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Abstract The analysis of economic/financial time series in the frequency domain is a rela­

tively underexplored area of the literature, particularly when the statistical prop­

erties of a time series are time-variant (evolutionary). In this case, the spectral 

content of the series varies as time progresses, rendering the conventional Fourier 

theory inadequate in describing the cyclical characteristics of the series fully. The 

joint Time-Frequency Representation (TFR) techniques overcome this problem, 

as they are capable of analyzing a given (continuous or discrete) function of time 

in time and frequency domains simultaneously. 

To illustrate the potential of some of the TFR techniques widely used in various 

fields of science and engineering for use in the analysis of stock market data, the 

behavior of ISE-1 00 index of the Istanbul Stock Exchange is analyzed first, using 

two linear (the Gabor Transformation and the Short Time Fourier Transform) 

and two quadratic (the Wigner Distribution and the Page Distribution) TFRs. 

The performance of each TFR in detecting and decoding cycles that may be 

present in the original ISE data is evaluated by utilizing a specially synthesized 
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time series whose trend and/or cycle components can be analytically specified and 

computed. This series is constructed in such a way to roughly mimic the pattern 

of a stock index series such as the original ISE series and is used as a benchmark 

for comparative performance analysis. The results indicate that the performance 

of the Page distribution, used for the first time in economics/finance literature, is 

significantly superior to the other TFRs considered. The analysis is then repeated 

using NASDAQ-IOO index data recorded over the last 15 years so as to see if the 

results are robust to a change in the source of stock data from an emerging to a 

well-established market. The results point to a superior performance by the Page 

distribution once again, demonstrating the robustness of our previous results. 

Keywords: Business cycles, Time-frequency representations, Stock index series, Page distri­

bution, Wigner distribution, Gabor transformation, Short time Fourier transform. 

1. Introduction 

The random-walk (white-noise) process has long provided a popular tool 

to model the behavior of stock prices, dominating the finance literature. This 

popularity has been challenged by studies reporting deviations from the random 

walk hypothesis based on the analysis of long-run stock returns -see, for exam­

ple, [Lo and MacKinlay (1988)]; [Fama and French (1988)], and [Poterba and 

Summers (1998)]. Explaining why such deviations occur requires formulating 

an alternative hypothesis. 

[Chen (1996a)] suggests a mixed process with random noise and determin­

istic patterns, including the possibility of deterministic chaos, to explain the 

behavior of stock prices over time. He argues that the recognition of the ex­

istence of persistent chaotic cycles presents a new perspective on the reasons 

underlying market volatility, by pointing to new sources of economic uncertain­

ties. By noting that the competition may not eliminate the nonlinear pattern in 

the stock market under non-equilibrium situations with an evolving trend and 

shifts in frequencies, he suggests what he calls the color-chaos model of stock­

market movements as an alternative to the random walk approach. Through 

this approach, [Chen (1996a)] contends, a link between the business cycle 

theory and the asset-pricing theory may be established. Given that real stock 

prices should converge to the expected value of discounted future cash flows, 

real stock prices must indeed reflect the cyclicality of real output through the 

effects of output cycle on cash flows. Furthermore, discount rates of future cash 

flows are composed of term and default premia, and each of these is known to 

co-vary with the business cycle [Jacquier and Nanda (1991)]. If this reasoning 

is' correct, cyclical models would be a natural alternative to the random walk. 

Within this framework, stock price or return series can essentially be viewed 

as composed of trend and cycle components, as well as some additive noise. 

Furthermore, there would possibly be a number of dominant cycles oscillating 
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at different frequencies, and one of these cycles is expected to be the business 

cycle. 

Using a cyclical approach in developing an empirical framework to describe 

the movement of stock prices or returns over time, or testing the random walk 

hypothesis against cyclical alternatives requires detecting the existence of bus i­

ness cycles and identifying their periodicity. [Sargent (1979)] offers two closely 

related (but not necessarily equivalent) definitions of a business cycle by con­

sidering a single series governed by a stochastic difference equation. According 

to the first definition, a variable is said to possess a cycle of a given frequency, if 

its covariogram exhibits damped oscillations at that frequency. By the second 

definition, a given time series has a cycle if a peak occurs in the spectral density 

function of the series. The spectral density function is nothing but the squared 

magnitude of the discrete Fourier transform of the time series. Therefore, a 

spectral peak observed at a specific frequency f implies the existence of a pair 

of spectral poles which are complex conjugate of each other and lead to a sinu­

soidal component in the time series oscillating at that particular frequency, i.e., 

implies the existence of a cycle with a period T = J . If this period is within 

the range 2 to 4 years, the cycle is called a minor business cycle, and if it falls 

in the range extending up to 8 years, the cycle is called a major business cycle 

by the NBER definitions [Sargent (1979)]. 

