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Defining a precise map of all genes along with their alter-
native isoforms and expression across diverse cell types is 
critical for understanding biology. Until recently, produc-
tion of such data was prohibitively expensive and experi-
mentally laborious. The major method for annotating 
a transcriptome required the slow and costly process of 
cloning cDNAs or expressed sequence tag (EST) librar-
ies, followed by capillary sequencing1–3. Owing to the 
high cost and limited data yield intrinsic to this approach, 
it only provided a glimpse of the true complexity of cell 
type–specific splicing and transcription4,5. Analysis of 
these data required sophisticated computational tools, 
many of which6–9 provide the basis for the programs used 
today for high-throughput RNA sequencing (RNA-seq) 
data. Alternative strategies, such as genome-wide tiling 
arrays, allowed for the identification of transcribed regions 
at a larger and more cost-efficient scale but with limited 
resolution3,10. Splicing arrays with probes across exon-
exon junctions enabled researchers to analyze predefined 
splicing events11,12 but could not be used to identify pre-
viously uncharacterized events. Expression quantifica-
tion required hybridization of RNA to gene-expression 
microarrays, a process that is limited to studying the 
expression of known genes for defined isoforms13,14.

Recent advances in DNA sequencing technology have 
made it possible to sequence cDNA derived from cellu-
lar RNA by massively parallel sequencing technologies, a 
process termed RNA-seq5,15–23. We use the term RNA-seq 
to refer to experimental procedures that generate DNA 

sequence reads derived from the entire RNA molecule. 
Specific applications such as small RNA sequence analy-
sis require special approaches, which we do not address 
here. In theory, RNA-seq can be used to build a complete 
map of the transcriptome across all cell types, perturba-
tions and states. To fully realize this goal, however, RNA-
seq requires powerful computational tools. Many recent 
studies have applied RNA-seq to specific biological prob-
lems, including the quantification of alternative splicing 
in tissues5, populations5,24 and disease25, discovery of 
new fusion genes in cancer18,26, improvement of genome 
assembly27, and transcript identification16,23,28,29.

Here we focus on the computational methods needed 
to address RNA-seq analysis core challenges. First, we 
describe methods to align reads directly to a reference 
transcriptome or genome (‘read mapping’). Second, we 
discuss methods to identify expressed genes and iso-
forms (‘transcriptome reconstruction’). Third, we present 
methods for estimation of gene and isoform abundance, 
as well as methods for the analysis of differential expres-
sion across samples (‘expression quantification’).

Because of ongoing improvements in RNA-seq data 
generation, there is great variability in the maturity of 
available computational tools. In some areas, such as 
read mapping, a wealth of algorithms exists but in oth-
ers, such as differential expression analysis, solutions are 
only beginning to emerge. Rather than comprehensively 
describing each method, we highlight the key common 
principles as well as the critical differences underlying 
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High-throughput RNA sequencing (RNA-seq) promises a comprehensive picture of the 
transcriptome, allowing for the complete annotation and quantification of all genes 
and their isoforms across samples. Realizing this promise requires increasingly complex 
computational methods. These computational challenges fall into three main categories: 
(i) read mapping, (ii) transcriptome reconstruction and (iii) expression quantification. 
Here we explain the major conceptual and practical challenges, and the general classes 
of solutions for each category. Finally, we highlight the interdependence between these 
categories and discuss the benefits for different biological applications.
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Mapping short RNA-seq reads
One of the most basic tasks in RNA-seq analysis is the alignment of 
reads to either a reference transcriptome or genome. Alignment of 
reads is a classic problem in bioinformatics with several solutions spe-
cifically for EST mapping8,9. RNA-seq reads, however, pose particular 
challenges because they are short (~36–125 bases), error rates are 
considerable and many reads span exon-exon junctions. Additionally, 
the number of reads per experiment is increasingly large, currently 
as many as hundreds of millions. There are two major algorithmic 
approaches to map RNA-seq reads to a reference transcriptome. 
The first, to which we collectively refer as ‘unspliced read align-
ers’, align reads to a reference without allowing any large gaps. The 
unspliced read aligners fall into two main categories, ‘seed methods’ 
and ‘Burrows-Wheeler transform methods’. Seed methods31–38 such 
as mapping and assembly with quality (MAQ)33 and Stampy35 find 
matches for short subsequences, termed ‘seeds’, assuming that at least 

