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Abstract

The exploration of three-dimensional chromatin interaction and organization provides insight into mechanisms underlying

gene regulation, cell differentiation and disease development. Advances in chromosome conformation capture

technologies, such as high-throughput chromosome conformation capture (Hi-C) and chromatin interaction analysis by

paired-end tag (ChIA-PET), have enabled the exploration of chromatin interaction and organization. However,

high-resolution Hi-C and ChIA-PET data are only available for a limited number of cell lines, and their acquisition is costly,

time consuming, laborious and affected by theoretical limitations. Increasing evidence shows that DNA sequence and

epigenomic features are informative predictors of regulatory interaction and chromatin architecture. Based on these

features, numerous computational methods have been developed for the prediction of chromatin interaction and

organization, whereas they are not extensively applied in biomedical study. A systematical study to summarize and

evaluate such methods is still needed to facilitate their application. Here, we summarize 48 computational methods for the

prediction of chromatin interaction and organization using sequence and epigenomic profiles, categorize them and

compare their performance. Besides, we provide a comprehensive guideline for the selection of suitable methods to predict

chromatin interaction and organization based on available data and biological question of interest.
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Introduction

Elucidation of the mechanisms underlying genome function is

key for an understanding of how genetic molecules determine

cell fates, and how the disruption of this function leads to

disease. An understanding of the biological function of the

genome requires investigation of two distinct aspects of human

genome organization: dynamic chromatin interaction between

regulatory elements and the higher-order three-dimensional

(3D) chromatin organization in which 2 m DNA is fitted into

a 6–10 μm diameter nucleus. Chromatin interaction among

distant genomic elements participates in the initiation and

regulation of gene transcription. Chromatin organization, in

which chromatins organize themselves in different spatial

structures, determines the interaction frequency between

gene loci. Chromatin interaction and organization underlie

different aspects of gene regulation, variation and evolution,

highlighting the importance of continued effort to understand

them. With the development of chromosome conformation

capture technologies (e.g. chromosome conformation capture

(3C) [1], circularized chromosome conformation capture [2],

carbon-copy chromosome conformation capture [3] and high-

throughput chromosome conformation capture (Hi-C) [4],

multilevel hierarchical chromatin organizations have been

explored (Figure 1). Chromosomes organize themselves into A

and B compartments, which are associated with euchromatin

and heterochromatin, respectively [4]. The compartments are

composed of topologically associated domains (TADs), which

can be further subdivided into chromatin loops, such as

enhancer–promoter loops, which influence gene regulation [5,

6]. The loop extrusion (LE) model considers TAD formation to

be mediated by an active extrusion mechanism in which ring-

shaped extruding factors move along chromatin and squeeze it

into loops when they encounter another extruding factor or two

opposite-oriented boundary elements [7, 8]. The exploration of

chromatin organization facilitates characterization of the spatial

arrangement of genes and their regulatory elements in amanner

that allows them to carry out their functions.

Chromosome conformation capture techniques, such as Hi-C

and chromatin interaction analysis by paired-end tag sequenc-

ing (ChIA-PET), have been used commonly to identify poten-

tial genome-wide interaction of regulatory elements and spa-

tial chromatin organization [9, 10]. The resolution of Hi-C and

ChIA-PET data directly impacts the effectiveness and accuracy

of identification; high-resolution Hi-C data remain lacking for

most tissues and cell lines, and their acquisition via substantial

increases in sequencing depth remains expensive, time con-

suming and labor intensive [11]. The exponential data growth

with increasing depth also brings new analytical challenges

[12]. Comparatively, abundant sequence and epigenomic data

for various tissues and cell types are publicly available in many

databases, such as the Encyclopedia of DNA Elements (ENCODE)

[13], Roadmap Epigenomic [14] and Gene Expression Omnibus

[15] databases.

A growing body of evidence has shown that sequence

features and epigenomic modification can serve as informative

predictors for the identification of chromatin interaction and

organization, due to their roles in transcriptional regulation

and chromatin folding via the control of DNA accessibility and

recruitment of specific proteins [16–18]. Besides, transcription

factors (TFs) and their bindingmotifs underlie important aspects

of transcription activity that facilitate the identification of

chromatin interaction and organization [19]. Numerous com-

putational methods have been developed to predict chromatin

interaction and organization from sequence and epigenomic

data, as alternatives to costly experimental approaches. How-

ever, the application of these approaches in biological research

remains limited. The largest obstacle is the complexity of the

algorithms, which cannot be understood by many biologists. In

addition, the appropriate method is difficult to choose due to

the diverse input data and software requirements. Furthermore,

some computational methods are difficult to reproduce and

apply in new research.

Here, we introduce 48 computational methods for the

prediction of chromatin interaction and organization based on

sequence and epigenomic profiles, classifying them based on

their function, input features and categories and comparing

their performance. We provide a comprehensive guideline and

list several methods that can be applied easily with small sets of

input data.Moreover,we introduce specific applications of these

methods in biomedical research, which can serve as a reference

to help researchers choose the appropriate methods for their

studies. Finally, we note existing challenges in the prediction

of chromatin interaction and organization and provide possible

solutions for future improvements.

Computational methods for the prediction
of chromatin interaction

The integrative analysis of DNA sequence and epigenomic

features, such as transcription factor binding sites (TFBSs),

chromatin accessibility and histone modification, enables the

identification of active cis-regulatory elements (CREs) [20, 21].

Many computational methods have been developed to predict

chromatin interaction between CREs via the consideration of

features such as the characteristic arrangement of nucleosomes

[22] and evolutionary conservation [23]. Here, we summarize 12

unsupervised and 21 supervised machine learning methods for

the prediction of chromatin interaction based on the analysis

of sequence and epigenomic profiles (Figure 2, Table 1; code

availability and programming language of these methods are

summarized in Table S1). Besides, we categorize the predicted

chromatin interaction mainly into three categories: enhancer–

promoter interaction (EPI), enhancer–target genes (ETGs) and

3D interaction. Comparatively, computational methods for EPI

prediction focus more on extensive regulatory relationships,

methods for ETGs prediction fit better to study the regulatory

elements for specific genes and 3D chromatin interaction

concerns more about chromatin interaction within specific

chromatin folding structure, such as TADs.