As these two definitions would indicate, a time series may be analyzed either 

in the time domain or in the spectral (or frequency) domain, both producing 

essentially the same results. Transformation of the signal representation from 

one domain to another is achieved by using the Fourier transform (FT) and the 

inverse Fourier transform (1FT) operations. If the spectral content of a given 

signal varies as time progresses, however, the conventional Fourier theory fails 

to fully describe the contribution of arbitrarily chosen spectral components over 

certain time bands. The time-frequency representation (TFR) techniques have 

emerged as viable solutions to this challenging problem, since they make it pos­

sible to analyze a given (continuous or discrete) function of time in time domain 

and frequency domain simultaneously. Providing localization both in time and 

frequency (within the resolution limits allowed by the uncertainty principle), 

TFRs can describe the variation of a function in the two-dimensional joint time­

frequency domain in detail. The Gabor transform (GT), the short time Fourier 

transform (STFT) and the Wavelet transform (WT) are linear time-frequency 

representations, whereas the Wigner distribution (WD), the Spectrogram (mag­

nitude square of STFT), the Scalogram (magnitude square of the WT), the 

Choi-Williams distribution (CWD) and the Page distribution (PD) are some of 

the well-known quadratic time-frequency representations -see [Hlawatsch and 

Boudreaux-Bartels (1992)]. 

The purpose of this chapter is to illustrate the use of some of these TFR 

techniques in the analysis of stock price data from emerging as well as well-



432 COMPUTATIONAL METHODS IN ECONOMICS AND FINANCE 

established stock markets, and to compare their performances. For this purpose, 

we first analyze the behavior of ISE-100 index of the Istanbul Stock Exchange 

over the period from July 9, 1990 to December 25, 2000 using two linear 

TFRs (the GT and the STFT) and two quadratic TFRs (the WD and the PD). 

In order to evaluate the comparative performance of these TFRs in detecting 

and decoding cycles that may be present in the original ISE data, we utilize a 

specially synthesized time series whose trend and/or cycle components can be 

analytically specified and computed. We construct this series in such a way 

to mimic the pattern of a stock index series such as the ISE-100 and let it 

serve as a benchmark in our simulated performance analysis. We then test the 

robustness of results to a switch from an emerging to a well-established (yet, 

relatively volatile) stock market by using an alternative series containing the 

NASDAQ-100 index values recorded over the last 15 years. 

The analysis of economic/financial time series in the frequency domain is 

a relatively underexplored area of the literature. Examples include [King 

and Rebelo (1993)], [Bowden and Martin (1993)], [Thoma (1994)], [Levy 

and Chen (1994)], [Garcia-Ferrer and Queralt (1998)], [Hong (1999)], and 

[Bjornland (2000)]. The studies using TFRs are even fewer in number and are 

based mostly on linear TFRs such as the wavelet transform -see, [Greenblatt 

(1997)], and [Lee (1998)], for a review article- and the Gabor transform, with 

the Wigner distribution being the only quadratic TFR employed -see [Chen 

(1996a)], and [Chen (1996b)]. Thus, the present study is expected to be a 

significant contribution to the literature not only because one of the quadratic 

TFRs (i.e., the PD) is used for the first time in the finance literature in general, but 

also because the application of all four TFRs to financial data from an emerging 

stock market is new to this study. Furthermore, the study develops a novel 

approach for evaluating the comparative performances of the TFR techniques 

considered by constructing a synthesized series with known analytical features 

to serve as a benchmark, and further increases the usefulness of this benchmark 

through the addition of some Gaussian noise. Finally, the study deserves special 

attention also because the results obtained highlight a significant potential for 

the PD launched into economics/finance literature here as a useful tool for future 

research in these fields. 

The rest of the discussion in the paper is organized as follows. The next 

section briefly describes the theoretical framework employed. Section 3 ex­

plains the implementation of TFR analysis and reports results from each of the 

four TFR techniques considered for each of the simulated and true stock series. 

Section 4 discusses the robustness of the results by repeating the analysis using 

NASDAQ data, and Section 5 concludes the paper. 
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2. The theoretical framework 

Fourier transform theory states that a given time series can equivalently 

be characterized either in time domain or in frequency domain. In general, 

transformation of the signal representation between the time domain and the 

frequency domain (also known as the spectral domain) is achieved by computing 

the Fourier transform (Ff) and the inverse Fourier transform (IFf) as given in 

Equations (7.1) and (7.2), respectively 

X(f) = I: x{t)e- j21t/ tdt (22.1) 

and 

x{t) = I: X(f)e j21t/ tdf, (22.2) 

where x{ t) is the time function evaluated at time t, X (f) is the Fourier transform 

evaluated at frequency f, and j = A is the unit imaginary number. As implied 

by Equation (7.2), a given signalx{t) can be linearly decomposed into a basis of 

complex exponential functions, ej21t/ t = cos{2nft) + jsin{2rtft) , oscillating 

at different frequencies. Then, the related decomposition coefficients X(f) 
are computed as a function of frequency by Equation (7.1) to form the Fourier 

transform in the spectral domain. In other words, the magnitude of the complex 

valued function X (f) at a given frequency f represents the strength of the 

signal's spectral component oscillating at that specific frequency. 