each approach and their application to RNA-seq analysis. We also 
discuss how these different methodologies can impact the results and 
interpretation of the data. Although we discuss each of the three cat-
egories as separate units, RNA-seq data analysis often requires using 
methods from all three categories. The methods described here are 
largely independent of the choice of library construction protocols, 
with the notable exception of ‘paired-end’ sequencing (reading from 
both ends of a fragment), which provides valuable information at all 
stages of RNA-seq analysis28–30.

As a reference for the reader, we provide a list of currently 
available methods in each category (Table 1). To provide a gen-
eral indication of the compute resources and tradeoffs of dif-
ferent methods, we selected a representative method from each 
category and applied it to a published RNA-seq dataset consisting 
of 58 million paired-end 76-base reads from mouse embryonic 
stem cell RNA28 (Supplementary Table 1).

Table 1 | Selected list of RNA-seq analysis programs
Class Category Package Notes Uses Input
Read mapping
Unspliced 
alignersa

Seed methods Short-read mapping package 
(SHRiMP)41

Smith-Waterman extension Aligning reads to a  
reference transcriptome

Reads and reference 
transcriptome

Stampy39 Probabilistic model
Burrows-Wheeler 
transform methods

Bowtie43

BWA44 Incorporates quality scores
Spliced aligners Exon-first methods MapSplice52 Works with multiple unspliced 

aligners
Aligning reads to a  
reference genome. Allows  
for the identification of 
novel splice junctions

Reads and reference 
genomeSpliceMap50

TopHat51 Uses Bowtie alignments
Seed-extend methods GSNAP53 Can use SNP databases

QPALMA54 Smith-Waterman for large gaps
Transcriptome reconstruction
Genome-guided 
reconstruction

Exon identification G.Mor.Se Assembles exons Identifying novel transcripts 
using a known reference 
genome

Alignments to 
reference genomeGenome-guided  

assembly
Scripture28 Reports all isoforms
Cufflinks29 Reports a minimal set of isoforms

Genome-
independent 
reconstruction

Genome-independent 
assembly

Velvet61 Reports all isoforms Identifying novel genes and 
transcript isoforms without  
a known reference genome

Reads
TransABySS56

Expression quantification
Expression  
quantification

Gene quantification Alexa-seq47 Quantifies using differentially 
included exons

Quantifying gene expression Reads and transcript 
models

Enhanced read analysis of 
gene expression (ERANGE)20

Quantifies using union of exons

Normalization by expected 
uniquely mappable area 
(NEUMA)82

Quantifies using unique reads

Isoform quantification Cufflinks29 Maximum likelihood estimation of 
relative isoform expression

Quantifying transcript 
isoform expression levels

Read alignments to 
isoformsMISO33

RNA-seq by expectaion 
maximization (RSEM)69

Differential 
expression

Cuffdiff29 Uses isoform levels in analysis Identifying differentially 
expressed genes or 
transcript isoforms

Read alignments 
and transcript 
models

DegSeq79 Uses a normal distribution
EdgeR77

Differential Expression 
analysis of count data 
(DESeq)78

Myrna75 Cloud-based permutation method
aThis list is not meant to be exhaustive as many different programs are available for short-read alignment. Here we chose a representative set capturing the frequently used tools for RNA-seq or 
tools representing fundamentally different approaches.
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Second, unmapped reads are split into shorter segments and aligned 
independently. The genomic regions surrounding the mapped read 
segments are then searched for possible spliced connections. Exon-
first aligners are very efficient when only a small portion of the reads 
require the more computationally intensive second step. Alternatively, 
seed-extend methods8,50,51 such as ‘genomic short-read nucleotide 
alignment program’ (GSNAP)50 and ‘computing accurate spliced 
alignments’ (QPALMA)51 break reads into short seeds, which are 
placed onto the genome to localize the alignment (Fig. 1b). Candidate 
regions are then examined with more sensitive methods, such as the 
Smith-Waterman algorithm51 or iterative extension and merging of 
initial seeds8,50 to determine the exact spliced alignment for the read 
(Fig. 1b). Many of these alignment methods47–51 also support paired-
end read mapping, which increases alignment specificity.

