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Plan of this Report

This report is divided into two major parts. In PART I, brief

summaries of the principal research results are given together with

lists of published papers, reports, dissertations, theses, and oral

presentations that resulted from the work. Also, the personnel who

worked on the project are listed. In PART II, summary accounts of

three selected technical areas are given and suggestions for fruit-

ful areas of future work are listed. Many results uncovered during

the course of the project are not dealt with in PART II; rather,

three subjects representative of what are felt to be of principal

importance in the overall work are discussed. Further details of

the technical results can be found in. the papers and reports listed

in PART I.

4..............
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1. INTRODUCTION

This document represents the concluding report of research results ob-

tained on the project, Computational Methods in Nonlinear Mechanics, during

the period June 1, 1980 to September 30, 1982. The project was supported

by the Air Force Office of Scientific Research under Ccntract F-49620-C-0083

and was monitored by Dr. Anthony Amos of AFOSR.

All objectives originally listed in the Statement of Work of the pro-

posal for this work have been accomplished. Indeed, a number of research

results which are regarded as very important in the study of the nonlinear

mechanical behavior of complex structures by finite element methods have

been established. These have represented advances in specific areas of

numerical analysis, computational algorithms, computer codes for nonlinear

structural problems, modelling and characterization of various nonlinear

effects, and resolving theoretical questions connected with nonlinear

theories of structural behavior. More detailson these results are given

later.

During the two year contract period, the research effort led to the

* publication of 33 journal articles and scientific papers, 11 technical

reports, 5 Ph.D. dissertations, 2 M.S. theses, and 50 oral presentations

at conferences, seminars, and invited lecture series. The principal

investigator of the project was Professor J. Tinsley Oden and the co-

principal investigator was Professor E. B. Becker, both of the Univertity

of Texas at Austin. Lists of other personnel who worked on the project

during the contract period are given in Chapter 3.

7-
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2. PRINCIPAL ADVANCES

Significant research results in a number of distinct areas were ob-

tained during the course of this project. However, it is felt that espe-

cially penetrating and important results in several specific areas were

obtained. In the following, we list what are considered some of the prin-

cip~l contributions made in this research project.

1. Finite Element Methods for Contact Problems in Elastostatics

A large volume of work was done on the problem of contact between deformable

elastic bodies. In this general area, a variety of results were obtained

on the description of the physical phenomena, development of mathematical

models using the theory of variational inequalities, the study of existence,

uniqueness, and regularity of solutions of the variational inequalities,

development of corresponding approximation theories, the development of

numerical stability criteria, error estimates, convergence criteria, de-

.velopment of families of completely new algorithms for solving resulting

systems of linear and nonlinear inequalities, development of programming

strategies and finite element codes for the analysis of such problems, and

the actual analysis of numerous example problems drawn from elasticity,

plasticity, and elastoplasticity in which contact conditions are encountered.

Included in this large collection of results are several completely new

variational principles for contact problems in elasticity, new finite

element methods which employ such devices as interior and exterior penalty

methods, reduced integration, mixed finite element formulations, and techniques

drawn from linear and nonlinear programming.

The theoretical results were not limited to simple unilateral contact. q

Indeed, new results were obtained for prc 1-9 o' .tastic stability and

'.;' "--7" - ' . . 2 . .... .
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buckling of thin elastic plates and shells supported by unilateral constraints

and studies were made of a complex family of bifurcation problems characterized

by nonlinear variational inequalities.

Many of the results obtained in this general area are summarized in a

forthcoming treatise entitled, "Contact Problems in Elasticity," by the prin-

cipal investigator and Professor N. Kikuchi, who worked on the project

* periodically during the contract period. This volume is to be published by

SIAM Publications (Society of Industrial and Applied Mathematics, Philadel-

phia, PA) and should appear in early 1983. It is believed that there has

never before been a more detailed and thorough analysis of this difficult

class of nonlinear problems in structural and solid mechanics. A brief

summary of some of these results is given in chapter 4 of this report.

2. Reduced Integration-Penalty Finite Element Method for

Constrained Problems in Elasticity and Fluid Flow

Some n,,nerical instabilities encountered early in the project led

the investigators into the study of a collection of difficult numerical

and theoretical issues connected with the convergence and numerical sta-

bility of a variety of popular finite element methods frequently used to

study nonlinear problems in solid and fluid mechanics. This particiilar

thrust of the research, which was never anticipated in the original research

plan, proved to be one of the most fruitful and important areas on investi-

gation of the entire project.

Particular attention was focused on the idea of using exterior penalty

methods and selective reduced integraiton to handle constrained problems in

incompressible elasticity, incompressible elastoplasticity, contact problems

in elastostatics, and constraints in plate and shell theories. These methods

1
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ve been in wide use on an international scale in 1976. It was discovered

the present project, however, that many of the more popular methods in

e can be dramatically unstable when the finite element mesh is refined and,

fact, lead to divergent approximations of stresses and pressures. These

sults, it is felt, had a significant impact on this subject as a whole and

s changed the thinking on the use of penalty methods throughout this country

3 abroad. It was discovered that a key condition for the numerical stability

such methods rests in the so-called discrete LBB condiditon (Ladyszhkenskaya,

buska, Brezzi) which involves a stability parameter, (h P which governs

e stability and convergence characteristics of most of these methods, As

ted earlier, it was discovered that many of the more popular finite element

thods now in use do not satisfy this condition, and, therefore, can be

stable. The question then arose as to whether or not elements exist which

e stable, numerically robust, and which converge at optimal rates of

ivergence. In the latter phases of the research effort, several such

:imal, stable, and convergent methods in this general family have been

;covered. These have been completely analyzed from a mathematical point

view and also by numerical experiments. A summary of some of these results

given in Chapter 6 of this report,

3. Contact Problems with Friction -"

Several classes of contact problems with friction have been analyzed

-ing the course of the project. Numerical schemes and algorithms have
I

n developed for certain special cases, together with proofs of conver- -1

ce and error estimates. In particular, special problems in which the

mal contact pressure is prescribed on surfaces on which frictional forces

be developed have been analyzed in some detail and several papers have
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been written on this .ubject. It was concluded during the last year of

the project, however, that many of the principal physical and numerical

difficulties encountered in this class of problems arose from the inadequacy

of the description of friction. Consequently, a completely new line of

research was undertaken to study new models of friction. This is summarized

briefly in the paragraphs which follow.

4. Non-Classical Friction Laws

During the last four to six months of the project, considerable at-

tention has been given to the study of modelling of static friction be-

tween metallic bodies using friction laws which deviate markedly from the

classical pointwise law proposed by Coulomb 200 years ago. In particular,

on the basis of mtcro-mechanical mechanisms, some new friction laws have

been proposed which feature 1) a nonlocal description of the contact stress

in the criteria for sliding and 2) a nonlinear friction law in which the

elastic and elastic-plastic response of metallic junctions on the contact

surface are taken into account. This has led to some new variational prin-

ciples for contact problems with friction. At this writing, the full impli-

cation of these new theories has not yet been understood, but it is clear

that they are sufficiently general to lead to a much better modelling of

friction effects in solid and structural components. A summary of some of

these ideas is given in chapter 5 of this report.



5. Large Deformation Plasticity and Metal Forming

Considerable effort was spent on the development of finite element

simulators of large deformations of elastic-plastic materials. A computer

program was developed for the study of large deformation plasticity prob-

lems and metal forming which is applicable to a broad class of problems in

plane stress, plane strain, and axisymmetric deformation of bodies of revo-

lution. Some impressive numerical results have been obtained from this

code, which apparently surpass all existing commerical codes in terms of

accuracy, efficiency, and overall applicability. Nevertheless, the con-

vergence and numerical stability characteristics of these methods are still

not well understood, and it is clear from some of the computed results that

the choice of an appropriate friction law on contact surfaces has a signif-

icant impact on computed distributions of residual stresses.

6. Other Areas

Significant research results in a number of other areas were produced

during the contract period. These have been discussed in great detail in

some of the interim reports submitted to AFOSR over the past 24 months,

and therefore are not discussed in detail here. However, some results in

this general area are of sufficient importance that they deserve mention.

We first note that new and useful results were obtained on the behavior of

finite-element methods for singular problems in structural mechanics, par-

ticularly for problems with stress singularities. These mathematical results

represent the most general that have yet been obtained in this area

and provide concrete estimates for singular problems. The results focus on

the behavior of finite element models which employ various singular elements,

a subject not discussed in any mathematical literature to date. It was shown
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during this research, for example, that the use of singular elements can

produce high rates of convergence for reasonable finite element meshes even

though asympotically these methods may perform poorly or even diverge. This

type of phenomena has been observed in numerical calculations for a number

of years, but there has not existed a complete mathematical theory as to why

this sort of behavior is prevalent in finite element models which employ

so-called singular elements. During the project, this particular class of

problems analyzed in great detail; error estimates were obtained which were

subsequently confirmed by numerical experiments.

In addition to these results, advances were made in the modelling of

finite deformation of elastic bodies including finite strains of compressible

and incompressible elastic materials. A very sophisticated finite element

program was developed for two-dimensional problems and axisymmetric problems

in finite elasticity. This program employs a large library of finite elements

special features such as the capability of using an arbitrary strain energy

function for characterizing materials, provided the material is isotropic.

The capability of handling very large deformations, multi-valued solutions,

limit points, and bifurcations, was also incorporated in this analysis.

Some results on nonlinear shell theory were also recorded during the

course of the project. The first existence theorem for buckling and large

deflections of shells was derived, and this was later extended to include

results on contact problems with shells. In particular, bifurcations and

nonlinear buckling phenomena of unilaterally supported shells were analyzed

and several papers were published on this subject. These papers included

new theorems on nonlinear eigenvalue problems and bifurcations and are re-

garded as a useful contribution to the literature on these subjects.
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We also note that new results on viscous incompressible flow problems

were also pr.duced. These results were primarily the outcome of studies on

reduced integration penalty methols, and on the numerical stability of

various finite element techniques which were developed to study problems

in finite elasticity, plasticity, and contact problems in elastostatics.
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3. SUMMARY OF PUBLISHED RESULTS AND PROJECT PERSONNEL

In this chapter we summarize the publications and oral presentations

of results obtatined during the contract period.

3.1 Journal Articles and Scientific Papers

1. Oden, J.T. and Kikuchi, N., "Theory of Variational Inequalities
%ith Applications to Problems of Flow Through Porous Media," International
Journal of Engineering Science, Vol. 18, No. 10, pp. 1173-1284, 1980.

2. Oden, J.T. and LeTallec, P., "On the Existence of Hydrostatic Pressure
in Regular Finite Deformations of Incompressible Hyperelastic Solids,"

Nonlinear Partial Differential Equations in Engineering and Applied Science,
Marcel Dekker, Inc., pp. 1-8. 1980.

3. Oden, J.T. and Bernadou, M., "Theoreme d'Existence pour une Classe
de Problemes Nonlineaires de Coques Peu Profondes," Compte-Rendus-Academy of
Science, Paris, (Analyse Numerique), pp. 1025-1028, 1980.

4. Oden, J.T., "Penalty-Finite Element Approximations of Unilateral
Problems in Elasticity," Approximation Theory, Edited by W. Cheney, Academic *

Press, New York, pp. 693-697, 1980.

5. Oden, J.T. and Kikuchi, N., "Use of Variational Methods for the
Analysis of Contact Problems in Solid Mechanics," Variational Methods in the
Mechanics of Solids, Pergamon Press Ltd., Oxford, pp. 259-264, 1980.

6. Oden, J.T., Ohtake, K., and Kikuchi, N., "Analysis of Certain Uni-
lateral Problems in Von Karman Plate Theory by a Penalty Method Part 1. A
Varitional Principle with Penalty," Computer Methods in Applied Mechanics in
Engineering, Vol. 24, pp. 187-213, 1980.

7. Oden, J.T., Ohtake, K., and Kikuchi, N., "Analysis of Certain Uni-
lateral Problems in Von Karman Plate Theory by a Penalty Method Part 2.
Approximation and Numerical Analysis," Computer Methods in Applied Mechanics
and Engineering, Vol. 24, pp. 317-337, 1980.

8. Oden, J.T. and LeTallec, P., "Existence and Characterization of
Hydrostatic Pressure in Finite Deformations of Incompressible Elastic Bodies,
Journal of Elasticity, Vol. 11, No. 4, pp. 341-357, 1981.

9. Oden, J.T. and Bernadou, M., "An Existence Theorem for a Class of
Nonlinear Shallow Shell Problems," Journal de Mathematiques Pures et Appl-
iquees, Vol. 60, No. 3, pp. 285-308, 1981.

10. Oden, J.T and Kubrusly, R., "Nonlinear Eigenvalue Problems Chara-

cterized by Variational Inequalities with Applications to the Postbuckling

Analysis of Unilaterally Supported Plates," Journal of Nonlinear Analysis,
Vol. 5, No. 12, pp. 1265-1284, 1981.

-Io.



11J

11. Oden, J.T. and Campos, L., "Some New Results on Finite Element
Methods for Contact Problems with Friction," New Concepts in Finite Element
Methods, ed. by M. Spilker, T.J.R. Hughes, and D. Gartling, A.S.M.E. Mono- -

graph, New York, pp. 1-12, 1981.

12. Oden, J.T. and Carey, G.F., "Variational Inequalities in Finite

Element Analysis" New Concepts in Finite Element Methods, ed. by M. Spilker,
T.J.R. Hughes, and D. Gartling, A.S.M.E. Monograph, New York, pp. 133-145,
1981. -

13. Oden, J.T., "Exterior Penalty Methods for Contact Problems in
Elasticity: Nonlinear Finite Element Analysis in Structural Mechanics,"
Lecture Notes in Mathematics, Springer-Verlag, Heidelberg, pp. 655-665,
1981.

14. Oden, J.T. and Demkowicz, L., "On Some Existence and Uniqueness
Results on Contact Problems with Nonlocal Friction," Journal of Nonlinear
Analysis, 1982 (to appear)

15. Oden, J.T., Campos, L., and Kikuchi, N., "A Numerical Analysis of
a Class of Contact Problems with Friction in Elastostatics," Computer Methods
in Applied Mechanics and Engineering, 1982 (to appear)

16. OdeD, J.T., "Analysis of a Class of Contact Problems with Friction
by Finite Element Methods," The Mathematics of Finite Elements with Appli-
cations, ed. by J.R. Whiteman, Academic Press LTD., London, 1982 (to appear)

17. Oden, J.T. and Kim, S.J., "Interior Penalty Methods for Finite
Element Approximation of the Signorini Problem in Elastostatics," Computers
and Mathematics with Applications, Vol. 8, No.1, pp. 35-56, 1982.

18. Oden, J.T., Song,Y.J., and Kikuchi, N., "Penalty-Finite Element
Methods for the Analysis of Stokesian Flows," Computer Methods in Applied
Mechanics and Engineering, 1982, (to appear).

