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Abstract
Liquid chromatography (LC) coupled to electrospray mass spectrometry (MS) is well established in high-throughput
proteomics. The technology enables rapid identification of large numbers of proteins in a relatively short time.
Comparative quantification of identified proteins from different samples is often regarded as the next step in
proteomics experiments enabling the comparison of protein expression in different proteomes. Differential labeling
of samples using stable isotope incorporation or conjugation is commonly used to compare protein levels between
samples but these procedures are difficult to carry out in the laboratory and for large numbers of samples. Recently,
comparative quantification of label-free LCn-MS proteomics data has emerged as an alternative approach. In this
review, we discuss different computational approaches for extracting comparative quantitative information from
label-free LCn-MS proteomics data. The procedure for computationally recovering the quantitative information is
described. Furthermore, statistical tests used to evaluate the relevance of results will also be discussed.

Keywords: comparative quantification; mass spectrometry-based proteomics; label-free quantification; spectral counting;
ion chromatogram extraction

INTRODUCTION
For the best part of the past two decades,

chromatographic separation of peptides coupled to

mass spectrometry (MS) has been extensively used to

study the proteome [1]. Due to the complexity of

the proteome, liquid chromatography (LC) is used to

fractionate proteolytic peptides so that mixtures

of lower complexity can be introduced to the

instrument over time, thus increasing the efficiency

of detection and identification by tandem mass

spectrometry (MS/MS). The introduction of ortho-

gonal peptide separation techniques coupled to

the mass spectrometer, such as multidimensional

protein identification technology (MudPIT) [2–4]

has further increased the potential throughput of

MS/MS experiments, enabling the identification of

100s or 1000s of proteins from a single sample.

The identification of proteins remains the primary

application of LCn-MS/MS proteomics experiments.

However, protein identification is often only the

first step in proteomics studies. The ability to

quantify levels of proteins present provides an extra

dimension of information. One potential drawback

of MS is that the data generated is not directly

quantitative. The efficiency of the ionization process

is dependent on the molecular composition of each

molecule. For instance, the apparent ion intensity

of different peptides of the same concentration
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is typically different due to amino-acid composition

differences. As a result, the height or area of peaks

from two different ions cannot be directly compared

without taking into consideration the composition of

the ion that has been the subject of some recent

research [5–7]. Other quantification issues such as

inter-LCn-MS/MS experimental variations and ion

suppression effects [8] can also confound attempts to

accurately quantify protein levels. Nevertheless,

while the mass spectrometer does not provide true

quantitative data, with careful experimental design

and data analysis, comparative quantification is an

option for researchers.

There are currently two main approaches to

comparative quantification by LCn-MS/MS

(Figure 1). One approach is the incorporation of

stable isotopes into one or more of the samples

being studied [9]. This may be carried out in vivo by
stable isotope-containing amino acids introduced

in the cell culture media (SILAC) [10, 11], for

example carbon-13 substituted arginine [12].

Alternatively, the stable isotopes can be incorporated

invitro, chemically [9, 13, 14] or enzymatically such as

using oxygen-18 water when performing proteolysis

with trypsin [15]. Peptides from the sample contain-

ing the stable isotope will then be ‘heavier’ when

analyzed simultaneously with the control sample in

the mass spectrometer, thereby allowing them to be

distinguished. Because the molecular composition

of the ‘heavier’ ion does not change, the ionization

efficiently will remain the same and therefore the

quantities of identical peptides can be directly

compared. Disadvantages of using stable isotope

labeling include requirement that cells be culturable

(in the case of SILAC), and while it is possible to

differentially label up to eight biologically different

samples using the iTRAQ� Reagent-8Plex kit,

the high cost renders routine application prohibitive.

In terms of MS data acquisition, isotope labeling

is also more challenging as the number of peptides

co-eluting will increase, hence possibly reducing the

overall peptide coverage. Subsequent computational

analysis will further require specific tools for recovery

of differentially labeled peptides.