Unsupervised methods

Unsupervised learning methods uncover naturally occurring

patterns to predict chromatin interaction based on distance

or correlations between regulatory elements [24], which are

objective without the use of ‘handpicked’ features. Based

on the strategies used to link distal CREs to target genes,

we divide them into distance-based, correlation-based and

decomposition-based methods.

Distance-based methods

EPI can be predicted effectively by assigning enhancers to their

nearest genes via the computation of linear distances between

regulatory elements. Distance-basedmethods serve as the base-

line method in many studies, given their simple rationale. PreS-

TIGE is amultiple linear domainmodel that integrates H3K4me1
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Figure 1. Hierarchical genome organization. (A) Multilevel 3D genome organizations. Chromosome territory, compartments, TADs and loops can be observed from left

to right. Each chromosome territory is denoted by different colors. Compartment A and B are indicated by red and blue background, respectively. TADs are formed by LE.

The ring-shaped cohesin squeeze the chromatin into loops and halt when they encounter the boundary elements CTCF in the specific orientation (indicated by the blue

and red arrows) at two sites of cohesin ring. (B) Hi-C matrices of hierarchical chromatin organizations. Interchromosomal interaction between human chromosomes

presents the organization of chromosome territories. Intrachromosomal interaction between chromosome 3 indicates the chromatin compartments. Matrix of a 1 Mb

width subregion on chromosome 22 shows TADs, subTADs and loops, which are denoted as punctate signals. Hi-C matrices in panel B are generated from Rao’s (access

code GSE63525) Hi-C data in GM12878 cell line.

ChIP-seq and RNA-seq data to link cell type–specific enhancers

to their target genes, considering CTCF binding sites as insula-

tors [25]. It is available as an online application through Galaxy

(http://prestige.case.edu/) [26]. As it is based on a simple cor-

relation strategy, PreSTIGE may have less predictive accuracy

than machine learning models that focus on regulatory links

with multiple genomic features, such as TargetFinder [27]. By

integrating the distance effect with the contact frequency of

enhancer–promoter pairs and enhancer activity, measured by

DNase I hypersensitive signals (DHSs) and H3K27ac ChIP-seq

data, ABC provides a framework for the genome-wide mapping

of enhancer–gene connections across many cell types based on

epigenomic datasets [28].

Correlation-based methods

Improvements on the distance-based approach via the corre-

lation of histone modification with enhancer and promoter

DHSs or promoter transcript levels in given genomic domains

have been introduced [29, 30]. Using correlations between TFs

expression and motif enrichment, Ernst et al. [29] predicted

cell type–specific activators and repressors that modulate

putative target genes. Thurman et al. [30] identified EPI based

on DHSs at regulatory regions. Cicero links enhancers to

their target genes based on single-cell ATAC-seq data [31].

Similarly, C3D predicts chromatin interaction between CREs

using correlations between open chromatin regions based

on DHSs [32], and Naville et al. [23] estimated enhancer–

gene associations based on correlations among chromatin

accessibility, histone modification and TF binding. Methods

based on correlations between the epigenomic modification

of active regulatory elements and gene expression have also

been developed to identify chromatin interaction, such as

ELMER and CISMAPPER [33, 34]. ELMER identifies transcriptional

targets by correlating methylation-affected enhancers with

the expression of nearby genes [33]. Silva et al. [35] presented

a revised version 2 of ELMER that provides an optional web-

based interface and a new supervised analysis mode, which

shows better performance. CISMAPPER predicts EPI using the

correlation of histone marks at TFBSs with gene expression.

It requires no training step and is more accurate than simple

distance-based methods [34].

Decomposition-based methods

Different decomposing strategies have been used to extract

underlying traits from high-dimensional signals for the identifi-

cation of chromatin interaction based on relationships between

these traits. EpiTensor uses 18 assays to model epigenomic

data from five cell types as a 3rd-order tensor in which the

dimensions represent genomic loci, assay type and cell type,

respectively [36]. Based on the associations between subspaces

decomposed from the tensor, EpiTensor can identify interaction

hotspots in which promoters and enhancers are located in

genomic regions with significantly more transcriptional activity

and TFBSs enrichment across cell types [36]. CITD enables the

de novo prediction and mapping of chromatin interaction via

the integration of one-dimensional (1D) histone modification

data by wavelet decomposition and histone reconstruction

[37]. SWIPE-NMF builds a matrix factorization framework that
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Figure 2. Computational methods for the prediction of chromatin interaction. Left: Category of methods based on output. Right: Category of methods based on

algorithm. Sequence-based methods (PEP, EPIANN, EP2vec, SPEID and EnContact) of trained classifier methods are listed separately.

integrates heterogeneous data and has been used to reconstruct

enhancer–promoter networks in 127 human cell lines [38].

Supervised methods

Supervised learning methods include random forest, neural

network, decision tree, logistic regression and linear regression

analyses. They enable the training of a model using a cell line

with specific sequence and epigenomic data, then applying

the model to make predictions in another cell line. Based on

the algorithms applied in the models, supervised methods

can be classified as regression-based and trained classifier

methods.

Regression-based methods

Regression-based methods identify interactional relationships

between enhancers and promoters or target genes by associating

enhancer features with promoter features or gene expression;

JEME and FOCS are examples of these methods [39, 40]. JEME

identifies ETGs in specific samples by considering the joint

effect of multiple enhancers and integrated global and sample-

specific information [39]. Its application to reconstruct the

enhancer–promoter network in 935 samples of human primary

cells, tissues and cell lines enables the systematic investigation

of gene regulation in normal and disease states [39]. FOCS

is a statistical framework used to infer enhancer–promoter

links correlated with activity patterns across samples from

ENCODE, the Roadmap Epigenomics project and FANTOM5

[40]. Like JEME, FOCS employs eRNA as a marker of enhancer

activity. The application of FOCS to massive genomic datasets

yields extensive enhancer–promoter maps for the derivation of

biological hypotheses [40].