For discrete-time problems, the discrete Fourier transform (DFf) and the 

inverse discrete Fourier transform (IDFT) need to be used instead of the 

continuous-time FT and 1FT pair given in Equations (7.1) and (7.2). The Fast 

Fourier Transform algorithm (FFT) and its inverse (IFFT) are computationally 

optimized signal processing tools that can be used to compute Fourier transform 

pairs for discrete signals. While the characterization of discrete data in time 

domain requires the techniques for the analysis of time series, characterization 

in frequency domain calls for the techniques of discrete spectral analysis, both 

producing essentially the same results. For a given application, the choice be­

tween the time and frequency domains depends on the relative simplicity of the 

specific techniques available for the solution. 

Both continuous and discrete Fourier transforms have proved indispensable 

as data analysis tools for stationary signals. Yet, if the statistical properties of 

a time signal are time-variant and hence, its spectral content varies as time pro­

gresses, the conventional Fourier theory becomes inadequate to fully describe 

the signal characteristics. Fortunately, the TFR techniques are available to over­

come this problem. The TFRs are capable of analyzing a given (continuous or 

discrete) function of time in time and frequency domains simultaneously. In 

other words, they can characterize a given time signal in the two-dimensional 

joint time-frequency domain enabling localization both in time and frequency 
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within the resolution limits allowed by the uncertainty principle [Cohen (1995)]. 

As such, the TFRs in general may be viewed as a nonparametric approach for 

generalized spectral analysis of the evolutionary time series [Qian and Chen 

(1996)]. 

We now proceed by briefly describing the TFRs that we employ to identify 

the cycles in our simulation and test problems: GT, the Gabor transform (named 

after Gabor, a Nobel laureate physicist); STFT, the short time Fourier transform; 

WD, the Wigner distribution (developed by Wigner, another Nobel laureate in 

physics), and PD, the Page distribution. The first two of these TFRs are lin­

ear transforms whereas the latter two are nonlinear. (More information about 

the theoretical foundations of these TFRs can be found in works cited in the 

extensive survey article by [Hlawatsch and Boudreaux-Bartels (1992)], which 

also includes numerous aplications of the TFRs in science and engineering.) 

The choice of the set of TFRs used here out of a larger set of similar represen­

tations available in the literature has been motivated by their performance at 

early stages of this research, as well as in an electromagnetic target identifica­

tion problem previously studied by the senior author -see [Turhan-Sayan and 

Karaduman (2001)]. The inclusion of GT and WD has been further motivated 

by their use in a previous study by [Chen (1996a)] in a context similar to ours. 

Due to the differences in their cross-term structures, the PD has proved to be 

much more useful in frequency localization than the WD in the present as well 

as the previous electromagnetic applications, motivating us to include it as a 

quadratic TFR comparable to the WD. The decision to include the STFT as 

a linear TFR comparable to the GT has been made on similar grounds. To 

the best of the authors' knowledge, this is the first time that the PD is used in 

economics/finance literature. 

The mathematical definitions of GT, STFT, WD and PD are as follows: 

1 The Gabor Transform (GT): 

The Gabor expansion coefficients G x( n, k) of a given time signal x( t) are 

implicitly defined by 

(22.3) 

with 

(22.4) 

being the basis functions of the expansion. Gabor used these time­

frequency shifted Gaussian functions in his seminal 1946 study, as they 

are well concentrated both in time and frequency domain. The expan­

sion coefficient Gx(n,k) is expected to indicate the signal's time and 

frequency content around the point (nT,kF) in the joint time-frequency 

domain, where T and F are the time step and the frequency step, re­

spectively -see [Hlawatsch and Boudreaux-Bartels (1992)]. A detailed 
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discussion on the computation of discrete Gabor transform can also be 

found in [Qian and Chen (1993)]. 

2 The Short Time Fourier Transform (STFT): 

The STFf of a given time signal x( t) is computed by 

STFTx(Y)(t,f) = r x(t')y*(t'-t)e- j21r,ft'dt', 
1t' 

(22.5) 

where y(t' - t) is the chosen window of analysis which is centered at t' = t 

and the superscript * denotes complex conjugation -see [Hlawatsch and 

Boudreaux-Bartels (1992)]. As implied by this definition, the STFf of 

a signal may be interpreted as the local Fourier transform of the signal 

around time t. 