Exon-first approaches are faster and require fewer computational 
resources compared to seed-extend methods. For example, a seed-
extend method (GSNAP) takes ~8  longer (~340 CPU hours) than 
an exon-first method (TopHat) resulting in ~1.5 more spliced 
reads (Supplementary Table 1). However, the biological meaning 
of these additional splice junctions has not been demonstrated.

Exon-first approaches can miss spliced alignments for reads that 
also map to the genome contiguously, as can occur for genes that 
have retrotransposed pseudogenes (Fig. 1c). In contrast, seed-
extend methods evaluate spliced and unspliced alignments in the 
same step, which reduces this bias toward unspliced alignments, 
yielding the best placement of each read. Seed-extend methods per-
form better than exon-first approaches when mapping reads from 
polymorphic species52.

Transcriptome reconstruction
Defining a precise map of all transcripts and isoforms that are 
expressed in a particular sample requires the assembly of these reads 
or read alignments into transcription units. Collectively, we refer to 
this process as transcriptome reconstruction. Transcriptome recon-
struction is a difficult computational task for three main reasons. 

one seed in a read will perfectly match the reference. Each seed is used 
to narrow candidate regions where more sensitive methods (such as 
Smith-Waterman) can be applied to extend seeds to full alignments. 
In contrast, the second approach includes Burrows-Wheeler trans-
form methods39–41 such as Burrows-Wheeler alignment (BWA)40 
and Bowtie39, which compact the genome into a data structure that 
is very efficient when searching for perfect matches42,43. When allow-
ing mismatches, the performance of Burrows-Wheeler transform 
methods decreases exponentially with the number of mismatches as 
they iteratively perform perfect searches39–41.

Unspliced read aligners are ideal for mapping reads against a ref-
erence cDNA databases for quantification purposes5,20,26,44,45. If 
the exact reference transcriptome is available, Burrows-Wheeler 
methods are faster than seed-based methods (in our example, 
~15  faster requiring ~110 central processing unit (CPU) hours) 
and have small differences in alignment specificity (~10% lower) 
Supplementary Table 1). In contrast, when only the reference 
transcriptome of a distant species is available, ‘seed methods’ can 
result in a large increase in sensitivity. For example, using the rat 
transcriptome as a reference for mouse reads resulted in 40% more 
reads aligned at a cost of ~7  more compute time, yielding a compa-
rable alignment success rate as when aligning to the actual reference 
mouse transcriptome (Supplementary Table 1 and Supplementary  
Figs. 1 and 2). Similarly, an increase in sensitivity using seed meth-
ods has been observed when aligning reads to polymorphic regions 
in a species for quantification of allele-specific gene expression46.

Unspliced read aligners are limited to identifying known exons and 
junctions, and do not allow for the identification of splicing events 
involving new exons. Alternatively, reads can be aligned to the entire 
genome, including intron-spanning reads that require large gaps for 
proper placement. Several methods exist, collectively referred to as 
‘spliced aligners’, that fall into two main categories: ‘exon first’ and ‘seed 
and extend’. Exon-first47–49 methods such as MapSplice49, SpliceMap47 
and TopHat48 use a two-step process. First, they map reads con-
tinuously to the genome using the unspliced read aligners (Fig. 1a). 

a b

k

c

Figure 1 | Strategies for gapped alignments of 
RNA-seq reads to the genome. (a,b) An illustration 
of reads obtained from a two-exon transcript; 
black and gray indicate exonic origin of reads. 
Exon-first methods (a) map full, unspliced reads 
(exonic reads), and remaining reads are divided 
into smaller pieces and mapped to the genome. 
An extension process extends mapped pieces to 
find candidate splice sites to support a spliced 
alignment. Seed-and-extend methods (b) store a 
map of all small words (k-mers) of similar size in 
the genome in an efficient lookup data structure; 
each read is divided into k-mers, which are mapped 
to the genome via the lookup structure. Mapped 
k-mers are extended into larger alignments, 
which may include gaps flanked by splice sites. 
(c) A potential disadvantage of exon-first 
approaches illustrated for a gene and its associated 
retrotransposed pseudogene. Mismatches 
compared to the gene sequence are indicated in 
red. Exonic reads will map to both the gene and 
its pseudogene, preferring gene placement owing 
to lack of mutations, but a spliced read could 
be incorrectly assigned to the pseudogene as it 
appears to be exonic, preventing higher-scoring 
spliced alignments from being pursued.
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genome-independent methods assemble the reads directly into 
transcripts without using a reference genome.