19. Oden, J.T. and Kikuchi, N., "Finite Element Methods for Constrained
Problems in Elasticity," International Journal for Numerical Methods in
Engineering, Vol. 18, pp. 701-725, 1982.

20. Oden, J.T., "Analysis of Galerkin Approximations of a Class of
Pseudomonotone Diffusion Problems," SIAM Journal of Mathematical Analysis,
Vol. 12, No. 6, pp. 917-930, 1982.

21. Oden, J.T. and Pires, E., "Numerical Analysis of Certain Contact
Problems in Elasticity with Non-Classical Friction Laws," Computers and
Structures, 1982, (to appear)

22. Oden, J.T. and Whiteman, J.R., "Analysis of Some Finite Element
Methods for a Class of Problems in Elasto-Plasticity," International
Journal of Engineering Science, Vol. 20, 1982.

23. Oden, J.T., "Penalty Methods for Constrained Problems in Nonlinear
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Elasticity," IUTAM Symposium on Finite Elasticity, Martinum-Nijhoff Pub.,
The Hague, pp. 281-300, 1982.

24. Oden, J.T., "RIP Methods for Stokesian Flows," Finite Elements in
Fluids, Vol. IV, ed. R.H. Gallagher, O.C. Zienkiewicz, N. Norrie, John Wiley
& Sons, LTD., London, (to appear)

25. Oden, J.T., "Finite Element Methods for Constrained Problems in
Elasticity and Fluid Mechanics," Proceedings of Symposium on Finite Element
Methods, Hefei, China, 1981, Science Press, (to appear)

26. Oden, J.T., "Mixed Finite Element Approximations via Interior
and Exterior Penalties for Contact Problems in Elasticity," Hybrid and Mixed
Finite Element Methods, ed. by S. Atluri, John Wiley & Sons Ltd., London,
(to appear)

27. Oden, J.T. and Pires, E.B., "Algorithms and Numerical Results for
Finite Element Approximations of Contact Problems with Non-Classical Friction
Laws," Computers and Structures, (to appear)

28. Oden, J.T. and Jacquotte, 0., "Stable Second-Order Accurate Finite
Element Scheme for the Analysis of Two-Dimensional Incompressible Viscous r.

Flows," International Conference on Finite Element Methods in Fluids, Tokyo,
Japan, (to appear)

29. Oden, J.T. and Pires, E., "On the Analysis of a Class of Contact
Problems with Non-local Friction," Proceedings of SECTAM XI, (to appear)

30. Oden, J.T. and Pires, E., "On the Signorini Problem with Non-
local Friction," Sixtieth Anniversary Volume in Honor of O.C. Zienkiewicz,
John Wiley and Sons, Ltd., London, (to appear)

31. Oden, J.T. and Pires, E., "Nonlocal and Nonlinear Friciton Laws
and Variational Principles for Contact Problems in Elasticity," Journal of
Applied Mechanics, (to appear)

32. Oden, J.T. and Pires, E., "Error Estimated for the Approximations
of a Class of Variational Inequalities Arising in Unilateral Problems with
Friction," International Journal of Numerical Functional Analysis and Op-
timization, (to appear)

33. Oden, J.T. and Campos, L., "Nonquasi-Convex Problems in Nonlinear

Elastostatics," (to appear).

3.2 Research Reports

1. Oden, J.T. and Bernadou, M., "An Existence Theorem for a Class of
Nonlinear Shallow Shell Problems," TICOM Report 80-4, Austin, 1980.

2. Oden, J.T. and Bernadou, M4., "An Existence Theorem for a Class of
Nonlinear Shallow Shell Problems," INRIA Report No. 17, Le Chesnay, France,
1980.
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3. Oden, J.T., Kikuchi, N., and Song, Y.J., "RIP Methods for Problems

in Elasticity," TICOM Report 80-7, Austin, 1980.

4. Oden, J.T., Kikuchi, N., and Song, Y.J., "Reduced Integration and
Exterior Penalty Methods for Finite Element Approximations of Contact Problems
in Incompressible Elasticity," TICOM Report 80-2, Austin, 1980.

5. Oden, J.T., "RIP Methods for Stokesian Flows," TICOM Report 80-11,
Austin, 1980.

6. Oden, J.T. and Kikuchi, N., "Finite Element Methods for Constrained
Problems in Elasticity," TICOM Report 81-10, Austin, 1981.

7. Oden, J.T., Kikuchi, N., and Song, Y.J., "Penalty-Finite Element
Methods for the Analysis of Stokesian Flows," TICOM Report 81-11, Austin, 1981.

8. Oden, J.T. and Pires, E., "Contact Problems in Elastostatics with
Non-local Friction Laws," TICOM Report 81-12, Austin, 1981.

V!

9. Oden, J.T. and Demkowicz, L., "On Some Existence and Uniqueness
Results in Contact Problems with Nonlocal Friction," TICOM Report 81-13,
Austin, 1981.

10. Oden, J.T. and Pires, E.B., "Nonlocal and Nonlinear Friction Laws
and Variational Principles for Contact Problems in Elasticity," TICOM Report
82-3, Austin, 1982.

11. Oden, J.T. and Campos, L.T., "Nonquasi-Convex Problems in Nonlinear
Elastostatics," TICOM Report 92-4, Austin, 1982.

3.3 Theses and Dissertations

The following Ph.D. dissertations and Masters of Science these were

completed during the project.

1. Campos, Luis, "A Numerical Analysis of a Class of Contact Problems
with Friction in Elastostatics," M.S. Thesis, The Univerotty of Texas at
Austin, January 1981. --

2. Kim, S. J., "Interior Penalty Approach to Contact Problems,"
M.S. Thesis, The University of Texas at Austin, January 1981.

3. Song, Y. J., "Reduced Integration and Exterior Penalty Methods
for Finite Element Approximations of Contact Problems in Incompressible
Linear Elasticity," Ph.D. dissertation, The University of Texas at Austin,
August 1980.

4. Aly, A., " A Finite Element Analysis for Problems of Large Strain
and Large Displacement," Ph.D. dissertation, The University of Texas at
Austin, May 1981.

-
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5. Kubrusly, R. S., "Variational Methods for Nonlinear Eigenvalue
Problems in the Post-Buckling Analysis of Unilaterally Constrained Elastic
Structures," Ph.D. dissertation, The Unviersity of Texas at Austin, August 1981.

6. O'Leary, J. T., "An Error Analysis for Singular Finite Elements,"

Ph.D. dissertation, The University of Texas at Austin, August 1981.

3.4 Oral Presentations

Over 50 oral presentations were given by members of the research

team during the contract period on research results. A partial list of

these is given as follows:

1. Oden, J.T.,"Penalty Methods and Selective Reduced Integration for
Stokesian Flows," Third International Conference on Finite Elements in Flow

Problems, Banff Centre, Banff, Alberta, Canada, June 10-13, 1980.

2. Oden, J.T., "Penalty Meth-ds and Reduced Integration in Elasti-
city Problems," Symposium on Finite Element Methods for Nonlinear and Singu-
lar Problems, University of Durham, Durham, England, June 26-July 6, 1980.

3. Oden, J.T., "Analysis of Incompressible Elastic Bodies by Exten-
sive Penalty Methods," U.S./Europe Workshop on Nonlinear Finite Element
Analysis in Structural Mechanics, Ruhr University, Bochum, West Germany,
July 28-30, 1980.

4. Oden, J.T., "Penalty Methods for Constrained Problems in Non-
linear Elasticity," rUTAM Symposium on Finite Elasticity, LeHigh University,

Bethlehem, PA, August 11-15, 1980.

5. Kikuchi, N., "Penalty Finite Element Approximations of a Class of
*Contact Problems in Linear Elasticitv," Presentation made to Exxon Products

Research Laboratories, Houston, Texas, August 14, 1980.

6. Oden, J.T., "Penalty Methods for Stokesian Flows," Engineering
Mechanics Seminar, The University of Texas at Austin, September 23 and 25,
1980.

7. Oden, J.T., "Constrained Problems in Nonlinear Elasticity," Annual
meeting of the Society of Engineering Science, Atlanta, Georgia, December, 1980.

8. Oden, J.T., "Contact Problems with Friction in Elastostatics,"

Annual meeting of the Society of Engineering Science, Atlanta, Georgia,
December, 1980.

9. Oden, J.T., "Finite Element Methods for Contact Problems with
Friction," Department of Mathematics, University of Maryland, February 25, 1981.

10. Oden, J.T., "Penalty Methods for Stokesian Flows," Mathematics
Seminar, University of Texas at Austin, March 23, 1981.
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11. Oden, J.T., "Mixed Finite Element Avvroximations via Exterior
and Interior Penalty Formulations of Contact Problems in Elasticity," Sym-
posium on Hybrid and Mixed Finite Element Methods, Georgia Institute of
Technology, Atlanta, Georgia, April 10, 1981.

12. Oden, J.T., "Finite Element Methods for Contact Problems with Friction,"
MAFELAP '81, Fourth Conference on the Mathematics of Finite Elements with

Applications, Brunel University, -ixbridge, England, April, 1981.

13. Oden, J.T., "Non-Local Friction Laws in Elastostatics," Department
of Civil Engineering, The University of Swansea, Wales, United Kingdom, April
1981.

14. Oden, J.T., "An Introduction to the Exterior Penalty Methods and
Reduced Integration and Their Application to Constrained Problems in Elas-
ticity and Fluid Mechanics," Mathematics Seminar, Brunel University, Uxbridge,
England, May 13, 1981.

15. Oden, J.T., "Penalty-Finite Element 'Methods for Constrained Problems
in Elasticity," Invitational Symposium on Finite Element Methods, Polytechnical
University, Hefei, People's Republic of China, May 19-23, 1981.

16. Oden, J.T., "Some New Results on Finite Element Methods for Contact
Problems with Friction," Symposium on New Concepts in Finite Element Methods,
Joint ASME/ASCE Mechanics Conference, The University of Colorado, Boulder,
June 23, 1981.

17. Oden, J.T., "Variational Inequalities in Finite Element Analysis,"
Symposium on New Concepts in Finite Element Methods, Joint ASME/ASCE Mechanics
Conference, The University of Colorado, Boulder, June 23, 1981.

18. Oden, J.T., "Numerical Analysis of a Class of Contact Problems with
Friction in Elastostatics," FENOMECH 1981, Stuttgart, West Germany, August p -4

26-28, 1981.

19. Oden, J.T., "Nonconvex Problems and Phase Transition in Nonlinear
Materials," SECTAM, Huntsville, Alabama, April, 1982.

20. Oden, J.T., "Mathematical Theory of Plasticity," EM/TICOM Seminar,
The University of Texas at Austin, April 1982.

21. Oden, J.T., "A Stable Second-Order Accurate Finite Element Scheme
for the Analysis of Two-Dimensional Incompressible Viscous Flows," 4th
International Symposium of Finite Element Methods in Flow Problems, Tokyo,
Japan, July 27, 1982.
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4. THEORY AND APPROXIMATION OF

CONTACT PROBLEMS IN ELASTOSTATICS

1. Introduction

Perhaps the most primitive and intrinsic feature of the mechanics of solids

is the contact of one body with another. Contact, in fact, is precisely the

physical event through which loads are delivered to a structure and by which a

structure transmits forces to its supports. Nevertheless, this fundamentally

important aspect of structural behavior has, until recently, rarely been taken

into account in practical structural analysis and design. The underlying

*. diffic, lty is that contact problems in solid mechanics are inherently nonlinear:

the area of contact is not known prior to the application of loads and complex

physical phenomena are experienced on the contact surfaces which often require

special mechanical and mathematical considerations.

In recent years, however, significant advances have been made in the study

of certain restricted classes of contact problems by finite element methods.

These classes of problems include those adequately modelled by the so-called

Signorini problem in elastostatics: the behavior of a linearly elastic body in

unilateral contact with a rigid frictionless foundation. This particular class

of problems can be studied within the framework of the theory of variational

inequalities and; consequently, a great deal can be established on the

qualitative behavior of the solutions and their finite element approximations.

In fact, there are few nonlinear problems in structural mechanics for which a

more complete mathematical basis exists.
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present chapter is devoted to a general exposition on finite element

for contact problems in elastostatics that can be characterized by

)nal inequalities. In keeping with the general objectives of this

this class of problems is chosen for consideration because of its

iI importance, the richness of the mathematical foundations on which it

;ed, the level of results one can establish on the behavior

>nvergence and numerical stability) of corresponding finite element

iations, and because this class of numerical problems provides the

iity to examine many new algorithms for treating systems of linear and

ir inequalities which are drawn from linear and nonlinear programming

ind optimization.

account of the subject which follows deals primarily with finite

approximations of the Signorini problem for linearly elastic bodies

ig, for the sake of completeness, formulations in which friction is taken

:ount. A lengthy treatise on this and related subjects has been recently

!d by Kikuchi and Oden 11983], and this work can be consulted for a

list of references on the sub.4ect and for more details. Following this

tory section, the system of differential equations and boundary

ins for Signorini's problem with friction is derived. In Section 4.3,

variational formulations of contact problems are derived, all of which

variational inequalities given in terms of an unknown equilibrium

ment field. Existence, uniqueness, and approximation results for the

which tangential contact pressures are prescribed is taken up in Section

ese problems include as a special case the classical Signorini problem

friction. Section 4.5 is devoted to contact problems in which the

ontact pressure is prescribed. These classes of problems are shown to

ndamental importance in the analysis of problems with non-local friction
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in Chapter 5. The results of several numerical experiments are also discussed in

Sections 4.4 and 4.5; concluding comments are collected in a final section.

2. Signorini's Problem with Friction

Consider a deformable body supported unilaterally by a rigid body as shown

in Figure 4.1., and suppose that the contact surface of the two bodies is

unknown a priori. The problem of finding the deformation and contact force for

equilibrium configurations of the body under certain boundary and loading

conditions is called Signorini's problem. We note that in most works in

theoretical mechanics Signorini's problem is discussed in regard to the special

case in which no friction exists on the contact surface. We first formulate

Signorini's problem with friction for the case of small deformations in which

the displacement field is small enough so that higher order terms of the

displacement gradient can be neglected in the equilibrium and

strain-displacement equations. The stress tensor a = aiji 'X ij* is then the

Cauchy stress tensor and no distinction between particles or points is necessary

in defining its domain.

4.2.1. Equilibrium Equations

Let u = uiji be the displacement field that provides equilibrium of the

deformable body under given loading and boundary conditions, and let

C - I-iji 03 denote the strain tensor for small deformation defined, for an

arbitrary displacement v, by

*The summation convention is applied throughout this chapter, unless

specifically noted otherwise.
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42

Figure 4.1. Geometry of an elastic body near a rigid foundation.

