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Abstract 

111 tlris article ic!e cor~.sider the prohlerl~ o f  rcrsk-dircct~tl 

irzforrllotiorl gotherirrg. We ,fi,:st dei~elop ( I  det~i.siorr-tlrro- 

retic rlrodel o f  task-directed sertsirlg irl i~~lric~lr scJrrsors trr.c. 

modeled as rloise-cor~t(r~~lirro~ed, rrrlcertnirt r~eosrri.erircrlt 

sysrenls, orrd serisirlg ttrsks ore r~lotieletl hy cr ~rrrrr.sfor.rr~tr- 

tior? dc~.scrihirlg the type o f  ir~forritotiorl r.eqrrir.ct1 h!' tlrr 

trr.sk, o rrtility Jirrrctior~ de.scriI)itrg .serr,sitii,ity to  error, (rrrd 

( 1  cost Jirrtctior~ describirlg tirile or resorrrce corr.strcti~rt.s or1 

111e syster,~. 

Tlris deso.i/)tiorl (rlloic~s rrs to dei~elop cr sttrrldtrrd corltli- 

tiorltrl Boyes decisiorr-r?~crkirrg rllotlel 11-lrere /Ire i.rrlrrc of 

ir!/orr~totiorl, or payoff, of N I I  es~irl~ntc i~ deJirred t r s  /Ire 

oiseroge rrtility (the expected i*trlrrc~ r?/sorr~e Jiorctior~ o f  

eieci.iior1 or eslirrrntiorl error) rc,lotii*e to /Ire crrr.rcrrt /~r.ohtr- 

bility di.strihrrtiort or~d the best estimate is tlrtrr ~chiclr r~rrr .~- -  

ir?rizes payoff. Tire optirlrn/ seir.ror i~ieic3irt~ .rtrtr/cgy is tlrtrt 

1c.hic.h rt~axirllizes rite /let ptryctlf (decisiorr i.trlrrc~ r~rirrrr.~ 

ohseri:trtiorr costs) o f  tile .Ji/rol estirlrtrte. Tlre rrt/~,crrttrrge r? f  

this ,solrrtior~ i.7 ger~ero/ity-it does rlot o.s,srrriie rr portit,rr/trr 

serlsirlg r~~odali ty  or serisirlg task. Hoit-eiler, .solritiorl.s to 

this rrpdntirrg prohleri~ do /rot exist iil closed,fi~rrrr. Tllis 

rr1otii~~rte.s tire t/ei~eIo/~r~~errt (?/tr/r ( I / I / J ~ o . Y ~ I I ~ ( / / ~ o I I  to / / I ( ,  

optiri~rrl solrrtiorr hnsecl 0 1 1  t r  grit/-htrsctl ir~r/~lcrircrrrtrriorr 

Btryes' theorcr~r. 

We describe this nlgorithri~, crrralyze its error pr.operties. 

rrrid irrdiccrte I I O I I J  it cnrz he rlrtrtle rol?rrst to errors irr tlrc 

descr.i/?/iorr o f  .serrsor.s crrrtl tlisc~rc~/~trrrc~ic.s hct11-cc~rr gcrorrret- 

ric rirotlc1,s crrrd sor.rccl ol?jcc,ts. W P  trlso prc.~err/ /Ire r.c~sril/s 

of /Iris Jirsiorr teclrrriqrrc cr/~plictl to ,sc~i,c~rrrl d(j"crrrr/ ir!fi~r- 

rlrotiorl g(rt1rcrirrg to.sks irl sirrlrrltrtcd .sitrrtrtiorrs orltl ill tr 

distribrrtecl sertsirlg .s~~.stcrrl \clc Iltri-e corrstrrrc,ted. 

As sensor-based robotics systcrns arc cmploycd in 

increasingly complex, real-world situations, thc vol- 

ume and conlplexity of information I-cquircd for adc- 
quate performance will incrcasc substantially. To 

-- - - -- - - 
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Task-directed Sensor Data 

Fusion and Sensor Planning, 

effectively gathcr and use scnsor information, 

robotic systems will need thc capability of making 

intclligent choices about the deployment of sensing 

capabilities and computational rcsourccs. Dcvclop- 

ing algorithms flexiblc cnough to handle a wide vari- 

ety of sensing problems and situations is a crucial 

step in thc proccss of building ir~tclligcnt systcms. 

The purpose of this articlc is to prcscnt a mathe- 

matical framework for dc'scribing geomctric scnsing 

problems and develop methods for computing thc 

solutions to thesc problems. Our solutions include 

both the stratcgy or plan for gathcring sensor infor- 

mation and the integration of scnsor obscrvations 

into a consistent gcomctric dcscription. Furthcr- 

niorc, by explicitly rcprescnting thc costs of infor- 

mation gathcring and the cffcct of decision errors, 

we arc able to dctcrmine how much information to 

gathcr. Throughout this article, the emphasis is on 

techniques that arc independent of a particular scns- 

ing modality or a particular scnsing problcm. Thc 

formcr implies that, by definition. we solve the multi- 

scnsor fusion problcm. Thc lattcr implics that the 

sanic tcchniqucs can bc cmployctl in n divcrsc sct of 

applications and thcrcfvrc provide a unified treat- 

mcnt of many diffcrcnt sensor-based systems. 

Wc define gcomctric scnsing problems as those 

rcquiring a dcscription of thc shapc, extent ( s i x ) ,  

and position (thc last is takcn to includc both trans- 

lational and rotational position coniponcnts) of 

objccts. An unrestricted cnvironmcnt containing scv- 

cral objects will rcquire sevcral distinct gcometric 

descriptions. I;urthcrmore, thcre may bc constraints 

among tlic descriptions, (c.g., thc position of an 

oljcct on a tablc dcpcnds on the position of thc 

tablc, o r  thc sliapcs of two interlocking picccs must 
fit togcthcr). A consistent gcornclric dcscription is 
one that can account for all obscrvcd scnsor data 

and gcomctric constraints by onc or more assign- 
mcnts of shapc, cxtent, ancl position. Thc data 

fusion problem is to construct a consistent gcomctric 

description from scnsor data. 



Examples of'geometric sensor fusion problems 

abound in the robotics literature. For example, com- 

puting a consistent map of the environment based on 

sensor observations is a core problem in mobile 

robotics (Brooks 1985; Durrant-Whyte 1988; Ciralt 

et al. 1984; Mol-avec 1988). These maps usually 

include an explicit representation of' position and 

sometimes use a description oi' shape or extent. 

Many recognition systems use very refined descrip- 

tions of shape and extent to classify observed 

objects relative to a database of models (Allen 1988; 

Brooks 198 1). Task level programming systems 

(Lozano-l'erez 1985) use more complex geometric 

Specifications for planning and performing grasping 

and manipulation. In particular, computing the sta- 

bility of a grasp or  the initial l i f t  vector for an object 

requires quantities such as a centroid or weight 

(Trinkle 1987)-qi~antities that, given appropriate 

prior information about density, can be computed 

from geometric descriptions. 

As this last example illustrates, one geometric 

form may be suitable for describing the data, but the 

application requires information in another form. 

However, the information needed by the application 

can be often expressed as a function of the geomet- 

ric pan~meterization. We.note that these functional 

descriptions can describe cjrrnlitrrtivc~ (propositional) 

properties about the environment and thereby facili- 

tate applications that manipulate representations 

syntactically (Brooks I98 I; Stanstield 1987). That is, 

a proposition can be represented by an inrlic.rrtor 

Jirnction mapping the parameters of a geometric 

description into truth values. Similarly, parameter- 

based classification can be represented by describing 

the function mapping parameter values to object 

classifications. 

The choice of what is observed and how i t  is 

observed clearly affects the efficiency of fusion with 

respect to a particular task. Fi~rthermore, sensor 

applications vary in their sensitivity to decision 

error, which in turn affects the number of observa- 

tions needed to obtain an adequate geometric 

description. The purpose of' sensor planning is to 

enhance the performance of sensor fusion by tailor- 

ing the choice and number of observations to the 

given task and current operating conditions. How- 

ever, fusion and planning must be tempered by the 
cost of gathering and fusing information. In some 
cases, it is better to allow the possibility of an incor- 

rect decision or action than to spend the additional 
resources needed to improve the q~~nl i ty  or accuracy 
of a decision. An optimal sensor strategy is one that 

has the maximum net value. 

The idea of using active probing and adaptation is 

not new in the robotics area (Aloimonos 1987; 

Bajcsy 1985; 1988). For example, Allen ( 1988) i~sed 

a tactile probe to gather vis~rally occluded surface 

information for the purposes of object recognition. 

Stansfielcl (1987) extended this paradigm by consid- 

ering categorical models. Crimson (1986) and Hutch- 

inson et :I!. (1988) consider the problem of determin- 

ing the optimal sensor placement for disambiguating 

the pose of polygonal objects. Cameron (1989) 

describes a system that uses decision-theoretic prin- 

ciples to compute a plan of observation for deter- 

mining the type and pose of objects from tactile 

probe data. 

Many sensor data fusion and sensor planning sys- 

tems have the common characteristic that they were 

designed to work efficiently for specific applications 

( I  ypic;~ll y recognition) using specific sensors. How- 

ever, the information reqlrired by even simple tasks 

can be highly varied and ranges from very simple 

measurements by simple sensors to the determinn- 

lion of I-elatively complex quantities using m~~lt iple  

information sources. The goal of our work is to 

build tlexible systems that can work with several 

sensors and sensing tasks based on a description of 

both sensor and sensing task in :I suitable language. 

In this ;~rticle we first ~ C L I S  on describing a general 

fl-amewol-k for describing sensors, models, and 

tasks. We then use decision-theoretic principles to 

define optimal solutions to the sensor planning and 

fusion problems and, finally we develop computa- 

tional algal-ithms that approximate these optimal 

solutions. 

The next section presents a mathematical frame- 

work for describing geometric models, sensor 

models, and task models and illustrates its use with 

some simple exanlples. Section 3 briefly introduces 

the decision-theoretic principles we use and 

describes the decision-theoretic interpretation of 

sensor models and task models. Following that, sec- 

tion 4 discusses how these decision-theoretic meth- 

ods can be implemented using a grid-based represen- 

tation of probability densities. Section 5 is a 

mathematical and simulation-based analysis of 

approxiniation error nnd robustness of the methods. 

In section 6 we present some experimental restrlts 

and close with a discussion of the limitations and 

open problems of this methodology. 

2. Describing Sensors and Sensing Tasks 

In overview, wc clescribe sensing tasks by first 
delining one or more pal-ametric, geometric repre- 

sentations for observed objects. We then describe 
how the available sensors image those objects and 



how tasks make use of information contained in  a 

representation. The advantage of this organization is 

that i t  separates the description of the sensor from 

the sensing task and thereby enhances the n1odul:ir- 

ity of the system. That is, it allows ( I )  the addition 

or deletion of sensors observing an ob-jcct indcpen- 

dent of sensing task as long as thc available set of 

sensors can supply the required information and (2) 

the addition 01- deletion of tasks using the informa- 

tion stored in a modcl independent of how the infor- 

mation was obtained. 

The effectiveness of this framework depends 

heavily on the choice of a parametric representation. 

The use of a particular parametric modcl fixes the 

"vocabulary" of data modeling and hence is highly 

application dependent. 'The complexity of a paramet- 

ric modcl should reflect the question that we seek to 

answer with the model: a modcl with only a few 

degrees of freedom provides significantly more data 

compression and is gcncrally faster to compute than 

a morc flexible modcl, but the flcxiblc model is ablc 

to fit a wider variety of observations and may bring 

out impo~'tant aspects of the data that a siniplc 

model cannot express. Thus an important issuc is to 

find a concise, computationally efficient niodcl that 

adequately describes thc data for a given applica- 

tion. 

For exaniplc, when manipulating and positioning 

intcgl-atcd circuits (IC), a parametric niodcl of poly- 

gons consisting of a position in spacc and thrcc sizc 

par;lmeters is probably adequate. A single ~nobilc 

camera can observe col-ners and lines, and thcsc fea- 

tures can be used to dctcr~ninc the sizc and position 

of the IC. Solina (1990) considers tlic problem of 

postal sorting and manipulation. This do~nain is 

morc complicated and requires a morc flexible 

niodel and a richer source of sensor inforniation. 

Consequently, he used a superellipsoid rcprescnta- 

tion augmented with bending and twisting arid 

recovered niodcl parameters based on lascr-range 

data of exposed objcct surfrlccs. I n  both cases, we 

havc a parametric niodcl (polygons or supcrcllip- 

soids in space) and obscrvablc features (corners and 

lines or  sulface points) that can be used to dctcr- 

mine the model parameters. 

Sensor tasks should describe tlie relevant aspects 

of the relationship between the niodcl and the appli- 

cation using sensor information. 'This information is 
used to dctcrnlinc the way the sensors should 

observe an objcct. For example, classifying an 
object as large, small, round, or square is indcpcn- 
dent of location. Hence a classification task can bc 

thought of as focusing on the subset of thc modcl 
parameters dcscribing shapc and sizc, and the opti- 

mal sensing strategies concentrate on refining an 

cstimate of those parameters to the precision 

requir-cd to distinguish ob.jcct types. Conversely, 

manipulating the object requires good location infor- 

mation so  that a gripper can safely grasp the ob-iect. 