Genome-guided reconstruction. Existing genome-guided meth-
ods can be classified in two main categories: ‘exon identification’ 
and ‘genome-guided assembly’28,29 approaches.

Exon identification16,23 methods such as G.mor.se16 were devel-
oped early when reads were short (~36 bases) and few aligned to 
exon-exon junctions. They first define putative exons as coverage 
islands, and then use spliced reads that span across these cover-
age islands to define exon boundaries and to establish connec-
tions between exons. Exon identification methods provided a first 

approach to solve the transcript reconstruc-
tion problem best suitable for short reads, 
but they are underpowered to identify full-
length structures of lowly expressed, long 
and alternatively spliced genes.

To take advantage of  longer read 
lengths, genome-guided assembly meth-
ods such as Cufflinks29 and Scripture28 
have been developed. These methods 
use spliced reads directly to reconstruct 
the transcriptome28,29. Scripture initially 
transforms the genome into a graph topol-
ogy, which represents all possible connec-
tions of bases in the transcriptome either 
when they occur consecutively or when 
they are connected by a spliced read. 
Scripture uses this graph topology to 
reduce the transcript reconstruction prob-
lem to a statistical segmentation problem 
of identifying significant transcript paths 
across the graph28. Scripture provides 
increased sensitivity to identify tran-
scripts expressed at low levels by working 
with significant paths, rather than signifi-
cant exons28. Cufflinks uses an approach 
originally developed for EST assembly7, to 
connect aligned reads into a graph based 
on the location of their spliced align-
ments29. Scripture and Cufflinks build 
conceptually similar assembly graphs 
but differ in how they parse the graph 
into transcripts. Scripture reports all iso-
forms that are compatible with the read 
data (maximum sensitivity)28, whereas 
Cufflinks reports the minimal number 
of compatible isoforms (maximum preci-
sion)29. Specifically, Scripture enumerates 
all possible paths through the assembly 
graph that are consistent with the spliced 
reads and the fragment size distribu-
tion of the paired end reads. In contrast, 
Cufflinks chooses a minimal set of paths 
through the graph such that all reads are 
included in at least one path. Each path 
defines an isoform, so this minimal set 
of paths is a minimal assembly of reads. 
As there can be many minimal sets of  

First, gene expression spans several orders of magnitude, with some 
genes represented by only a few reads. Second, reads originate from 
the mature mRNA (exons only) as well as from the incompletely 
spliced precursor RNA (containing intronic sequences), making it 
difficult to identify the mature transcripts. Third, reads are short, 
and genes can have many isoforms, making it challenging to deter-
mine which isoform produced each read.

Several methods exist to reconstruct the transcriptome, and 
they fall into two main classes: ‘genome-guided’ and ‘genome-
independent’ (Fig. 2). Genome-guided methods rely on a ref-
erence genome to first map all the reads to the genome and 
then assemble overlapping reads into transcripts. By contrast, 
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Parse graph
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Parse graph
into sequences