E ijQv) (vi,j + vj,i)/2 (4.2.1)

where vjdenotes the partial derivative of vi in the j coordinate; i.e.,

vi'j = ?i/Ix. Suppose that the stress-strain relation
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Oij = Eijkl-k£ (4.2.2)

is given, wherein the elasticities EijkI of the material satisfy the conditions

Eijkt = Eklij = EjikI (4.2.3)

mc > O, Eijkt(X)XktXij mcXijXij x 0, Xij Xji (4.2.4)

Max IEijkZ(x)I ( M for all i,j,k, and 1. (4.2.5)
x Q

* Here Q is an open-bounded domain in R3  representing the interior of the

deformable body.

The condition Eijk% = Ekij guarantees the existence of the strain energy

function E0 such that

Oij= 6E/ei, (4.2.6)

1
E0 - Eijklekleij. (4.2.7)

Condition (4.2.4) is sufficient to imply strict convexity oif the strain

energy function E0, and guarantees the coercivity of the total potential energy

of the body, as shown later. Condition (4.2.5) merely establishes boundedness

of the elasticities Eijkl; these material parameters may be discontinuous in the

domain 9.

r7-

L
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1

If a(u) denotes the stress field at the equilibrium configuration given by

the displacement u, the principles of balance of linear momentum and moment of

linear momentum imply the equilibrium equations and symmetry of stress tensor:

2ui
P -- °( )iJ,j ff fP 5t2

in 0 (4.2.8)

Oij = Oji

Here p is the density of the body, f = ffii is the applied body force per unit

volume.

4.2.2. Boundary Conditions

Let the boundary r of the deformable body be divided into three disjoint

parts FDi, rFi, and rc  for each index 1 ( i ( 3. The i component of the

displacement is prescribed on the boundary rDi, and the i component of the

traction is given on rFi. The part rc is identified with the actual contact

surface and must be large enough to include the true contact surface that, at

this point, is unknown. For simplicity, we assume that there are no other

forces except those due to contact on rFc

If t = til i denotes the applied traction, the two standard boundary

conditions on rDi and rFi are

ui ui on rDi

,1 1 3, (4.2.9)

a(u)ijnj = t i on rFi
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where n - nij t is the unit vector outward normal to the boundary r.

Suppose that the boundary r is separated into two parts, rF and r, as
shown in Figure 4.1. On r, the body Q is in contact only with the rigid

C'

foundation, whereas the interaction of two opposite surfaces must be considered

on r2. Furthermore, let a crack-like slit exist inside the domain Q, and letC.

its surface be represented by r' . Let us construct a coordinate system 0a,

1 4 a 4 3, on each part of the boundary related to contact, such that two

opposite surfaces can be distinguished from each other. Examples of such

coordinate systems are given in Figure 4.1. Let ua be the a component of the

displacement u in the 0 coordinate system, i.e., lt ua = Ula" Then the

kinematical contact conditions due to contact are given by

k - 0 on ri (4.2.10)

1 1 2 20 2

kapup + kapup a  0 on rc and rF (4.2.11)

where ka , ki 1 9 i 2, and g. depend on 1 ( 1 a 4 3, and the superscripts

l and 2 on kap and up indicate the two opposite surfaces on which these

quantities are defined. The functions kap and g. must be obtained from the

geometry of the body and the rigid foundation.

For example, let us consider the part rC, and obtain the corresponding

expressions for kap and g.. To do this, suppose that the surfaces of the body

and the rigid foundation are given by

03 = (e1,e2), 83 = (81,82), (4.2.12)

respectively. Since the body caiLnot penetrate the rigid surface,

S
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t03 + u3 > (e(I + U1 1 02 + U2 ), (4.2.13)

where uU j..*Linearization of the function 4 in ul and u2 yields

03 + u3 > (el 302) + Va(G, 0
2)s(uI!I + u2 12 )

where V. 118/0 1 + 12a/802' Dividing by /1 + ivao 2 and noting that

N N~i 1 (!.i~ I + 1 2 ) (4.2.14)
/I + I ,,aoi2  60 023

is the unit vector inward to the rigid surface 03 = P(0,(2), we have the

linearized contact condition

NPu 9 g 0, (4.2.15)

where

_____ = 4, )N3  
(4216)A

Thus, if

k 1 (4.2.17)

in the general form (4.2.10), the condition (4.2.10) represents the linearized

contact condition (4.2.15) on Since N is the same as the unit outward

noral to the surfa c of the deformable body on the contact surface after the



26

deformation, condition (4.2.15) means that the nornal component of the

displacement to the contact surface must not be larger t:.n the projection of

the distance of two surfaces in the normal direction, as shown in Figure 4.2.

*i

Figure 4.2. Contact surface geometry.

dS

"
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That is, the deformation of the point P Is always on or above the tangent plane

A at the point Q of the rigid surface 03 = 4(01,03

In almost all literature on contact problems dealing with theoretical
- -4

aspects of these problems the linearized form (4.2.15) of (4.2.13) is not used.

The condition more commonly applied is

a - -i
npu -g 0 0, (4.2.18)

where n = nPI is the unit vector outward normal to the boundary rC, and g is

the projection of (4 - 0) in the n3-direction; g = (4; - *)n3 . The linearized

condition (4.2.18) is represented by the plane B in Figure 4.2. In this case,

the deformation of the point P is always on or above the plane B. Of course,

since we are dealing with infinitesimal deformations, the contact surface must

be very close to the foundation, and the differences between n and N are,

accordingly, small. We shall apply (4.2.15) in this chapter.

Following a similar approach, a linearized contact condition on ro and r2

can be obtained. Let the particles, the position vectors of which at the

initial stage are 1= ! and 0 whe 1 A(01 1) and2 a a63 "12 3 12 2

be in contact after deformation. That is, let

+a 1,2 (4.2.19)

where u1  = U11i and u2 = u2  are the displacement vectors of the particles

a-a - a-a

identified by t1 and 02. Here, the two opposite surfaces are assumed to be

represented by the equations

93 = t(e1,02) and 03 = 0(81,02) (4.2.20)

for a proper coordinate system (81,02,03).
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The "no penetration" condition is then given by

1+ ul > 0 + U2(4.2.21)
3 3 3 3~

Using (4.2.19) we now express the condition (4.2.21) in terms of 01 . Neglecting

higher order terms, we have

+_ L (01 ,01)( uI(e1,e1,,(e1,eI)) -u2(0,1,O,40(0 '01)))
Y1,

12 2 12 1' 2) u2(e1,e0~1,o

+ U3 12 1,2) (4.2.22)

For simplicity, we shall express (4.2.22) as

*+ ul > + (uI- u2) + (ul 1 u2) + 2
41 2

Applying the relation (4.2.14) of the unit vector inward normal to the surface

* 03 - Vele2), we can represent (4.2.22) as

N (u~ -u) g ( 0, (4.2.23)

where
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g , - )N3 (4.2.24)

Thus, if

kf= - k = N, gl = g "

(4.2.25)

ka -kap 6ap for a -2,3, g 2 =g 3 = +

then the linearized condition (4.2.23) is given by the generalized form

(4.2.11).

As far as the linearized forms are concerned, the contact conditions

(4.2.15) and (4.2.23) have a similar form. More precisely, if we replace the

displacement u in (4.2.15) by the relative displacement uR = l _ u2, the

condition (4.2.15) can represent (4.2.23) for the boundaries rc and r2.

Therefore, for the mathematical development of contact problems, we need only

consider the conditions on boundary r . We thus describe the general kinematic

contact condition as

kapu -ga 4 0 on rc, (4.2.26)

or more precisely

Npup - g ( 0 on rc. (4.2.27)

These represent only kinematical requirements. In addition, the stresses must

satisfy

-- ~- - ~ -- ~ -- ~ . - ~ . . . . -- * --.--
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oN  o*N 0 if there is contact

(4.2.28)

oN  0 if there is no contact

where a - (oijnj)ii is the traction on the boundary 1C. Combining (4.2.27) and

(4.2.28) yields

uN - g 0, ONO, ON(u N -g) =0, (4.2.29)

where uN = Npup u

If the contact surface is well lubricated, friction might be neglected. In

this case, on the boundary rC, the additional boundary condition,

= - N= 0 (4.2.30)

* must be applied, where a is again the traction. However, in many cases in

* practice, friction has an important role to stress analysis. Here we shall

simply assume that Coulomb's friction law holds pointwise on the contact

surface. More general friction laws have been considered recently by Duvaut

[1981], and Oden and Pires [1981] and we explore one such class of friction

problems in the next chapter. The tangential velocity is assumed to be governed

by the following form of Coulomb's law:

IQ

ITI < -RON, then uT 0

(4.2.31)

ITI- - N' then for some X > 0, 2T 9 - T

. I



31

These conditions hold on the surface in which a N < 0. Here u 8 u/bt is the

velocity and uT is its tangential component defined by

4.2.3. Boundary-Value Problems

In summary, we have the following initial-boundary value problem

pu -d iv a(u) f in Q

ON() =t on rF

uu on rD

* (4.2.32)

uN- 9 0 N~ o4 01 (uN g) -o

'S-T' ( ONl then uT 0 onrC

1 =T PO P~a then X )0 s.t. UT 2 -

with the initial conditions

i =U and u oat tin0, (4.2.33)

for the Signorini problem. Here cyaij ij and div is the divergence

operator.
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If the motion is slow, then the acceleration is small and the process of

the deformation of the body represented by (4.2.32) and (4.2.33) can be

approximated by the following incremental form using an artificial monotonically

increasing time parameter t. Let ut be the deformation at time t, and let Au be

a small increment of u produced during the time interval At, i.e.,

t tAu t+At - u . Suppose that

-div o(ut) = ft in Q

_O(ut) = tt on rF (4.2.34)

ut ton r D

where ft, tt  and ut are the values of f, t, and U at time t, respectively.

Introducing similar quantities Af, At, and AU to Au, we arrive at the boundary

value problem

- dlv a(Au) = Af in Q

q(Au) = At on rF

Au AU on rD

(4.2.35)

AuN - Ag 4 0, AN + 3 4 + ON)(AUN - Ag) = 0

IAgT + T<- p(Aa N + ON), then AUT =0

I
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IAOT + a IN ), then X > 0 s.t.

AuT = - X(AT + JT),
the time interval [t,t+At]. Here

Ag = g - ut, AON =N(A u), aN = N(ut)

(4.2.36)

AST= T(Au ), aT =T(U t

eed not be same as X in (4.2.32).

refer to problem (4.2.32), (4.2.33) as the dynamical form of Signorini's

with Coulomb friction. The system (4.2.35), thus, defines an

ntal form of this problem valid for slow deformation or quasi-

zond it ions.

3. Variational Formulations of Signorini's Problem

shown in the previous section, Signorini's problem with friction for

in elastostatics assumes the form of tne boundary value problem

We shall consider a variational formulation of the problem that

the case (4.2.35) as a special case, and shall develop a mathematical

of such problems subject to a few additional hypotheses.

-

I
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4.3.1. Abstract Signorini's Problem with Friction

Let us consider the boundary value problem of finding a displacement field

u such that

- div a(u) = f in Q

a(u) =t on rF

u = 7 o rD

uN - g4 0, N + aN < 0, (oN + jN)(u N -g)= 0

10T + (TI < - (GN + aN), then uT =

T + 2T
I

= -(N + UN), then X > 0, s.t. = - X(QT + aT)

for given functions f, t and g.
- -. ~' N) T' adg

Multiplying the first member of (4.3.1) by an arbitrary smooth test

function v such that v 0 on rD, and integrating by parts, we have

IQ a(u)ijvi,jdx - fr(u)ijnjvids = o fividx" j
Using the relations ' 1

a - ali = aai- (aa = ailiela)

A
~1
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aeb = aNbN + aTetT, aN ,N - - aNN, etc.

for the unit vector N, and applying the boundary conditions (4.3.1)2, and

(4.3.1)3. we obtain

J9 G(u)ijvi,jdx = fQ fividx + JFr tivids I

(C(u)NvN + c(U)T.VT)ds , V v s.t. v = 0 on D, (4.3.2)

where vN v*N vaNa, va = Vila XT Y - VT, O(u)N = 2(u)-N, and so on.

Let w be an arbitrary function that satisfies

w U = fl o D, wN  g(0 on 9 .  (4.3.3)

It is noted that (4.3.1)4-(4.3.1)6 are equivalent to the two inequalities

O(U)N(WN - uN) = (a(u)N + ZN)(WN - g - uN + g)

- N(wN - uN) - aN(WN - UN),

and

2(u)T( - !!)>P(() + a)w- IUTI) - T'(w-T

Thus, (4.3.2) can be written as

fQ G(u)ij(Wl,j - Uij)dx + frC f- 11(0(u)N + "N)(IwTI - luTI))ds
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fQ fiQwi -ui)dx + IrF tj(wj ui)ds

-a i(Wi u-)ds, -

*for every wsatisfying (4.3.3), where the traction vector is defined by

5N- +NNaT on rc.

Let us introduce the following standard notation:

B(u,y) =fo a(U)ijrij(v)dx

f(y fi fividx + frF tivids + frC 5ivids (4.3.4)

j~u;v) =frC I- 40(u)N + ZN)) IYTjds,

Then the problem (4.3.1) yields a variational form

B(uw-u) + j(u;w) - > f (4.3.5)

for every wf satisfying (4.3.3), (since the stress tensor a is symmetric).

Using (4.2.3) and (4.2.5), we have

I

fo1eer( sati fyin (4.3.3) (4.3.6)rcin eto eindb

where
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1/2
II1 = {fQ (vi,jvi,j + vivi)dx) • (4.3.7)

If the given data f, t, and 5 are smooth enough, i.e., if

f1 E L
2(Q), tI E L2(rF), "N E L2 (rc), 5Ti E L2(rC), (4.3.8)

then

f(v) (I fl0 + 't'o,rF + Ilo,r¢)llv, (4.3.9)

where

1/2
INf0 = {Jf fifidx}

(4.3.10)

tttids } 1/2i 0r= (frF ii

and l*o,rc is defined similarly to (4.3.10)2. Thus the bilinear form B(uv)

represents the virtual work of the elastic body, and the linear functional f(v)

of the work done by the virtual displacement v. Both are well-defined on the

Sobolev space HI(Q):

HI(Q) (v= vii : vi E L2(g), vii E L2(Q), 1 4 ,j 3), (4.3.11)

where vii is the generalized derivative of vi. However, the term J(u;v) is not

well-defined, since the normal stress O(u)N cannot be defined for a function

u HI(Q). The contact stress, as it enters the present formulations, cannot be

defined in the appropriate space because we cannot infer sufficient smothness of

the displacement u. Thus, in this sense, the variational formulation (4.3.5) of
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the Signorini problem with friction may not be meaningful in the sense of this

variational principle.

For a particular case that the friction coefficient p is sufficiently

small, there are several approaches one can use to show the existence of

solutions to the variational formulation (4.3.5) within the context of the

Sobolev space HI(Q). Details of such treatments can be found in e.g., Necas,

Haslinger, and Tuisuk [1980], Duvaut [1981], Oden and Demkowicz [1981], Oden and

Pires [1981], and others. In the present study, we shall not discuss these

mathematical technicalities, rather, we shall address the problem of obtaining a

solution of (4.3.5) using finite element methods. To do this the following two

particlar cases of (4.3.5) will be studied in detail.