I n  this casc the sensors must fc~cus on the location 

of the obicct instead of (or in addition to) its shapc, 

and they will probably have to acquire more andlor 

differcnt information to obtain a description with the 

rcquircd accuracy. 

In the remaindcl- of this section we describe a 

mathematical form for geometric, sensor, and task 

models and provide some concrete examples to illus- 

trate their use. Durrant-Whytc ( 1  988) and Richard- 

son and Marsh (1987) provide a niorc extended dis- 

cussion of geometric models arid statistically-based 

scnsor models. Ucrger (1985) is an cxcellcnt refer- 

ence for the underpinnings of the statistical decision 

models on which our task models arc based. 

2.1 .  Georrlelric Models 

Our basic gcornctric modeling pl-iriiitivcs arc para- 

metric, gcomclric surface des~~-ipt ions of the follow- 

ing form: 

I11 this description, p is a vector of par-amctcrs that 

clcscribcs the essential structure of the system and x 

is a vector of obscl-vablc characteristics or features 

of the objcct. In the case of gcomctry, p can be 

decomposed into a vcctor representing location, 1, 

and a vcctor describing sizc and shapc, s. Thus the 

function g(.;) is a description of the relationship 

between the pa-amctcrization of a physical or gco- 

n~ctric structurc in euclidcan three-space and its 

observable charactcristics. 

The function g is itself taken from a set '4. The 

intent is that '4 contains a family of geometric sur- 

faces that havc (dimensionally) the same pilrametcri- 

zation and arc essentially a deviation from a given 

"ideal" type. That is, i t  is unreasonable to expect 

geometric idealizations to agree with real surfaces. 

Nol-mally. each set of observed features would 

dctcrminc a slightly different value for the describing 

parameters. Wc refer to such a family as an cnllc- 

lope of models. The definition and cxtent of an 
envelope dcfincs what constitutes an acceptable 
niodel variation. In the simplest casc (and the onc 
considered in this article) wc simply describe the 

deviation required to fit tlie modcl to the data. How- 
ever, niorc co~nplex schcnics are certainly possible. 
For example, Leyton (1988) has developed an exten- 



sive theory of continuous deformation processes for 

describing model variation. 

In this article, we require that ( I )  can be rewritten 

in the following explicit form: 

In general, the relationship between parameters 

requires the introduction of "helper" parameters, c, 

for explicit solution. We hereafter refer to the 

parameters in c as  correspondence parameters, 

because, by fixing their value, we fix the "corre- 

spondence" between observed features and 

unknown parameters. In those cases where there is 

already a unique relationship between parameters 

and observables, the vector c is of dimension zero. 

Example 1 The location of the object restricted 

to a plane can be expressed relative to an arbi- 

trary base coordinate system using homogeneous 

transforms (Paul 1981) as: 

" ~ ~ ~ ( 1 )  = "T,,(x,,; yo ; ' t o )  = trans (.ro, y o ,  0) rot ( l o ,  a, ) ) .  

The simplest parameterization of rectangular 3D 

box is to describe the relative positions of the cor- 

ners: 

The full geometric description of an arbitrarily 

sized rectangle can now be expressed as: 

In order to focus on a single feature, we add an 

index as a correspondence parameter and define a 

new function as: 

Fig.  I .  A rectcingrilrrr box thrrt hrrs beet1 f i t  to rr nonrec- 

tringrilor object. 

about the surfaces and lines between them. Continu- 

ous correspondence parameters are generally 

required in order to ensure model fit at all boundary 

points. 

Example 2 Pentland (1986) introduced super- 

qu~idrics as a modeling primitive, and Solina 

(1990) developed a least squares algorithm for 

recovering superellipsoids (convex superquadrics) 

from range data. Superellipsoids are described by 

a parametric equation of the form: 

8). ( 3 )  where C ,  = cos (x), S, = sin (x), and an 

This model can, in principle, be used to describe 

any sort of object that is topologically equivalent 

to a box provided some model deviation is 

allowed for. For example, Figure 1 illustrates a 

(planar) nonrectangular object described (within c) 

by a box located at (xo, y o ) ,  rotated cue, of size r i l  

by (12. In this example, observation of the horizon- 

tally aligned corners determine one description, 

and observations of the vertically aligned corners 

determine a second (smaller) description. Any 
combination of three corners reveals the discrep- 

ancy and forces some type of model deformation. 

It is important to note that because (3) only refers 

to corners, the geometry of the model is only 

restricted at the corners and says effectively nothing 

enclosed volume is described by reflecting this 

surface into the other seven octants. The vector a 

= (cr l ,  ( 1 2 ,  Ciin be interpreted as the size of the 

superellipsoid, the vector y = [ y , ,  y2]  governs the 

shape of the superellipsoid, and the angles 7) and 

w are correspondence parameters. 
The full transformation of an arbitrary super- 

quadric can be expressed as: 

g J l ,  a, c )  = "~o(l)S(s ,  c) 
where s = [ a ;  y ] 7 ,  c = [q, wI7'. 

By sweeping over q and w ,  we describe the entire 
object surface and consequently enforce model 

constraints at all surpace points. 

There is another fundamental difference between 



the correspondence parameter in example 1 and the 

correspondence parameters in this example. In the 

case of a rectangle we can, by suitable bookkeeping, 

determine the proper value of the correspondence 

parameter for each observation; that is, we can usu- 

ally determine which corner we are looking at up to 

an arbitrary symmetry. In the case of superellip- 

soids, the parameter is continuous and, depending 

on the sensor and its imaging geometry, may have to 

be considered as an unknown along with the othcr 

system parameters. However. this additional param- 

eter carries no information about the observed struc- 

ture itself and changes from observation to observa- 

tion. Consequently, in the process of inverting the 

objectlsensor relationship we must somehow 

account for these additional degr-ees of freedom. 

2.2.  Sensor Models 

In our formulation, a sensor is considered to be both 

the hardware and software used to extract specific 

properties or features of observed surfaccs. These 

sensors generally lack perfect I-esolution in the fol- 

lowing two senses: 

1. Srutisricul ~roise. The physical design of the 

transducer and its attendant elements lead to 

ized model in unpredictable ways. These variations 

arise from modeling (systematic) errors, mechanical 

backlash, quantization, and communication delay, to 

name a few sources. Most previous work in fusion 

has assumed that the idealized model is good 

enough-that the variations are small enough not to 

warrant an explicit accounting. However, Hager and 

Mintz (1989b) denionstrated that, in some circum- 

stances, even small model variations can cause 

unpredictable system performance and consequently 

must be accounted for. llence we explicitly allow I f  

to vary within an envelope 2t and require fusion 

methods to tolerate such variations. 

Observations may be corrupted by additive noise 

with propel-ties that also vary with both the 

observed parameters and the control parameters. 

Again, instead of assuming a single description for 

V , ,  we take the view that V ,  E Y where Y is a speci- 

fied class of random variables. The intent is that we 

usually are not in a position to state a single model 

of statistical noise, though we can usually place 

bounds on the form of its distribution. 111 this article 

we assunie that V, is borrndcd-its probability den- 

sity does not have tails extending to infinity (note 

that this assumption excludes Gaussian noise 

models), and V ,  is independent of V ,  for i # j. 

corruption of the sensor signal that can be 

modeled using probability measures. 
Examplc 3 The description of a nionocular vision 

2. Qrcc~rlrizarion urrd r~iodel r~ncertcrinry. The 
sensor observing the outlines of su~faces is easily 

design of the sensor and the associated algo- 
described using projective geometry. That is, sup- 

rithms have a limited resolution. mechanical 
pose the object is described by MI, or M,, as given 

backlash, or other uncertainties that may not 
in examples I and 2. A sensor above a table with . 

be well modeled using statistical methods. 
motion in s, p, height. and rotation is described by 

the transform 
A conrplcrc niodel of a sensor would include a 

description of the effect of all influences on the out- 

put of the sensor. What constitutes an crdqrlcl~c sen- 

sor model depends largely on how i t  will be applied 

(Hager and Mintz 1989a). In this article, we employ 

a sensor model of the form: 

Z ;  = I f ( x i ,  w ; ,  e) + V i ( x i ,  w i ,  e ) ,  

x i € % ,  w j E Y f ,  H E X ,  V ; E ' V .  
(4) 

The intent here is that H describes the iderrl rela- 

tionship between observed features and sensor 

observations. The behavior of N depends on the 

world geometry (through the features, x , )  and the 

choice of sensor control parameters w,.  There may 
be additional calibration parameters, e ,  influencing 

the imaging properties of the sensor. 

In practice, H is almost never known with corn- 
plete certainty. Slight variations in the actual behav- 

ior of the sensor cause i t  to depart from the ideal- 

/> 
T,,(w) = / ' T , ( [ X , ,  y,., /I,., a;.]') 

= trans (x,., y,., 11,) rot (z,  a, ). 

The effects of perspective can be modclcd by a 

function of the form: 

These can be combined to give a rioniinal sensor 

model of the form: 

/ f ( p ,  W ,  C) = P("T,(w) 'R,(17,  c)) 

where .r E {h .  s} .  

The statistical characteristics of sensor observa- 
tions can be modeled using standard techniques 

(Box and Jenkins 1976) and the set of sampling 

distributions described by suitable means, e.g. two 
bounding histograms. The variability in the model 

can described by two tolerance parameters, E ,  and 



E, ,  describing the deviation in sensor outpilts from 

the nominal model. Because V is bounded, these 

parameters can be discovered over a series of test 

runs of the system. 

Notation: In the sequel, we will use the shorthand 

notation l-l(p, w ,  e )  tbr l l (g(p) ,  w ,  e )  in those cases 

where the distinction between H and g is not crucial 

to the development. Similarly, we will often sup- 

press the parameters w and e when we are only con- 

cerned with H as zt function of p. 

2.3. Task Models 

InSormation gathering and fusion, within our geomet- 

ric framework, consists of choosing a parametric 

representation and determining the values of the 

unknown model parameters. As stated at the outset, 

our work filndamentully rests on the tenet that this 

is a purposeful, tiirec.tetl activity-the priorities of 

the current goal should influence the information- 

gathering process. This can be viewed as a way of 

optimizing the use of limited computational 

resources. lnstead of gathering all possible informa- 

tion about the environment, the system shoi~ld con- 

centrate on those geometric aspects that are the 

most relevant or have the highest value for the cur- 

rent application. 

This may be an open-ended interaction: attempt- 

ing to gather information may depend on further 

information-gathering tasks. The dynamics of this 

process is be governed by ,vlrtr( information we are 

seeking, the vcrlrre we place on that information, and 

the costs associated with the search. This point of 

view naturally suggests a decision-theoretic 

approach (Rerger 1985). We use rrtilities to reflect 

the value of information, quantify the costs of infor- 

mation processing, and consider the problem of 

maximizing the net gain of information. We note 

that this is, in essence, the basis for the study of 

experimental design (Fedorov 1972; Mendenhall 

1968; Silvey 1980). 

Ceornetric Trcrnsformrrtions 

Robotic tasks often use information in a form differ- 

ent from or independent of a given geometric para- 

meterization. For example, as noted in the introduc- 

tion, when lifting an object, an estimate of center 

gravity may be needed to compute the initial lift 
vector. Under appropriate assumptions about den- 

sity, the center of gravity can be computed from the 
object shape and size. Therefore for this task the 
sensor system should concentrate on obtaining a 

good estimate of size and shape parameters so as to 

produce a good estimate of center of gravity. 

To express these relationships, we introduce some 

ancillary transformations, I(p), indicating how 

requested information is related to model geometry. 

For example, if the requested information is volume 

and we are using a rectangular representation, we 

can relate the description of a rectangle (see exam- 

ple I )  to its area by: 

We note the following two special cases of I as 

being of particular interest: 

1. 7'lr(~ prc'jrc.tiotr jirtrc.tiotr. In this case I restricts 

attention to a subset of the parameter space. 

For example, we may only be interested in the 

shape description of an object, even though the 

geometric model includes position information. 

2 .  74ir inrlic.rrtor Jirnction. In this case, I encodes 

a proposition. It is then possible to formulate 

the problem so that the result of estimation is 

an indication of whether that proposition is 

true, false, or not completely decidable (true 

with probability t and false with probability 

1 - I )  based on the available sensor informa- 

tion. 

The latter form is of particular interest for those 

who model information using logic or similar qualita- 

tive descriptions. I t  implies that we can use the 

same framework to determine quantitative (point- 

based) quantities and qualitative (propositional) 

quantities. 

Utilities 

Any application .using sensor information must con- 

front the fact that error-free point estimates are not 

possible. Sensor uncertainty, sensor resolution, and 

bounded computational resources limit the accuracy 

of any sensor-based judgment. Sensor-based systems 

must therefore be able to tolerate some error. The 

types of errors that can be tolerated may vary con- 

siderably between applications and may have sub- 

stantial effect on the information-gathering process. 

For example, gripping an object 2 cm wide using a 
parallel gripper with an opening of 5 cm implies that 
relative position accuracy within -+ 1.5 cm will 

ensure a successful grasp. It would be a waste of 
time and effort to refine a position estimate past this 
level. By the same token, a peg-in-hole method 

using compliance may be characterized by a bias 

toward one-sided errors, and a smoother, more 
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graccful pcrformancc dcgl-adation as thc corrcct csti- 

rnatc of rclativc position varics from its true valuc. 