Align sequences
to genome

Transcript graph
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Transcript 1
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Figure 2 | Transcriptome reconstruction methods. (a) Reads originating from two different isoforms of the 
same genes are colored black and gray. In genome-guided assembly, reads are first mapped to a reference 
genome, and spliced reads are used to build a transcript graph, which is then parsed into gene annotations. 
In the genome-independent approach, reads are broken into k-mer seeds and arranged into a de Bruijn 
graph structure. The graph is parsed to identify transcript sequences, which are aligned to the genome to 
produce gene annotations. (b) Spliced reads give rise to four possible transcripts, but only two transcripts 
are needed to explain all reads; the two possible sets of minimal isoforms are depicted.
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Reconstruction strategies compared. Both genome-guided and 
genome-independent algorithms have been reported to accurately 
reconstruct thousands of transcripts and many alternative splice 
forms28,29,53,55. The question as to which strategy is most suitable 
for the task at hand is strongly governed by the particular biologi-
cal question to be answered. Genome-independent methods are 
the obvious choice for organisms without a reference sequence, 
whereas the increased sensitivity of genome-guided approaches 
makes them the obvious choice for annotating organisms with 
a reference genome. In the case of genomes or transcriptomes 
that have undergone major rearrangements, such as in cancer 
cells26, the answer to the above question becomes less clear and 
depends on the analytical goal. In many cases, a hybrid approach 
incorporating both the genome-independent and genome-
guided strategies might work best for capturing known informa-
tion as well as capturing novel variation. In practice, genome- 
independent methods require considerable computational 
resources (~650 CPU hours and >16 gigabytes of random-access 

isoforms, Cufflinks uses read coverage across each path to decide 
which combination of paths is most likely to originate from the 
same RNA29 (Fig. 2b).

Scripture and Cufflinks have similar computational require-
ments, and both can be run on a personal computer. Both assem-
ble similar transcripts at the high expression levels but differ 
substantially for lower expressed transcripts where Cufflinks 
reports 3  more loci (70,000 versus 25,000) most of which do 
not pass the statistical significance threshold used by Scripture 
(Supplementary Table 1 and Supplementary Fig. 3). In contrast, 
Scripture reports more isoforms per locus (average of 1.6 ver-
sus 1.2) with difference arising only for a handful of transcripts 
(Supplementary Table 1). In the most extreme case, Scripture 
reports over 300 isoforms for a single locus whereas Cufflinks 
reports 11 isoforms for the same gene.

Genome-independent reconstruction. Rather than mapping 
reads to a reference sequence first, genome-independent tran-
scriptome reconstruction algorithms such as transAbyss53 use 
the reads to directly build consensus transcripts53–55. Consensus 
transcripts can then be mapped to a genome or aligned to a 
gene or protein database for annotation purposes. The central 
challenge for genome-independent approaches is to partition 
reads into disjoint components, which represent all isoforms of 
a gene. A commonly used strategy is to first build a de Bruijn 
graph, which models overlapping subsequences, termed ‘k-mers’  
(k consecutive nucleotides), rather than reads55–58. This reduces 
the complexity associated with handling millions of reads to 
a fixed number of possible k-mers57,58. The overlaps of k – 1 
bases between these k-mers constitute the graph of all possible 
sequences that can be constructed. Next, paths are traversed in 
the graph, guided by read and paired-end coverage levels, elimi-
nating false branch points introduced by k-mers that are shared 
by different transcripts but not supported by reads and paired 
ends. Each remaining path through the graph is then reported as 
a separate transcript (Fig. 2).

Although genome-independent reconstruction is conceptu-
ally simple, there are two major complications: distinguishing 
sequencing errors from variation, and finding the optimal balance 
between sensitivity and graph complexity. Unlike the mapping-first 
strategy, sequencing errors introduce branch points in the graph 
that increase its complexity. To eliminate these artifacts, genome-
independent methods look at the coverage of different paths in the 
graph and apply a coverage cutoff to decide when to follow a path 
or when to remove it53,59. In practice, the choice of the k-mer length 
for this analysis can greatly affect the assembly53. Smaller values of k 
result in a larger number of overlapping nodes and a more complex 
graph, whereas larger values of k reduce the number of overlaps and 
results in a simpler graph structure. An optimal choice of k depends 
on coverage: when coverage is low, small values of k are preferable 
because they increase the number of overlapping reads contributing 
k-mers to the graph. But when coverage is large, small values of k 
are overly sensitive to sequencing errors and other artifacts, yield-
ing very complex graph structures59.