4.3.2. Special Case I: Prescribed Tangential Stress

Suppose that the tangential stress aT is known. That is, the tangential

stress

= T on rC  (4.3.12)

is prescribed, and the Coulomb friction law is abandoned on the contact surface

rC. Then the variational formulation (4.3.5) reduces to

B(u,w-u) > fl(W-U), (4.3.13)

for every w satisfying (4.3.3), where

f1 (v) f(v) + fr tT*YTdS. (4.3.14)

If

F.4
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t ti E L (rC), 1 1 3, (4.3.15)

the linear form f1 is bounded in HI(Q)) i.e.,1

f v C' f + 'I'or + 51 + i~tIor)UVE1. (4.3.16)

In this case, there are no ambiguous terms such as J(u;y) in (4.3.5) in the

variational formulation (4.3.13).

4.3.3. Special Case 11: Prescribed Normal Stress

Suppose that the normal stress ON4 is known at this time. That is, the

normal stress

* is prescribed, and only the Coulomb law of friction has to be considered on the

contact surface rC, while the unilateral contact condition (4.3.1)4 is

* abandoned. Then the variational formulation (4.3.5) becomes

B(u,w-u) + J(w) -J(u) f2(-) (4.3.18)

for every w such that

wi, 0 on rD 1 1 i 3, (4.3.19)

where p~.-

J(9) frc {P(t 14 + 2"q))IVTId8, (4.3.20)
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and

f2() f(v) + fr tNvNds. (4.3.21)

Since both N and tN are in L2(rC), the convex functional J is bounded in HI(Q),

and is continuous. Indeed,

J(v) - J(w)I 4 frc I- I.(tN + oN)I(IiVT - IwTI)ds

6 N)O - !T or

4 I-(tN + ON)0,rc Iv-w1 1. (4.3.22)

Thus, the variational formulation (4.3.18) is well-defined in the Sobolev space

I(o), since f2 is clearly linear and continuous.

A solution u to the general problem (4.3.5) might be obtained by the

iteration process

(1) Solve the Special Case I by assuming the tangential

stress aTO As a result, the normal stress aN is

0" computed.

(ii) Using the computed normal stress N, solve the Special; (4.3.23)

(4.3.18) Case II. As a result the tangential stress

;T is computed.

(iii) Check the convergence of the solution. If convergence

is not attained, repeat (i) and (ii).

We know of no convergence proofs for this iteration process, although the

| ....

. . ... .. .. . . . . ... .. .. .. ... ...
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process has proved to converge to reasonable approximate solutions to many

problems.

4. Special Case I: Prescribed Tangential Stress

As mentioned earlier, we shall solve the Signorini problem (4.3.5) with

friction by using the iteration process (4.3.23) that is the sequential

approximation of the problem (4.3.5) by the two special cases (4.3.13) and

(4.3.18). In this section, the first case (4.3.13), which corresponds to

situations in which the tangential stress -T (,,ossibly due to friction) is known

as a function of L2(rC), i.e.,

-T .T, tT E L2(rC), (4.4.1)

where L2(rc) It =toi to E L2(rc)). As shown in (4.3.13), a variational

formulation to this special case is governed by

u E K: B(u,w-u) fi(w-u), V w E K, (4.4.2)

where

K {v E V : vN - g 0, a.e. on rc}, (4.4.3)

V = {v E HI(Q) : vi - ui, a.e. on 1Di, 1 i 3}, (4.4.4)

and Hl(Q) is the Sobolev space defined by (4.3.11). Since the bilinear form

B(.,.) and the linear form f(.) are well-defined on HI(Q), we can define the

variational formulation (4.3.13) by using the Sobolev space HI(Q) as (4.4.2).
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The subset K of HI(Q) is the so-called admissible set of all possible functions

satisfying the given boundary condition on rDi and the kinematic contact

condition on rc, and producing finite energy. The set V consists of all

functions that satisfy only the boundary condition on rDi.

4.4.1. Existence of a Unique Solution

Because of the assumption on the elasticity constant (4.2.4), Korn's

inequality yields the property

B(vV) > move,, v E V (4.4.5)

where m is a constant independent of v V. Details of Korn's inequality can be

found in e.g., Hlavacek and Necas 119701. We also recall that (see (4.3.6) and

(4.3.16))

B(v,w) < MIIvlIowNI, v, w E HI(Q) (4.4.6)

and

1fl(v)i < if lIvl 1 l v E H1 (Q), (4.4.7)

where If lI I I0 + Ito + IO + It0I
I 1 0, F  O,rc tTl011 C

These properties are sufficient to guarantee the existence of a unique solution --

u E K to the problem (4.4.2) since the set K is closed and convex in Hl(Q) under

the assumption of the Lipschitz domain Q.

Theorem 4.1. Let the domain Q is Lipschitzian, and let (4.2.3)-(4.2.5)

hold. Suppose that (4.4.1) holds. Then there exists a unique solution u E K to

the variational inequality (4.4.2):

U

6
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u E K B(u,w-u) ) fl(w-u), w E K

Proof. See e.g. Lions and Stampacchia 119671.

4.4.2. Penalty Resolution of the Contact Condition

In the formulation of (4.4.2), there is an inequality constraint vN - g 4 0

a.e. on rc, that leads to the inequality form (4.4.2) of the variational

formulation. We shall resolve the condition vN - g 4 0 by using exterior

penalty methods. Introducing penalty parameter E > 0 such that e + 0, the

variational inequality (4.4.2) is approximated by

-E V B(u,,V) +1 (P(UCN),vN) = fi(v), v E Y0' (4.4.8)

where

(,) = (4 - g)+, *+(x) = sup{O(x),O), a.e. on rC, (4.4.9)

(.,-) is the inner product of L2(rC) such that

(*,') =frC @r *,+ E L2 (rC) (4.4.10)

and VO0 is a subspace of HI(Q) defined by q

0 = {v E Hl(Q) vi - 0 on rFI, 1 i 31. (4.4.11)

We expect that uc converges to u as e + 0.
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The physical idea behind the penalty approximation (4.4.8) is that the

rigid support can be approximated by the Winkler foundation consisting of

continuously distributed springs.

Theorem 4.2. Under the same conditions of Theorem 4.1, the sequence uE of

the solutions to (4.4.8) converges to the solution of the variational inequality

(4.4.2), as E + 0.

Proof. We first note monotonicity of the operator 0. Indeed,

(P(a) - O(b), a-b) = (P(a) - P(b), (a-g) - (b-g))

JrC {(a-g)+ - (b-g)+}{(a-g) - (b-g))ds
I rC

Jr¢ {(a-g)+ - (b-g)+}{(a-g)+ - (b-g)+}ds,
fC

i(P(a) P(b), a-b) > l(a-g)+  (b-g)+12,r c 0 (4.4.12)

for every a, b E L2(r¢). Here it has been applied that * ; -

sup{-Co}, +0- - 0, and f+4#- 0 0, for every *, , E R.

Since P(wN) = 0 for any w E K, (4.4.8) implies

B(uY,w-u) + 1 (P(U EN),WN-'UN) f -uE)

and
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B(u ,w-_u. ) - P (wN) - p(ueN),wN-ucN) -fl(_W_.) (4.4.13)

Applying the monotonicity of the operator yields

B(uwu > fl(W-uC), w E K.

Applying (4.4.5)-(4.4.7), we have

mguf C.11 4 MHu EllgWol + if IOwl +

Using Young's inequality

4 2 1 + 4 2, 6 > 0, (4.4.14)46

it can be concluded that

luEl I  < C(m,M,lf IIIHWIl) < + .

In other words, the sequence {u} of the solutions of (4.4.8) is uniformly

bounded in Hl(Q) in e. Thus, sequential compactness of the Sobolev space HI ()

implies the existence of at least one subsequence of {u.}, still denoted by

{u.} , that converges weakly to a limit, say u E Hl(Q).

Now we recall that convexity and Gateaux differentiability of the

fonctional v + B(v,v) in HI(Q) yields weak lower semicontinuity of the

functional. Thus, to such a weak weak convergent subsequence (u.}, we have

B(uw-u) rli sup B(u .w-u2) ) f(W-u).

[I
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i.e.,

B(u,w-u) ;0 fi~w-u), w E K. (4.4.15)

On the other hand, relation (4.4.12) and equation (4.4.13) imply

(U g+12, {B(u ,w) - f(-u)}. (4.4.16)

for any w E K. Continuity of the norm and uniform boundedness of Hu I1 yield

1(uN-g)+IOc = 0, i.e., uN - g 4 0 a.e. on r c .

Since uE V and since V is closed in HI(Q), the limit u of {u} belongs to K.

Thus, the limit of a subsequence {uE I is a solution of (4.4.2).

Because of the uniqueness of the solution to (4.4.2), every convergent

sequence must have a common limit. Therefore the sequence (u } itself as well

as convergent subsequences has to converge to the solution u E K of (4.4.2). []

Let the approximation of the contact pressure (normal stress) aN be

defined by

EN= - !(UcN) in L2 (rc). (4.4.17)
0 C

It can be shown that (4.4.17) is equivalent to the variational inequality form

aeN E M0  ON- 0 EN' EcN + uEN - g) , TN E M0 , (4.4.18)

where
0
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2!

MO= N E L2(rc) N 4 0 a.e. on rC}. (4.4.19)

w (4.4.18), it suffices to note that for x,y, and f E R, the solution

o the problem

x 4 0 (Ex + f)(y - x) > 0, y < 0

+

n by x -

us the exterior penalty formulation (4.4.8) of the variational inequality

is equivalent to the following perturbed Lagrangian multiplier

tion:

E SN)EV x M0

B(u;,v) - (aeN,VN) f l (V), v E V0  (4.4.20)

(.N- OcN' EOEN + UeN - g) ; 0, -N E MO

here are no guarantees that contact pressures belong to L2(rc), the

ence argument of (4.4.20) in H1 (Q) x L2(rC) does not have any sense here.

If a flat rigid punch is indented into an elastic foundation, the contact

ON  is generally not in L2(PC). Thus, we need to consider convergence

:eN ) in larger spaces.

the fractional Sobolev space Hs(r), 0 < S < i, is defined by the

of L2(r) equipped with the norm

-
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2 + r r N+2S-1 2 }1/2 (4.4.21)s~r 0 r Ix-YIN+S

where QC RN is Lipschizian, the extension of a function v E HI(Q) to the boundary

1/2
belongs to H (F) by the trace theorem, see Necas [1967, Chapter 21. suppose

that the surface of the rigid foundation is polyconal. That is, assume that

N E H /2-6(rc), 6 > 0 (4.4.22)

for a small positive number 6. Then the normal displacement vN of v E H1 (Q) is

in the space

Q = H1/2-6(rC) ,  6 > 0. (4.4.23)

Let Q' be the topological dual of Q, and let [*,-] be the duality pairing on

Q" x Q. The partial ordering in Q' is defined by

E Q', v ( 0 if and only if n EM 0 s.t. Tn in Q" (4.4.24)

Then the convex subset

M = {-r E Q' t ( 0) (4.4.25)

is closed in Q'. Note that since Q is densely imbedded in L2(rC), the duality

pairing [.,.] has the property that

J 2IP0 =(rO cds, 'r E L2(rC ) , 0 E. Q.

[p, = ( , ) .fo
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thus the L2(Ic)-inner produce (.,.) in (4.4.20) can be replaced by [.,-] as long

asgE Q.

Theorem 4.3. In addition to the conditions in Theorem 4.1, suppose that

(4.4.22) holds. Then the sequence f(ueaEN)} E V x M0  of the solutions to

(4.4.20) converges to the solution (u,aN) E V x M of the problem

B(u,v) - [ON,VN] = fl(v, v E V0

(4.4.26)

[ NN N) - g] ) 0, N  M

as e + 0.

Proof. It suffices to show that RaNIQ , is uniformly bounded in Q' and in

e. To do this, we note that since the trace map y Hl(Q) + H1 /2(r) is linear

1/2
continuous and surjective, and since the map O N = 4.N from H (1c) into

1/2-6
H is linear continuous and surjective, it can be found an element

v E V0 for every 0 E H 6 (FC) such that

= € and Hvl 1 < CIEQ, (4.4.27)v N

for some constant C > 0 independent of the choice *.

Then

[aeN,0] [CeN~vN]

N = sup - < C sup j
QN O Q V l Q RVI

where VQ Is the set of v satisfying (4.4.27). Applying (4.4.20)i, we have
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gOENIQ, 4 C{MIlu l + ffl~l.

Since the uniform boundedness of flu 1 is obtained similarly to Theorem 4.2, the

uniform boundedness of a-Nl Q, is assured.

4.4.3. Finite Element Approximations

There are at least three kinds of finite element formulations of the

variational problem (4.4.2). If aproximation is performed through the

variational inequality (4.4.2) itself, a finite element formulation of the

so-called displacement type can be obtained. This method, however, does not

involve the contact pressure oN and requires an auxiliary scheme to compute it

with sufficient accuracy. A second approach is to obtain a mixed finite element

approximation through the formulation (4.4.26) using the Lagrangian multiplier

method. In this case, the contact pressure oN itself becomes an additional

unknown to be calculated along with the nodal displacements. Naturally,

information on the deformation and the contact pressure can be easily obtained

by this method. This approach, of course, involves the approximation of two

independent fields, (u and ON) and may be computationally inefficient. A third

approach is to use penalty methods to handle the contact constraint. Then again

only one unknown field appears in the variational problem; the penalized

displacement field u An approximate contact pressure ON can be obtained later

using (4.4.17) after solving the displacement. Thus, in this case, the contact

pressure is computed by a simple post-processing procedure. In the present

study, the penalty method will be applied to solve the problem (4.4.2).

--

S
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The following finite element analysis will be performed for the case that

the domain Q is a bounded polygon in R2 . That is, all deformations of the three

dimensional body are projected in the plane, and the domain 0 can be covered by

finite elements that have straight edges. Extension to three-dimensional and

curved finite elements is straightforward, although technically very complex.

Let the domain Q be covered by E-finite elements, i.e.,

E

Q U Qe&
e=l

As usual, we suppose that each element 9e contains Ne nodal points on whichfunctions e Ne

shape i= 1 are assigned so that

Ne

41 (xj) = 6j, ) Fe(x) = 1 x E "e
i= 1

N
where { j}j=i is the set of nodal points in ge" The functions and v in

(4.4.8) are approximated by piecewise polynomials uh and vh defined by

UilQe u -ie(X), v1 e  k (4.4.28)

h--in each element 9e, respectively. Here Ui means the restriction of the i

hcomponent of u into the subdomain e " Approximation (4.4.28) leads to the

following finite element approximation of V and V0 :

vh- vi =V~iv~ECO(Q V~iQ vi= ~ )
e

vi = ui(xk) on ri., 1 4 1 4 21, (4.4.29)

and V is a subspace of vh containin functions such that Gh(Xk) - 0.
-0 i~k) 0
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It is worthwhile to note that the term P(uR may not be a piecewise
e(uN) myntb icws

polynomial even though uh is, because of the special operation + Then the

penalty term cannot be integrated as the other terms when the stiffness matrix

and the generalized load vector are computed.