Conscqucntly, an important clcnicnt of an infor- 

mation rcqucst is some quantification of thc cffcct of 

crrors on task pcrformancc. Thcrcforc wc rcquirc 

that an inforniation rcqucst make I-cfcrencc to a 

function ~ ( p ,  o), whcrc li is an cstiniatc of tlic 

unknown parametcrs, and intci-pret this function as a 

decision-thcoretic rrtilitp. Wc notc that II can bc 

cxtcndcd to a function of thc form rr(p, (I) ,  whcrc tr 

represents a generic action from a set of possiblc 

actions .d. A variety of utilitylcost formulations havc 

appcarcd in the literature. Thc most common utility 

formulation is thc qrrcrdrtrlic utility, though othcrs 

such as the onc-zero utility havc also bcen consid- 

cred. 

Thc following cxamplc illustratcs thrcc diffcrcnt 

tasks, all using the salnc basic rcprcsentation but 

focusing on differcnt parts of the paranicter vcctor 

with diffcrcnt accuracy rcquircmcnts. 

Example 4 Consider a parallcl grippcr with jaw 

travel between 2 cm (minimum closing distancc) 

and 4 cm (maximal opening distancc) manipulating 

boxes on a tablc. Thc geometric rcprcsentation is 

dcfincd in examplc I ,  whcrc positions arc 

restricted to the planc of the tablc, and the scnsor 

description is givcn by exarnplc 3. To manipulate 

the object, the system must makc thrcc decisions: 

1. Is the box of a mariipulablc s i x ?  

2. What is an approach vector that will placc 

the grippcr around thc box? 

3. Given that the box is in thc grippcr, what is 

a reasonable lifting forcc for moving thc box'? 

For the first question, wc definc a mapping that 

determines what valucs of length and width 

parametcrs represent manipulable objccts: 

morc suitablc ob.icct. In this casc, wc would 

adjust the wcights so that tlic casc (no, ycs) has a 
valuc bctwccn 0 and 1 .  

I n  thc casc of determining an approach vcctor, 

wc introducc a sct of possible approach vcctors, 

"V, and dcscribc thc problcm choosing a suitablc 

vcctor. Thcn, assuming ;I suitablc collision dctcc- 

tion algorithm is availablc, wc can dcscribc thc 

problcni using just a utility as: 

I ; if gr-ippcr would cnconipass, 
rr(p, V )  = 

0; otherwisc, 

Both of thc above cxamplcs havc a gcomctric con- 

straint that Icads to a 0-1 typc of formulation. 

That is, cithcr tlic constraint is satisficd and thc 

action succccds, or thc constraint is not satisfied 

and thc task fails. 

Computing a wcight to hicilitatc picking up thc 

ol?icct is a task that is morc tolcrant of small 

errors. I t  sl~fficcs to havc a "closc" cstimatc of 

wcight and to assunic that thc control algorithms 

will adapt on-line. Thus wc dcscribc this task as a 

transformation from object descriptions with dcn- 

sity d to wcight given by: 

and a q~~c~tlrcitic utility: 

Tlic cffect o f  thc quadratic utility should bc con- 

trastcd with thc 0-1 utility. Namcly, the 0-1 

cxprcsscs a tolcrancc interval within which the task 

succccds and variations havc no cffcct on pcrfor- 

mancc, and outside this intcrval thc task simply 

fails. The quadratic utility cxpress a pcrformancc 

dc~rtr~icrtiorl with no notion of succcss or failure. 

ycs if nl  or rrz is bctwccn 2 and 4 cm, - {no otherwise. Tl~c Co.vr of G'c~tlror.irrg Ir~/i)~~nrrrtion 

Then, if we assume that thc conscqucriccs of both 

types of wrong decisions (trying to rnanipulatc an 

unmanipulable object or deciding not to attempt 

an ob.icct that is in fact manipulable) arc cqual. wc 

can definc a utility as: 

I ;  I(p) = (1, 
14l(p), c ~ )  = p E !!I", cr E {yes, no] 

0; otherwise. 

In  somc circumstances, thc cffccls of onc crror 
may be morc detrimental than the othcr. For 

examplc, the time lost trying to manipulate somc- 

thing that is not manipulablc may bc rnorc costly 
than just lcaving i t  undisturbed and looking for a 

An cstimatc can ncarly always bc rcfincd by using 

morc observations and more computation. 'Thcrcforc 

the ~ ~ a l m c  of an estimate ( in  tcl-ms of its utility) must 

hc weiglicd against thc c.ost of gathering the informa- 

tion needed to niakc tlic cstimatc. What factors con- 

stitute costs and tlic tradc-off hctwccn thosc factors 

can bc a coniplcx and involved problcni in its own 

right (Kccncy and Kaiffa 1976). In  our work, we 
conccntratc on tirr~c costs. 'fhc tirnc costs involved 
in thc proccss of gathering and aggrcgaling informa- 
tion arc: 

I .  Titnc to sclcct a co11t1-ol scqucncc. 



2. Time to move to the specitied configuration. 

3.  Time to gather and integrate new information. 

These costs may depend on many factors, including 

the choice of sensor conirol parameters, the values 

of the unknown parameters, the organization of the 

sensor system, and the external constraints imposed 

by the geometry of the current situation. Typically, 

costs have been taken to be a linear function of sam- 

ple size. These formulations have given rise to a 

number of results in linear-quadmtic-Gaussian and 

linear regression experimental designs (Fedorov 

1972). 

In the most general setting, we denote the time to 

change from a sensor configuration w,, to w,, + by 

To  simplify the notation, we assume the current 

position is known and use the simpler form c( w,, + ,, 
p)  to represent 'the cost of taking another observa- 

tion. We note that cost formulations in the literature 
' 

do not usually depend on p ,  the unknown parameter. 

In fact, the effect of p on the cost of executing an 

action may yield information about its value. For 

example, the amount of time i t  takes to move to the 

other side of an object yields information on its size. 

Example 5 A nati~ral model for time costs is a 

deadline model. In this caie, we specify a nominal 

maximum time and also how important it is to 

meet that deadline. One possible deadline descrip- 

tion is: 

where t,, is the deadline for the sensing task, t .  is 

the current elapsed time, t(.;) is the time taken to 

execute w when the unknown parameters are p ,  

and h is a factor governing how "hard" the dead- 

line is. For large h ,  the deadline acts as a barrier, 

whereas for h = 1 the cost growth is strictly linear. 

3. Review of Bayesian Techniques for Data 
Fusion and Experimental Design 

In this section we summarize the basic principles of 

decision theory and illustrate decision-theoretic solu- 
tions using the examples of the previous section. 
For a more complete reference see Berger (1985). 
For other applications of decision theory to robotics 
problems, we refer the reader to Cameron (1989), 

Coles et al. (1973, Durrant-Whyte (1988), and 
Jacobs and Kiefer (1973). 

3.1. Data Fusion 

A standard Bayesian decision-making framework 

takes the following general form (Berger 1985): For 

a fixed sensor model (i.e., the uncertainty envelope 

contains only one geometric model and one sampling 

density), the sensor model gives rise to a conditional 

probability distribution: 

Assume w and e are known (for simplicity we no 

longer explicitly indicate them). Given a prior den- 

sity, err, over unknown model parameters, Bciyes' 

tlzeorem describes how to compute the new proba- 

bility density over the unknown parameters: 

This updating process can be iterated over time 

using independent observations, over sensor con- 

figuration by adjusting w ,  and over sensors by sub- 

stitpting different sensor descriptions into (6). Con- 

sequently, the basic representation of parameter 

uncertainty is the probability density of the param- 

eters. We note that in the case of bounded sampling 

densities, this update can also include the elimina- 

tion of portions of the parameter space. Hence this 

expression includes the incorporation of error hoiincl 

information, as  well as probabilistic information. 

3.2. Decision Making 

In Bayesian decision theory, decisions are made by 

finding that action or estimate that has the maximal 

e.rpccted payoff relative to the current parameter 

uncertainty. In other words, given a density, .rr, on 

9 and a utility, 11, we can compute the e,rpected 

payojyof a decision p as: 

The optimal decision is that having the maximum 

expected payoff: 

p* = arg max p ( ~ ,  p). 
P 

Alternately, in the case of a nontrivial transforma- 

tion, I, we have: 

dr, I(P)) = LTl14l(p), l ( ~ ) ) l .  

The optimal decision is then I(p*). For convenience 

we define, for a fixed task, the following two func- 

tions: 
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1 The first is simply a decision rule mapping probabil- 

ity distribution representations to decisions, and the 

second is the payoff of a decision with respect to a 

given distribution. 

Example 4 (cont.) The decision rule for the first 

task would be whichever of yes or no has higher 

probability of being correct, and the payoff is the 

probability of being correct. If the weights arc 

changed, then the payoff becomes weighted prob- 

ability, and the optimal decision is the choice with 

highest weighted probability. Note that this deci- 

sion only requires knowledge of either length or 

width to an accuracy of 2 cm-relatively little 

information. 

The decision rule for the second task is the vec- 

tor with highest probability of succeeding, and the 

payoff is that probability. This requires knowledge 

of one size parameter and object location. 

Because observation errors are bounded. i t  is pos- 

sible to determine a vector of probability one, in 
which case there is no point in processing more 

observations (for this task). 

The decision rule for the final task is the aver- 

age (conditional mean) weight, and the payoff is 

the negated variance of the estimation error. In 

this case, the task requires information on all 

three size parameters, and in most cases, more 

observations result in a better (lower mean-square 

error) estimate. 

As this example illustrates, the task descriptions 

of the last section indicate the appropriatc decision 

space, provide the means for making a decisiori 

when uncertainty exists, and describe the valuc of 

processing additional observations. 

We consider the problem of choosilig sensor control 

parameters in terms of the theory of e.\pcrinzcnlol 

desig11 (Fedorov 1972; Mendenhall 1968). Expcri- 

mental design is concertled with the problem of 

maximizing the information gained from an experi- 

ment under cost constraints. We assume we have 

some set of experimental actions, d, and some dcci- 
sion rule 6. We attempt to find the action or 

sequence of actions that maximizes the rlct poyoff 

(average utility minus experimental costs) of a deci- 

sion made by 6. 

There are two different perspectives on solving an 

experimental design problem. The first perspective 

corresponds to off-line planning. That is, before any 

data is taken, we select both the optimal number of 

samples and the optimal sensing strategy. This, of 

course, has the disadvantage that sensor behavior is 

not tailored toward individual circumstances. 

Instead, the optimal strategies arc those that, whcn 

averaged over all anticipated situations, result in the 

best (in the sense of net payoff) final decision. 

I t  is important to note that such strategies ( I )  
depend critically on prior information (that is, if any 

prior assumptions were incorrect, then the resulting 

scnsing strategies are nonoptimal); and (2) depend 

critically on the type of sensing task (that is, we 

would need to compile lists of sensing strategies 

indexed by the type of information to be gathered, 

the utility function, the cost, and the prior informa- 

tion). 

These points suggest that batch rules are most 

appropriate whcn sensor models and prior distribu- 

tions are well known. there arc a small numbcr of 

possible sensing tasks, or whcn the net payoff of a 

decision is essentially independent of observations. 

A well-studied example of the last case is optimizing 

experimental parameters in the, context of linear 

regression under Gaussian noise (Fedorov 1972). 

Several different optimization criteria, including the 

determinant, trace, and maximu~ii eigenvalucs of the. 

variance-cov;iriance matrix, have been documented 

(Silvcy 1980). Within the conti-ol literature, Miillcr 

and Weber (1972) consider the problem of finding 

the measurement systeni design maximizing a suita- 

ble norm of the observability or controllability of a 

system linear in both state and control. The nornis 

they discuss are the trace, determinant, and maxi- 

mum eigenvalue of the obscrvability matrix. Mehi-a 

(1974) combines and exicnds these results to include 

time-varying systems and randomized designs. 

The scc/lrcrlriol experimental design problem is to 

inci-ementally choose the sequence of measurements 

maximizing the net value of the final decision online. 

Sequential procedui-cs arc appropriate whcn the 

range of situations Faced by the system is large. the 

unknowns and control parameters are coupled, and 

there is large variation in  the effect ~f observations 

on unknown parameters. For cxamplc, i n  estimating 

rotations i t  often turns out that some viewing posi- 

tions imnicdiately constrain angle. whereas others 
give very little rotation information. Similarly, whcn 

estimating size with a monocular camera, the infor- 

mation gained about size depends on knowledge of 

the viewing distance (to fix the aspect ratio) and 

knowledge about rotations (to determine the effect 



of foreshortening). If the prior information about 

position and rotation is poor, it  is difficult to antici- 

pate which points of view and selection of features 

will yield the best estimate of rotation and/or posi- 

tion. In some cases, the first measurement may suf- 

fice. In others, three or four measurements may be 

required. Hence for the class of general geometric 

sensing tasks that we have outlined, we advocate 

online sequential procedures for choosing viewpoints 

and sample size. 

The difficulty is that for genernl sampling densities 

and payoit' functions, the optimal strategy is highly 

dependent on the number of observations (look- 

ahead) the system uses. For example, when the rela- 

tionship between unknown parameters is highly cou- 

pled, a one-step look-ahead is sometimes not enough 

for adequate system performance; there mity be no 

sitlglr observation that has positive net value, but 

there may be a sequence of two or more that do (the 

example of a ~nonocular camera estimating distance 

is a case in point). In general, the optimal procedure 

may use a number of samples, N, which is a random 

variable that cannot be bounded. A significant 

amount of theoretical work in experimental design 

has been devoted to the study of finite horizon 

approximations and their relationship to the optimal 

procedure. Because we are working in a time-con- 

strained application, we use n fixed sample size n- 

step look ahead approximation (Berger 1985). 