3 The Wigner Distribution (WD): 

The auto-Wigner distribution of a given time signal x(t) is given by 

(22.6) 

The WD is a real-valued quadratic TFR preserving time shifts and .fre­

quency shifts of the signal. The frequency (time) integral of the WD 

corresponds to the signal's instantaneous power (spectral energy density) 

as the WD satisfies the so-called marginals. As a matter offact, the WD is 

the only quadratic TFR satisfying all of the desired properties of the ener­

getic time-frequency representations [Hlawatsch and Boudreaux-Bartels 

(1992)] that makes it a very popular signal processing tool, despite the 

severe cross-term problems encountered in applications. 

4 The Page Distribution (PD): 

The Page distribution of a given time signal x(t) is defined as 

PDx(t,f) = :t Iloo x(t')e- j21r,ft' dtf (22.7) 

The PD is also an energetic, shift-invariant, quadratic TFR like the WD. 

Most of the desirable properties satisfied by the WD are also satisfied by 

the PD except for a few, such as the lack of a finite frequency support 

that the WD has [Hlawatsch and Boudreaux-Bartels (1992)]. 

3. Implementation and results 

In this section, we describe the implementation of TFR techniques we em­

ployed for identifying the cycles in the ISE-100 data we used, and present results 

from the analysis with the original ISE data as well as the synthesized series 

used as a benchmark. 
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3.1 Description of the ISE data used 

We have worked with two different time series, one actual and one syn­

thesized. The first series has values of the ISE-lOO index (constructed from 

the prices of top 100 stocks traded in the Istanbul Stock Exchange) over the 

period from July 9, 1990 to December 25, 2000. This is the series that is of 

primary interest to us and was obtained from Datastream. While the length of 

the original daily series is 2644 days excluding the weekends and the official 

holidays, a shorter version with weekly values of the index was used in the 

analysis to speed up the TFR computations and to reduce computer memory 

requirements. With 512 weekly observations, this smaller version corresponds 

to about 9.85 years and is smoother as compared to the original series, since the 

data reduction process roughly mimics a low-pass filter action to remove very 

high frequency signal components to some extent. The length of the series was 

intentionally chosen to be 512 = 29 (a power of 2) so as to further accelerate 

the computations of TFR algorithms used. 

The weekly series shown in panel (a) of Figure 22.1 was presumably com­

posed of trend and cycle components as well as some additive noise, possibly 

containing a number of dominant cycles oscillating at different frequencies. 

The purpose of TFRs used was, therefore, to detect the existence of such cycles 

and investigate if any of the cycles was in the business cycle range. While the 

NBER's criteria for minor and major cycles in the U.S. economy ranged from 2 

to 8 years, our prior expectation was to observe a business cycle with a signifi­

cantly shorter period than 8 years, on account of the dynamic nature of Turkish 

economy and high volatility observed in the ISE. Despite the lack of evidence 

in the literature and a consensus (or convention similar to the NBER's) on the 

length of business cycles in Turkish economy -see [Metin-Ozcan, Voyvoda and 

Yeldan (2001)], and [Alper (2000)], we expected to observe a major cycle of 

2 to 4 years. 

The second time series we used was a specially synthesized series with 

trend and/or cycle components that can be analytically specified and computed. 

Our purpose in constructing this series was to check the reliability of TFR 

results so that cycles identified by TFR techniques can be verified without any 

doubt attributable to the unknown characteristics of the data. The trend of this 

synthesized time series was chosen to be the same as the trend estimated from 

the logarithmic ISE-lOO weekly time series so as to maximize the structural 

similarity between the original data and the synthesized data -see panel (b) 

of Figure 22.1. In estimating the trend, we used the popular Rodrick-Prescott 

(RP) filter - [Rodrick and Prescott (1997)]. Despite criticism raised against 

the RP filter (by [King and Rebelo, 1993], for example), we retained it, as our 

experimentation with a fifth degree polynomial fit as an alternative detrending 

technique produced quite similar results -see also [Turhan-Sayan and Sayan 
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Figure 22.1. Logarithmic ISE-lOO Index (a) and the Synthesized Index (b) plotted together 

with the trend of the Log (ISE-lOO) Index estimated by the HP filter. 

(2001)]. [Alper (2000)] reports a similar experience with several alternatives 

to HP and cites other studies where the HP filter performed as well as the 

alternatives considered. 

Once the trend was obtained using the HP filter, first, a sinusoidal cycle 

component was added to this trend with a period of 170 weeks (one-third of 

the length of ISE-100 series or approximately 3.27 years) which falls in our 

expected business cycle range of 2 to 4 years. Then, two more cycles were 

added with periods of 52 weeks (1 year) and 26 weeks (6 months) to see the 

effects of having more than one cycle in TFR applications. All of the cycle 

components were inserted to last over the entire sampling period of 512 weeks, 

without any damping in time. Different sinusoidal peak values of 0.3, 0.09 

and 0.18 were assigned to the first, second and third cycles, respectively, to 

investigate the masking effect of the strong cycles on the weak cycles, if any. 