To resolve this difficulty, let us introduce a quadrature rule to evaluate

the penalty term (recall Chapter 3 of Volume II):

(P( h h) P(h h !

(UN) N (UEN)VN)

E"

I(P(UhN)N) h leI( (uhN)vN) (4.4.30)
e=l

G

e(P(u'VNvN) = wJ(UN)(xJ)vN(xj).

J=l

Here {wj} and {xj} are the sets of weight and integration points, G the number

of integration points, and E' is the number of finite element edges covering the

contact boundary FC .

The penalty formulation (4.4.8) is thus approximatci by the following

reduced-integration penalty finite element method:

h  Vh B(uh,vh) + 1 I(P(uh h) - f(vh2-- IE -(E N)VN)=fh,

vhE (4.4.31)

Because of the term P(uhN), problem (4.4.31) is nonlinear, and the

stiffness matrix due to the penalty term is not readily computed. The actual

computation depends upon the method we use to deal with the nonlinear term.
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To illustrate one alternative, suppose that uh is the approximation of the ij
i step, and let

i h i-luh-
UCN - if uEN - > 0

ih i>(4.4.32)

0 if i-1uh "

EN g 4 0.

wherein i is not summed. Then the nonlinear equation (4.4.31) can be solved by

the successive iteration scheme

ih V BiuvhII i h h) fv , vh  V

i~h

uc -- -Cv~u~h .- rpihUtN)Vh) = f(vh) -h E V (4.4.33)

for i=1,2,3,..., and the initial assumption uh. Since (6...31) is linear for

each i, the stiffness matrix and load vector can be obtained by stancard finite

element procedures for linear problems discussed in great detail in Vols. I and

III. Indeed, for each finite element Qe' we have

he(uhh) = vK -e  peB ( O i~iajpuj "

IQ (Pt(uN)vN) h va(tNej~uj tge) (4.4.34)

fiQ (Vh) = vfe.
eia

where

Kjjp = feEikj a,k,1
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fea  fpedQ + fre tieds+ fretTj( 6 jj - NjN i )cFeds (4.4.35)

Gt -e w(N eN e
tNiaj ) = )( -

J=

t e t

J=1

Here re - rc n foe , r = r f 1 1 I ( 2, and the "weights" {wt) are

defined by

wj if t-1 h ..
W if tuN - g)(xj) > 0 (

w5  (4.4.36)

if (t-1h 0EN - g)(xj) < 0.

t e an tee
The terms will be evaluated only on r. Using the above

notation the variational form (4.4.33) yields the system of linear equations for

each iteration step t=1,2,..., such that

E E
I~ +e NeJ)(U a) (fe, +1 tg9,e (4.4.37)

e=1 e=,l

The assembly and solution of these linear equations is now done following any of -'

the standard procedures described in Vol. III.

Since the coercivity of the bilinear form B(.,.) and continuity of B(.,.)

and the linear form f(-) are independent of the choice of the penalty parameter

£ > 0 and the ste[ i of the iteration (4.4.33), arguments similar to those in

Theorem 4.2 yield the following result.

-

lI
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Theorem 4.4. Under the same conditions in Tbeorem 4.1., if the weights

{wj) of the quadrature rule (4.4.30) are all positive, then the sequence {iU

of the solutions to (4.4.33) converges to the solution u of (4.4.31) as i + +

. In addition, the sequence {uh} of limits obtained for each E > 0 converges

as c tends to zero to the solution 11h E Kh of the variational Inequality

uh E Kh B(uh,vh-uh) h f(vh-u h) vh v Kh (4.4.38)

where

Kh = {vh E Vh : (vh- g)(xj) 0 on rC}. (4.4.39)

* hq

It is noted that the iteration process finding uh for each c > 0

converges rather quickly for example problems solved later, although the results

in Theorem 4.4 imply only the convergence of the sequence ih} as i +

4.4.4 Convergence of the Penalty/Finite Element Method
h

We shall define an approimation of the contact pressure G h as in (4.4.17):
EN

h Q h (U0E C Qh and aN (x ) (x '
EN J EN J '

eJ l,. , G, onF e =l, 2, ,', (4.4.40)

where

h {T : i Je = M 1 < e < E'} (4.4.41)
C

and {M is the set of shape functions associated to the integration points of

the quadrature rule. Each function Th in Qh might not be continuous along the

boundary FC. Continuity of T depends upon the choice of the quadrature rule.

Applying (4.4.40) to the equation (4.4.31) yields
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h h h h
(u, vN x M

B (u h V h - 0 h~ v h f (v h V v h~ Vh (4.4.42)
- ECN N

I(.h hh h h'
N (%N U (o+ u~) 0, V Th Mh,

where Mh is a subset of Q'defined by -

Mh ={h E Th (x )<O0, l<J <G on r 1 < e < E'}. (4.4.43)

Lemma 4.1 Let (u N VxM and (u C N~) EVx

be the solution of (4.4.26) and (4.4.42), respectively. Let E be the

quadrature error of the numerical integration introduced in (4.4.30):

E1 (f,g) =(f,g) - I(fg) (4.4.44)

for properly defined functions f and g so that the quadrature rule

h EKh an 1'b h
(4.4.30) makes sense. Then for every v EK ad-E

0N

B(u u ..' u uh) < B(u - h vh + 1N h U N]

h h hON

+ [a N T N9 UN u N] + [N N9U N g]

-E1 h (u hN + (T h T h TN rh) E, (4.4.45)
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under the assumption that the "gap" function g is well defined so that the

quadrature rule I is also meaningful for g.'-

Proof from (4.4.26) and (4.4.42), we have

h h h hh h h 

B(u -u u -E) B(u- u -u -E

c'. _ u - iO~, VN - ( -N ' ~ uE)

= B(u-u, u-v ) + [aN4 v h N h h (v h .

The last two terms become

to vh _Uh hh h N
1oN, vh - ugN ] - k cN(VN -N u /

N'N N (GN N UNEN

h h h h-- N [NVh -N U + (0 N T N' UN UEN1 + [T N u N -g]

-- g] - I T (V g) + I -T h(TN N UN EN N

h - h)h h
< [N' N YN YN TN - - N N g

h h h h fh h 'I~~~~ N'a g (u g)IEN E(T Nr u N gT N (uEN-I) g)) N c

vh u +[N Th h h + T4
<[aN'vN uN]+[ N oN N~ N NUN g

-E (T h, uh -g) + I (a~ h h~ (U~ h-)
I N N cN TN E
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-II

Then the estimate (4.4.45) follows from

CF h T h) (uhN _ g)) = TN) (-ECN))

STN ) TN .

It is noted that the estimate (4.4.45) is obtained within the

h hrestricted sets K and M . The first four terms of the right hand side

of (4.4.45) are related to the interpolation error of function by finite

element methods, the fifth term comes from the i tegration error for

the penalty term, and the last one is from the method of penalty. It

is expected that if cz o, the last term goes to zero. We shall study

this more precisely.

Toward this end, let us introduce an approximation A of the
h

normal trace operator v - v on HI(Q):
- n

[TN, Ah (vh)]= (N , A (v h )  =1 
h VNh  (4.4.46)

for every v V.

Sh h hLemma 4.2 Let (u, a V x M and (u, ) x
n EU EN ete ouin

of (4.4.26) and (4.4.42) respectively. Suppose that there exist a positive
h h

number (h independent of Th and an element v h Vh such that
h n o

I.
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(v) T
h

, Oh 1 v h 11 < JITN INo, rc (4.4.47)

for a given TN h Mh R (Ah), where Rg A~ is the range of the operator

Ah h
A.h Then, for every Th  M

Ii (TN - N)) 1 < M1 1i - u hilII TN - Eh o11r h

+ 11 h _ h1 r + IE *Th (Th N h (4.4.48)ITN- G10, FC  O, N C F-N c N EN

Proof. From (4.4.26) and (4.4.42),

h h h

+ [ON N ()N =N (N - v h) h h

[ON' vN] +1 ( NThN

h h h + Th vh- B(u -u, v ) - [ON,N

B(u-u h, h ) + [Th _ rvh E, (T h, vh)
- [TN -ON' VN] -N N

Applying (4.4.47) and taking absolute value yield the result. 0
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Let us now apply the interpolation results of conforming finite

element approximations on the restricted sets K
h and M h following Falk

[1974].

there is a vh ( Kh such that

h VII r < C1  h llI v IIs

for every v KN'- HS(Q), r < s, and s > 2, where

(4.4.49)

Min {k + 1 - r, s -r,

and k is the order of the complete piecewise polynomials

contained in finite element approximations of v,

there is a T h  Mh such that
thN 

<- C h2

11 TN - TNll p - C2h IITNII q'rc
C

for every TN  m MnHq( , p _ q, and q > (4.4.50)

> 0, where

42 = Min {t + p, q - p}

and t is the order of complete picewise polynomials contained

finite element approximations of TN.

4

We shall suppose that the parameters r and p in (4.4.49) and (4.4.50),

respectively, can be negative numbers (see Bahuska and Azliz [1972, p.951)

4 and that Mh need not be conforming.

4
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Theorem 4.5. Suppose that the quadrature rule I satisfies for some

ive constants C, i = 3, ..., 6, and parameters I and A 2 the in-

ities

h2
I(vhN >C h2 ( h IIF h (.451
N~ N 0~f I(cN N - 4 N" O, N" 0'r (44C1

A 1

JE ( h, vh)I < C h , I 1 11 I ,

h h X2 h rl
E (Th ) < C6 h 2 II TNi

1 
q, 11 J0 (4.4.52)

E 1  (T , g ) < C 7h 3 II TN 1! J r'1  g s - l2

q and s are the parameters in (4.4.49) and (4.4.50).

under the regularity assumption

s (Q), s > 2, N H 1s- 3 / 2 (C) and g Hs/2 C) (4.4.53)
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the following error estimates are obtained:

u- u C (1 ull s,1 ONs I s-3/2 ,fc 1 gl[ s-1/2, (h + E/ 4 h 4 )

(4.4.54)

O N a ON" O,C r II N11  s3/2,FC) ( - uI 1 
1/uu h 

where

113 = min {k, s-i, (k + s-i)/2, t, (t + s)/2, 1/2, 3/2}

(4.4.55)

1 4 = min {t + 1/2, s-3/2, X

Proof. Applying (4.4.51) and (4.4.52) into (4.4.48) yields

_h h 1< M 11 - l l/cLh + 11 - GNI or

c2 h

+ C6 h N N qrN

Applying the interpolation theorem (4.4.50), we have

T h h ( - h + hmin (t + l/2,q, 2 } 11NI q, (4.4.56)I N U11 ' - .ho c -(I -u I /a h N (4.4.56



63

On the other hand, from the estimate (4.4.45), we obtain

*mjju - uI < MIu -uii]u-vhi+ IJON1i q,r'I, u-. vh +I H (rml_ u 
qN" u ,iiN 

_ % d1

-. k7'C'I ,
N, N () 1/2 r uN hEN 1/2, F c

c+CT CT U ig+ h I Ish 11i2 ,
N TN (H s-1/2 (r) ,1/2, 5 N qC c u N s C

-C l ~-~i ofluNi 0I - r c
)3b

C 7h 11 T Nil q, C 11 gll sI/2,r c

'C i

Substitution of (4.4.56) and applying Young's inequality imply

i u - uIi 2 I h 21;+ IIIINJNII uN vII
. v 11q,P c uN N q(rc)

+ ilCIN - Tl hI/2 + h

N ( 1/ (rc)) 11 N Il-1/,r I GN TNHs-1/2(r

+ C h '11 T hl, 1,1[ u h  11+ Ch 3 1 l
5 N qr c U:N [ s1/2,r + C7h [ q,rc g [Is-l/2, r
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h 2 2 {Min t + 1/w, g,X l 2+ (C / 21 TNl + 2 c h IITNII 2 .
c /C h 0 r c9 q C

"ih 2-

putting q = s - 3/2, we arrive at the bound

11 <C ull so g 1 hmin (k, s-

1- i'II N s-3/2, c' 'gII 1/2 LC

m+ hin (k+s-1,2s-2/2 + hmin in ft+s,2s-}/2

A 1 /2 A /2 in +1/2,s-3/2,72J
+ h + h + (W/Gh) + hmi(

+ C/ Cth + h P4

where

3 = min ,s-i, (k+s-1)/2, t, (t+s)/2, X1/2, X3/2)

and

SP4= min t+1/2, 3/2, A2)-

II

6|
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Now an estimate for the approximate contact pressure is derived

immediately from (4.4.56):

h h h h

laN-yN 1o'.r lIN - T N 11o,r + iTN - EN I1or
Cc c

< (h4 +Ilu u h
O c IiN 11s_3/2,rc - u I/h

It is clear from these results that three kinds of estimates of the 1
error introduced by the numerical integration I are needed as well as an .

estimate of the parameter uh of (4.4.47) for each given choice of integra-

tion rule and finite elements basis. We shall discuss these in the

subsequent subsections.

4-Node Isoparametric Element and Trapezoid Rule

One of the simplest finite elements to the contact problem is the 4-node

isoparametric quadrilateral element. This element yields piecewise linear

approximation of the displacement on the boundary. Moreover, the edges

are just straight lines. For the integration rule "I" , let us apply

the trapezoid formula on each boundary element that correpsonds to an edge

of 4-node element. The "normal" component vh of o on the boundary

h
element is constructed by taking the same interpolation to v by using

the value vh . N at each nodal points on the boundary. That is, vh is

a piecewise linear polynominal on rC which is the same degree as v h

On the other hand, the trapezoid rule on each boundary element yields the
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h
same approxim.tion of the contact pressure TN of the "normal" displaccment

h h h
vN . That is, both functions vN and N are linear polynomials on each

boundary element r e -
e

Lemma 4.3. For the functions vN and T
N defined in above, we have

-A
, .4

* ,i~h E'2Proof. Noting that 2 l 0,IcvflyN
" N e=l 

F = lF, we shall derive the inequalities of (4.4.57) on each'

h 2 '1h 1

e e C

boundary element r Since v and T are linear polynomials on r
e N N e

we can express these as

v = a + bs and T N  c + ds , (4.4.58)
N N

where s is the local coordinate along the boundary element, and {a,b,c,d}

h h
is the set of numbers defined by the values of vN and TN at nodes and

the length of the element r . Then we havee

h 2 2hlv 2IO~e = (a + bs) 2ds = h(a 2 + abh + - h2

e

6
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(v ; h (a2 + abh + b h2 > IIvNhl2,r

C

I~T~V~) <1/2 t v~J1/2 Nlor

We now show error of the quadrature rule I for the choice of the 4-node

element and the trapezoid rule to the penalty term.

h h hLemma 4.4. For the functions TN , VN , and 1N  we have the follow-

ing estimates:

S N II /2,r N 11/2,r(4.4.59)

C C

NE < C3 i N 1/2,1 C 3/2,r C

where C1 , C , and C3 are positive constant independent of the mesh size h.