Tjrr Srtrsor Actiott Sprrce 

Within the above paradigm, the simplest approach to 

sensor observation planning is to identify the set of 

available sensing actions, A, with the a priori SLIP- 

plied control space W .  Recall that the I~itter set rep- 

resents all information-gathering alternatives avail- 

able to the system, and accordingly may describe a 

large variety of sensing alternatives. In general, 

these actions correspond to ( I )  the selection of pro- 

cessing parameters (e.g., thresholds), (2) the selec- 

tion of sensor position or configuration, and (3) the 

selection of features to observe. Exactly what 

actions are available depends on the details of the 

sensor, the geometry of the situation, and the pre- 

dictability of observation. In general, the constraints 

imposed by the structure of the sensor and its inter- 

action with geometry must be treated individually 

for each sensor. For example, Cowen (1988) details 
the comp~itation of feasible actions for a vision sen- 

sor for objects in a known position. Hutchinson et 
al. (1988) discuss similar computations for a multi- 

sensor system consisting of laser range sensors and 
vision sensors. 

The effect of uncertainty is to decrease the pre- 

dictability of the effects of action, which may, in 

turn, lead 11s lo alter the size or structure of the 

action set. For example, given an object in a known 

pose and known position, the features observable 

from any point of view are predictable, and view- 

point selection can be done in an object-centered 

coordinate system. This means that the space of 

actions can be identified with the set of viewable 

feittures, and viewpoint can be coupled to feature 

selection. Conversely, if the object is in an unknown 

pose, then Lhe outcomes of actions (observed fea- 

tures) are no longer predictable because of limited 

sensor scope. That is, not only is the type of infor- 

mation that will be observed unpredictable, but we 

are no longer guaranteed to observe rrnyrlring-sen- 

sor control is oprtz-loop. 

However, if the sensor has detected the object, 

then a c.lo.sec1-loop control model can be used. For 

example, if an object is in an unknown position but 

the sensor has observed some feature known to lie 

on the object, we can couple the sensor position to 

observations and again work in an object-centered 

coordinate system. Moreover, if we have some 

information about the topology of the viewed object, 

we can navigate over the surface of the object. This 

increases the reliability of feature detection and also 

increases knowledge about interfeature correspon- 

dence (for example, i t  allows us to solve for the cor- 

respondence parameter in example I). In the remain- 

tier of this article we focus on the closed-loop model 

and refer to Hager and Mintz (1987) where we dis- 

cuss the open-loop model. 

To employ a closed-loop model, we must describe 

the relationship between the fi~ll control vector of 

the system, w ,  the unknown parameters, p, and u 

reduced control space, d. In this article, we 

assumed that this relationship can be expressed in 

the form: 

where rr is a sensor action and w is the sensor con- 

figuration that would result by taking sensing action 

tr when the state of the world is p. 

Example 6 For example, we can express the 

restriction of sensor motion in a plane (parameters 

x,., y, . ,  a,.) to a planar, object-center, polar coordi- 
nate system with parameters ( a ,  r )  by: 

This form is used later in this article to describe a 
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camera coupled into an object-centcrcd coordinate gain is 0. The best scnsing strategies atc tliosc 

system using image fccdback. that measurc tlic Icngth of onc side. Dcpcnding on 

I n  this context, we note that i t  is important to dif- 

ferentiate between an e.u~ertrtrl control loop. which 

maintains a particular sensol-/world relationship, and 

the model of that relationship, which is cxprcsscd by 

L and uscd for sensor planning. 

In a complex system. several such constraints 

could be available to thc systcn~. For cxamplc, onc 

such constraint might implcmcnt tactilc conipliancc, 

another may implement curvaturc-bascd exploration, 

and another may implcmcnt visual tracking. By 

intelligent choice of these feedback constraints, thc 

complexity of the scarch proccss may be signifi- 

cantly reduced. 

Fortnuln~itig tlie Sensor. C'on1r.01 Prohlcni 

The decisions of Ito~v tnrrch information to gather 

and Iro~v to gather i t  are based on the cxpectcd gain 

in payoff from an obscrvation rclative to the cost of 

gathering and processing that obscrvation. This 

trade-off is expressed by: 

Note this covers the case where there is no control 

constraint by identifying .d and W and dcfining 

L(p, t i )  = u.  

This quantity is the cxpcctcd tiel gain from an 

observation (averaged over current parameter uncer- 

tainty and sensor observation uncertainty) minus the 

expectcd cost of processing the ncxt observation. 

Thc best choice of n is that maxirnizing this quantity 

(which depends on w through .f; as dcrivcd from thc 

sensor model). If the resulting net gain is ncgative, 

then cost of ‘gathering and processing an obscl-vation 

is larger than the gain in information, and the systcm 

should stop taking observations and niakc a final 

dccision. 

For a given cost forn~ulation c ( . ) ,  an optiliial sani- 

pling plan relative to a prior 7r is a vector of actions 

cr that satisfies: 

)1(n, a*)  = max ri(.rr, a ) .  (9) 
<I 

Example 4 (cont.) Based on the previous discus- 

sion, we can qualitatively describe the sensing 

strategies for each of the three example tasks. 

The sensing actions for the first task concen- 

trate on localizing either lcngth or width. So, for 

example, observing the corner located at the ori- 

gin yields no information-the expected marginal 

the type of scnsor, i t  is cntircly possible that the 

location paranictcrs arc Icft untouched. 

The sccond task rcquircs location, sornc oricn- 

tation information, ant1 at lcast onc of width or 

hcight. Thc last will havc bccn determined by thc 

last task, but location and orientation may not 

havc bccn. If not, thc obvious stratcgy is to local- 

izc thc corncr at tlic origin of thc coordinate sys- 

tcm, as i t  gives dircct location information. 

Thc third task is again indcpcndcnt of location 

but rcquircs thc hcight, Icngth, and width. Thus 

the expectcd niarginal payoff of the corncr at thc 

origin is 0, and thc gain of observing a corncr 

rises dcpcnding on thc nunibcr of sizc paramctcrs 

i t  detcrmincs. Conscqucn'tly, givcn that location 

was established in  thc prcvious cxamplc, the bcst 

corncr to observe is clcarly that with objcct posi- 

tion I N , ,  ( I * ,  N ~ ] ,  as i t  depcnds on all thrcc 

requircd parameters. 

Thcsc methods havc thc intuitive appcal of niathc- 

matical simplicity, clarity and gcncrality. I n  esscncc, 

by describing thc scnsor, thc gcomctric rcprcscnta- 

tion, and thc task, wc dctcrniinc the solution to a 

problcm. Howcvcr, this philosophy has Lhc follow- 

ing drawbacks: 

I .  Thc computation of Baycs' thcorcm rcquircs a 

representation for probability distributions that 

can adequately rcprescnt updates from nonlin- 

car, couplcd, non-Gaussian scnsors and is also 

computationally tractablc. 

2. The computation of a dccision and its payoff 

rcquircs the evaluation of an integral, as well 

as a niaximization. 

3.  Computation of optimal scnsor control values 

rcquircs two additional ititcgri~l evaluations and 

a maximization. 

4. Baycs' thcorcm is formulated for known scnsor 

models and so must bc modificd to account for 

modcl unccrtainty. 

One way out of tlicsc difficultics is to re5trict 

attention to those cases whcl-c thc updating proce- 

dure is effectively calculable, and to approximate 

problcms with no cffcctivcly computable solution by 

thosc that do. This is, in effect, thc route taken by 

those who use thc extended Kalmari filter (EKF) to 

implement sensor data fusion, for example Ayachc 

and Faugeras (1988), and Durrant-Whytc (1988). to 

list just two. Howcvcr, as demonstrated in Hagcr- 
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(1988), the EKF only suffices as an approximate 

solution in a restricted range of cases-roughly 

those where prior uncertainty and model ~~ncertainty 

are small. 

In the next section we develop an approximation 

method that is appropriate for 21 wider variety of 

cases. This method is based on approximating the 

prior probability distribution using a grid-based rep- 

resentation and formulating Bayes' theorem for this 

representation. 

4. Grid-Based Conditional Bayes Analysis 

The generality and computability of the methods 

described in the last section depend largely on the 

representation of probability distribution f~~nct ions .  

The problem is to find a C ~ ~ I S S  of probability distribu- 

tions that is flexible enough to ilcscribe both prior 

and posterior distributions after updating with a non- 

linear, coupled sensor description; can be easily 

transformed and integrated to accommodate a vnri- 

ety of task descriptions; and is still computationally 

tractable. We adopt, for our implementation, the 

class of probability distributions that can be 

described by piecewise-c.onsfc~rzf density functions. 

Intuitively, such densities are defined by choosing a 

partition of the parameter space and defining a prob- 

ability associated with each set. 

, Densities that are not inherently piecewise-con- 

stant are approximated by a piecewise-constant den- 

sity. For example, Figure 2 illustrates the approxi- 

mation of three tliSferent.densities by a piecewise- 

constant density function. From this we see that 

piecewise-constant densities can represent skewed, 

multimodal, and bounded distributions. Further- 

more, Bayes' theorem, estimate c:tlcuIation, and 

payofl' calculution tor this class of distributions are 

all relatively simple. Before proceeding to the gen- 

eral case, we illustrate the basic steps with the fol- 

lowing example. 

Referring to Figure 3, we consider a prior density 

Fig.  3 .  An e.rrrtnple oJ'rr st.irlrrr rtpdirte. 

with support on the interval from -11  to I > ,  ns shown 

on the upper left. Given an observation z = 0.0 with 

uncertainty described by a scaled ( -  h/2 to hI2) ver- 

sion of the prior density, we compute the posterior 

density by: 

I. Computing Sf,, f ( z  I p )  dp for each element f2, 
of a partitioning of the parameter space. These 

values are written under the density on the 

upper right. 

2. Multiplying the prior value for each partition 

element by the value calculated in the last step 

and normalizing the result, giving the density 

on the lower left. 

3. Repartitioning and interpolating from the old 

partition to the new partition. We note that the 

values in the figure are approximate. The true 

values are 1211 15, 115, 9/23, 115, 1211 15. 

Referring to Figure 4 ,  we show how the process 

changes fur the scalar system z = p' + V. Ni~mely, 

we first project the density on p through the system 

description p' to compute a probability description 

on the range space of h. We then apply the process 

described in  the previous example to the trans- 

formed density and reflect the computed probabili- 

ties back onto the original partit~on. So, if we were 

to update as described in the previous example, we 

w o ~ ~ l d  compute a distribution with smaller support if 

Fig.  2.  Apprn.ritnrrtion wit11 pirr~e~c~i.sc~-c~orr.st~rt~t prior tletrsi- Fig. 4. Tlrr projrctiorr of rr rlet~.sity rt~itlr re.spec,! to the 

ties. Jirncviotr h(p) = p'. 
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h > 1 and larger support if b < I .  If h = I, only the 

calculated probabilities change. 

4.1. General Grid-based Probability Density Updatirtg 

In generalizing to n dimensions, the basic process 

remains unchanged, though the management of the 

partition and the computation of the projection 

become more difficult. As notation, we adopt the 

convention that tir?ze is indicated by a superscript, 

and partition element indices are indicated by a sub- 

script. The only exception is observations, where 

time indices continue to be shown as subscripts. fiCx, 
a = 1 ,  2, . . . , rz, is a given finite partition of 9, A' 

is the vector of probability values for each set, and 

the two together define the piecewise-constant den- 

sity &. 
Given an observation ZL + I and making use of the 

conditional independence of the z, given p, we can 

apply Bayes' theorem (7) to d :  

Because &(.) is a piecewise-constant function, the 

following equality is now valid: 

where a: = ~: /p( f2~) . '  Let . denote inner product. 

We can now rewrite (10) in an iterative form: 

Note that the actual computation of Bayes' theorem, 

(14), only requires a parallel multiply, a sum of vec- 

tor elements, and a vector multiplication by a scalar. 
In terms of the previous example, A" is the vector of 
initial probabilities shown on the upper right of Fig- 
ure 3 ,  xO are the values written under the histogram 

1 .  The function f i  is interpreted a s  a generalized volunie measure. 

a lso  known a s  Lebesgue measure. 

on the upper left, and A' are the values given on the 

histogram on the lower left. 

When the observation system is not described by 

a simple identity, we must compute the value of an 

integral expression depending on the function 

describing imaging geometry: 

We approximate this expression by lineari~ing H for 

each grid clenient and computing this integral piece- 

wise for each grid element. By a change of variable 

and defining I L 1 to be the Jacobian of the function 

/I, which must now be fully determined and evalu- 

ated at [he center point of the grid element, we 

derive the following approximation: 

x: = - Fv(oi) where f2i = {L,  I - H(p) 1 p E 0'). 