These peak values were chosen in such a way that not only the trends of the ISE-

100 and the synthesized time series would be the same but also the strengths 

of their overall cycle components would be comparable. The effect of noise 

on the results of TFR analysis was also investigated by adding white Gaussian 

noise to the synthesized time series as discussed in the next subsection. 
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3.2 TFR results from the detrended series 

Each of the time series described above contains relatively weak cycles su­

perimposed on a strong trend component so that the trend itself is responsible for 

most of the total signal energy. Therefore, contribution of the cycle components 

to the resulting TFR outputs is obscured, unless the time series is detrended prior 

to the TFR analysis. To address this problem, the logarithmic ISE-lOO weekly 

index was detrended by using the HP filter before going ahead with the TFR 

analysis. The following minimization problem was solved for this purpose, by 

taking A = 128000: 

N N-l 

min :L [xn - 'tnf + A :L [('tn+! - 'tn) - ('tn - 'tn-l)f, 
{t}~ ~ l n=l n=2 

(22.8) 

where the series {X}~=l represents the ISE-100 index of length N = 512 and 

the series {'t}~=l is the trend to be derived. The resulting trend is plotted in 

both panels of Figure 22.1, since it is also used as the trend of the synthesized 

index. The overall cycle component of the logarithmic ISE-lOO index was 

then computed as the difference between the index itself and the trend. The 

same procedure was also repeated to obtain the overall cycle for the synthesized 

index, which is obviously a composite cycle term made up of three different 

cycles with periods of 3.27, 1 and 0.5 years, as described earlier. The overall 

cycle terms obtained for the ISE-lOO index and for the synthesized index are 

plotted in Figure 22.2. 

Figure 22.2. Cycles for the Logarithmic ISE-lOO Index (-) and for the Synthesized Index 

( .... ), estimated by HP de trending approach. 

The final step in the suggested cycle identification process was to compute the 

TFRs of the overall cycle term for a given index and to study the resulting TFR 

output matrices to identify the individual cycle frequencies. The GT, STFT, 

WD and PO of detrended series were computed in MXfLAB~ starting with the 

synthesized series. This series was used as a benchmark since it is free of noise 
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and more importantly, we already know the cycle frequencies to be estimated 

for this synthesized index. 

3.2.1 TFR results from the synthesized series. The contour plots for 

the TFR output matrices for the composite cycle term of the synthesized index 

as obtained from PD, WD, STFT and GT are respectively given in parts (a) to 

(d) of Figure 22.3 which is followed by a discussion about the performance of 

each TFR considered in this study. 
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Figure 22.3. TFR Results from the Synthesized Series using (a) the PD Analysis (b) the WD 

Analysis. 

1 Results obtained using the PD: 

The PD proved to be very successful in identifying all three cycles with 

true periods of 170, 52 and 26 weeks by yielding the following estimates 

for the corresponding periods -see Figure 22.3 (a): 

1 1 
Tl = f~ = (4 _ 1 )6.[ ~ 170.67 weeks, 

1 1 
T2 = h = (11-1)6.[ = 51.2 weeks 

and 
1 1 

T3 = h = (21-1)6.[ = 25.6 weeks, 
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Figure 22.3. (Continued) TFR Results from the Synthesized Series using (c) the STFf Analysis 

(d) the GT Analysis. 

where 
1 

~f--------------­
- Total Sampling Period 

1 

512 weeks 

is the frequency step for the vertical axis in TFR output plots, which 

determines the frequency resolution of the TFR computations. The time 

resolution, on the other hand, is determined by the time step M = 1 week 

as indicated in the horizontal axis of output plots. 

The first cycle component with the largest period of 170.67 weeks (or 

approximately 3.28 years) can be considered as the business cycle for 

this synthesized time series. This cycle can be easily identified in the 

PO output contour plot shown in Figure 22.3 (a) due to the strong energy 

terms horizontally lined up around the frequency index level of n = 4 . 

Then, the actual frequency corresponding to this level can be computed 

by multiplying the frequency step ~f by the number of intervals (4-
1) up to this activation level. The cycle period is simply the inverse 

of the cycle frequency. Hence, as compared to the true period of 170 

weeks imposed while constructing the synthesized index, the estimated 

business cycle period of 170.67 weeks represents a computational error 

of about 0.4 percent. This negligible error stems from the relatively large 

frequency step value used in the TFR calculations due to a short total data 
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sampling period of 512 weeks (or 9.85 years approximately). This error 

in the synthesized time series problem could have been reduced further by 

simply increasing the time horizon to 20 years or more. However, given 

that the synthetic time series was designed to roughly mimic the behavior 

over time of the ISE-100 index, for which the data is available for only 

about 10 years, improving the frequency resolution was not possible for 

this application. 