3

Proof. Noting thatT. and vh are piecewise linear on the boundary

element, j

[I( N,vN) Ie= I /vh/ h31 <  1 II 11 h)

h C~ 2  J I Il/", IIvh
II VN ' 111/2,r 1 < C 1 , N 1/ 11N3/2, r c "

- - =- "- -i -} - - - - -. .- -m -l ~ -l " i l i li i ~ ~ mi
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Similarly,

h h), < o _I 0 N '(_[N 1' C 2. N p N 111• IEI  ,N T 'T Yh -C 2 h_ JITh 11,r [~ l --

C 1

Applying the inverse inequality "J

IITN Ilrc <- Ch - 1/2 ITN 1 l/2, r , (4.4.60) j
we obtain

JE~~~~ 
° h h) I

IE( N, N I 2h l N  1l/2, r IF N  1/l2, rc

C C

The last inequality in (4.4.59) is obtainL oy the following triangular

inequality

*~ ~ IE(~ 1 ) E(Th gh), I(Th gghj

by using the piecewise linear interpolation of g. The first part in the

right hand side is estimated by

hN 3h < h lN 111/2,rC 19h11 3/2rC (4.4.61)

similarly to the first inequality of (4.4.59). The second part is estimated

by using the result of interpolation:

*E ,( g..gh), < C II I h 2  1gghI 1/2)

N6 /,rC( r)
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Sh

C3 IT N 11/2,rc 1lgll 312,r (4.4.62)C C

Thus combining (4.4.61) and (4.4.62) yields the inequality that we need. .

The last preliminary to the application of the general result (4.4.54)

to specific the error estimates for the penalty finite element approximation

is to find the stability constant oxh of the approximate contact pressure

stated by (4.4.47).

Lemma 4.5. For the choice of 4-node isoparametric elements and the

traizoid rule, we have = 
/ 2 and vhEV h for a given TNh such that

AhV h) h 1 h1  < I h 11,.(4.4.63)

h N CLh 1 - IIN 10

hwhere a°  is a positive constant independent of mesh size and TN

Proof. For the case TN= 0, the inequality (4.4.63) is obvious for thehN

choice vh 0 . Thus we need to consider the case T f 0, i.e., ThE ker(ON)'

where ker(a N) is the kernel of the normal trace operator such that
N

ONV = v • N on the boundary for a function v E C(SI). Applying the Banach

inverse theorem to the continuous linear operator aN' we may condlude that

there exists a positive constant C>O such that

CI II i < C IIvN 111/2,rc (4.4.64)

C!
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for vN ker(oyN , where C is independent of h.
h h

Now, taking the special case that vN = T at each integration point,

we have
h( hV ) h I(1/2 [ (vN  )1 •

Applying the results in Lemma 4.3 implies

I >v 1 _ o r 11O 0,' 11

Nh1  IN -121 (4.4.65)

The following inverse inequality holds under the assumptions of the

: ChI 2 [v 111/, l Ior (4.4.65)

C

Thus, we have

Finally, applying (4.4.64) yields

,(,rhh)> Ch /2 "0 h 11 hv III

II The inequalities in (4.4.63) now follow from this result. C1

Using the all results in Lemma 4.3, 4.4, and 4.5 and Theorem 4.5, we

can obtain an error estimate for the penalty/finite element approximation

(4.4.31) for 4-node quadrilateral isoparametric elements and the trapezoid rule.

41

II
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Theorem 4.6. Let the hypotheses of Lemmas 4.4-4.5 and Theorem 4.5 hold

and suppose that the solution (u,oN) to the original problem is smooth enough

so that

2 1/2 (..6
uEH (Q2) and a N EHI(rc (4.4.66)

3/2
Then, for gEH (1C ) we hlce

Ilu- h < C1(hl + h + h1/2C

(4.4.67)

E (/2
IIaN ON1! O, rC < C2 (h l  + h - F + E

where CI and C2 are positive constants independent of h.

4.4.5 Numerical Examples. The results of numerical experiments on two

example problems are given to demonstrate the performance of the penalty/

finite eleme-it approximation (4.4.31). The first example is a classical

Hertzian contact problem in which two identical circular cylinders are pushed

into each other by applied line forces P on the exterior surfaces. Symmetry

of this problem yields a Signorini-type problem since the deformation is the

same as that of a circular cylinder at rest on frictionless flat rigid sur-

face and is subjected to the force P applied on the top. If the circular

cylinder is long enough, the problem can be considered as a plane strain

problem on a circular domain.

As a further simplification, we shall solve the problem only on the

quadrant applying a uniformly distributed force instead of the "point" force
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P on the top. Forty-four elements are used for the discretization of the

quadrant of the cross section of the cylinder as shown in Fig. 4.3. As an

example, let the radius R = 8 cm, Young's modulus 200 kg/cm, Poisson's

ratio v = 0.3, and the applied force P = 156 kg on the top. The iteration

scheme (4.4.37) converges at the 3rd iteration within 10-4 tolerance. The com-

puted deformed configuration is shown in Fig. 4.4, and the process of conver-

gence of the iterative method (4.4.37) is described in Fig. 4.5 using the con-

h

tact pressure p obtained by (4.4.40).

The second example is a rigid punch problem in which a rigid circular

cylinder is indented into an elastic foundation, as shown in Fig. 4.6. The

size of the punch is R = 8 cm, Young's modulus E = 1000 kg/cm 2 , Poisson's

ratio v = 0.3, and the depth of indentation is 0.6 cm. The width of the

elastic foundation is 8 cm, and its height is 4 cm. We again assume plane

strain. For this problem the relative errors of the total strain energy

defined by

i h h i h h

ad 1 , a fE we)- ta u2 , 1F

1 h h h umh 2 u C ,2a

are computed, where ","indicates fixed values. For E ,we take h =0.8 cm

and E^ = 10- 4 , and for Eh we take =10 4 
and h=08cm. Figures 4.7 and 4.8

h

4 contain the computed result values of E and E. Since the erro. estimates
C 

2

(4.4.67) indicate E =(c) and Eh =(h ), we have a slight gap in numerical

and theoretical rosults.
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Applied Force

Linearly Elastic E -2000. I

v - 0.3

Rigid Foundation

Figure 4.3 Physical Model for Example 1I
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initial Configuration

Figure 4.4 Deformed Configuration
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Pressuire Distribution A 1-st iteration

500 - 2-nd ietration

600 - A 3-rd iteration

I 300Heta
HertzoSolution

34 200A

b-2.723

Figure 4.5 Convergence Procedure of the Iteration Scheme
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Deformed Configration

Circular Rigid Punch

R - 8.

Depth of Indentation

2.

2. 4. 6. 8

Figure 4.6 Indentation Problem for Example 2
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4.5. Special Case II. Prescribed Normal Stress. As shown in the

previous section, unilateral contact problems can be solved by the

penalty method if the tangential stress along the candidate contact

surface r is known. In this section, we shall study the reverse

situation: we shall assume that the normal stress on and, therefore,

the actual contact surface rC are known a priori.

Let

a= tN E L
2(rc) (4.5.1)

be given on the contact boundary rC . Then, as shown in Section 4.3,

a variational formulation of the corresponding equilibrium problem

assumes the form

E : a(u,v-u) + J(v) - 3(u) f2z-), V v E V (4.5.2)

where

j(v) = fr (-utN) 'XTJ dr with tN = tN + N (4.5.3)

C

and the space V is defined in (4.4.4). Because of the assumption

(4.5.1), the functional j(.) is well defined. The fact that j(.) is

continuous on H1(Q) follows from (4.3.22). The functional j(.) is

also convex. To see this, we need only recall that the RN-euclidean

norm is convex,

1(I-6)vT + 8wT1 < (1-8) iYTI + e1wTI . (4.5.4)
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Thus, a direct application of well-known results from BREZIS

[19681 on variational inequalities leads immediately to the following

existence and uniqueness theorem.

Theorem 4.7. Let the domain Q be Lipschitzian, and let (4.3.8),

(4.4.5),(4.4.6), and (4.5.1) hold. Then there exists a unique solution

u E V to the variational inequality (4.5.2).

4.5.1 Regularization of the Functional J(-) The particular class of

problems characterized by (4.5.2) may seem to be of limited practical

interest since it depicts a rather rare situation in which normal

stresses are prescribed on a surface with unknown frictional stresses.

However, we shall now describe a regularization of this problem which,

interestingly enough, can depict in a much more realistic way certain

features on friction mechanisms observed in experiments with metals.

We begin by observing that the functional j(.) in (4.5.3) is not

G~teaux differentiable at the origin. This is not surprising because

the Euclidean norm 1-1 in RN is not differentiable at the origin,
I,

nor is the function x IxlI in IR . However, the source of the

non-differentiability of J(.) is the fact that this particular model

of friction depicts the separation of the sliding and full adhesion

portions of the contact surface as a point or line. Physical

experiments on friction on metallic surfaces show that no such line of

separation of sliding and full adhesion exists; rather, there is a

boundary-layer between regions of full "stick" and "slip." This, in

turn, suggests that an approximation of j') differentiable at the

origin can be designed which leads to a representation of such a

boundary layer but which, at the same time, can be made arbitrarily

close to the functional J(.) in some sense.

0
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Toward the construction of such an approximation, we first

consider smooth approximations of the function x + jxj * As examples,

consider the functions,

(1 if x 

.II
1 x)- 1 x2 ;de(x) ix if lxi (4.5.5) .

-x + 1 -1 if x < -E
2

if x> 0
C!

32 n -W ; g ) a(4.5.6)

-(i) Eif x < 0

and

03(x) 2 2(x tan- j x - C- In (x2+€2)); d- E() 2 a-1 x) (4.5.7) "

It is easily verified that all of these approximations converge to the

absolute value function as e + 0 . The most popular approximation is

the first one which exhibits a piecewise linear first derivative.

However, the other two approximations have nonlinear first derivatives.
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It is also worth mentioning at this point that an analogy of the

friction problem to the perfect plasticity can be realized by examining

at the graph of the first derivatives of 1 , C ) and 4 The

first resembles the stress-strain curve of an elastic-perfectly plastic

material whereas the second resembles that of a material with strain

hardening.

Another approximation which is reminiscent of plasticity is the

function

x+ 2 l1 + C 2  if x > Cx 2 2

12c

~2 1 2-x + - -(E + E ) if x < -6
2 2

with

I+ex ifx> C

(x) =X -x if lxi < C (4.5.9)
dx

-1 + ex if x 4 - ,

Here e and 9 are two positive parameters such that *,(x) + lxi as c +

0 and C + 0 . In this case, we have a sort of strain hardening

effect after the slipping (i.e., yielding).
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To introduce similar approximations for the functional j(.) in

friction problems, we first introduce a regularization of the function

(x) = lxi, where lxi is the Euclidean norm for IRn  lxi = x -

Then its approximation c$ similar to (4.5.8) and (4.5. 9) and is

given by

/1 2)
I + x- e + cc2) if lXI > C

if(x)xi (4.5.10)

-x~x if 1I < C

where

x
(--2- + Cx).y if li > C
lxi

T (x).y (4.5.11)
6 x ~

1
-x.y if lxl < C

Let us now make aa estimate of the difference of and * .

Note that

J
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.X - (E + t 2)1  if lxi > 1

Ix -();)I

1 x- [XII if Ixl 4 C

S lxi 2 + E) if Ixl >C

2

-(if Jx E

9 1Xl2 
+

(4.5.12)

i.e,

W~x W ~~I X I t + E). (4.5.13)

Thus, as the parameters 9 and e tend to zero, the

approximation Or of the nondifferentiable function *(x) =

lxi converges to * at a rate O(c 4. i). The differentiable function

Oe is called a regularization of the nondifferentiable function 0 .

As shown above, there are infinitely many choices of such

regularizations. However, for definiteness, we shall consider only the

particular choice (4.5.10) in the following discussions. Other choices

of regularization and their quality in computation are studied in e.g.,

KIKUCHI [1982].
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We now return to the work done j(') by the friction force and

its regularization. In view of (4.5.13), we take as a regularization

of this functional,

3C(V ) = kfC (-IjtN) e(QT)ds (4.5.14)

1e easily verify that with this approximation

IjC(v) - j(v)i < -tNno,rc(IIKO4, rt + (mes rc)s), (4.5.15)

where mes C  is the measure of the boundary rC , and 9-10,4,r, is

the norm of L4(rC) defined by

OX'O,4,r C (Y.Y)2dsj 1/4 (4.5.16)

Note that we have used here the facts that vi E L4(FC) for

Vi E H 102) if S1 is Lip chitzian for li~n, and that

vY v v "YT N+v .

Theorem 4.8. Let 11 be Lipschitzian and let TN E L2 (rc).
Suppose that the conditions (4.3.8), (4.4.5), (4.4.6), and (4.5.1) hold.

Then there 's a unique solution u to the regularized problem
~C

uE V a( , ) + <DjC(ue), V> = f2(v) , Vv E v0  (4.5.17)

for a given pair (E,C), where V0  is the space defined in (4.4.11),

and
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4DjC(u), > frc(-tN) UT cT) Td$ . (4.5.18)

Furthermore, the sequence of the solutions {Ue) to the regularized

problem (4.5.17) converges to the solution u of the friction problem

(4.5.2) as c and C tend to zero. Indeed, there exists a positive

constant C , independent of E and C, such that

u -2 111 4 C(/-+ /), (4.5.19)

Before proving the above assertion, let us note that the

regularized problem (4.5.17) is equivalent to the problem

2E - + a(ue, v - tE) + - () f- ) ,

Vv E V , (4.5.20)

since je(.) is a convex continuous and differentiable functional on

V.

Proof of Theorem 4.8. Because of the equivalence of (4.5.17) to

(4.5.20) the existence of a unique soliition u. follows from reasoning

similar to that used to derive (4.5.2). Thus, it suffices to merely

verify the inequality (4.5.19).