Trained classifier methods

By leveraging genomic or epigenomic features of true positive

enhancer–promoter pairs, a trained classifier can be estab-

lished to determine whether a pair of interest is involved

in interaction or whether a putative pair engages in high-

confidence contact. Many supervised classifiers have been

designed to identify chromatin interaction. IM-PET integrates
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a set of discriminative features, including correlation among

enhancer and promoter activity, TFs and target promoters;

evolutionary constraint between interacting enhancer–promoter

pairs and distance constraint between enhancer and target

promoters to predict EPI; however, calculating these features

is not easy due to the requirement of multiple input and

complicated process [41]. PETModule is a motif module-based

approach for ETGs prediction using similar features to IM-PET

[42]. Based on multiple epigenomic signals and expression data,

comprehensive classifiers have been established to predict

EPI and ETGs, which include RIPPLE [43], TargetFinder [27],

EP_Bayes [44], CRUP [45], EAGLE [46] and EPIP [47]. RIPPLE

and TargetFinder can identify cell type–specific EPI based on

numerous features, such as measures of open chromatin, gene

expression, TFs, architectural proteins and modified histones

[27, 43]. However, the requirement for various inputs makes

it difficult to apply RIPPLE and TargetFinder to train specific

classifiers for additional cell types [48]. EAGLE can be applied

to data from various species and many cell types with a

high degree of accuracy using a small number of genomic

features [46]. EPIP predicts condition-specific EPI using a feature

partitioning strategy, grouping features into 11 partitions or

overlapping feature sets, which enables the use of sets with

missing data [47]. EP_Bayes uses ChIP-seq RNA polymerase

II data as the input and is not ideal for the identification of

intronic enhancers [44]. Using DHSs as informative features,

McEnhancer [49], CISD [22] and DeepTACT [50] can be used to

predict multiple types of chromatin interaction. McEnhancer

links enhancers to putative target genes with considerable

accuracy. CISD identifies genome-wide chromatin interaction

sites based on characteristic nucleosome arrangement patterns

[22]. DeepTACT applies a bootstrapping deep-learning model

to integrate genome sequence and chromatin accessibility

data to predict EPI and promoter–promoter interaction (PPI)

[50]. Several other trained classifiers have been developed to

predict 3D chromatin interaction. 3DEpiLoop predicts high-

resolution (1 kb) 3D physical chromatin interaction in TADs

using 1D epigenomic and TF-binding profiles [51]. Bkhetan

and Plewczynski [52] presented a random forest classifier that

predicts multilevel 3D chromatin interaction using epigenomic

profiles. The 3Dpredictor classifier can provide high-quality

prediction of chromatin interaction based on only CTCF-binding

signals and gene expression data [53].

Methods have also been developed to explore the possibility

of predicting long-range interaction between regulatory ele-

ments based on sequence data alone (Figure 2, Table 1). For

example, PEP integrates two strategies—PEP-Motif and PEP-

Word—to predict EPI by extracting sequence features from

given locations of putative enhancers and promoters in specific

cell types [17]. SPEID applies deep neural networks (DNN) to

predict EPI based solely on sequence features in enhancer

and promoter regions [54]. Given the lack of expectation

of a universal sequence-based EPI prediction mechanism,

SPEID can only effectively predict EPI in training cell lines,

which makes it inapplicable to other datasets [54]. EPIANN is

an attention-based neural network model, which can focus

more on features contributing to EPI and predict EPI more

accurately [55]. EP2vec uses an unsupervised deep-learning

methodwith natural language processing to transformenhancer

and promoter sequences into sequence-embedding features

and a supervised classifier to predict EPI [56]. EnContact, a

context-specific deep-learning model, can predict enhancer–

enhancer interaction (EEI) using only genomic sequence data

[57].

Computational methods for the prediction of
3D chromatin organization

Recent studies suggest that DNA sequence and 1D epigenomic

modification are also informative to predict 3D chromatin archi-

tecture. Based on these data, machine learning and polymer

physics simulations methods have been applied to predict 3D

chromatin organizations [58]. Jost et al. [59] introduced a block

copolymer model to build chromatin folding from the epige-

nomic landscape, which can explain the formation and dynam-

ics of TADs. By applying a reduced model based on histone

modification in ENCODE data, Di Pierro et al. [60] illustrated that

such modification alone carries sufficient information for the

prediction of chromatin arrangement. Sefer and Kingsford [61]

provided a comprehensive model of the joint effect of histone

markers on TADs and demonstrated that the incorporation of

sequence features significantly improved chromatin organiza-

tion prediction. Zhang et al. [62] demonstrated that the consider-

ation of sequence-based features alone can accurately predict

whether convergent CTCF motif pairs will form loops. Also,

Fudenberg et al. [63] and Schwessinger et al. [64] demonstrated

that DNA sequence alone is sufficient to predict 3D genome

folding structure with high accuracy. Here, we summarize 17

computational methods for the prediction of chromatin orga-

nization based on sequence and epigenomic profiles (Figure 3,

Table 2) (code availability and programming language of these

methods are summarized in Table S1).

Loop prediction

Based on the hypothesis that physical chromatin interaction

can alter the characteristic flanking nucleosome arrangement

patterns [22], CISD-loop identifies intra-TAD chromatin loops

at kilobase resolution by integrating sequencing of micrococcal

nuclease sensitive sites (MNase-seq) and low-resolution Hi-C

data [22]. CISD-loop can be applied widely across human cell

lineswith high accuracy because these patterns are conservative

among different cell types. CTCF-MP can be used to predict

CTCF-mediated chromatin loops using functional genomic sig-

nals fromCTCFChIP-seq andDNase-seq data based onword2vec

and boosted trees [62]. Word2vec is a two-layer neural network

for processing natural language in which CTCF-MP apply it to

extract DNA sequence features and boosted tree is an ensemble

learning method which can promote the performance of CTCF-

MP [62]. Lollipop is a random forest classifier that distinguishes

CTCF-mediated loops from noninteracting ones based on a set

of features generated from genomic and epigenomic data [65].