The second and third cycles of the synthesized index can also be identi­

fied similarly using Figure 22.3 (a). The horizontally extending narrow 

activation band lined up around the frequency index level of n = 11 cor­

responds to the second cycle with a period of 51.2 weeks (estimated with 

an error of 1.5 percent relative to the true period of 52 weeks). Also, an­

other horizontally extending, moderately strong activation band lined up 

around the frequency index level of n = 21 identifies the third cycle with 

a period of 25.6 weeks (estimated with an error of 1.5 percent relative to 

the true period of 26 weeks). The activation band in the middle turns out 

to be weaker compared to the other two bands, as the second cycle was 

designed to have the lowest cycle strength to begin with. 

2 Results obtained using the WD: 

The WD contour plot shown in Figure 22.3 (b) turns out to be dominated 

by the interaction terms (WD cross terms) which are especially strong 

around the frequency index levels of n = 1 (corresponding to zero actual 

frequency), n = 7, n = 17, and n = 24. The second and the third cycles 

are hardly noticed at the index levels of 11 and 21 while the business cycle 

is severely camouflaged by very strong cross terms around. Therefore, 

the cycle identification results using the WD in this simulation problem 

are very poor as compared to those obtained using the PD, and may be 

deceptive. 

3 Results obtained using the STFf: 

The STFf contour plot shown in Figure 22.3 ( c) identifies the third cycle 

centered at the level of n = 21 with a very poor resolution, and it catches 

the second cycle around n = 11 with only a very low level of certainty. 

It is not possible to say anything for the period or even for the presence 

of the business cycle, however, due to very poor frequency localization 

exhibited by the STFf output. In short, the performance of the STFf 

analysis is found to be quite poor as compared to that of the PD analysis. 

4 Results obtained using the GT: 

As the last test case in this problem, the GT coefficient matrix was com­

puted by using a time-frequency sampling grid of size 256 x 256 with a 
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degree of oversampling Q = 128. The resulting coefficient matrix is plot­

ted in Figure 22.3 (d). In comparing the results presented in this figure to 

those presented in Figures 22.3 ( a-c), it should be noted that Ilt' = 21lt = 2 

weeks and Il.f' = 21lt = 5i2 = 256 ~eeks in the Gabor transform appli­

cation. Based on this, the GT is found to be accurate in identifying the 

third cycle at the frequency index level of 11 -corresponding to an es­

timated period of 1;~1 = 25.6 weeks, but with a small confidence due 

to poor frequency localization. Also, another strong activation band is 

observed as having its peak values around the frequency index level of 3 

corresponding to a cycle period T = 7 = (3-i)~f' = 2/~56 = 128 weeks 

~ 2.46 years which is far from the expected business cycle of 170 weeks 

in this problem. Again, the poor frequency localization does not allow for 

any meaningful interpretations especially for the first and second cycles. 

To summarize, the WD results mainly suffer from the existence of cross 

terms, while the STFT and GT results exhibit serious problems in frequency 

localization. Therefore, the WD, STFT and GT can identify only one or two 

cycles with little confidence, whereas the PD successfully identifies all three 

cycles in the time series quite accurately. The performance of the PD remains 

quite satisfactory even when a realistic amount of white Gaussian noise is added 

to the synthesized index (Figure 22.4). The synthesized noisy index cycles are 

plotted in Figure 22.4 (a) while the PD contour plot computed for these cycles 

is given in Figure 22.4 (b). When we compare the PD analysis results for 

the noise-free and noisy time series -given in Figures 22.3 (a) and 22.4 (b), 

respectively- the weakest cycle with a period of 52 weeks is observed to be 

mostly affected by the added noise, as expected. 

3.2.2 TFR results from the ISE-IOO series. In this section, we briefly 

discuss the TFR results obtained from the ISE-lOO index cycle. The contour 

plots obtained with the PD, WD, STFT and GT are given in Figures 22.5 (a) 

through 22.5 (d), respectively. 

1 Results obtained using the PD: 

Consistently with the results of the previous simulation example, the 

performance of the PD in detecting the cycles in ISE-l 00 series was found 

to be superior to other TFRs considered. As observed in Figure 22.5 (a), 

there exists a horizontal band of strong activation lined up between the 

frequency index levels of 4 and 6, indicating the presence of a business 

cycle with an estimated period of 

1 1 
Tl = -f = ( ) / 2 = 128 weeks ~ 2.46 years 

1 5 -1 51 
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Figure 22.5. (Continued) TFR Results from the ISE-IOO Index Series using (c) the STFf 

Analysis (d) the GT Analysis. 

on the average. To be on the safe side, the period of the cycle may be said 

to fall within the range of [(6-1)7512 ' (4-1) / 512] weeks or approximately 

[2,3.3] years. Furthermore, the PD output plot indicates the existence of 

two more but weaker cycles at the frequency index levels of 11 and 15. 