To cope with the variability in transcript abundance intrinsic 
to expression data, several methods, such as transABySS, use a 
variable k-mer strategy to gain power across expression levels to 
assemble transcripts53,55, albeit at the expense of CPU power and 
requiring parallel execution.
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Figure 3 | An overview of gene expression quantification with RNA-seq. 
(a) Illustration of transcripts of different lengths with different read 
coverage levels (left) as well as total read counts observed for each 
transcript (middle) and FPKM-normalized read counts (right). (b) Reads 
from alternatively spliced genes may be attributable to a single isoform 
or more than one isoform. Reads are color-coded when their isoform of 
origin is clear. Black reads indicate reads with uncertain origin. ‘Isoform 
expression methods’ estimate isoform abundances that best explain the 
observed read counts under a generative model. Samples near the original 
maximum likelihood estimate (dashed line) improve the robustness of the 
estimate and provide a confidence interval around each isoform’s abundance. 
(c) For a gene with two expressed isoforms, exons are colored according to 
the isoform of origin. Two simplified gene models used for quantification 
purposes, spliced transcripts from each model and their associated lengths, 
are shown to the right. The ‘exon union model’ (top) uses exons from all 
isoforms. The ‘exon intersection model’ (bottom) uses only exons common 
to all gene isoforms. (d) Comparison of true versus estimated FPKM values in 
simulated RNA-seq data. The x = y line in red is included as a reference.
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accounts for the dependency between paired-end reads in the 
RPKM estimate and as such is the metric of choice for both gene 
and isoform quantification29.

As many genes have multiple isoforms, many of which share 
exons, and many genes families have close paralogs, some reads 
cannot be assigned unequivocally to a transcript (Fig. 3b). This 
‘read assignment uncertainty’ affects expression quantification 
accuracy29,66,67. One strategy, used in the alternative expression 
analysis by RNA sequencing (Alexa-seq) method44, is to esti-
mate isoform-level expression values by counting only the reads 
that map uniquely to a single isoform. Although this works for 
some alternatively spliced genes, it fails for genes that do not 
contain unique exons from which to estimate isoform expression. 
Alternative methods termed ‘isoform-expression methods’ such 
as Cufflinks29 and mixture of isoforms (MISO)30, handle uncer-
tainty by constructing a ‘likelihood function’ that models the 
sequencing process and identifies isoform abundance estimates 
that best explain the reads obtained in the experiment29,30,53,66 
(Fig. 3b). This estimate, defined as the isoform abundance that 
maximizes the likelihood function, is termed the maximum like-
lihood estimate (MLE). For genes expressed at low levels, the 
MLE is not an accurate expression estimate; Bayesian inference 
improves the robustness of expression quantification by ‘sam-
pling’ alternative abundance estimates around the MLE while 
also providing a confidence measure on the estimate (Fig. 3b).

We note that the number of potential isoforms greatly impacts 
the results, with incorrect or misassembled isoforms introducing 
uncertainty. As such, when working with methods that produce 
the maximal isoform sets, it is necessary to prefilter transcripts 
before expression estimation for some genes. This applies to both 
genome-guided as well as genome-independent algorithms.

Often, the objective is to estimate expression per gene rather 
than for each isoform or transcript19,20,63. A gene’s expression 
is defined as the sum of the expression of all of its isoforms. 
However, calculating isoform abundance can be computationally 
challenging especially for complex loci. Rather than computing 
isoform abundances, it is possible to define simplified schemes 
for quantifying gene expression. The two most commonly used 
counting schemes are (Fig. 3c): the ‘exon intersection method’68, 
which counts reads mapped to its constitutive exons, and the 
‘exon union method’20,44, which counts all reads mapped to any 
exon in any of the gene’s isoforms. The exon intersection method 
is analogous to expression microarrays, which typically probe 
expression signal in constitutive regions of each gene. Although 
convenient, these simplified models come at a cost; the exon 
union model underestimates expression for alternatively spliced 
genes29,69 (Fig. 3d), and the intersection can reduce power for 
differential expression analysis, as discussed below.

Differential expression analysis with RNA-seq
Having quantified and normalized expression values, an impor-
tant question is to understand how these expression levels differ 
across conditions. The last decade saw the development of exten-
sive methodology for the statistical analysis of differential expres-
sion using microarrays70–72 (Fig. 4a). Although in principle these 
approaches are directly applicable to RNA-seq data as well, using 
read coverage to quantify transcript abundance provides addition-
al information such as a distribution for expression estimates in a 
single sample (Fig. 4a). Moreover, the power to detect differential 

memory (RAM)) compared to genome-guided methods (~4 CPU 
hours and <4 gigabytes RAM; Supplementary Table 1).