DeepMILO presents a deep learning network for the modeling

of CTCF-mediated insulator loops and predicts the effects of

noncoding variants on these loops using DNA sequences alone

[18].

TAD prediction

CITD can estimate chromatin interaction frequency, TADs and

their states (e.g. active or repressive), via the integration of 1D

histonemodification data [37]. It integrates correlations between

histone modifications at interaction locus pairs and the power

law that chromatin interaction frequency declines with distance

for the inference of cell type–specific chromatin interaction

matrices, which can be used to complement the topological

domains derived from limited Hi-C data [37]. PGSA predicts

TAD boundaries with a focus on associated predictive genomic
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Figure 3. Computational methods for the prediction of chromatin organization. Left: Category of methods based on algorithm. Right: Category of methods based on

output.

elements, such as CTCF, ZNF143 and YY1 [66]. Similarly, TAD-

Lactuca inferswhether genome loci are at TAD boundaries based

on contextual information from DNA sequences and eight his-

tone marks [67]. nTDP is a semi-nonparametric method for TAD

prediction based on a small set of histone marks, including

H3K36me3, H3K4me1, H3K4me3 and H3K9me3, which are the

most informativemodification at TAD boundaries [61]. BART can

be used to predict chromatin interaction hubs and TAD bound-

aries in which cell type–specific histone modification informa-

tion is required [16].

Contact map prediction

Contact maps obtained from Hi-C have enable the discovery of

multilevel hierarchical 3D chromatin organizations. Rambutan

is a deep convolutional neural network used to predict Hi-C

contacts at 1-kb resolution in cell types with no available Hi-

C data, using only nucleotide sequences and DHSs as inputs

[68]. Although the genomic distance effect creates major diffi-

culties in the prediction of long-range Hi-C contacts, Rumbutan

performs well for all distances [68]. Farré et al. [69] trained a

dense neural network to predict chromatin conformation at

the intrachromosomal scale using 1D sequences of DNA-bound

chromatin factors and vice versa. They highlighted the impor-

tance of chromatin contexts and states in larger neighborhood

conformations, alongwith critical alterations, for contact forma-

tion [69]. Akita is a convolutional neural network (CNN) for the

prediction of 3D genome folding using only DNA sequence as

input [63]. Similarly, DeepC can predict 3D genome folding using

megabase-scale DNA sequence based on DNN [64]. DeepC tends

to predict more pronounced interdomain interactions, stripes

and dots, by learning the sequence determinants of genome

folding [64].

3D chromatin structure simulation

MiChroM is an effective energy landscape model for de novo

prediction of 3D chromatin structure using only ChIP-seq data

on histone modification as input, based on certain sequence-

to-structure relationships between patterns of histone modifi-

cation and genome architecture [60]. HiP-HoP is a heteromorphic

polymer model based on TF [70, 71], switching [72] and LE [7, 8]

models used to analyze 3D chromatin structure via DNA acces-

sibility, H3K27ac and CTCF/Rad21 signals [73]. Qi and Zhang [74]

presented a predictive and transferable polymer model for the

simulation of 3D chromatin structure at 5 kb resolution, which

takes genomic location, epigenetic marks and CTCF orientation

as inputs. Bkhetan et al. [75] proposed a pipeline that integrates

an improved version of 3DEpiLoop and the spring model to con-

struct visualized 3D chromatin structures based on molecular

mechanics.

Evaluation of computational methods based
on input features and algorithms

To validate the performance in the prediction of chromatin

interaction and organization,numerous computationalmethods

have been evaluated using different validation strategies and

datasets. Performance metrics used commonly for this purpose
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Table 2. Computational methods for the prediction 3D chromatin organization

Tool Name Year Method category Algorithms Input features Predictions Reference

Loops

CISD-loop 2017 Machine Learning Logistic Regression Mnase-seq Loops [22]

CTCF-MP 2018 Machine Learning Word2Vec, Boosted Trees CTCF, DHS,

distance, DNA

CTCF-mediated

loops

[62]

Lollipop 2018 Machine Learning Random Forest CTCF, histone

marks, Rad21,

RNA-Seq

CTCF-mediated

loops

[65]

DeepMILO 2020 Machine Learning CNN, RNN CTCF, DNA CTCF-mediated

loops

[18]

TADs

CITD 2016 Machine Learning Decomposition Histone marks TADs [37]

PGSA 2017 Machine Learning Position-specific Linear

Model, Population Greedy

Search Algorithm

DHS, histone

marks, TFBSs

TADs [66]

TAD-Lactuca 2018 Machine Learning Random Forest, Artificial

Neural Network

CTCF, DNA,

histone marks

TADs [67]

nTDP 2019 Machine Learning Bernstein Polynomials Histone marks TADs [61]

BART 2015 Machine Learning Bayesian Additive

Regression Trees

CTCF, histone

marks

TADs and

interaction hubs

[16]

Contact map

Rambutan 2017 Machine Learning CNN DHS, DNA Contact map [68]

Farré et al. 2018 Machine Learning DNN DHS, DNA Contact map [69]

Akita 2020 Machine Learning CNN DNA Contact map [63]

DeepC 2020 Machine Learning CNN DNA Contact map [64]

3D structures

MiChroM 2017 Polymer model Energy Landscape Model,

Neural Network

Histone marks 3D structures [60]

HiP-HoP 2018 Polymer model Heteromorphic Polymer

model

ATAC-seq, CTCF,

histone marks

3D Structures [73]

Chromatin

states-based

model

2019 Polymer model Maximum Entropy CTCF, DNA,

histone marks

3D Structures [74]