The cycle periods corresponding to those frequency index levels are 

1 1 
T2 = h = (15 -1)/512 ~ 36.6 weeks ~ 0.7 years 

and 
1 1 

T3 = /3 = (11-1)/512 ~ 51.2 weeks ~ 1 year, 

respectively. 

The actual stock data used in this application possibly contain various 

cycle components in varying strengths. Furthermore, as observed in 

Figure 22.2, the overall cycle amplitude does not remain constant but 

increases especially around the 150th and after the 350th weeks. In 

other words, the individual cycles contained in the ISE-I00 index do not 

follow perfectly sinusoidal patterns, and hence, we do not get perfectly 

and uniformly concentrated activation bands in Figure 22.5 (a). The 
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uncertainty caused by such factors should be expected to get worse in the 

identification of weak cycle components. 

2 Results obtained using the WD: 

The WD contour plot obtained for the ISE-100 index cycles is shown in 

Figure 22.5 (b) which gives no indication of any cycle at all. Similar to 

the case encountered in the first simulation example, strong cross terms 

again dominate the WD output, masking all actual cycle patterns. 

3 Results obtained using the STFT: 

The STFT contour plot shown in Figure 22.5 (c) vaguely indicates the 

existence of only one cycle at the frequency index level of 6 (on the 

average), corresponding to a cycle period of T = J = (6-1)/512 = 102.4 

weeks ~ 1.97 years. As seen in the figure, the frequency resolution 

of the output is extremely poor. It is quite likely that this cycle (with an 

estimated period of about 2 years) is actually the business cycle identified 

earlier by the PD analysis but the period estimation of the STFT is off 

the mark with a margin of about 20 percent. Perhaps more importantly, 

the lack of certainty turns out to be the major drawback in the case of the 

results from the STFT analysis. 

4 Results obtained using the GT: 

The GT coefficient matrix for the ISE-100 index is again computed by 

using a time-frequency sampling grid of size 256 x 256 with a degree 

of oversampling Q = 128. The resulting coefficient matrix is plotted 

in Figure 22.5 d with the time step of At' = 2At = 2 weeks and the 

frequency step of At' = 2Af = 5i2 = 256 ~eekS as in the previous GT 

simulation. Based on this GT output plot, the existence of a business 

cycle is vaguely implied between the frequency index levels of 2 and 5 

with a poor frequency resolution. The period of the suggested cycle is 

111 
T = 7 = (3 _ l}Af' = 2/256 = 128 weeks ~ 2.46 years 

on the average, and is the same business cycle period identified by the 

PD analysis. Similarly to the STFT analysis results, however, the major 

drawback of the results here seem to be the uncertainty in frequency 

localization. 

4. Robustness of the results 

Section 3 demonstrated the use of various TFR techniques in the identi­

fication of cycles of varying frequencies within stock market time series by 

using data from the Istanbul Stock Exchange, an emerging market. Of the TFR 
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techniques considered, the Page distribution turned out to be particularly effec­

tive in estimating the period of the business cycle within the range of 2 to 3.3 

years with a good frequency localization over the entire period of investigation. 

The results obtained from the ISE-IOO series were crosschecked against those 

obtained from the time series we specially synthesized. 

With the aim of testing the robustness of results and evaluating the perfor­

mance of the techniques considered within the context of a well-established 

stock market, we now consider an alternative series containing 3999 obser­

vations on the NASDAQ-IOO index in this section. Originally recorded on a 

daily basis (excluding weekends and national holidays), the index values under 

consideration cover the period from November 14, 1985 to March 13, 2001, 

spanning about 15.3 years. This series is plotted in Figure 22.6 together with 

the ISE-IOO data, where each time series is normalized by its own maximum 

value (so as not to allow either index to have values greater than 1). As can 

be observed from the figure, the NASDAQ series is also quite volatile, display­

ing sharp ups and downs especially during the last few years of the recording 

period. 
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Figure 22.6. Normalized NASDAQ-100 and ISE-l00 time series. 

Similarly to our treatment of the ISE-100 data, we re-sampled the original 

NASDAQ series to work with 800 weekly observations. As the first step of the 

TFR analysis, natural logarithm of the NASDAQ series was detrended using 

an eighth order polynomial fit. The logarithmic time series and its computed 

trend are plotted in Figure 22.7, and the detrended series (i.e., the overall cycle 

component) is plotted in Figure 22.8. 

Next, the PD, WD, STFT and GT output matrices were computed for the 

overall NASDAQ cycles, yielding the contour plots given in Figures 22.9 (a) 
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through 22.9 (d), respectively. The NASDAQ-lOO time series is resampled one 

more time with I1t = 2 weeks to reduce the number of observations to 400 so 

as to work with smaller matrices, and save on processing time required by TFR 

output computations. As in the case of the results of TFR analysis carried out 

for the ISE-100 index in Section 3, the PD signal analysis produced the best 

results for the NASDAQ index. 
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Figure 22.9. TFR Results from the NASDAQ-lOO Index Series using (a) the PD Analysis (b) 

the WD Analysis. 