Estimating transcript expression levels
Expression quantification has long been an important applica-
tion. Over the past decade, DNA microarrays have been the tech-
nology of choice for high-throughput transcriptome profiling. 
When using RNA-seq to estimate gene expression, read counts 
need to be properly normalized to extract meaningful expression 
estimates5,15,20–22,60–63. There are two main sources of systematic 
variability that require normalization. First, RNA fragmentation 
during library construction causes longer transcripts to generate 
more reads compared to shorter transcripts present at the same 
abundance in the sample19,64,65 (Fig. 3a). Second, the variability in 
the number of reads produced for each run causes fluctuations in 
the number of fragments mapped across samples19,20 (Fig. 3a).

To account for these issues, the reads per kilobase of transcript 
per million mapped reads (RPKM) metric normalizes a tran-
script’s read count by both its length and the total number of 
mapped reads in the sample20 (Fig. 3a). When data originate 
from paired-end sequencing, the analogous fragments per kilo-
base of transcript per million mapped reads (FPKM) metric 

 

Condition 1

Condition 2
Condition 1

P
ro

ba
bi

lit
y

Expression estimator value

Exon intersection method

Isoform 1

Isoform 2

Condition 1

Condition 2

Transcript expression method

Ex
on

 in
te

rs
ec

tio
n 

ex
pr

es
si

on
 le

ve
l

Tr
an

sc
rip

t
ex

pr
es

si
on

 le
ve

l

Ex
pr

es
si

on Condition 2

Condition 1

Expression estimate

b

a

Condition 2

Condition 1

Detected
change

Condition 2

Condition 1 Condition 2 Condition 1 Condition 2

Figure 4 | Overview of RNA-seq differential expression analysis.  
(a) Expression microarrays rely on fluorescence intensity via a hybridization 
of a small number of probes to the gene RNA. RNA-seq gene expression 
is measured as the fraction of aligned reads that can be assigned to the 
gene. (b) A hypothetical gene with two isoforms undergoing an isoform 
switch between two conditions is shown. The total number of reads aligning 
to the gene in the two conditions is similar, but its distribution across 
isoforms changes. Differential expression using the simplified exon union 
or exon intersection methods reports no changes between conditions while 
estimating read counts and expression for the individual isoforms detects 
both differential expression at the gene and isoform level.
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Conclusions and anticipated future developments
As sequencing technologies mature, existing computational tools 
will need to evolve to meet new requirements, and new tools will 
emerge to enable new applications. For example, as read length con-
tinues to increase, new mapping methods will need to efficiently 
align hundreds of millions of long reads—a daunting task. As 
longer reads often span multiple exon-exon junctions, transcript 
reconstruction and quantification methods would benefit by incor-
porating the more complete isoform information encoded in longer 
reads.  Standard RNA-seq methods are not suited to annotate the 
5  start site and 3  ends of transcripts by using specialized RNA-seq 
libraries79–81 that identify the ends; transcriptome reconstruction 
methods will improve transcript annotation. Methods for estimat-
ing expression from RNA-seq data need to be improved to better 
handle the increasing availability of biological replicate experiments 
and would ideally model (and automatically subtract) systematic 
sources of bias that are introduced by laboratory methods (such as 
3 -end biases). By providing the sequence of expressed transcripts, 
RNA-seq encodes information about allelic variation and RNA pro-
cessing, so reconstruction methods should be adapted to account 
for this variability and report it. The ongoing cycle of improvements 
in technology, both in the laboratory as well as computationally, will 
continue to expand the possibilities of RNA-seq, making this tech-
nology applicable to an increasing variety of biological problems.

Note: Supplementary information is available on the Nature Methods website.
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In the html version of this article initially published, the corresponding author was listed as Manfred G. Grabherr instead of Manuel Garber. 
The error has been corrected in the HTML version of the article. 
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