Bkhetan et al. 2019 Machine Learning Random Forest, Gradient

Boosting Machine, Deep

Learning Models, Polymer

Simulation

DNA, histone

marks, TFBSs

3D structures [75]

include the F1 score, the area under the receiver operating char-

acteristic curve (AUROC) and the area under the precision recall

curve (AUPR). The F1 score could be interpreted as the harmonic

mean of the precision and recall; precision is the number of cor-

rect positive results divided by the number of all positive results,

and recall is the number of correct positive results divided by

the number of positive results that should have been returned:

F1=2 ∗ (precision ∗ recall)/(precision+ recall); precision= true

positives/(true positives+ false positives); recall = true posi-

tives/(true positives+ false negatives). The AUROC and AUPR

do not depend on a particular classifier threshold and the

AUPR is sensitive to unbalanced data in which instances are

unequal for different classes [54]. Systematic evaluation of

the performance of all available computational methods is

difficult due to the diversity of rationales and gold standard

definitions for prediction. Here, we compare the performance of

computational methods based on different input features and

algorithms.

Performance of computational methods based on
different input features

Many computational methods for the prediction of chromatin

interaction use diverse sequence and epigenomic data. For

instance, TargetFinder and RIPPLE require multiple genomic

features to determine whether putative enhancer–promoter

pairs interact [27, 43], whereas EP2vec, PEP and SPEID take

DNA sequences alone as the input [17, 54, 56]. Zeng et al.

[56] evaluated the performance of EP2vec, TargetFinder and

SPEID based on the labeled enhancer/promoter/window (region

between enhancer and promoter) (E/P/W) training datasets used

in TargetFinder. They found that EP2vec yields slightly better

F1 scores, with lower AUROCs and AUPRs, than TargetFinder

and that both methods outperform SPEID in 10-fold cross-

validation experiments (Table 3). Using TargetFinder extended

enhancer/promoter datasets, Yang et al. [17] showed that PEP

and TargetFinder have comparable performance and that

both methods outperform RIPPLE, with higher F1, AUROC and

AUPR scores (Table 3). These evaluation results demonstrate

that sequence data alone are sufficiently informative for the

prediction of chromatin interaction. By extensively study-

ing the performance of various deep learning models that

use local sequence and epigenomic data around enhancer–

promoter pairs, Xiao et al. [76] demonstrated that local epige-

nomic features are more informative than local sequence

data for EPI prediction and that the integration of epige-

nomic features with sequence data can improve performance

[77, 78].
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Table 3. Performance of sequence-based and epigenomic-based methods

Datasets Methods F1 AUROC AUPR

TargetFinder (E/P/W)

datasets

Epigenomic-based

methods

TargetFinder (E/P/W) 0.884 (0.030) 0.951 (0.019) 0.961 (0.016)

Sequence-based

methods

EP2vec 0.892 (0.028) 0.918 (0.023) 0.918 (0.019)

SPEID 0.846 (0.040) 0.901 (0.029) 0.904 (0.024)

TargetFinder (EE/P)

datasets

Epigenomic-based

methods

TargetFinder (EE/P) 0.809 (0.050) 0.963 (0.013) 0.853 (0.048)

RIPPLE 0.772 (0.055) 0.951 (0.012) 0.807 (0.056)

Sequence-based

methods

PEP 0.815 (0.041) 0.964 (0.010) 0.864 (0.038)

The mean values and the SDs of F1, AUROC and AUPR scores of six cell lines (GM12878, K562, IMR90, HeLa-S3, HUVEC and NHEK) for TargetFinder (E/P/W), EP2vec,
SPEID, TargetFinder (EE/P), RIPPLE and PEP. Performance of TargetFinder, EP2vec (k =6, s =1,m =20, d =100) and SPEID on six cell lines were evaluated on TargetFinder’s
E/P/W datasets by Zeng et al. [56]. TargetFinder (EE/P), RIPPLE and PEP (K =6) on six cell lines were evaluated on TargetFinder’s EE/P data by Yang et al. [17].

Unlike SPEID,whichmeasures the cost of removing a feature,

thereby identifying features that are necessary for prediction

[54], TargetFinder measures the benefit of adding a feature,

meaning that it identifies features that are sufficient for pre-

diction [27]. Considering there are often limited datasets for a

cell line, a diverse collection of required features will make it

less flexible in practice. We assessed the computational perfor-

mance of TargetFinder using its source code and labeled training

datasets (E/P/W) on six cell lines [27]. We first output predic-

tive importance of genomic features for each dataset within

enhancer, promoter and window regions, then we performed

the 10-fold cross-validation and output the F1 score by recur-

sively eliminating genomic features according to their predic-

tive importance (Figure 4). The results revealed redundancy of

features used in TargetFinder, especially in GM12878 and K562.

TargetFinder performs better when more genomic signals are

available, whereas optimal or moderate performance can be

achieved when only core features are available. Moore et al.

[48] implemented TargetFinder in GM12878 using 303 features

from 101 epigenomic datasets and four core epigenomic fea-

tures: DNase-seq, H3K4me3, H3K27ac and CTCF data integrating

distance features, respectively. They obtained an average AUPR

reduction of 23% across 13 datasets for the four coremodels rela-

tive to the full models, which still represents better performance

than the baseline distance-based method [48].

Performance of supervised and unsupervised methods

Moore et al. [48] developed the Benchmark of candidate

Enhancer–Gene Interactions (BENGI) and used it to compare

the performance of unsupervised and supervised methods

(Figure 5A). TargetFinder performs best among distance-based

method, three correlation-based [30, 79, 80] and two supervised

methods [17, 27]), but it do not outperform the baseline distance-

based method when tested across cell lines [30]. The DNase–

DNase and DNase–expression correlation-based methods also

do not outperform the baseline distance-basedmethod, perhaps

due to the unstable correlation across cell lines [30]. In addition,

TargetFinder significantly outperforms PEP-motif when tested

using the six BENGI datasets in GM12878 by cross-validation.