Figure 22.9 (a) shows that there exists a well-concentrated signal activation 

band horizontally lined up around the frequency index level of 5, indicating the 

presence of a business cycle with an estimated period of 

1 1 
Tl = II = (5 -1)/800 = 200 weeks ~ 3.85 years 

since the frequency step,!J.f, is now 8~O' where 800 is the number of weeks in 

the total recording period. The PD output matrix plotted in Figure 22.9 (a) also 

indicates the presence of several other signal activation bands. While some of 

these are relatively strong, they are all lined up at frequency levels higher than 

5, corresponding to cycle periods shorter than 2 years. Thus, the activation 

band around n = 5 is the only important band to be used in the estimation of 

the business cycle period. 
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Figure 22.9. (Continued) TFR Results from the NASDAQ-IOO Index Series using (c) the STFf 

Analysis (d) the GT Analysis. 

In this application, the WO analysis did not produce any useful results to 

identify the business cycle, as the WO output matrix plotted in Figure 22.9 

(b) is found to be suffering from the masking effect of strong cross terms. 

Likewise, the STFT contour plot given in Figure 22.9 (c) does not give any 

clear information about the business cycle due to the extremely poor frequency 

localizations. 

The GT results displayed in Figure 22.9 (d) are computed with a 200 x 200 

grid using a degree of oversampling Q = 100. We therefore have M' = 4 

weeks and A.f' = 400 ~eeks in this figure. The signal activation band observed 

between frequency index levels of 1 and 6 indicates the presence of the business 

cycle. Taking n = 3 as the average level of this band, the period of the business 

cycle can be roughly estimated as 

1 1 
Tl = - = ( )/ = 200 weeks ~ 3.85 years 

/1 3-1400 

with a very poor frequency localization. 

To summarize, the PO was found to be the only useful TFR of the ones con­

sidered for the identification of business cycle. The business cycle period that 

is estimated from the US financial data is in the range of 3 to 4 years as reported 

in some previous studies -see, for example, [Chen (1996a)]. Therefore, our 
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estimation of 3.85 years for the business cycle period estimated from the NAS­

DAQ index is in line with the previous estimates, demonstrating the robustness 

of our results and providing additional evidence in support of the usefulness of 

the PD. 

5. Conclusions 

This paper aimed to illustrate the potential of some of the TFR techniques 

widely used in various fields of science and engineering for use in the analysis 

of stock market data and to compare their performances. For this purpose, 

we used two sets of stock market data and analyzed their behavior using two 

linear (the Gabor Transformation and the Short Time Fourier Transform) and 

two quadratic (the Wigner Distribution and the Page Distribution) TFRs. The 

ISE-100 index of Istanbul Stock Exchange over the period from July 9, 1990 

to December 25, 2000 was picked to perform the analysis on the data from an 

emerging market, whereas the NASDAQ-100 series (made up of index values 

recorded from November 14, 1985 to March 13, 2001) was used to evaluate 

the performance of the TFR techniques considered within the context of a well­

established market. 

For comparative performance evaluations of these TFRs in detecting and 

decoding cycles that may be present in the original ISE and NASDAQ data, we 

utilized a specially synthesized time series whose trend and/or cycle components 

can be analytically specified and computed. We constructed this series in such 

a way to mimic the pattern of a typical stock index series and let it serve as a 

benchmark in our simulated performance analysis. 

The results we obtained using the synthesized index revealed that the WD 

mainly suffers from the ambiguity caused by cross terms, while the STFT and 

GT results exhibit serious problems in frequency localization. Consequently, 

the WD, STFT and GT could identify only one or two cycles out of the three 

inserted into the series, and in an extremely ambiguous fashion at times. The 

PD, on the other hand, performed impressively well, detecting all of the cycles 

known to exist and estimated their respective periods quite accurately. The 

performance of the PD remained satisfactory even after a realistic amount of 

white Gaussian noise was added to the synthesized index. 

The results obtained from the actual ISE-100 and NASDAQ-100 indices 

indicated that analyses based on the GT and STFT may be useful to identify the 

business cycle but the WD analysis gives no clear indication of the presence of a 

business cycle. Furthermore, the results from the GT and the STFT applications 

raise serious concerns about the accuracy of the estimated cycle period, as 

they seriously suffer from extremely poor frequency localization. The cycle 

identification results produced by the PD, on the other hand, tum out to be 

very successful in estimating the business cycle period with a high confidence. 
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This superior performance of the Page distribution, used for the first time in 

economics/finance literature, makes it a very promising tool for use in these 

fields. 

Finally, even though the relatively short data recording periods might restrict 

the frequency resolution of the TFR analysis, increased use of such techniques 

in the analysis of economic and financial time series with longer time frames and 

moderately large sample sizes would be a welcome addition to the literature. 
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