I L I 
However, the Jacobian term is the ratio of the area 

of differential elenients before and after the mapping 

H, which in turn is approximately the ratio 

p(fl,!)lp(.12i). Substituting this into (13) and adjusting 

( 1  2) accordingly yields the following modified forms: 

where 0i = { z ; + ~  - H(p) I y E OL}. (124 

Expression (12a) requires the computation and 

representation of the sets II(R,), i = 1 ,  2. . . . 11. We 

refer to this collection as  the range grid. In general, 

the exact form of a projected set is difficult to repre- 

sent, so in practice we approximate the projection 

using a rectangular representation. In this case, the 

value of the integral can be determined though sim- 

ple table lookup. In general, the choice of what to 

use as  an approximation and how to compute i t  is 

governed by the ease of computing that particular 

representation, the accuracy of the representation, 

and the ease with which (12a) can be compuled. 

Because these propcrtics change from application to 

application, the behavior- of a particular approxima- 

tion to ( 1  2a) must be carefully understood. 

Exa~nple 7 We constl-uct the matrix 

H = [  cos (0) - sin (0) 
sin (0) cos (8) 

which can be interpreted as a rotation of the 

parameter space through an angle 8 about the ori- 

gin. The observation system is described by 

Hager and M i ~ ~ r z  



where H is as given, and p and V are vectors of 

mutually independent, bo~tnded random variables. 

Referring to Figure 5, on the upper left we see a 
domain grid of rectangular elements. Each ele- 

ment 0; has an associated probability A; = P ( p  E 

0,) computed from a given prior probability distri- 

bution. These values, together with the values 

p(Ri), define the vector ah given by (13a). 

When an observation is made, the domain grid 

is projected through the sensor description, H. 

The form of H above leads to a projected grid of 

the form depicted on the upper right of Figure 5 .  
One method for computing this projection is to 

evaluate a point on the middle of each border of a 

domain element and construct the bounding box of 

these points. The grid in the lower left is the 

resulting range grid. Note that because of repre- 

sentation errors, there arc gaps in the range grid. 

Another possibility would be to project the cor- 

ners of the grid elements in which case the range 

grid elements overlap each other. 

Given an observation, zA, we compute the prob- 

ability of the intersection between each I-unge grid 

element and the same .space of the observation 

(expression (12a)). Because we are using a rectan- 

gular representation for projected grid elements, 

this value is now easy to compute using a lookup 

table of probabilities. The result is the vector xA. 

Original Partition Projection 

These vectors can now be combined using (14) to 

produce the new vector of probabilities on the 

original domain grid, and the process repeats. 

In the above example, we noted i t  is possible to 

obtain a range grid that has "gaps" or "overlaps" 

as a result of projection errors. Numerically the 

effect of such projection errors depends on the mag- 

nitude of the errors in relation to the size of the sup- 

port set of the sampling distribution. Very small pro- 

jection errors change the value of (l2a) and (13a) 

slightly but do not affect the final outcome in a sig- 

nificant way. However, a large gap could lead to a 

situation where the observation falls on a gap, and 

the sampling distribution does not have large enough 

support to intersect a range grid element. In this 

case (12a) will yield a vector of zeros, and the 

update will More generally, we see that if there 

is any gap in the representation, i t  is possible that 

the true parameter value will be excluded from the 

support of the conditional density. 

Hence, in order for the method to function cor- 

rectly, i t  must be the case that an approximate pro- 

jection, f]:, of a grid element i contrrins the true pro- 

jection: 

( 0 ,  0 where H(0 , )  = {H(p) I p E 0,). 

In this case we can guarantee that any parameter 

vector that is a possible candidate for having gener- 

ated the data will not be excluded. We have recently 

discovered a principled way of ensuring this condi- 

tion holtls using interval analysis (Moore 1966). For 

example, when using the midpoint projection, we 

scy~le the partition elements (making i t  a finite cover- 

irrg) until the criterion is satisfied. The itptlating rule 

remains unmodified, though (12a) is computed using 

the covering rather than the partition. In the case 

above, for example, a rotation of 45" requires an 

expansion of grid elements by a factor of 0.5 to 

account for projection errors. The resulting range 

grid is equivalent to the results of projecting the cor- 

ners of the grid elements. 

Finally, when the output vector of the system is of 

lower dimensionality than the input vector, we use 

exactly the same process, though these expressions 

are only approximately correct for this case. 

4.2. Adding Hobilstness 

Midpoint Comer We now consider the effects of variation in the dis- 
Representation Representation tribution of V as a result of the influences of the 

Fig. 5.  AII illrrs~rrrtiot~ of I N ~ O  tl$Jrrrtrr metl/otl.s fbr  r.otti- parameters we are estimating, the choice of control, 

plrring t/ lr  projection of'r /etr~rrr~s o j ' ~ / ~ e  pc~rtrtnrtrr sprrce and unmodeled variations. In the statistical litera- 
grid. ture, this problem is called model rob~rstness; Huber 
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(1981) presents a number of results related to this 

issue. 

First we need a definition and a simple related 

result: 

I)EFINITION I: Given two uniniodal measures nl 

and n2 centered about the origin, we say n2 is (11 

P 

least cis pecrkcd as rrl (Sherman 1955), denoted TI 5 

TZ, if. for all A Ed,,, (d,, the class of compact, con- 

vex, symnictric sets in ! ) in  centered about the ori- 

gin), 

For example, a Gaussian distribution, F I ,  on Y i  is at 

least as  peaked as another Gaussian, F 2 ,  if FI has a 

smaller variance. 

THEOREM 1: Let ir be a quasiconcave function 

bounded from above and symmetric about the ori- 

gin, and TI and 7r2 be two continuous distribution 
I' 

functions unimodal about the origin such that 7rl 5 

n2. Then Em'[ ir (x) ]  5 Em[ i r (x ) ] .  

The implication is that any approximation crrors 

should lead to distributions less peaked than the 

exact result. Similarly, a robust algorithm should 

yield a result no more peaked than the modeling 

uncertainties warrant. 

We first consider the effects of parameter dcpen- 

dence and variation of the density describing the 

random variable V. We first note that, by consider- 

ing the possible range of sampling distributions and 

their associated uncertainty over the parameter 

space, we can construct the set of all possible sam- 

pling densities. Based on the above theorem, the 

worst case sampling distribution is that one that 

leads to the least peaked posterior distribution. The 

general problem of isolating worst case distributions 

is unsolved, but several special cases can be cited. 

For example, in the case of a Gaussian prior and a 

class of Gaussian sampling distributions, the worst 

case distribution is the least peaked member. Similar 

results hold for uniform distributions. Zeytinoglu 

and Mintz (1988) have shown that, for the case of a 

0-1 loss under suitable restrictions, the minimax 
solution maximizing over the unknown parameters 

and a class of sampling densities while minimizing 

over the class of monotone decision rules uses the 

~(p j ) e r  erzvelope of the class of sampling distribu- 

tions. The upper envelope of a family of distribu- 

tions is no more peaked than any member of the 

family. These observations suggest that a reasonable 

approach to niodcl robustness for quasiconcave utili- 

ties is to choose a distribution no more peaked than 

any member of the class of possible sampling distl-i- 

butions. 

If tliei-c is a large variation of sampling densities 
ovcr the range of unknown parameters, this 

approach could lead to a significant perfol-mance 

degradation by not incol-porating the distributional 

information ovcr unknown paramctcrs. However, 

we have not found this to be the case in practicc. 

Acc.omnrodatir;g Model Vuritition 

We now turn to the problem of making the updating 

method robust to modeling errors in the mcasurc- 

nicnt system modcl / I  or geometric modcl g .  We can 

consider two types of crrors: systematic and nonsys- 

tematic. Systematic errors are unknowns that remain 

constant over the course of taking data. This type of 

crror can be best handled by augmenting the param- 

eter vector with the systematic crror parameters and 

performing estimation in the larger space. That is, 

from a theoretical viewpoint, there is no difference 

between parameters of i~ t e r e s t  and systematic error 

parameters. 

Nonsystematic variation may arise from two 

sources: variations in the sensor system itself or dis- 

crepancies bctwecri the subject and the geometric 

model. This distinction is important: the formel- is an 

crror that must be tolel-atcd by fusion, whereas the 

latter may be an important source of information 

about the suitability of the model. When updating, 

the effect of both of these variations is to increase 

the size of a range grid clement. That is, for a "per- 

fect" sensor modcl, the observations expected for a 

set of parameter values Ri is tl(g(Ri), w ,  e). How- 

ever, if the sensor modcl or gcometric model has 

some variation in addition to the model parameters, 

the set of possible observations is enlarged by this 

uncertainty, arid conscqucntly the following I-elation 
must hold between a pal-amctcr space subset. f1,, 

and its approximate prc~jection f),! : 

To keep the computation of this expression simple, 

we approximate the enlargement of range grid ele- 
ments with a vector of tolerance parameters, r .  So, 

for example, if we arc representing range grid ele- 

ments by bounding boxes parameterized by a vector 

of minimal elements I and a vector of maximal ele- 

ments u, then the enlarged range grid element is 

defined by 1 - e and 11 + r .  
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To estimate model variation, we decompose c  into 

the tolerance component resulting from the sensor 

model variation (which we assume is known) and 

the component resulting from geometric model 

variation: c  = r, + s,,,. We then note that for any 

given e,,, , there is an associated posterior probabil- 

ity. That is, el,, parameterizes a clcrss of posteriors: 

doi; r,,,). Observe that there is a minimal value of 

r,,,, e l ,  that is either 0 or a positive number such that 

choosing a component of r,,, to be smaller than the 

corresponding component of el causes the posterior 

distribution to become inconsistent ( i t  places 0 mass 

everywhere). Given that Fv is a distribution taking 

values in 1 - d ,  dl and the sensor tolerance is c , ,  it  

can be shown that there is an upper bound on the 

observed tolerance given by s,, = cl + 2d + 2c,. 

We further observe that larger values of c lead to 

less peaked distributions. Therefore d l l ,  ; cl)  pro- 

vides an "upper bound" on the true probability dis- 

tribution, and d f l i ;  c.,,) provides a "lower bound." 

In those cases where c,, - el is small, using c,, pro- 

vides a reasonable (pessimistic) estimate of r,,,. 

4.3. Estimation and Payoff Complrtation 

The transformation functions 1 are divided into three 

types: reductions of the parameter space, transfor- 

mations to a discrete space, and transformations to a 

continuous space. Reductions of the parameter 

space require integrating out over the unwanted 

dimensions. This is easily done by summing the ele- 

ments of the grid along these dimensions and placing 

the results in the lower dimensional grid. For dis- 

crete transformations, the probability of each of the 

discrete alternatives is tabulated over the grid. In 

most cases, this is simply summing the probability 

contained in the inverse projection of each element. 

Continuous transformations require a projection sim- 

ilar to that used for (1221). The resulting grid is used 

as a representation of the transformed density func- 

tion. 

The best estimate of geometric parameters is that 

which maximizes the expected payoff. Computing 

such an estimate directly-that is, by maximizing 

payoff over all values of the parameter space-is 

generally too complex to perform quickly. In some 

cases the optimal estimate can be solved for 

directly; for example, in the case of a quadratic loss, 
the conditional mean is known to be the optimal 
estimate of parameters. In those cases where opti- 

mal estimate or decision is difficult to express in 
closed form, we take the approach of approximating 

the optimal estimate with some combination of rela- 

tively simple statistics such as mean, mode, median, 

or  higher moments of the transformed distribution. - -  

Payoffs are computed by integrating the task util- 

ity or  loss over the transformed grid. This is usually 

a relatively simple operation as ,  because of the 

nature of the grid, the integral becomes a weighted 

sum of integrals of the utility or loss over a grid ele- 

ment. That is: 

These integrals usually have relatively simple 

closed-form solutions, and so  payoff computation is 

inexpensive. 

4.4. Itnplemtenting Sensor Search 

From a computational standpoint, (8) is expensive to 

compute. It requires two integrations of a computed 

function with respect to (possibly vector) variables. 

In the grid-based method, integration is carried out 

by evaluating the integral on each grid element and 

multiplying by the probability mass associated with 

that element. Therefore on a scalar machine, this 

has s~rperexponenticrl complexity; on a parallel 

machine it would be exponential. Furthermore, we 

would eventi~ally like to carry out planning and 

fusion on different machines. If these machines are 

connected via a network, the communication of a 

complete grid carries a substantial communication 

overhead. Thcrefore we would like to reduce the 

size of the representation as much as possible. 

In most robotic applications, the effects of sensor 

observation uncertainty are relatively small com- 

pared with the accuruc y general1 y needed for effec- 

tive task performance. What is more relevant, at 

least initially, is obtaining sensor observations that 

overdetermine the underlying model parameters. 

Stated another way, the most important aspect of an 

observation is its effectiveness at reducing gross 

geometric uncertainty, rather than its statistical 

effect on the posterior distribution. Moreover, in the 

grid-based method we can determine when this is 

true by the following simple rule: when the sample 

space corresponding to an observation is smaller 

than the smallest range grid element, the statistical 

properties of observations will have almost no effect 
on the updated distribution. 

Example 8 To illustrate this point, consider the 
simple scalar example of a sensor system 

described by 
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Furthermore, let p E [ -  IOd, IOd]. We note that, 

in this case, the domain grid and the range grid 

are identical, because 11 is the identity function. 

If the number of elements in the domain grid is 

ti 5 10, then any sensor observation will eliminate 

at least t~ - 2 grid elements. In this case, the 

value of the parameter space reduction through 

elimination of grid elements is generally more 

important than the final probabilities of the 

remaining elements. In fact, if 11 - I elements are 

eliminated, then any probabilistic information is 

below the resolution of the grid anyway. 