Distance-based methods depend on precise CREs identification

and neglect the possibility of enhancers to skip over nearby

genes to link more distal targets [81]. Theoretically, correlation-

based methods should outperform distance-based methods,

whereas some correlations may be unstable across cell lines,

which can lead to suboptimal performance.

Some supervised methods are overfitted due to the use of

a problematic cross-validation group strategy in which samples

are randomly split into training and test sets [48]. Using Tar-

getFinder’s E/P/W datasets for six cell lines, Cao and Fullwood

[82] found that a high degree of similarity between window

features and the splitting of similar samples into training and

test sets are likely to inflate cross-validation results, which may

also explain the inability of TargetFinder to generalize across cell

lines. To break the dependence between samples in training and

test sets, they introduced a chromosome-split strategy by which

all samples on the same chromosome are allocated to training or

test set [82]. Comparison of TargetFinder and JEME on JEME’s ran-

dom target datasets using cross-validation yields that the AUPRs

of chromosome-split strategies are much lower than shuffling

(Figure 5B) [82]. In addition, TargetFinder performs better with

the use of all features common to K562 and GM12878 than with

the use of the four types of features (DNase-seq and ChIP-seq

of H3K4me1, H3K27ac and H3K27me3), whereas JEME using four

features achieved similar performance as using distance alone

(Figure 5B) [82].

DeepMILO outperforms CTCF-MP in the prediction of

nonanchor loops, demonstrating that deep learning models

can better learn complex sequence features to effectively

predict the effects of mutations on insulator loops than

common machine learning models [18]. Deep learning, one

of the most active fields in machine learning research, has

been applied recently to a variety of tasks in genomics,

such as functional genome annotation and the prediction of

gene expression [83]. Many elaborated deep-learning archi-

tectures, such as SPEID and DeepMILO, have been used

to study regulatory interaction and 3D chromatin archi-

tecture [18, 54]. Deep learning can automatically extract

sophisticated and meaningful features from massive high-

dimensional datasets by training complex networks with

multiple layers, which enables the integration of diverse

types of input data [84, 85]. Deep learning not only improves

predictive performance and accuracy over traditional models,

but also provides insight into the mechanism of chromo-

some spatial organization by exploring internal represen-

tations in each layer of deep learning architecture [76, 86].

Hopefully, it will provide additional understanding of 3D

genome organization and the mechanisms of gene regulation

due to its powerful information-processing and abstraction

capacities.

In general, supervised learning methods are limited by

the uncertainty of labels used for training in which the

definition of labels requires biology expertise. A positive labeled

enhancer–promoter pair for training may be not physically

interacted, which may influence the accuracy of prediction.

Comparatively, unsupervised learning methods can be used to
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10 Tao et al.

Figure 4. Performances of TargetFinder using different sets of genomic features by feature elimination. On six cell lines, the F1 scores of TargerFinder are evaluated by

10-fold cross-validation with the input genomic features eliminated one by one recursively according to their predictive importance. The mean values and the SDs of

F1 scores in each 10-fold cross-validation are presented.

discover new patterns, such as PPI and EEI, without using prior

knowledge [27, 36]. However, the verification of new patterns

found by unsupervised learning poses a new challenge [21].

Semi-supervised methods have been developed to predict

chromatin interaction and organization; they enable the

extraction of features from unlabeled genomic and epigenomic

profiles and training of models that integrate initial and

extracted features, which results in much better algorithm

performance than achieved with fully supervised methods

[18, 56].
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Figure 5. Performance of unsupervised and supervised methods. (A) Comparison of performance between distance-based, correlation-based and supervised methods

using BENGI datasets.TheAUPR scores of these sixmethodswere evaluated byMoore et al [48]. (B) Comparison of regression-basedmodel and trained classifiermethods.

Performances of TargetFinder and JEME on JEMEs ‘random target’ datasets using cross-validation with shuffling and chromosome-split strategies [82]. TargetFinder

was validated with all features common in K562 and GM12878, and four epigenomic features (DNase-seq data and ChIP-seq data of H3K4me1, H3K27ac and H3K27me3)

applied in JEME. JEME was validated with its four input features and distance feature, respectively. Across sample validation: TargetFinder and JEME were trained with

K562 data and tested with GM12878 data. The AUPR scores of TargetFinder and JEME were evaluated by Cao and Fullwood [82].

User guide

Generally, the prediction of chromatin interaction and organi-

zation using computational methods comprises three steps: (1)

input data collection from publicly available databases or exper-

iments, (2) input data processing using computational methods

and (3) output of results representing chromatin interaction

or spatial chromatin structures. In order to facilitate choose

appropriate methods for different situations, we provide a user

guide to facilitate the selection and application of thesemethods

according to the prediction target and available data (Figure 6).To

choose an appropriate method, the prediction target (chromatin

interaction or organization) should first be determined; then the

users can further select a method based on the available data

or target output. Input data can be preferentially considered, if

users have already obtained experimental data. Detailed input

information of 48 methods are summarized in Table S2. If target

output is preferentially considered, the user can select a method

based on output and then prepare the required input data.

Output categories are shown in Figures 2 and 3.

Considering that such computationalmethods are numerous

and that some tools are not publicly available, we list several

methods that can be applied easily with small sets of input

data (Table 4). PreSTIGE is an easy-to-use web-based tool for the

prediction of ETGs based on H3K4me1 signals and RNA-seq data

[25]. Cicero can be used to predict ETGs based on single-cell

ATAC-seq data [31]. C3D and McEnhancer can be used to predict

EPI and 3D chromatin interaction based on DNase-seq data [32,

49]. ELMER can be applied to predict ETGs when methylation

and gene expression data are available [33]. EPIANN and EP2vec

can be used to identify EPI based on DNA sequence data alone.

For the prediction of chromatin conformation, DeepMILO can

predict CTCF-mediated loops based on sequence data and CTCF

signals. TAD-Lactuca can be applied to predict TAD boundaries

using histone modification information. Akita can predict chro-

matin contact map based on DNA sequence data alone [63]. HiP-

HoP can be used to predict 3D chromatin architecture with the

integration of ATAC-seq or DNase-seq,H3K27ac, CTCF and Rad21

data to define loop anchors [73].

