al

a3

; _ 4

a2

LL •

2 3

(x 9, y9)

al

(x I ' yl) (x 2, y2)

• Typical quadrant area:

1

Aquad = 0.5*(xly 2 - x2y I + x2y 9 _ x9y2+ x9y I _ xly9+ xly 9 _ x9y 1+ x9y 8 _ xSyg+ x8y 1- xly 8)

• Nodal areas:

1

Anode =

2

Anode =

A 3 _
node --

A 4 _
node --

A 5 _
node --

6

Anode =

7

Anode =

A 8 _
node --

9

Anode =

0.25*Alquad

, 1 2
0.25 (Aquad+ Aquad )

0.25*A2quad

, 2 3
0.25 (Aquad + Aquad)

0.25*A3quad

, 3 4
0.25 (Aquad + Aquad )

0.25*A_uad

4 1

0.25*(Aquad + Aquad)
2 3 4

0.25*(Alquad + Aquad + Aquad + Aquad)

Figure 4. Major characteristics of contact surface area algorithm.
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4

--Groove nodes

Node used in model (typical)

Possible node for

model refinement

(typical)

2

z, in. 0

-1

-2

-3

-4

t

1 2 3 l 5

y, in.

Figure 5. Meridional profile of Space Shuttle nose-gear tire models denoting node point locations.
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Groove.

129 296 465 633 720

680

600

520

440

360

280

200

120

40

80

160

240

320

400

480

560

640

720

Figure 6. Typical array of finite elements and nodes used to model the Space Shuttle nose-gear tire.
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Model 1 Model 2 Model 3

i
i

........ __ "!+_ ....

0= .2n _ 0=0.2n

M9-4 finite element

Sector

-0.2n _<0 _<0.2_

0 < -0.2n_ 0 > 0.2n
Total

Number of elements (M9-4) for--
Model 1 Model 2 Model 3

240 (40 x 6) 480 (40 x 12) 960 (40 x 24)

480 (40 x t2) 480 (40 x 12) 480 (40 x 12)

720 (40 x 18) 960 (30 x 24) 1440 (40 x 36)

Figure 7. Finite-element models of Space Shuttle nose-gear tire used in present study.
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• I;t= 1.0E+12

[] Et =1"5E+03

Normalized

tire slip

dissipation energy

Lateral energy Drag energy

Figure 8. Effect of tangential penalty parameter variation on slip energy dissipated by tire. F_rela x -- 0.5;

En = 1.0 E+I2; _static = 0.6; _dynamic = 0.51' normal deflection = 0.3 in.

Total strain

energy ratio,

U-U
cony

Uconv

.020

.015

.010

.005

0

/I
\

-.oo5 I I
0 3 6

I I
9 12

log l0 E

-- 1.00

-- .75

-- .50

-- .25

0

-.25

15

Contact force ratio,

Fc. conv- Fc

F
C, COnV

Figure 9. Effect of magnitude of normal penalty parameter e n on accuracy of total strain energy and contact

force. P0 = 300 psi.
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