The second approach to comparative quantifica-

tion by LCn-MS/MS is to take a ‘label-free’

approach. The basis of such approaches is to make

the assumption that under well-controlled condi-

tions with sufficient data redundancy, identical

peptides across different LCn-MS/MS experiments

can be compared directly. This has been made

possible through technical advances in high-perfor-

mance (HP) LC systems, mass spectrometers with

higher resolution and scanning rates, as well as the

use of robots for sample preparation. As such, studies

have shown that peptide ion counts across control

experiments can be highly reproducible [16–19] and

results are comparable to stable-isotope labeling

approaches [20]. Label free comparative quantifica-

tion studies have gained popularity in recent years

[21–28]. The major advantages of the label-free

approach are that it typically does not require any

extra steps in experimental procedures and further-

more, comparative quantification can be performed

across many samples simultaneously. Generally, the

major challenge lies in the computational and

statistical analysis of the results.

In this review, two popular computational

approaches, extraction of peptide ion intensities

[16–19, 29] and spectral counting [30, 31] for

performing comparative quantitative analysis of

LC-MS proteomics experiments are described

(Figure 2). The necessary computational algorithms

and tools available for acquiring the comparative

data will be discussed. Statistical tests for evaluating

the significance of the comparative results will also be

covered in this review. Finally, studies comparing

the two techniques will be discussed with emphasis

on the strength and weaknesses of each technique.

A list of publicly available software relevant to this

review can be found in Table 1.

COMPARATIVEQUANTIFICATION
BY PEPTIDE ION INTENSITY
The height or area of a peak at a particular mass-

to-charge ratio (m/z) from a mass spectrum is

a measurement of the number of ions detected

Label-free
methods

Peptide ion
chromatogram

extraction

Quantitative
LCn-MS/MS

methods

Stable isotope
labeling methods

In vivo metabolic
labeling

e.g. SILAC

In vitro
chemical/enzymatic

labeling
e.g. iCAT,H2O(18)

Spectral
counting

Figure 1: Strategies for comparative proteomics by
LCn-MS. The label-free methods in bold are the subject
of this review.
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For each parent ion (pi) in protein list:

1. Compute intensity for pi for each MS scan
across the complete LCn-MS experiment (Fig. 3).
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moving average, etc).

3. Peak detection (Intensity based and/or use of
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5. Peak area calculation by integration or peak
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identified by MS/MS.
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Figure 2: Schematic diagram for label-free quantitative proteomics by LCn-MS/MS. The computational steps are
headed in bold.

Table 1: List of publicly available or popular commercial software relevant to label-free protein quantification by
LCn-MS/MS

Software Website Availability Platform/language

LC-MS Imagining based quantification software
MSight www.expasy.org/Msight Freeware Windows
msInspect proteomics.fhcrc.org/CPL/msinspect.html Open source Java
OpenMS open-ms.sourceforge.net Open source Cþþ

SpecArray tools.proteomecenter.org/SpecArray.php Open source Cþþ

XCMS masspec.scripps.edu/xcms Open source R

Ion chromatogram extraction related software
ASAPratio tools.proteomecenter.org/ASAPRatio.php Open source Cþþ

MSQuant msquant.sourceforge.net Open source Windows (.NET)
RelEx fields.scripps.edu/relex Freeware Windows
XPRESS tools.proteomecenter.org/XPRESS.php Open source Cþþ

Spectral counting related software
NoDupe fields.scripps.edu/nodupe Freeware Java
PeptideProphet tools.proteomecenter.org/PeptideProphet.php Open source Cþþ

ProteinProphet tools.proteomecenter.org/ProteinProphet.php Open source Cþþ

Database searching software
GutenTag fields.scripps.edu/GutenTag Freeware Java
InsPecT peptide.ucsd.edu/inspect.html Open source Cþþ

MASCOT www.matrixscience.com Commercial All
Sequest fields.scripps.edu/sequest Commercial All
X!Tandem www.thegpm.org Open source Cþþ
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by the mass spectrometer at any given time. This is

typically known as the ion abundance. In a LC-MS

experiment of a complex digested protein mixture,

peptide ions are separated by a chromatographic

gradient followed by mass analysis. The result can

be visualized as a two dimensional (2D) image

map with retention time and m/z on the x and y axis,
respectively and ion count as the intensity [19, 32].