Applications in biomedicine

Applying computational methods to predict chromatin interac-

tion and organization has been indispensable in the exploration

of many biomedical problems. Some successful applications of

these methods in biomedical fields are reviewed in this section,

including the influence of genetic variants on gene expres-

sion, the mechanisms underlying gene regulation and disease

development.

Influence of genetic variants on gene expression

Recent studies have shown that many noncoding single

nucleotide polymorphisms (SNPs), identified in genome-wide

association study (GWAS), are frequently located in cell line-

specific enhancers and associated with risks of numerous

common diseases [87, 88]. PreSTIGE provides evidence that

multiple enhancer variants cooperatively contribute to the

altered expression of their gene targets and demonstrates

how GWAS-identified SNPs confer risks of given traits and

noncoding variants confer susceptibility to common traits [25].

ABC interprets the functions of noncoding genetic variants that

influence human traits [28]. Ernst et al. [29] proposed a method

bywhich candidate regulatory functions are assigned to disease-

associated variants. CTCF-MP can account for sequence changes

bymutation and predict the impacts of thesemutations on loops

[62]. DeepMILO can be used to predict the impacts of variants
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Figure 6. Pipeline of selecting computational methods for the prediction of chromatin and organization. 1© Determine the predict target. 2© Select method based on

target output or available data. 3© Choose method based on required input data or target output within methods filtered from the second step.

identified by GWAS of samples on CTCF-mediated insulator

loops from the cell type of interest [18]. Based on C3D, Johnston

et al. [89] validated the effects of large structural variants on

3D genome architecture and transcriptional output. PRISMR can

identify alterations in chromatin contacts induced by disease-

associated structural variations, which may reconfigure TADs,

thereby causing gene misexpression [90]. DeepC can predict

the impact of both large-scale structural and single base-pair

variations on genome folding [64].

Mechanisms underlying gene regulation

Computational methods also have been used to explore pat-

terns underlying gene regulation and chromatin organization.

For instance, Cicero can be used to investigate how changes

in chromatin accessibility influence the expression of nearby

genes and to dissect the mechanisms of cis-regulation at a

genome-wide scale [31]. Cicero also can be used to predict chro-

matin hubs,which are involved in looping interaction [31]. Deep-

TACT can be used to identify hub promoters, which are active

across cell lines and enriched in housekeeping genes [50]. Apply-

ing DeepTACT to identify disease-related genes showed that

IFNA2may be a significant autoimmune gene target [50]. EnCon-

tact can be used to identify hub enhancers. Moquin et al. [91]

extended TargetFinder to investigate whether Epstein–Barr virus

uses similar mechanisms of transcriptional regulation with the

human genome by considering one region of interacting pair in

the human genome,while the other is in the EBV genome. Using

Rambutan to generate predictive chromatin contact maps for

53 human primary tissues, Schreiber et al. [68] showed that cell

types of similar function had similar structures, whereas cancer

cells did not.

Mechanisms underlying disease development

Disease-related mechanisms have also been investigated using

computational methods. ELMER, a powerful algorithm for

the examination of cis-regulatory interfaces between cancer-

associated TFs and their functional target genes, can be used

to investigate cancer-specific enhancers and paired gene

promoters with TCGA datasets [33]. Ravi et al. [92] performed an

mRNA expression and DNA methylation analysis of anaplastic

thyroid cancer with ELMER v.2 [35], showing that aberrant DNA

methylation affects gene expression and likely contributes to

tumorigenesis in this disease. Besides, Naville et al. [23] provided

new insight into the genetic basis of diseases caused by the

misregulation of gene expression based on their correlation-

based method. Using ChIP-seq time-course data from the
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estrogen-stimulated MCF7 breast cancer cell line, Dzida et al.

[44] characterized the early response to estradiol in these cells.

Sin-Chan et al. [93] used C3D with ATAC-seq data on embryonal

tumors with multilayered rosettes to analyze long-range

chromatin interaction and thus explored potential therapeutic

vulnerability.

In addition, somemethods provide available predictions that

are often applied to related biomedical problems. For example,

PreSTIGE supplies 2695 ENCODE annotated lncRNA transcripts

expressed from active tissue-specific enhancers, as well as a

database of predictions for 13 cell lines. The predictions have

been used to infer putative eRNA–target pairs in squamous cell

carcinoma of the head and neck [94], identify genetic inter-

action impacting body mass index [95], predict potential reg-

ulatory interaction related to the development and matura-

tion of sensory epithelium [96] and analyze the associations of

SNPs in regulatory regions with related diseases [97–99]. JEME

reconstructs enhancer–promoter networks in 935 samples of

human primary cells, tissues and cell lines, and the resulting

predictions have beenused to study biomedical problems related

to asthma [100], bone density [101], attention deficit/hyperac-

tivity disorder [102], serum levels of prostate-specific antigen

[103], schizophrenia [104], osteoarthritis [105] and the immune

response [106]. Other databases and platforms that incorporate

predictive results obtained with the use of computational meth-

ods to enable better use of these data for the examination of

biomedical problems include SEdb [107] and OncoBase [108].

We summarize such available predictions that could be applied

directly in biomedical studies in Table S3.

Discussion

The precise prediction of 3D chromatin interaction and organi-

zation is crucial to deciphering gene regulation, cell differenti-

ation and disease mechanisms. Computational methods based

on sequence and epigenomic data have dramatically advanced

our understanding of 3D chromatin architecture and its role in

transcriptional regulation. In this paper, we described current

computational methods based on DNA sequence and epige-

nomic data for the prediction of chromatin interaction and

organization and provided a user guide aiding selection of the

proper method based on the available data or target output.

We reviewed the performance of such methods to highlight

their merits and demerits. We also described their biomedical

applications to facilitate biologists’ selection ofmethods suitable

for their research.