Applying (4.5.2) and (4.5.20), we have

--uuu) j)- J(U) - i C(UC) + j(U)

2 f Ro r + ouE ,4,r ) + (mes rC)E)< u in~C (n0,,c rc
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Because of (4.4.5), the solution Nic 0 ,4,r is uniformly bounded in t

and c. We can thus conclude that (4.5.19) holds for sufficiently small

f and c . C

Let us now investigate in more detail the physical meaning of the

regularization method. Toward this end, the variational form (4.5.17)

is considered. If the generalized Green theorem introduced by Aubin L1979

Chapter 13] is applied, and if the normal and tangent stresses C N

and T resulting from the displacement field u are well-defined

in, e.g., L2(rC), then we have the following characterization of the

solution u. of (4.5.17):

- ( (U ) = f1 in S1, (4.5.21)

in the sense of distributions,

onr F , EN=t N + °Non rc  (4.5.22)

and

qcT ) tN UT (UT) on c" (4.5.23)

Here ai 'j(U )nj , cN • N , and LcT 2 O-ON

Consider the equilibrium of the tangential stress on the contact

surface rc. If the relation (4.5.11) is introduced into (4.5.23), we

have the friction stresses
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UcT
lt. + CUCT) if inU Tl >

= 
(4.5.24)

IJtN UT if 1U T1 < C

on the surface rC

It is clear that the inequality

-jjtN(l + eIUsTI) if 1U cTI >E

IOacTI <

-1itN  if lUET1

holds. This means that if C + 0, the friction stress never exceeds

the value -JtN which indicates the Coulomb law of friction.

Furthermore, (4.5.24) yields

2ET= E tN-ET for JUcT1 4 F

Thus, by passing to the limit c + 0, the stick portion of the contact

surface is identified with the set SF = Ix E rC :U£T(X)I c}.

A simple spring model of this particular friction mechanism is

depicted in Fig. 4.9. Note that the initial tangential stiffness at

the contact surface is 1/c and that some tangential displacement 6 is

reached before the spring of stiffness t , represonting a hardening

effect, is activated.
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Figure 4. Model of f rict f on mechan



-R121 821 COMPUTATIONAL METHODS IN NONLINEAR MECHRNICS(U) TEXAS 2/2
INST FOR COMPUTATIONAL MECHANICS AUSTIN J T ODEN
SEP 82 TICOM-82-6 RFOSR-TR-82-8989 F49620-78-C-8083

UNCLASSIFIED F/G 12/1i N



111112----5 rJ I- 1- 11.--
~JL

L --

Q6;

111.1 1.1 0

'A1111125 
Jill *4

NATIONAL BUREAU OF STANDARDS-1963-A

N4 t

.4.
'.4|4

,4.V.,..,,.. .. . . . . . . . . .. .. . . . . ... . . . . ..

. . - .



90

4.5.2 Finite Element Approximations. We shall now examine

approximations of the regularized problem (4.5.17) by finite element

methods. Applying the notations and conventions of the previous

section (recall (4.4.28) - (4.4.37)), the regularized form (4.5.17) is

approximuted by

h E vh a(uh, vh) + I(Dj2(uh).vh) f (vh),

Vvh E V, (4.5.25)

where the term I(Djc(uh).vh) is the quadrature rule for the friction

term <Dj,(uh), vh> similar to the penalty term in (4.4.31). It is

clear that the finite element equation resulting from (4.5.25) is

nonlinear because of the gradient Djc(uh ) . Thus, to solve (4.5.25)

we must generally resort to some successive iterative scheme. Because

of the nature of the nonlinearity in DjF(u h ), it is natural to .

consider a sequence of linearized problems which employ the recurrence

formula,

otN(eiuhT + -lET )if UTI > e
N chi- CT

Dji(iuh) (4.5.26)

lt Nl!CT if I < C

Then the solution u in (4.5.25) is achieved as the limit of the

sequence {iuh} such that
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u v a(Vh iu41 vh) + I(Dji(iuh).Vh)f vh , vh:Vh
= f2(vh) Vvh v, (4.5.27)

for i 1,2,...,m, which evolves from a proper initial guess ouh

The convergence of the iterative scheme (4.5.27) is more delicate

than the case for the penalty formulation (4.4.33) since the term

PtN -1uhT /l j-uhIT destroys the monotonicity of the form (4.5.27),

unless the parameter t is sufficiently large. Since J. is convex,

the operator constructed by the quasilinear form a(-,-) + <Djc(-),.> is -

strongly monotone on V x VO . Thus, it is possible to establi3h the

existence of a convergent subsequence. However, this does not imply

that the form a(.,.) + <DJ'(-),.> is monotone. This possibly lead to a

sort of oscillation about the solution as i + -. Such oscillations

might be reduced or eliminated by taking a larger value of c(or

C) that results in the reduction of the effect of the term

PINi-luhT/i-uT during the iteration process.

4.5.3 Convergence of the Finite Element Method. Suppose that the unique

solution h  of (4.5.25) is obtained by the iterative scheme (4.5.27).

It is, however, noted that while the existence of a unique solution to

(4.5.25) is guaranteed, it might not be realized by this iterative

scheme (4.5.27). We shall verify the convergence of the regularization

finite element approximation by taking the following steps: an estimate

of 1uh-OhN is first obtained, where Oh is the solution of the

problem

b Vh a(dI.,vh) + <DjG(d.),Ih>. f2(vh),

• - .h)

.. .--.-. .. " -.-. -... .. " ..- .. , I . ." i " i - ' . . - - . a . .m



92

Vvh E Vh (4.5.28)

Because of the application of the numerical integration to evaluate the

quantity

<DJF~ ~ ~ ah)v> e(2W T) d

-Cr vIN dsYC n

the quadrature error must be considered at first. Then applying the

*result in Theorem 4.8 yields the estimate 10h-uhI in terms of C

* and 9 where uh is the solution of the problem

uh Vh a(uh,vh) + J(Vh) -j(uh) f h!!)

V vh E Vh (4.5.29)

The final step is the estimate of 1uh-u11 of the solution u of

(4.5.2).

To accomplish the first step, let us note that the form (4.5.25)

is equivalent to

h~ EVh: a(uh,vh) + I(iztNfe( h))_ I(tt(h

-T tNC-eT)

h- h2 vu), Vvh E yh .(4.5.30)

Similarly, (4.5.28) is equivalent to

Ift EVh: a(dh,vh) + j,(!h)-j,(d) yhf-vOh)

V vh Eyh. (4.5.31)
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Lemma 4.6. Suppose that the quadrature rule I satisfies the

* condition

Sf or piecewise polynomials contained in the trace of the functions in

vh on the boundary r. Then there is a positive constant C

independent of the mesh size h and the parameters C and C such

that

%" .

for s >1.

Proof. From (4.5.30) and (4.5.31), we have

a !.. -,

+IE(INaT) h .

Without loss of the rate in the estimate, we can assume that tN is

also a piecewise polynomial (see the procedure to (4.4.62)). Applying

the assumption (4.5.32), it follows from (4.4.5) that

mnepndn h ofh e 2 es s i e lath e aaees ad € sc

h h+ hl h (•5•-1).-

+ ucis.1/2,4,rc~h(')

* .:.

- * S .. *. . . . ,. -
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Thus (4.5.33) follows. 0

The second estimate,

follows easily from the same arguments used in the proof of Theorem

4.8.

lemma 4.7. Suppose that the interpolation estimate (4.4.49) holds

for the function on Qi and on r .Suppose that

and )AtN E H'- 3 /2 (rc). (4.5.35)

* Then for the solutions uh of (4.5.29) and u of (4.5.2 ),we have

* the estimate

(u-u C(IuI) 8)hs-, (4.5.36)

where C is a constant independent of the mesh size.

Proof. Using (4.5.2 )and (4.5.29) we obtain the estimate

a( ~h ~h) h a~~b~ h) + a(u,y-2h)

+ j(y)-J(uh) - f (~h) + a(u,yh-u)

+ J(vh)-j(u) -f (h-.u) V6 vh~h YE.

Taking v u ~ yields

A.. .~ -- - - - -
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a.u-h -h) a~-hu-h) + a(u,yh-u)

+ J(vh)-j(u)f 2(vhu).

The characterization of the solution u of (4.5.2) after applying the

generalized Green theorem leadSto the inequality

a(u-uh,uuh) < a(u-uh,u-vh) + r
C-

frc tN(IvTI - lUTI)ds
C.T-.

Under the assumption (4.5.35), we have

m u-uh fI2  4 M lu-uh gl u h mI .:

+ ,T(u)2ns-3/2,r hUT-VIlTNs+3/2,r

+ I1tNs_3/2,rC UT-vT-s+3/2,rc

Here we have used the fact that Ivh-IUTI < Ivh-uTI. Applyingt
the

interpolation estimates (4.4.49), we obtain

mlu-uhI2 < CMIu-uhllhs-lIu.

+(IOT(U)s_3/2,rC + 47IcNs_3/2,rc)Ch2(-1lIs.1/2,rc

The estimate (4.5.35) ,is then obtained by using Young's inequality. ,.

Combining the above results we arrive at the estimate of the

approximation of the regularization finite element method (4.5.25)

Theorem 4.9. Under the assumptions (4.4.5), (4.4.6), (4.4.49),

(4.5.32), and (4.5.35), we have

i

"' .".' '- "" "''."-" .. """ .. +""-. +.. " ..-.
-. . . . . . . . .. . .

i~i + •k , Ik #'ll+ ~ + + o q. . . . ..• " ..,+ " " • "
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"ucuhl C C(A + /T + hS- 1 )I u (4.5.37)

where C is a proper positive constant independent of h, t, an c. 0

If the four node quadrilateral element with the trapezoid rule for

the quadrature "I" is applied, an analysis similar to that leading to

Lemma 4.4 shows that the estimate (4.5.32) reduces to

-II

E([I N - 2 )  N € 1ptl/2,r luhTI23/2,4,ir (4.5.38),:-

where Vtl is the interpolation of the PN on rC. Thus, if s-2, the

error estimate becomes

h- (4.5.39)
* .

4.5.4 Numerical Examples. We hall describe three example problems for

friction contact problems. The first is a footing problem in

foundation engineering depicted in Figure 4.10.

Suppose that the foundation is composed of an isotropic elastic

material with Young's modulus E-5xl05gK/m2  and Poisson's ratio 0.3

for the shaded area, the remaining portion begin a second elastic

material which has a Young's modulu of E=2xlO6gK/m2  and Poisson's

ratio of 0.3 for the other part. The size of the foundation is 8m x

16m, and the friction coefficient x between the footing and the

foundation is assumed to be p-0.3.

A finite element model is obtained by 64 four - node elements as

shown in Figure 4.10 for the case in which the footing is pushed

and rotated so that the bottom line of the footing lies along the

plane y - -0.1 + 0.001(x - 6). That is, the left edge of the footing

i :i ~: ::!::!!i :::::i:-:..::~i.. * * . . .-,... .....,_";::.:: ) :: .::. . : : i: : i :: .i . . . .. .
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Figure 4. 10 Footing Problem on a Ron-homogene
0 us ElasticFoundation with Friction
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is indented 10 cm into the foundation, and the tangent is 0.001. For

the choice of E = 10-4/E and C=0, we can obtain the result shown in

Fig. 4.11 in which three nodal points from the right edge of the

footing are sliding. Because of the singularities on both edges, the

contact pressure is very high on those points. It is noted that no

oscillatory tangential stress along the bottom of the footing is

observed because of the relatively course finite element mesh used.

The second example is a Hertzian problem with friction. A

circular rigid cylinder is idented into the deformable body whose

2Young's modulus E is 1000 gK/cm and Poisson's ratio v is 0.3. Under

the assumption of plane strain, the problem is solved by 36 four-node

elements with the depth of indentation d=0.4 cm. The radius of the

cylinder is taken to be R-4 cm, and the size of the deformable body is

8 cm x 4 cm. Using the symmetry of the problem, only half portion of

the body is analyzed. Computed results for the case pf=0.3, c=2.6 x r:

10-6, and 9=0, are shown in Fig. 4.12. The deformed configuration is

also given in Figure 4.12. Two nodes under the circular rigid punch are

sliding, and the computed contact pressure and the friction stress are

plotted in Figure 4.13.

The last example is an axisymmetric problem for an annular punch.

The computed results are compared with the analytical solution of

Shibuya, Koizumi, and Nakahara [1930] for the case of full adhesion. The

deformed configuration and the contact stresses are shown in Fig. 4.14

and 4.15, for the case that E-1000 g Kg/cm2 , v-0.3, and V-0.3 . The

size of the domain 0-2 cm x 1 cm by applying the axisymmetry. The

domain is discretized by 200 four-node elements. We here need not to
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use the non-zero regularity parameter • If c=10-5/E is taken, the

iterative scheme is stable, and converges monotonically.

4.6. CONCLUDING REMARKS

Starting from the contact conditions for both large and small deformations,

the mathematical description (4.2.32) of the friction contact problem is derived

using the Coulomb friction law. Under the assumptions of small deformation and

quasi-static motion, the set of dynamical equations (4.2.32) is reduced to the

incremental form (4.2.35) in the pseudo-time t and its increment At. The

variational statement corresponding to the incremental form (4,2.35) is derived

by using a quasi-variational inequality (4.3.5), the existence of solution of

which is proved only for the case of small friction coefficient P.

In order to obtain an iterative scheme to solve the quasi-variational

inequality that represents the incremental form of friction contact problems,

two special cases are studied in detail. The first case is the one with the

prescribed tangential stress that is possibly caused by friction. Nonlinearity r

then arises from the unilateral contact in the normal direction, and is resolved

by applying the exterior penalty method (4.4.8). Conditions for the convergence

of (4.4.8) as the penalty parameter c tends to zero to the corresponding

Lagrange multiplier formulation (4.4.26) are given in Theorem 4.3. The finite

element approximation of the exterior penalty formulation is obtained using

four-node quadrilateral isoparametric elements, and its convergence analysis in

Theorem 4.5 is established for both parameters h and E, where h is the

representative mesh size of the finite element model.

The second special case corresponds to problems with prescribed normal

stresses on the known contact surface. In this case, if the normal stress is

smooth enough, the variational formulation is given by a variational inequality

of the first kind as in (4.5.2). Because of the non-differentiability of the

functional J, that represents the work done by friction forces, a regularization

scheme must be introduced to obtain a differentiable functional J.. The

* - - " - *.* -*- - .*"
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existence of a unique solution to the regularized problem (4.5.20) is shown, aiid

the convergence of the regularization is proved in Theorem 8. It is noted that

the convergence of tte tangential stress acT has not been analyzed in this

study. The regularized problem (4.5.20) is approximated by four-node elements.

Convergence of the finite element approximation (4.5.30) is established in

Theorem 4.9, under the assumption that the iterative scheme (4.5.27) gives a

convergent result.

t- -~
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5. NON-CLASSICAL FRICTION LAWS

The use of the classical Coulomb law of friction in the formulation of

contact problems in elasticity leads to both physical and mathematical

difficulties; the former arising from the fact that this law provides a poor

* model of frictional stresses at points on metallic surfaces in contact and

latter due to the fact that the existence of solutions of the governing

equations can be proved only for very special situations. In the present

article, non-classical friction laws are proposed in an attempt to overcome

both of these difficulties. We consider a class of contact problems in-

volving the equilibrium of linearly elastic bodies in contact on surfaces

on which nonlocal and nonlinear friction laws are assumed to hold. The

physics of friction between metallic bodies in contact is discussed and

arguments in support of the theory are presented. Variational principles

for boundary value problems in elasticity in which such nonlinear nonlocal

laws hold are then developed. A brief discussion of the questions of

existence and uniqueness of solutions to the nonlocal and nonlinear problems .2

is given.