This type of 2D image is similar to those of 2D gel

electrophoresis (2DE) of complex protein mixtures

[33] and as a result similar methods can be applied

for comparative quantification [34, 35]. In fact, some

tools such as MSight [36], which implements

the Melaine gel image analysis system [37], were

originally designed for 2DE for spot detection and

quantification. A number of other tools such as

XCMS [38], SpecArray [29], msInspect [39] and

OpenMS [40] do not rely on image analysis

but rather automatically detect potential peptide

features directly from the raw data and extract the

corresponding quantitative information. To measure

the total ion abundance for any peptide ion within

a LC-MS experiment, the ion intensity is integrated

over time. This process is computationally referred

to as ion extraction resulting in an extracted ion

chromatogram (Figure 3). If a particular peptide

concentration lies within the dynamic range of the

instrument for the experiment, a peak will be present

in the extracted chromatogram that rises above

background assuming that the peptide is readily

ionized and not suppressed by other ions. The area

of this peak represents the total ion abundance

for the peptide. For comparative quantification,

the extracted ion chromatogram is computed for

each peptide across all samples.

LC-MS and 2DE are complementary for quanti-

tative purposes, although LC-MS offers the advan-

tage of enabling MS/MS data to be acquired in

an automated manner. The majority of tools

previously mentioned are generally designed to

extract peptide features without knowledge of

the peptide identity. In many cases, quantitative

information is captured for peak features that may

represent peptides that cannot be identified (due to

absence of the protein sequence in a database or

because the peptide contains a posttranslational

modification). However, by first identifying peptides

of interest by database search tools such as Sequest

[41], Mascot [42] or InsPect [43], quantitative

information for those peptides can be extracted

from the raw data. Peak selection is facilitated

in these cases by the aligning of scan numbers

yielding peptide identification to the elution profile.

Furthermore, combining the ion currents or peak

areas of different peptides originating from the same

protein allows measurement error to be estimated

and provides greater confidence when performing

comparative quantification across samples.

A number of tools can be used to extract peptide

ion intensities following identification such as

MSQuant [44] (originally designed for quantifying

stable isotope datasets) and Serac PeakExtractor [45].

Alternatively, publicly available tools such as

ASAPratio [46], XPRESS [47] and RelEx [48] that

have been designed specifically for the comparative

quantification of stable-isotope labeled data using

the extracted ion chromatogram method may also

be modified and integrated into pipelines to compute

intensities for specific peptide ions. One problem

typical in MS/MS experiments is that the parent

ion scans that are used to determine peak areas

are interrupted by the MS/MS events, resulting

in a serrated profile that causes peak finding

algorithms to perform poorly. This means that a

manual confirmation step must be used to check
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Figure 3: Example chromatogram of a typical LCn-MS/
MS analysis of a tryptically digested proteome. Peptides
were separated on a C18 reverse phase column followed
by MS and data dependent MS/MS analysis using a
ThermoFinnigan LTQ mass spectrometer. The top
shows the total ion chromatogram for the run, while
the bottom is an extracted ion chromatogram for a par-
ticular peptide showing a significant peak. The area of
this peak represents the total ion intensity of the
peptide.
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each area assignment. RelEx overcomes some of

these problems by using a least squares correlation

approach based on the slope of the eluting peak that

is largely independent of MS/MS events [48].

The choice of workflow is likely to depend on

the type of experiment being performed and the

instrument setup. For biomarker discovery studies

with multiple replicates, it may be desirable to per-

form peptide feature extraction prior to identifica-

tion. However, for datasets where the constituents of

the samples are relatively well known or where a

specific protein or class of protein is being targeted,

annotation of the peptides first may allow compara-

tive quantification with greater specificity. In either

case, once a list of proteins with quantitative data has

been drawn up for each sample, the lists are clustered

to form a matrix of intensities analogous to a

protein/peptide array [49] to enable comparative

quantification [29], where the sample label and the

identified proteins form the axes of the matrix.