Advice on improvement in user experience

Although numerous methods have been developed for the pre-

diction of chromatin interaction and organization, their appli-

cation in biomedical research is still not extensive. The biggest

obstacle is that the complex algorithms applied in these meth-

ods are incomprehensible to biologists who lack computation-

related knowledge, and their associations with biological func-

tions might not be clear due to the black-box nature of some

methods. These methods employ different software and pro-

gramming languages, including python, java, C++ and R, and the

instructions supplied may not be sufficiently explicit to allow

users to reproduce procedures. Beyond the realization of predic-

tive function and performance, the developers of computational

methods could pay more attention to the improvement of user

experience, which would help to promote the application of

these methods. Convenient web-based methods that integrate
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raw data processing and analysis, which allow users to upload

input data and obtain output file with simple operations, are

preferable. To facilitate the execution of computational meth-

ods, developers should provide more detailed instructions for

aspects such as raw data processing and the software required

for specific versions, with the inclusion of file descriptions and

simple examples of analyses. In addition, feedback on progress,

summary reports and supporting information can be provided

to make the computational process more transparent.

Existing challenges in the prediction of chromatin
interaction and organization

Challenges remain in this filed [81]. First, high-resolution spa-

tial proximity data remain limited, and the acquisition of such

data remains difficult in terms of expenditure and sensitiv-

ity. Data resolution restricts the exploration of finer 3D chro-

matin organization [109]. Many computational algorithms, such

as DeepHiC [110], HIFI [111], Boost-HiC [112], deDoc [113], hicGAN

[114], HiCNN [115] and HiCPlus [11], have been developed to

enhance the resolution of Hi-C data. Second, limitations remain

regarding the strategies applied in state-of-art computational

methods. Distance-based methods neglect the distal regulatory

interaction and the case that multiple enhancers target the

same promoter [40, 48]. The high sensitivity of Pearson correla-

tion, used to identify enhancer–promoter pairs, also generates

comparatively high false positive [40]. Besides, the overlap of

TADs is not considered by some methods for TAD identifica-

tion [116]. Third, methods for the exploration of fine-scale 3D

chromatin organization in single cells remain lacking. Chromo-

some structures exhibit high variability in the interphase and

high heterogeneity across multiple cell lines [58]. Most existing

methods use population-averaged contact data and focus on

fitting single consensus structures, while ignoring single cell

variants and cell-to-cell variability in their models [117]. More

effort should be put into developing computational methods

for such purpose using single-cell genomic and epigenomic

data Fourth, DNA–DNA ligation experiments are still subopti-

mal to identify physical chromatin interaction. Hi-C contacts

obtained without loop-calling postprocessing do not provide

strong evidence for physical interaction, and the confidence

of predictions is highly influenced by experimental noise [51].

Conventional 3C-based processing cannot capture simultaneous

or cooperative interaction [118, 119]. Unlike Hi-C measurement

of the physical proximity of genomic loci, computational meth-

ods using sequence and epigenomic data can predict 3D chro-

matin organization and interaction based on various biological

hypotheses, such as those regarding characteristic nucleosome

arrangements, correlations of chromatin states, sequence motif

features and evolutionarily conserved principles,whichwill pro-

vide complementary insight into chromatin organization. Fifth,

the resolution of Hi-C experiment is limited by the restriction

enzymes. A recently developed Hi-C variant technique, Micro-C,

overcomes the limited resolution by fragmenting the chromatin

by micrococcal nuclease [120, 121]. Micro-C exhibits improved

signal-to-noise relative toHi-C, and it can finer-scaled chromatin

organizational features in mammalian cells, such as enhancer–

promoter stripes, dots and domains [122, 123]. Lastly, current

methods remain suboptimal. The most desirable application is

the use of amodel trained in a cell line with sequence and epige-

nomic data to make predictions for another cell line; current

methods,however, performundesirably across cell lines.Work to

improve the accuracy and precision of predictions of regulatory

interaction and spatial chromatin conformation via the integra-

tion of multiple data types and experimental methods is ongo-

ing; examples are BART, which integrates Hi-C and epigenetic

signatures [16], and GEM-FISH, which integrates fluorescence in

situ hybridization and Hi-C data [124].

Future prospective

Recently, the mechanism by which DNAmolecules pack into the

nucleus in folded layers and ensure the precise regulation of

genes has become a topic of interest in 3D genome research.

With increasing availability of genomic, epigenomic and tran-

scriptomic data, and advances in data-processing power, compu-

tational methods for the inference of 3D chromatin interaction

and organization have dramatically facilitated the study of gene

regulationmechanisms and 3D genome organization,which has

provided new insight into cell differentiation and disease pat-

terns. Studies of chromatin architecture alterations that could

affect the expression of disease-related genes are ongoing [125].

For example, Kloetgen et al. [126] discovered the complexity and

dynamic nature of the 3D chromatin architecture in human

acute leukemia using various computational methods based on

Hi-C, RNA-seq and CTCF ChIP-seq data and demonstrated that

some changes in 3D interaction in leukemia could be inhibited

by targeted small-molecular drugs. An understanding of disrup-

tions to 3D chromatin organization will provide novel insight

into the mechanisms responsible for disease-associated muta-

tions and rearrangements and facilitate the treatment of genetic

diseases. In this process, computational tools are indispensable

for the prediction of regulatory element interaction and analysis

of 3D chromatin organization. We believe that the influence of

3D chromatin architecture on gene regulation and disease devel-

opment could be elaboratedmore exhaustively in the futurewith

the extensive application of computational methods.

Key Points

• We summarized 48 computational methods for the

prediction of chromatin interaction and organiza-

tion based on sequence and epigenomic profiles and

compared the performance based on input data and

algorithms.
• To facilitate the application of these computational

methods, we introduced their current biomedical

applications and listed methods that could be applied

easily with small sets of input data.
• We summarized existing challenges affecting the

inference of chromatin interaction and organization

using computational methods and presented direc-

tions for its future improvement.

Supplementary data

Supplementary data are available online at Briefings in Bioin-

formatics.
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