In cases where geometric uncertainty is large rela- 

tive to sensor uncertainty (i.e., the above rule 

holds), we simplify (8) by removing the inner expec- 

tation and computing: 

n(n, w )  = EW[(r(npl,) - r(.rr)) - c ( p ,  w )  1 z 

That is, we do not average over the random variable 

V of the sensor model. 

On the other hand, when the system has a set of 

observations that overdetermine the underlying 

geometry. the effect of parameter variation becomes 

small. In this case, we can fix p at a value p. 

remove the outer expectation of (8). and consider 

only the effects of sensor noise and modeling error: 

The amount of computation required for the 

remaining expression may still be prohibitive. In the 

case of large geometric uncertainty, we can further 

simplify the computation by disregarding the fine 

structure of the remaining integrals and restricting 

our attention to actions with relatively large net 

gains. That is, instead of evaluating the integrand at 

each grid element, we pick some subset of the 

parameter space, $0 C 9, and find the average value 

for those points. Of course, the effectiveness of this 

procedure deperids on a good choice of elements in 

93 and insensitivity to minor variations in payoff. In  

a sense, this approximation can be viewed as a 

hypothesize-arid-test approach. The value of a 

hypothesis generator is a trade-off between (he cost 

of generating and evaluating the points in 3 and the 

quality of those points. 

Choosing the maximal information viewpoint or 
description vector is a process of evaluating possibil- 

ities and choosing the point with the maximuni net 

information gain. There are two types of actions to 

be considered: discrete and continuous. Discrete 

spaces must be dealt with in an intelligent combina- 

toric fashion. Continuous spaces can either be dis- 

cretized or handled through a continuous minimiza- 

tion procedure. 

For the problems we have considered, we maxi- 

mize (8) over the allowed set viewpoints for each 

feature and choose the featurelvicwpoint pair with 

the highest rating overall. The maxirnization method 

we use is a variation on well-known golden section 

search algorithms (Press et al. 1986). As such, these 

techniques are very weak-they use no information 

about the sensing system other than the evaluation 

of the current points in the action set and an initial 

bound on the maximum. This is an advantage from 

the point of view of generality but a disadvantage 

from the point of view of efficiency. As suggested in 
earlier works (Hager 1987; 1988), sensor control 

should properly be placed it1 r l ~ e  setisor, and more 

sensor-specific information should be used to 

enhance the control process of each sensor. 

5. Analysis of Approximation Errors 

In this section, we first present some basic, qualita- 

tive mathematical analysis of the behavior of the 

grid-based method, based on the notion of peaked- 

ness presented in the last section. These ideas will 

be used to evaluate the error characteristics of the 

method, its sensitivity to prior assumptions, and its 

ability to deal with envelopes of models. We then 

present some Monte Carlo simulation results for 

several example problems in order to verify the per- 

formance quantitatively. 

5.1. Mathematical Error Analysis 

Because the sampling distribution is boundcd, one of 

the effects of Uayes' theorem is to eliminate por- 

tions of the parameter space that are incompatible 

with sensor observations. Consequently, the updat- 

ing algorithm acts as a "root finder" until the 

remaining parameters are compatible with the obser- 

vations LIP to observation unccrtainty. After a few 

morc observations, the grid does not contract with 

any great frequency, and most of the change in thc 

posterior is the result of conditioning effects. We 

refer to this state as the stc(1tij1 .s~rr/c of the system 

and analyze the errors when i t  is in steady state. For 

the most part, this analysis is independent of partic- 

ular choices of observation systems and so is quali- 
tative rather than quantitative. 

Single-Step Updut i t~g  Ert.ors 

The error in updating is attributable to the approxi- 
mation 



f ( z ~ +  I 1 P) d d p )  = (1, Joj f ( z ~  + I 1 P) LIP. This suggests that, as is expected, a finer grid 

reduces error, and less peaked prior distributions 

The denominator of the updating rule serves as a lead to smaller errors. Thus a good gridding scheme 

scaling factor. We assume that the difference attempts to grid finely in areas where the prior den- 

between the true denominator and the approximated sity changes rapidly, and coarsely in other iirei\s. 

one is small. This leads to an approximation error This keeps the error magnitude relatively constant 

(up to scaling) of the form: throughout the grid. 

Example 9 To give a graphic illustration of the 

sign and magnitude of errors, consider the case 

where f v  and 7~ are described by symmetric trian- 

(15) 
gle distributions parameterized by the width 11) as: 

In order to be concrete, we consider the magni- 

tude of tirst-order errors in a scal21r system (all of 

the results can be generalized to nonscalar sys- 

tems). Partition elements are parameterized us 0, = 

Itn, - (I, tn, + 111, and we assume I,(.) is a piecewise- 
linear function of the form j',(p) = (I, + b,(p - 

111,). Substitilting into (15) and simplifying, we get: 

Expanding f (zL + I 1 p), adopting the change of 
variable p = p - m, ,  and defining v = z - nl, leacls 

to: 

We can further simplify by exploiting the symme- 

try of the integral and write: 

This representation makes it clear that the magni- 

tude of the error is related to ( I )  the local slope of 

the prior density function ( b f ) ;  (2) the local irsymme- 

try of the sampling distribution (the effect of the dif- 

ference in (16)); and (3) the size of intervals ((1). 

We fix .rr = t ( . ,  I), partition the parameter space 

into four equal regions numbered (left to right) 

from I to 4 ,  and vary jv  = I ( - ,  111) for values of I V  

between 0.5 ancl 0.7. Figure 6 shows r , ,  i = 3, 4 
tor three values of'w while varying 7. This shows 

the immediate effects of updating errors. Note 

that for z near 0, the error for element 3 is posi- 

tive, while the error for element 4 is negative, 

indicating that the true distribution is more peaked 

than the approximation. As z moves to the right, 

the trend reverses. However, the peak of the pos- 

terior distribution is also moving so that the 

approximated final distribution is again less 

peaked than the true tinal distribution. 

Figure 7 shows the expected error averaging 

over z while varying p. Again the r c s ~ ~ l t  is that the 

approximated distribution is less peaked than the 

final distr-ibution for almost all values of p. In par- 

ticular, if we average these curves with respect to 

F,,, we get a positive value for element 3 and a 

negative value for 4. 

This example illustrates another very important 

property of this method: for unimodal prior and 

sampling distributions, the expected error is positive 

Fig. 6. Updrrring errors (1s 0 firnctiotr of z for rlemrrrf 3 (left) ontt rlrmet~t 4 (right) wirlr v(111rrs oj'w = 0.7 (solid), 
w = 0.6 (dashed) cincl w = 0.5 (dotted). 



Fig .  7. Updaiirtg errors as cr ,filnctiort of p,for elcrnerii 3 (left) ar~cl clerrtcrti 4 (right) titit11 ~~rrlrtes of w = 0.7 (solid), 
w = 0.6 (dashed) a r ~ d  w = 0.5 (dotted). 

ncar the center and negative near the tails. This 

implies that, on the average, the approximated pos- 

terior is no more pcukcd than the true posterior. 

This result is not surprising, as a histogram repre- 

sentation of a unimodal distribution tends to be less 

peaked than the original distribution. Nonetheless, 

this is an extremely important property; it implies 

that the method has some brrilt-in robustness to 

modeling assumptions. 

Error Propcrgution 

For simplicity assunie the clcnients of the domain 

grid arc uniform size so that the factors p(f2,) drop 

out ( i . ~ . ,  a: = A:). Let rr be the trrrc kth stage 

(updated) prior, and T# = n(Ri). This is. 77 is the 

correct probability associated with grid clement i .  

We consider errors of the forni: 

We can rewrite the final term as a combination of 

the correct probability $ and the effect of pi-evious 

errors c:: 

We again assume that the difference between the 
denominators is not substantial. Now, by gathering 

the first two terms together into the single-stage 

probability eri-or P : + '  and nlultiplying the top and 

bottom of the final term by A:, wc get: 

with (.I' = 0. 

This is a nonlinear, stochastic, difference equation 

with the following qualitative behavior: the term c !  

tends to be positive ncar the center and negative 

near the tails, so the cumulative errors tend to flat- 

ten the distribution. Furthermore, in areas of 

increasing mass [(A:' '/A:) > I ] ,  so previous errors 

have an increasing weight-effectively "damping" 

the rapid update and adding robustness. 

lntcrpolation is a source of error both before the 

updating algorithm reaches steady state and, to a 

lesser degree, when i t  is in steady state. Howcver, 

this error is generally inconsequential. Moreover any 

errors that arc introduced make the interpolated dis- 

tribution less peaked than the ideal distribution. 

Another soul-ce of error is the imperfect represen- 

tation of the range grid pointed out earlier. That is, 

we approximate the clcmcnts of the range grid, 

which leads to overlap among the elements. How- 

ever, the enlargement of grid elements to account 
for representation error acts, in a sense, as an added 

model uncertainty and increases the tendency of 

updating to flatten the posterior. In other words, in 

cases where this error is large, the procedure is also 

very robust to error. We note that the propagation 

of all of these errors follows (17). 



5.2. Simulation Evallration of Sensor Data Fusion 

We have implemented this method on scalar proces- 

sors using a regular rectangular gridding of the initial 

parameter space and a rectangular bounding box 

representation of the range grid. The construction of 

the range grid uses the midpoint projection heuristic 

(described in example 7) with a scaling parameter 

indicating the fraction of a domain grid element 

(e.g., a factor of 0.2 indicates that the grid element 

should be enlarged to 1.2 times its original size and 

then projected). Modeling error is handled thro~rgh 

additive fitting parameters as disc~rssed previously. 

For a more concise description of the algorithms and 

data structure manipulation, we refer the reader to 

Hager ( 1988). 

In the remainder of this section, we present a 

number of problems and tests of the algor-ithms on 

simulated problems. The emphasis of these tests is 

to evaluate the types of approximation errors 

incurred in typical problems. 

Here we compare the behavior of the grid-based 

method to the known optimal solution to the linear- 

quadnttic-Gaussian estimation problem. The obser- 

vation system is that dqscribed in example 7. We 

use a mean square error performance criterion: 

I t  is well known that the optimal estimate, in thi5 

case, is the conditional mean. When the observation 

system is linear and the prior and sampling densities 

are independent and Gaussian, the mean square 

error is independent of the values of observations. 

Figure 8 shows the theoretically expected value of 

the estimation error,' and three sim~rlations using 

grid resolutions of five, 10, and 15 elements per 

dimension. These data illustrate the convergence of 

the technique to the optimal solution and verify the 

error analysis, which predicts the method will 

increasingly overestimate errors with coarser grids. 

Because H is orthonormal, the error is also inde- 

pendent of the choice of the rotation angle, 0. How- 

ever, we use the representation scheme presented in 

Figure 5 of the previous section, so we should use 

an expansion factor that depends on the angle of 

rotation. We tested the estimation perfor-mance for 
values of the scale factor from 0 and 0.5. The per- 

F i g .  8.  Tlrr ohsc~rvrcl nlrtrn sclrrrrre rrror fbr grids ($5, 10, 

( I I I ~  15 rlett~etrt.~ ( I I I C I  !/re optitrt(11 e.rprc!ed error. 

tbrmance was nearly identical to that shown above. 

Hence in this case, statistical updates are relatively 

insensitive to the value of this parameter. More gen- 

erally, as long as the projection errors are small 

relative to the sampling density, the resulting updat- 

ing errors are inconsequential. 

Nonliner~riiies nntl Upclc~ting Errors 

At this time, the implementation can only estimate 

model parameters or subsets of the model param- 

eters by reducing the parameter space. General 

transformation of parameters is not yet imple- 

mented. Consequently we cannot examine the 

behavior of all of the example problems directly, but 

we can test the ability of the method at localizing all 

or some of the parameters of the rectangular model 

(see example 1). To do this, we simulated taking 

monocular camera observations of individual corners 

of the block. At each iteration, we moved the sensor 

30" clockwise about the object and observed the 

next corner. In this way we obtain a mix of corners 

and sensor observation positions. The sampling den- 

sity is a triangle sampling density with width of one 

pixel. The prior distribution is uniform, and the eval- 

uation function is the 1-0 utility. This utility leads to 

a payoff that is the probability of capt~~r ing  the 

unknown parameters within an interval. The esti- 

mate is taken as the distribution mode. 

Figure 9 shows the perfol-mance of the estimator 

for estimating the 2D position and orientation of n 

block of known size. The tolerance intervals in the 
1-0 utility are 2 mm on position and 2" of angle; the 
left graph is the performance of a five-element,' grid 

-- -- - - - - - - -- -- ----. - - -. -. .. -. 
and the right is the performance of a seven-element 

2. We note that the actual samplingand prior distributions for the 

simulation have been clipped at t 4.0. tlowever, the difference in - -- 

mean square error between the clipped and unclipped distribution 3 .  When we say "n-element grid," we mean n grid elements per 

is less than 0.01%. tlirnen.siorr. 
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0 llerations 20 0 llcralions 20 

Fig. 9 .  Rototiorr urtd positio~r of a krro~t~~r-~ize /)lock ,/i)r 

rc.solrttiorrs o f f i ve  and seven elertrerrts. Tlte dotted c.rrr~~e i s  

tlre actrral fieqrterrcy of tlre rorrect olrstt.er over rlrcrrty s i r ~ r -  

rrlated trials, arrd tlte solid lirte is tlre expected prohol~ility 

calculated by the estirnator. 

grid. What is important to note is that the calculated 

payoff (probability) is below the actual frequency of 

capturing the parameters as  predicted from the error 

analysis. Naturally, the seven-element grid has 

somewhat better performance than the five-element 

grid. 