COMPUTATIONALAND
STATISTICAL ISSUES RELATING
TO ION INTENSITYCOMPARATIVE
QUANTIFICATION
The first stage of computing the extracted intensity

for a particular ion involves the generation of the

extracted ion chromatogram by computing the

intensity of the given parent ion for each mass

spectrum acquired through a LC-MS run. Once the

chromatogram has been formed, a series of spectral

processing methods such as baseline subtraction,

peak picking and smoothing are preformed before

the computation of the ion intensity by peak

integration or peak fitting (Figure 2).

There are a number of parameters that need to

be considered when extracting peptide quantitative

data. Generally, this will include determining the m/z
window over which an ion is defined, the retention

time window where the ion is eluted and also the

baseline intensity across all ions. The choice of m/z
window is typically dependent on the resolution of

the instrument. The retention time window and the

baseline are generally estimated using peak fitting

algorithms [29, 38, 46, 47].

When combining the quantitative data across a

set of samples, the process is reasonably straightfor-

ward if the identity of the peptides or proteins

are known, because they can be mapped between

samples using scan numbers or elution times.

But where the peptide identity is not known, the

process can be computationally more challenging.

Algorithms may be necessary to correct for shifts in

retention time across samples prior to peptide ion

intensity extraction [38, 39, 50–52]. Although not a

computational issue, it is also worth mentioning

that the use of mass spectrometers equipped with

high resolution mass analyzer such as the Fourier

transform ion cyclotron resonance analyzer [53] or

the OrbiTrap analyzer [54] increase the reliability of

mapping peptides across samples because of the more

narrow m/z determinations [32].

When peptides have been identified, it is possible

to apply the Student’s t-test [55] by taking the mean

and SD of ratios between the ion intensity of

peptides found for each protein. This will result in a

two-tailed P-value for each protein that can be used

to evaluate the significance in change. In the case

where there a very few peptides identified for a

protein, the Mann–Whitney U-test [56] may be

more appropriate as it is less likely to be affected by

outliers. In either case, it is possible to apply the

Dixon’s Q-test to remove outlier peptide ion ratios

prior to the test [45, 48].

An alternative to the application of statistical

methods to directly evaluate the significance of

changes in the intensity of each protein is the use of

machine learning methods to discover proteins that

can be used to classify samples into distinct classes.

Machine learning is a powerful technique that enables

the automated discovery to single or multiple proteins

in combination that distinguish two or more classes of

samples in many types of biomedical data [57]. Where

the sample type is not known or there are too few

samples to train the machine-learning algorithm,

unsupervised clustering techniques such as k-means

may be applied. Supervised learning methods such as

neural networks and support vector machines are

generally more powerful but require more samples.

The major limitation of machine learning is that for it

to be applied successfully, a significant number of

replicate samples (relative to the number of proteins

identified for each sample) are generally required to

obtain reliable results [58]. With insufficient samples,

unsupervised learning methods may form incorrect

clusters while supervised methods will be prone to

over-learning. To this end, since current differential

proteomics experiments typically involve a relatively

low number of samples, the use of machine learning

in conjunction with comparative LCn-MS/MS

experiments remains limited.
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COMPARATIVEQUANTIFICATION
BYSPECTRALCOUNTING
The spectral count for a protein refers to the number

of MS/MS spectra acquired from proteolytic

peptide ions for that protein during a LC-MS/MS

run. The premise of the method is that the more

abundant the peptide, the more likely it will be

selected for MS/MS analysis. Software that directs

the MS instrument to acquire spectra in a data

dependent manner will obviously influence the

spectral counts. However, Liu et al. [31] showed

that spectral counting is highly reproducible and

is sensitive to protein abundance changes.

Furthermore, in controlled experiments, it was

found that the correlation of protein abundance

with spectral count is superior to that of protein

sequence coverage or peptide count [31, 59].