The left side of Figure 10 shows the curve for esti- 

mating an unknown-position, unknown-size block 

using a four-element grid. We see that convergence 

is slowed slightly because of the coarser grid, but 

that the additional size parameters do not have more 

than a minor effect on convergence. The right side 

of Figure 10 shows the performance on the problem 

of determining three rotations and two translations 

using a stereo camera. The model of error in image 

location is the sanie as  the above simulations, and 

the distribution over distance is of the same form, 

but spread over a range of 2 10 mm. Again, for both 

of these cases, the payoff estimates are conservative 

but are reasonably close to the obset-ved values, in 

spite of the coarse grid. We note that each of the 

angles was originally constrained to lie in a 60" 

range-far larger than the range that most linear 

techniques can effectively handle (Hager 1988). 

Effects of Grid Rcsalrrtiori on  Bias 

Naturally there is a relationship between the accu- 

racy of estiniates arid the resolution of the grid. In 

the case of a 1-0 utility, if the tolerance interval is 

smaller than a grid element, there are a number of 

estimates with the same payoff. That is, if the width 

of a grid element, w is larger than 2d, then the pay- 

off of an estimate $ is constant in an interval of 

length w - 2d. Figure I I shows the bias4 of esti- 

mates of a 0.2-unit confidence estimate after three 

observations for grids of resolution 3. 5 ,  and 7. The 

prior is uniform, and the sampling noise is Gaussian. 

Note that there is an obvious bias for the three-cle- 

nlent grid. The five-element grid displays almost no 

bias, and the seven-element grid has none. For this 

problem. a five-element grid is probably sufficient. 

Finally, Figure 12 compares the bias of estimates 

after three observations and 30 observations. The 

lack of bias in the latter is a result of the effects of 

grid contraction. The width of grid elements 

becomes smaller than the width of the estimate 

interval, and the accuracy improves. This suggests 

that the best grid size is one that, on the average. 

has an end resolution at least as fine as the 

requested tolerance interval. Similar statements hold 

for the mean as an estimator, though the mean tends 

to be less sensitive to grid quantization. 

Thus far we have not given any quantitative indica- 

tion of how our implenlentation of model robustness 

behaves. One method of evalating robustness is to 

consider the variability of the sensor nlodel as  an 

additional contamination and then determine what 

distributions for this parameter can be tolerated. 

That is, we now consider the model: 

arid attempt to determine acceptable distributions for 

the random variable W modeling uncertainty in I!. 

o llerations 20 o lleralions 20 Analysis of this model indicates that there is no 
consistent interpretation of our robustness method 

Fig. 10. T l~e  prohnhility crtrves ,/or ctrr rrrrkrro~~~rr posiliorr. 
directly as  an independent random variable. How- 

rrrrkno~r~~i-size /)lock (left) ctnd rtrrktrolt~ri 31)-positiorr b1oc.k 

(right) rrsing a ,fortr-elerlicrtt grid. 7'lte dotted crrr~~c i s  tlrr 
ever, through simulation analysis, we have been able 

uc/rca/fieqrr~rzry of t/te correct crrtstver over. ntcrrly sirlrrt- 
"termin' what types of distributions can be ''1- 

lated trials, and tlre solid li~te is tltc espectcd prohohility ~ - - -  ~ ~. - 

crrlcrtlotrd hy the estimator. 4. Wc dcfine bias as h(p)  = l i11Xz) { pl - p.  
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I I .  Estirnrrtion hirrs Jbr grir1.s o j ' th r r r ,  

erated. In all cases we have examined, these distri- 5.3. Si~~iulation Analysis of Sensor Planriing 

butions are less perrkrcl than a uniform. 
We have tested several heul-istics for choosing the 

To be more precise, we hnve the following results: 
points in 93, the approximation set used in evuluat- 

consider dividing the (scalar) interval 1 -2 ,  21 into 
ing sensor viewpoints. In this section, we demon- 

five equal subintervals. We assign a probability to 
strate the behavior of three different approxima- 

each subinterval; this yields a histogri~m representa- 
tions. The simplest heuristic is to evaluate marginal 

tion of a sampling density. We then set a v21lue of 6 
gains at the current estimate 

(the parameter describing model tolerance) and 

determine what distributions can be tolerated in the 3 = { p )  
sense that calculated payoff is lower than true pay- 

off. We represent this contamination using a five- 

element histogram over the interval [ - E ,  €1. Table I 

lists the values for the sampling and contaminating 

distributions for three cases we hnve examined. 

The values parameterizing the least-peaked con- 

tamination are not unique, but they serve to illus- 

trate the general trend: as the sampling density 

becomes more peaked, the maximum contaminating 

density that can be tolerated becomes less peaked, 

but all are less peaked than a uniform distribution. 

Furthermore, in the limit (as grid elements become 

small), the distribution for W becomes uniform. 

These two results suggest that the procedure is very 

robust to modeling error, tolerating distributions less 

peaked than a uniform, and the uniform distribution 

is the limiting case. 

Fig.  12. L,efi, 111r estitnrrtion hilts rrjirr t l r rr~,  ohsrr\~~~tiorr.s; 

right, tlre ~stimrrriorr birrs rrfirr 30 ohsrrvrrtions. 

and assume that this represents a reasonable approx- 

imation to the true marginal gain. 

This expression is adequate to pick LIP large 

uncertainties but tends to fiiil to fully evaluate the 

effectiveness of a view; instead it picks a view that 

is optimal for a very specific object-sensor relation- 

ship. A more comp~~tationally expensive method, 

but one that we have found to yield better results, is 

to choose points on or near the border of the grid, 

as well as the current best estimate. For example, 

3 = { p )  U {p I p is a point near the border of 9'). 

This heuristic has the effect of finding viewpoints 

leading to gross uncertainty reductions and also 

more accurately evaluates the change in those 

reductions over different possible object-sensor con- 

figurations. 

Finally, an even more computationally intensive 

approach is to choose a set 9 that contains at least 

Table 1. A Comparison of Sampling Density With the 

Least Peaked Density to Which it is Robust 

Sampling Distribution Contaminating Distribution 

0.05 0.1 0.7 0.1 0.05 0.25 0.2 0.1 0.2 0.25 

0.1 0.2 0.4 0.2 0.1 0.3 0.15 0.1 0.15 0.3 

0.2 0.2 0.2 0.2 0.2 0.35 0.12 0.06 0.12 0.35 

T h r  Itztrrntrtiotztrl Jnrrrt~rrl of Rohof ics  Resrrrrch 



one point for each element of the domain grid. This 

corresponds to averaging over thc entirc parameter 

space. 

Figurcs 14, 15, and 16 show how the three mcth- 

ods-using the current cstimate, using a subgrid 

consisting of the best estimate and the grid corners, 

and the full grid intcgration-comparcd ovcr thrcc 

sample situations. The gcomctric modcl is an 

unknown position block, and the sensor modcl is a 

monocular camera (see examplc 3) obscrving cor- 

ners under perspective with observation noise in thc 

range of one pixel. To simplify the presentation, wc 

have set a? = 0 so that thcrc are only four corncrs 

to consider, and occlusion is not an issuc. (To pic- 

ture the situation, imagine obsel-ving an envelope 

laying in a shelf just below eye Icvcl.) By conven- 

tion, we fix the coordinate system at corner 0 and 

number the remaining corners counterclockwise 
(Fig. 13). The cost function is zero so that we can 

clearly see the calculated payoff values. 

We assume the camera maintains a fixcd distance 

from the object and compute the payoff for each of 

the four corners as the camera rotates through 90". 

The solid lines represent the single-point, best-esti- 

mate approximation; dashed lines indicatc the 

subgrid approximation; and the dotted line is the full 

integration over the grid. The location of the ordi- 

nate axis is the current sensor location; negative 

angles go to the left and positive to the right. The 

4 . . .  . .  t- . .  , , . 
-10 Angle 80 -10 Angle 80 

Fig. 14. Tlie pclyoJf c?/ difir-er~t comhincrtior~s of view- 

poirits crrld corners qfter ~ i r ~ p l c  vie~v of cwr-rter 0 along tllc 

x 0xi.r . 

graphs correspond to corners 0, 1 ,  2, and 3 from 

upper lcft to lower right. Thc abscissa corresponds 

to (rclalive) viewing angle, and thc ordinate is the 

cxpectcd payoff of an observation froni that angle. 

We first note that, as expected, thc widest varia- 

tion is in Figure 14, where only one view has been 

taken, and large uncertainty still exists. However, 

even in this case the approximation curves generally 

follow the shape of the true curve, and most impor- 

tantly, the current observation point has the lowest 

payoff value. This indicates that the ncxt observa- 

tion would be taken from inother perspcctivc as we 

would hope. 

Figure 15 shows the payoffs after two orthogonal 

views of corner 0. In this case, position is well 

established. Thus we see that corner 0 has a flat 

payoff; this is cxpccted, as it does not yield any 

Fig. 13. An illrrstration of the simrtlation geometry. A 

camera at orientation /3 observes corner 2 of a rectangle 

located at point (x, y )  with orientation a. As the sirnula- 

tiori proceeds, the camera observes other corners froni 

different positions and orientations. 

. .  
-90 Angle 0 -90 An8le 0 

Fig. 15. Tire payoff of different con~hiriatiorrs of viertl- 

poirits and corners after views of corner 0 alorig the x-axis 

arrd y-axis. 

Huger arid Mintz 3@7 



information on rotations. We also note that each 

corner has its "optimal" viewpoint. This viewpoint 

corresponds to the viewing angle where the (mono- 

cular) observation of corner position is most sensi- 

tive to rotation. We observe that the subgrid approx- 

imation is clearly superior to the single estimate 

approximation. This is because the single point 

approximation assumes the object is in a specific 

orientation and optimizes a plan for thrrr or-irntrrfion. 

Finally, Figure 16 shows the payoffs after orthog- 

onal views taken of corner O and corner 3 .  In this 

case there is partial information on both rotations 

and translations. Again, the most important point is 

that both approximations do very well qualitatively, 

though the subgrid approximation clearly outper- 

forms the single point approximation. These obser- 

vations suggest the subgrid approximation is gener- 

ally adequate for this case. 

Srlecfiori  of' S(tmple S i w  

The sampling procedure stops when there is no 

viewpoint with positive expected marginal gain. 

Thus another important evaluation criteria of a hell- 

ristic is its ability to accurately approximate 

expected marginal gain. Figure 17 shows the 

expected marginal gain curve for the subgrid heuris- 

tic and true marginal gain curve averaged over 100 

runs for the system described above. We note that 

the heuristic consistently underestimates the true 

gain until the very end, where the approximation 

error goes to zero. In practice, the heuristic is 

"noisier" than the full integration. 

These two observations led us to use a stopping 

criterion that tends to sample past the projected 

peak of the payoff curve. We implement this by 

Net 
Payoff 

A -. J -----A.-&-A_- * -  --1 

-90 A~lglr 0 -YO Angle 0 

Fig.  16. Tlrr p r r y o ] j ' o ] ' c l ~ f ' ~ r ~ ~ ~ t  cornt~intrtiorr.~ oJ' view- 

points rrnd c.ornpr.s crfier rr view ($c.ort~er 0 tr1orr.y tht. x- 

nxis ~ n d  corner 3 olorrg the y-cr,~is, respectively. 

0 Observations 30 

Fig.  17. Tllc trtle trvrrtrge trrtrrgirrt~l grtin c.rirvt. (lop curve) 

~ n t l  tlle projecrrtl rrver(rge n~(~rgirr(rl goin (bottom curve) .  

5topping after trvo consrcrrtive projections of nega- 

tive marginal gain. Consider the utility/cost formula- 

tion given in example 4. Figure 18 shows the stop- 

ping performance when the exponent h is 1 ,  the 

estimate payoff is the probability of a correct 

answer, the cost of an observation is the CPU time 

taken to process it, and I,, is fixed at the time when, 

on the average, the payoff curve reaches 80%. The 

upper curve is the averaged subgrid payoff curve, 

and the lower curve is the percentage of runs that 

stopped at that point. We see that the stopping rate 

peaks just past the top of the payoff curve as 

expected. This indicates that, on the average, the 

sampling procedure stops taking data when the 

(true) marginal gain becomes negative. 

The stopping behavior is, of course, affected by 

how costs are weighed against gains as governed by 

the model given by ( 5 ) .  We illustrate this point in 

Tables 2 and 3. In Table 2, we computecl the aver- 

age CPU time and final probability for a unit priority 

I I J 

0 Observations 30 

Fig. 18. 7'lre sropl~ing rrrlr belrnvior rrgcrinst tr linrrrr CPU 

timi.-h(rsrt1 cost Jirtrc.tion. 



Table 2. Stopping Rule Performance for a Unit 

Priority 

Deadline (CPU seconds) 

h CPU Prob. CPU Prob. CPU Prob. 