To facilitate spectral count, all MS/MS spectra are

first interpreted using database search programs and

then all spectra belonging to the same peptide ion or

protein is tallied. Due to its ease of implementation,

no specific tools or algorithms have been developed

specially for spectral counting but tools such as

PeptideProphet [60] and ProteinProphet [61] will

automatically report peptide/protein counts as part

of their output.

An alternative approach could be to first cluster

uninterpreted MS/MS spectra based on their

similarity using spectral comparison algorithms

applied in tools such as NoDupe [62]. This approach

will reduce the number of MS/MS spectra to be

searched, but at the same time peptide and

subsequently spectral counts can still be obtained.

We are currently not aware of any tools or analysis

pipelines that calculate spectral counting in this way,

since NoDupe was originally designed primarily to

reduce searching of similar spectra and not for

spectral counting. Nevertheless, the adaptation of

analysis pipeline workflows to incorporate spectral

similarity comparison algorithms should not be

difficult and will likely yield increased pipeline

throughput.

COMPUTATIONALAND
STATISTICAL ISSUES RELATING
TO SPECTRALCOUNTING
COMPARATIVEQUANTIFICATION
It is important to note that when converting raw

files to files in DTA format for Sequest analysis,

tools such as extractMSn from ThermoFinnigan’s

XCalibur package pools MS/MS spectra that are

deemed to be similar due to parent mass, thereby

invalidating spectral counting. However, if files have

already been converted to mzXML format alternate

conversion tools such as mzXML2other from the

Institute of Systems Biology, Seattle [63] are

commonly used. The mzXML2other will convert

files from mzXML format to the DTA format,

generating at least one DTA file for each MS/MS

scan (two DTA files may be generated where the

parent ion is multiple charged). As a result,

the number of identifications can be used directly

as the spectral count.

When using spectral counts, the significance of

hypothesized abundance changes for proteins in

different samples should be verified statistically.

Old et al. [45] adapted a statistic originally devised

for serial analysis of gene expression data [64] to take

into account variances in the depth of analysis

between different LCn-MS/MS runs as shown

below:

RSC ¼ log2
n2 þ fð Þ

n1 þ fð Þ

� �
þ log2

t1 � n1 þ fð Þ

t2 � n2 þ fð Þ

� �
ð1Þ

where, RSC is the log2 ratio of abundance between

samples 1 and 2, n is spectral count, t is the total

number of spectra and f is a correction factor

predetermined to be optimal at 1.25. The advantage

of using RSC is that it avoids the problem of

discontinuous spectral count values necessary for

statistical tests such as the Student’s t-test.
Zhang et al. [59] performed a comparison of

five different statistical tests for evaluating the

significance of comparative quantification by spectral

counts. The goodness-of-fit test (G-test) [65],

Fisher’s exact test [66] and AC test [67] were

performed on nonreplicated spectral count data

when the data is expressed as a two-

way table (Table 2). The Student’s t-test and

Local-Pooled-Error (LPE) test [68] can only be

performed on spectral count experiments

with replicates such that a mean value is available

Table 2: Display of spectral count data in a two-way
table for statistical testing

Sample 1 Sample 2 Total counts

Protein x x1 x2 x
Other proteins n1 n2 n
Total t1 t2 t
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for testing. Since the acquisition of MS/MS data

typically employ data-dependent programming with

dynamic exclusion of detected peptides for a period

of time, the assumption of random sampling in

statistical tests are generally violated. Nevertheless,

Zhang et al. [59] found that the sampling of

peptides for MS/MS analysis is sufficiently random

for the tests to be applicable. They conclude that the

Student’s t-test was best when three or more

replicates are available, while the G-test, Fisher’s

exact test and AC test are all-applicable when no

replicates are available. However, out of the latter

three tests, the G-test is the best choice due to its

computational simplicity and the ability for the test

to be generalized for comparing sample abundances

that belong to more than two classes.