Table 3. Stopping Rule Performance for a Priority 

of Five 

Deadline (CPU seconds) 

tours. In the first experiments, we work with a static 

camera and illustrate the behavior of the method 

when sensor and model uncertainty must be taken 

into account. The grid-based fusion algorithm and 

sensor planning methods have also been incorpo- 

rated into a distributed sensor system described in 

Hager (1988) and Lee et al. (1989). The camera is 

mounted on a robot controlled by a processor that 

uses visual feedback to provide an object-centered 

polar coordinate system. (Examples 1 .  3, and 6 

describe the geometry of sensing and control for this 

system.) A third processor pelforms fusion and sen- 

sor planning. We use this system to test the sensor 

planning methods. 

This section is intended as a summary of results; 

the interested reader will find a more detailed list of 

the experimental results in Hager (1988). Unless 

otherwise noted, all distance units in this section are 

in millimeters, and all angular measurements are in 

degrees. 

h CPU Prob. CPU Prob. CPU Prob. 6.1.Calibra~iorz 

1 1.29 0.37 0.48 0.53 The accuracy of any result depends on how accu- 

1.65 0.45 2.85 0.67 
rately the focal length can be determined. We first 

3 1.14 0.32 
calibrated the system by placing a known-size sub- 

8 1.16 0.32 0.47 3.64 0.79 ject at a known distance from the camera, estimating 

the focal length of the lens, as well as the position of 

the lower left corner of the subject. The object was 

( t t j  = I in the 0 - w utility). In this case we see 
to obtain a probability one bracketing of focal length 

within the tolerance given in column 3 of Table 4. 
that the effect of increasing the deadlines is to 

The scaling factor on the domain grid was set to 0.5, 
increase probabilities, and the effect of increasing 11 

and the uncel-tainty factor was 0.01. Table 4 pre- 
is to allow the estimation to proceed closer to the 

sents the results of cstimation. The primary observa- 
deadline.' In Table 3,  we have increased the priority 

tion is that, as expected, the smaller tolerance inter- 
to w = 5. The increased value on information allows 

val required significantly more observations. We 
the estimator to sample past the I-second deadline. 

also see the effects of grid quantization as the final 
Thus the effect of increasing 11 is now to decrease 

results take on one of only two values. 
the probability as the estimator becomes niore dead- 

line oriented for that value of I,,. 

Table 4. The Results of Calibrating the Camera Focal 
6. Performance of the Method in a Real Length 

System 

In this section we describe the results of applying X Pos. Y Pos. Focal Lerigth FL Tolerance Iterations 

the grid-based methods to several sensing problems. 

The systenl is based on a real-time image processing - 40.08 135.67 12.87 2 0.2 18 

component that can follow and track brightness con- -39.57 135.57 12.95 5 0.2 7 

- 39.58 135.57 12.95 + 0.2 7 
- 

5.  The decision to continue is made based on rrrr-re111 usage; thus 
-40.08 135.85 12.87 %0.2 14 

the estimator tends to sample one time pcrsf the deadline given. -40.13 135.91 12.87 t 0 . 0 5  46 
Hence the seeming paradox in the lower left corner of Table 2 ,  

- 39.54 134.99 12.95 + 0.05 
where the deadline-oriented estimator passed the deadline. 

20 



Having determined these calibration parameters, we 

then had the estimation and information-gathering 

apparatus determine the' left-to-right position and 

size of a book. In this case, the tolerance was set at 

* 3  mm, and the scaling factor was set to 0, even 

t h o ~ ~ g h  there is coupling between .r size and .K posi- 

tion. The results are presented in Table 5 .  These 

results correspond, up to measurement error, with 

the true parameters. 

Next, we tipped the book, creating a gross model 

discrepancy, and ran the system. I t  exhibited one of 

two behaviors. If the only corners sensed were 0 

and 2, then the system quickly returned a probabil- 

ity I estimate of the wrong size. This is to be 

expected, as these corners yield orthogonal intbrma- 

tion and do not indicate the height discrepancy of 

corner 3 or the position discrepancy between cor- 

ners 1 and 0. On the other hand, if the system takes 

information at either 1 and 0 or 3, i t  immediately 

"softens" the observation model to account for the 

modeling discrepancy. The model tolerance grew to 

0.64 mm (about 30 pixels), and at that point, there 

was essentially no information to be gained from 

more observations relative to the requested estimate 

tolerance. 

We then accounted tbr this discrepancy by allow- 

ing rotations about z axis (which points directly out 

of the camera). The system parameters are the same 

as the previous experiment, except we added a tol- 

erance of -t 1" on rotations, and the scaling factor 

was 0.2. The results are presented in Table 6. We 

note that, on the first trial, the system increased the 

fitting tolerance to 0.02. Also, the number of obser- 

vations required more than doubles with the addition 

of this parameter. Part of this comes from the addi- 

tional complexity of the system, and part from the 

effects of grid quantization. 

Srt 2 

The object of this set of experiments is to demon- 

strate some of the effects of determinedness and 

model error on estimation performance. In these 

runs, we attached a fixed cost to each observation 

(ac t~~al ly  derivecl from the CI'U time consumed by 

the estimator) so that i t  stopped making observa- 

tions when the expected gain in probability fell 

below the cost of observation (a linear cost model). 

We refer the reader lo Hager (1988) for n more 

detailed explanation of this strategy. 

Again, consider estimating the position and size of 

the object at a given distance. In Table 7, we show 

Table 5. The Results Estimating the Size and Position 

of an Object 

X Pos. X Size Y Size Initial Corner Iterations 

the estimates, the uncertainty factor, and the tinal 

probabilities. In particular, note that the final results 

are with probability one, except in  those cases 

where the fitting tolerance moved up. In these 

cases, the estimator "stalls" and returns results that 

are lower than probability one. 

To demonstrate the effects of determinedness on 

estimation performance, we fixed the height and size 

parameters (as determined from the previous run) 

and estimated the x position, distance, and rotation 

of the object about the y (vertical) axis. The deter- 

mination of rotation comes from perspective. There- 

fore when the book is perpendic~~lar to the camera, 

there is no perspective information and rottition is 

poorly determined. As rotations increase from this 

zero point, the system becomes more determined. 

Table 8 gives the experimental results. We note that 

the convergence figures correspond with the above 

argument and that the effects of increased titling tol- 

erance are seen on three of the runs. 

6.2.  Mobile Camera 

The mobile camera system was tested with varia- 

tions on the example problems used throughout this 

article. Namely, we used monocular cues (corners 

and lines) to compute the position and size of polyg- 

onal (and superellipsoidal) objects. This forced the 

system to choose viewpoints and features so that tri- 

angulation and perspective combine to constrain the 

Table 6. Estimating the Size, Position and Rotation 

of a Rectangular Object 

X Pos. X Size Y Size Rotation Iterations 



Table 7. Estimation Results for a More Coniplex 

Positioning Problem 
- 

X Pos. Y Pos. X Size Y Size Tolcl.ancc Probability 

- 128.66 133.74 238.22 166.22 0.02 0.854 

- 128.66 133.74 238.82 165.91 0.01 1 .OO 

- 128.66 133.44 239.37 165.53 0.01 1 .OO 

-129.39 133.10 239.52 166.81 0.02 0.714 

- 128.05 133.36 239.1 1 166.00 0.01 1 .OO 

geometry of the object. All cxperimcnts were carricd 

out using a singlc-step look-ahead. 

The experimental results indicatcd that thc obscr- 

vation selection algorithms found ncarly optimal 

strategies for simple problems. For cxamplc, for 

simple triangulation problems the solution was to 

use views with the widest possible separation anglc 

until the rcquircd cstimatc accuracy was rcachcd. 

For more complex problems, such as finding all six 

parameters of a rectangle on a tablc, the strategics 

were nonoptimal but still served to quickly constrain 

the estimatc down to the level of sensor observation 

unccrtainty. The nonoptimality was not a rcsult of 

the approximations used in coniputing the strategies 

but was simply due to the horizon effects of a one- 

step look-ahead. In general, if 11 views would be 

Table 8. Estimator Performance on a Series 

of Rotations 

X Pos. Z Pos. Rotation Probability Tolerance 

nccdcd to solve for thc unbnown parameters in the 

ideal (no noisc or niodcl uncertainty) case, thc sys- 

tcni iiscd approximately 211 views to reducc thc 

bounds of an cstinialc to the levcl of scnsor noisc 

and niodcl unccrtainty. Part of this bchavior is also 

a rcsult of thc finite rcsolution of thc grid. 

Wc also observed that fitting tolcrance had a sub- 

stantial cffcct on thc pcrforniancc of scnsor scarch. 

Namcly, in thosc cascs whcrc thc fitting tolcrancc 

was quitc high, Lhc pcrformancc of the scarch procc- 

durcs dcgradcd. This appcars to be causcd by thc 

fact that high tolcranccs dccrease thc discriminating 

ability of thc scnsor and thcl-cfore make i t  more dif- 

ficult to dctcrminc which obscrvations will yicld 

information rclcvant to thc currcnt task. 

7. Discussion 

Wc believe the proccss of information gathering will 

play a ccntral rolc in the development of intclligcnt 

autonomous systcms. Conceptually. information 

gathci-ing rcquircs a reprcscntation for information 

with unccrtainty, a nicthod for dcscribing scnsors 

and fusing sensor information into thc rcprcscnta- 

tion, a method for dcciding what type of and how 

much scnsol- information is most fruitful to pursue, 

and a rncthod for delivering a final dccision bascd on 

the resulting obscrvations. 

From a practical perspective, thc approach of 

solving problems with spccific sensors, models, and 

methods has the advantagc of allowing rclativcly 

complete solutions to complex problems. Howcvcr, 

wc argue that the information needed by robotic sys- 

tems is highly varicd, and thc only cfficicnt mcthod 

for gathering this information is to rnakc thc systcm 

task directed. Therefore wc bclicvc thc first step in 

the realization of information gathcring is to build a 

systcm that can handle a gcncral class of informa- 

tion gathcring PI-oblcms i n  a goal-dircctcd fashion. 

'fo this end, we havc prcscntcd a dccision-thco- 

rctic framcwork for dcscribing gcomctric scnsing 

tasks. Thc advantagc of this framcwork is its ability 

to acconiniodatc thc many diffcrcnt rcpi-cscntations, 

sensors, and scnsing tasks cncountcrcd in robotic 

applications. I n  particular, this framework incorpo- 

rates the notions of trc.c-rrrcrcy or 1~cr111c of infoi-ma- 

t ion, thc cosl of information, and thc I I . ( I ~ P - ( ~ [ ~  

bctwccn thcse quantities. 

The ability to efficiently and accurately nianipu- 

late probability rcprcscntations is ccntral to the real- 

ization of this framcwork. Thc grid-bascd techniqucs 

we have prcscnted havc the advantagc of cxtrcnie 

flexibility, as well as reasonable qualitative and 

quantitativc approximation characteristics. By suita- 



ble application of these methods, it  is possible to 

implement a wide variety of problems directly from 

the framework as presented. We also showed how 

this method is extended to uncertain sensor models 

and discussed its robustness. We have implemented 

this technique and demonstrated mathematically and 

through simulation that i t  has stable and predictable 

error properties for a wide range of problems. 

The s im~~lat ions and experiments we have carried 

out indicated that the two fundamental concepts in 

applying these methods are the method of gridding 

and the type of modeling error allowed for. This is 

particularly true in those cases where the statistical 

noise level is fairly low, in which case sensor model 

error can easily force the system into an inconsistent 

situation, and poor grid representation can signifi- 

cantly inhibit convergence. To date, most of the 

practical limitations we have encountered are of 

these two types. The gridding technique described in 

this article is relatively rigid and works best for 

those situations where the parameter vector is well- 

determined by sensor observations. Similarly, the 

additive method of accounting for modeling error 

behaves poorly when modeling error is nonlinearly 

related to the parameter vector. 

These problems are the focus of our current 

research. The current rigid gridding scheme makes 

poor use of grid elements and requires global grid 

reorganizations. These properties also make it  

unsuitable for parallel implementation. We are not 

experimenting with methods for locnlly reorganizing 

the grid elements. This has the advantage of increas- 

ing the independence of grid elements and, when 

done properly, increases the speed of convergence. 

However, i t  introduces new problems in grid man- 

agement that will need to be ~rnderstood. With this 

more flexible implementation, it  will also be possible 

to use a secondary gridding over arbitrary model tol- 

erance parameters. We also hope to prove some 

general convergence properties and thereby classify 

more precisely the types of problems to which this 

method is applicable. 

The methods used to search for sensor plans are 

essentially brute force, and in order to make them 

practical, we use the approximations described ear- 

lier. By knowing more about the measurement sys- 

tem description, there may be ways of using more 

high-level information about the geometry of sensing 

to both speed up the process of predicting the 

results of a sensor observation and reduce the size 

of the search space. In particular, we are interested 

in the possibility of Irrrrtring strategies over time and 

essentially implementing parts of the search process 

using what amounts to a table lookup. 

We have recently defined an interface to the 

implementation that insulates the user from the 

details of grid manipulations (Hager 1990). The inter- 

face is for the C language (Kernighan and Ritchie 

1978), and the style resembles that of the RCCL sys- 

tem (Hayward and Lloyd 1984). The interface facili- 

tates a "task-oriented" programming style supported 

by precompiled libraries of sensor descriptions, 

parametric models, and task descriptions. In the 

near future, we expect to modify the implementation 

to conform to this interface and test Lhe system in 

interaction with task-level robot programming. 
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