Most recently, a method for absolute quantifica-

tion of protein levels based on spectral counting has

been proposed [5]. The basis of the method is to form

a relationship between the number of observed

spectral counts for a particular protein and the

expected number of spectral counts for all observed

proteins within a sample. The absolute protein

expression index (APEX) for protein i, is expressed as:

APEXi ¼
nipi

#observed
� C

Oi

Xproteins
k¼1

nkpk
Ok

ð2Þ

where, n is the spectral counts, p is the probability

that the protein is correctly identified (typically

computed by ProteinProphet [61]), O is the

expected number of unique peptides that will be

observed and C is the estimated total concentration

of protein molecules in the sample. The most

challenging part of the formula is to estimate the

expected number of unique peptides that will be

observed for each protein. Machine learning

approaches have been applied to predict the like-

lihood that a peptide will be detected on a variety

of instruments [5, 6]. Using these predictors, Lu

et al. [5] are able to show that the estimated protein

concentrations correlates well with the actual values

and will generally fall within the correct order of

magnitude. The major advantage of absolute quan-

tification is that it will enable samples acquired from

different instruments to be compared directly.

DISCUSSION
Old et al. [45] directly compared the use of

peptide ion intensity against peptide spectral count.

They reported that both methods were able to

distinguish protein abundance changes of approxi-

mately 2.5-fold. Spectral counting was found to

have a greater effective dynamic range, meaning that

a larger of number of peptides detected showed

statistically significant changes when compared using

spectral counts. Yet, low spectral counts between

0 and 4 may overestimate protein ratios.

Wienkoop et al. [22] applied both quantitative

methods in their comparative proteomics study and

found that the results from the two methods are

generally in good agreement. The only difference in

the two methods is that for proteins of very low

abundance, where peptide spectral count was 0, a

signal for peak integration could still be obtained

giving statistically more accurate results. In a

further comparative study of the two methods, Xia

et al. [69] found that spectral counting had the

greatest precision when the observed protein ratios

are correlated with the true ratios. They also noted

that pooling individual peptide spectral counts or

intensities into their respective proteins prior to

comparative quantification provided greater sensitiv-

ity than if each peptide was compared directly.

While these studies suggest that spectral counting is

advantageous, both methods have been successfully

applied in large quantitative studies requiring label-

free quantification [21–28].

In terms of implementation, the main disadvan-

tage of intensity-based quantification is that the

computational process of extracting peptide quanti-

tative information is significantly more complicated

compared to spectral counting. Processes such as

chromatographic alignment, smoothing peak inte-

gration may be sub-optimal and without manual

verification can even introduce spectral preprocessing

artifacts into quantitative data. Furthermore, without

the use of stable isotope labeling, there is currently

no established method to estimate absolution protein

levels using intensity-based data.

The most significant drawback of spectral count-

ing compared to intensity-based quantification is that

the former is more likely to be influenced by the

acquisition program of the mass spectrometer. High

abundance proteins can mask low abundance

proteins if the data dependent MS/MS acquisition

exclusion list is not large enough. On the other hand,

if the exclusion list is too large, the spectral count can

become rapidly saturated, resulting in reduced

sensitivity. The optimal setting is likely to vary

between different mass spectrometers and LC setups
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meaning that optimization may need to be

performed on an individual basis.

CONCLUSION
The development of computational and statistical

methods and advances in LCn-MS/MS systems has

meant that label-free quantitative proteomics is

now being widely adopted. While, stable-isotope

methods may have better dynamic range and

sensitivity for low-abundance peptides, the conve-

nience of label-free quantification will enable it

to be performed without special experimental

consideration.

The use of peptide ion intensity and spectral

counting are two distinct approaches that enable

comparative quantification of label-free LCn-MS/

MS data. Studies have shown that both methods are

complementary and in recent years, both have been

successfully applied on real-life proteomics samples.

With the increasing popularity of the use of

proteomics pipelines for analysis of LCn-MS/MS

data and with a wide variety of publicly available

software for acquiring peptide ion intensities and

spectral counts, the simultaneous use of both

methods could be implemented for greater

confidence.
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