5.1 Introduction

In 1781, the French engineer C. A. Coulomb published his "Thgorie

des Machines Simples" in which he presented his celebrated law of friction.

This work earned him a double prize from the French Royal Academy

of Sciences in 1785. The classical Coulomb law of static dry friction,

of course, asserts that Aetaite 6ti4Zng between two bodi.6 in coontact

along plane 6wLtaca itt occut when the net ahea 6o~ce paAatteL to

S. the plane 4eache.6 a cAtiZcat value ptopo~tionat to the net no'zmal 6o~tee
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pt4,6in9 the two bodia togetheA. The contant o6 p'opo'ttonatity ,i

catUed the coeAiicZent o 'xiction.

It can be argued that as a basis for contact problems in the theory

of elasticity, Coulomb's law is not acceptable from either a physical

or a mathematical point of view. From the purely physical side, it has

been recognized for many years that Coulomb's law is capable of describ-

ing only friction effects between effectively rigid bodies and gross

sliding of one body relative to another. Indeed, it is clear that Coulomb

himself never inteded that his law be applied pointwise in boundary-

value problems in elasticity; the foundarions of continuum mechanics,

particularly the concept of stress and the equations of linear elasto-

statics, were only fully developed many decades after Coulomb proposed

his law, and the first successful formulation of a contact problem in

elasticity came over a full century after Coulomb's work. From the

mathematical point of view, it is known (-see DUVAUT [1980] and also

DUVAUT and LIONS [1976]) that if Coulomb's law is applied pointwise in

contact problems involving linearly elastic bodies, then the contact

stress a developed normal to the contact surface is ill-defined.
n

Except for some very special cases (e.g., NECAS, JARUSEK and HASLINGER

[1980]) the fundamental question of existence of solutions of the friction

problem is open (for other related open questions, see DUVAUT and

LIONS [1976]).

There are several aspects of actual friction phenomena between

metallic bodies that suggest alternative friction laws which represent

a marked departure from the classical formulations. First, we mention

.7
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the obvious nonlocal character of the mechanism by which normal stresses

are distributed on machined contact surfaces. These stresses are trans-

mitted over junctions formed by deformed asperities and are not concen-

trated at isolated points on the contact surface. Second, we note'that

upon the application of loads, experiments show that there always exists

a small tangential displacement of points on the contact surfaces due

to the elastic and elasto-plastic deformation of these junctions;

"sliding" occurs when these junctions are actually fractured. Since

these junctions can be recovered upon a quasi-static reversal of loads,

the actual "adhesion-sliding" friction mechanism is highly nonlinear

and depends upon the elasto-plastic properties of the metal oxide and

contaminant film on the contact surfaces.

Independent of the nonlinear character of local friction phenomena,

there are also mathematical reasons to expect that a nonlocal friction

law might lead to a more tractable theory. Recently, DUVAUT [1980] pub-

lished a brief note in which he observed that the source of difficulties

in establishing an existence theory for Signorini's problem with Coulomb

friction was the lack of smoothness of the normal contact pressure n

Therefore, by considering, instead, a proper mollification of the normal

stresses on the contact boundary he was able to state that the principal

obstacles in the way of deriving an existence and uniqueness theory for

contact problems with friction could be overcome. One interpretation of

such a smoothing of the contact pressure is as result of nonlocal effects

arising from micromechanical phenomena taking place on the contact regions.

In the present study, we propose ncnlinear, nonlocal friction laws

for contact problems involving linearly elastic bodies and we present

a
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variational principles for contact problems in elastostatics in which

these laws hold. Roughly speaking, a nonlocal friction law proposes

that irpencbig motion at a point o6 contact between boo de6ouiabte bod-eA

PxW occur when the sheam stiae at that point reaches a vatlue propo-

tionat to a weighted measure o6 the no'nat 6trm,6. in a neighbo'hood

ol the point. The character of the effective local neighborhood and

the manner in which neighborhood stresses contribute to the sliding con-

dition depends upon features of the microstructure of the materials involved.

While such nonlocal laws do lead to a mathematically tractable

theory, they still do not capture the effects of the tangential elastic-

plastic deformations of the contact junctions mentioned earlier. To

accomodate such effects, we present a further amendment which provides

for small but nonzero elastic tangential displacements at the contact

surface for tangential stresses below a certain critical level. For

shear stresses at or near this critical level, substantially larger

motions can occur which effectively represent large tangential motions

such as sliding. This critical value may be proportional to a weighted

measure of the normal stresses in a neighborhood of the point on the

contact surface.

An interesting feature of our results is that these non-conventional

friction laws are given In terms of three positive material parameters:

v, p, and c. The parameter v is the coefficient of friction, although

its actual interpretation is somewhat more complex than that of classical

mechanics. The parameter p quantifies the nonlocal character of the

response- for p = 0 a fully local law is obtained. Finally, C is a

measure of the tangential stiffness of the elastic-plastic junctions on - -
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the contact surface; the case c = 0 corresponds to a fully rigid response -

full adhesion or full sliding of contact surfaces. Thus, by allowing p

and £ to approach zero, we can recover the classical, local, pointwise

formulation of contact problems in elastistatics based on Coulomb's law.

Following this introduction, we give a brief account of the physics

of friction as well as a justification of specific friction models.

Several variational principles for boundary value problems in elasticity

in which nonlocal and nonlinear laws are assumed to hold are derived in

Section 3. The results of some theoretical studies of these principles

are summarized in Section 4. Our results include conditions sufficient

to guarantee the existence and uniqueness of solutions to the variational

problems as well as results which establish the asymptotic behavior of

solutions as parameters p and E tend to zero.

7
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5.2 A Basis for Nonlocal and Nonlinear Fricti._nLws...

5.2.1 cicromechanics of Friction. Friction phenomena have been the subect

of considerable experimental and theoretical research over .he last 30

years and its study is a popular and important aspect of modern mechanical

engineering design. A standard reference is the monumental two-volume

treatise by BOWDEN and TABOR [1950 and 1964]; more concise accounts can

be found in standard texts on the subject (e.g. RABINOWICZ [1965)).

To understand friction, one must first appreciate the role of the

microstructure of the materials involved. Consider an experiment in which

two metallic bodies are placed in contact along two apparently machined

flat surfaces. At microscopic levels, specifically at magnifications of

1000x to 5000x, machined metal surfaces are seen to be not smooth homo-

geneous planes, but rough contours with numerous irregularities which are

large compared with molecular dimensions. We refer to these deviations

from the plane as a~pe/rtieh.

When we press together two surfaces, actual contact initially occurs

only at the peaks or summits of the asperities. Large areas of the sur-

faces are separated by a distance which is large compared with the range

of molecular action, so that these gaps in the surfaces are completely

separated and have no interaction with one another. The load is, there-

fore, initially supported at the tips of the asperities; the area of

contact is extremely small, and the pressure at the points of contact,

even for lightly loaded surfaces, is high. Plastic deformation of the

tip of the asperities occurs at small loads while the bulk of the under-

lying metal deforms elastically. As the normal load is further increased,
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the asperities deform and fracture with the result that the local load

is distributed over an area surrounding each deformed asperity. At this

stage, each asperity has been flattened and the local contact forces

are distributed over a neighborhood of the asperity. The Aeat aAea os

cottact Ar  (as opposed to the appaAejtt area) is therefore the sum of

the areas of all the surface irregularities which are touching and which

support the load.

It is often assumed that the local plastic yield pressure p0  is

nearly constant and is comparable to the indentation hardness of the

metal. Under these circumstances, the real area of contact for any one

asperity bearing a load Ni is Ai = N i/p ; for the assembly of the

asperities, the real contact area is

ANA+A+ N2  N (5.2.1)
r 1 2 + " P0  pO P0

where N is the total normal force pressing the surfaces together.

The real area of contact is, thus, proportional to the load and indepen-

dent of the size of the surfaces. Over these regions where intimate

contact occurs, strong adhesion and welding of the metal surfaces takes

place and the specimens become, in effect, a continuous solid. We refer

to these regions as junctions.

4 Under most working conditions, metal surfaces are covered by a

thin film of oxide, water vapor and other absorbed impurities. The shear

strength of these junctions can be strongly dependent upon the shear

4 strength of these surface films. In particular, it is the shear strength

* 71
* ~ 1
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of this layer of oxide and impurities that determines the coefficient of

friction and not, in general, the shear strength of the parent metals.

The application of a tangential force T creates a tendency for

the two bodies to slide relative to each other. The contact pressure

must then decrease (since it was near or equal the plastic yield stress).

Some microscopic motion will occur (junction growth) even when T is

small. If T is steadily increased, a value of sufficient magnitude to

fracture the contaminant films is eventoally reached and gross sliding occurs.

It is customary to set the ratio of the magnitude of T at which sliding.

occurs to the net normal force N equal to the coefficient of friction

*v . If s is the average shear strength of the interface, it follows

tiat approximately

T= A s (5.2.2)
r .

i.e., T is independent of the apparent area of contact (since A is).
r

Then, substituting for A , we obtain ....
r|

T N or V-= (5, 2.3)P0 P0 O :

0  p

i.e., T is directly proportional to the load (or V is independent of

the load).

As an idealization of the contact surfaces, one may assume that the

asperities are superposed upon the surface of spherical protuberances with

a larger radius of curvature. It is then possible to consider that

although each individual asperity at the interface will deform plastically,
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the deformation of each spherical protuberance will be elastic. This

idealization has two purposes: first, the area of real contact still

remains approximately proportional to the load, although the overall

deformation is elastic (see ARCHARD [1957]); second, it allows us to

treat each region of contact as being roughly circular (see m1crophoto-

graphs in BOWDEN and TABOR [1964, p. 71]) and to regard the contact pres-

sure as being essentially symmetric, attaining its maximum magnitude at

the center of the circle of contact, in a manner consistent with the

well known analysis of MINDLIN [1949].

We emphasize that the junctions through which loads are trans-

4 mitted from one body to another are not rigid; indeed, they i re com-

posed of a deformable composite of metal, metal oxide, and surface

contaminant that, for our purposes, can be assumed to be elasto-plastic

or nonlinearly elastic. Several researchers have actually measured the

tangential micro-displacements that occur, in friction experiments on

metals, prior to gross sliding of the surfaces, and we mention as examples

the works of JOHNSON [1955], BOWDEN and TABOR [1964] and RABINOWICZ [1965].

Figure I reproduces a typical results of static displacement tests of

- JOHNSON [1955] which involved the contact of hard steel balls with the

flat end of a hard steel roller. Mirco-displacements are produced by an

applied shear force varying progressively from zero to the value necessary

to produce slip.

5.2.2 A Nonlocal Friction Law. In order to develop a basis for a nonlocal

frictiorn law we consider here the two simple physical models shown in 1
Figs. 2 and 3. Fig. 2, a thin weightless strip A of length 21-s



115

-8

o6

2-j

07

0 20 40 60 80 10O
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Diameter of the bail 0. 375 in.
Normal load :10. 5 lbs.

Figure 5. 1. Measured shear-tangential displacement
variations after the experiments of
Johnson 11955).
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is pressed against a fixed elastic block B by a concentrated normal

force N applied at its midpoint P ; then a force T is applied to

the strip and is increased slowly in magnitude until motion (sliding)

of the strip relative to the block occurs. For this idealized situation,

designed to emphasize the local character of the classical Coulomb law --

of friction, we are interested in calculating the distribution of fric-

tional (shear) stresses between the strip and the block assuming that

Coulomb's law holds and that the coefficient of friction V is given.

We consider the origin of a coordinate axis x along the length of

the strip to coincide with the midpoint P of the strip. Then, the

only point on the contact surfaces between bodies A and B at which

a resistive force can be developed is at an isolated point beneath P.

Thus, impending sliding is reached when the resisting shear a is

formally given by

a (x) = VN6(x) ; -< < x < 9 (5,2.4)
T

where 6 is the Dirac delta corresponding to the point source at the

origin. Of course, is merely the symbolic representation of the

distribution

<N <6--> vNO(O) (5.2.5)

for all test functions * in the cliss C-t,t, of Infinitely differen-

tiable functions with support in the interval (-t,t),where <,> denotes

I-duality pairing on distributions and test functions (I.e., the action of

aJ



119
L.2

a distribution q on a test function * is dcnoted q( ) E <q.o )

Alternatively, 6 can be interpreted as the limit of a 6-sequence,

(P Q<P ' P n(-l)

() = 6)= lira w ip dx for all * in V(-,£) (5.2.6)

Then we have, instead of (5.2-5)

<VT, > l JJ1 <N 3P, for all * in V(-t,t) (5.2.7)
p+O -

Ule see that the classical pointwise version of Coulomb's law must be

interpreted in the sense of distributions for this situation. As a

typical 6-sequence, we mention:

c exp[p 2/(x2 - 2  1 lxi < P

W (x) =(5. 2.8)

A more realistic model of friction from the physical point of view

is obtained if we take into account the microscopic aspects of the

physics of friction described earlier. Specifically, the contact sur-

face of body B will present asperities deviating from a smooth plane.

As the normal force N is gradually applied, these asperities are grad-

ually deformed and broken down until equilibrium of normal forces is

reached. The normal force reaching body B through the strip A must

then be distributed over the contact area of the deformed asperity as

indicated in Fig. 3. We shall now assume that the asperity's finite



120

transmission area is accounted for by using the 6-sCque.ice {W of

5.2.8 keeping p = po, P0 being the radius of the contact area of the

deformed asperity. Since N = N(x) is now a function, we have, instead

of (5.2.7),

ST(x) = VN(y)*w (x - y) (5.2.9)

where * denotes the convolution of the two functions. Thus, we have.,

arrived at a friction law in which impending motion occurs at a point x

on the contact surface when the shear stress at that point reaches a

value proportional to the weighed average of the normal stress in a

neighborhood of the point. If w is used to characterize this weight-

0

ing function, then the neighborhood is a circular disc of radius p0

centered at x , the raximum weight is given to the stress intensity at

the center of the disc (the contact area of the deformed asperity) and

exponentially decreasing weights are assigned to stress intensities as

one moves from the center of the neighborhood outward to the periphery

of the disc.

We can now generalize these results to the three-dimensional case:

let uT denote the relative tangential component of displacement of a

point x = (xl,x 2 ,x3) on the contact surface between two deformable

bodies and let a n(u) and aT (u) denote the normal and tangential

stresses on the contact surface corresponding to the displacement field

u * Then

*-
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I2T:"9'I+ I < (So (u)) i = 0

1OTup S an- -T (5.2.10)
a (u )  VS (a n(u)) implies that there exists

0 .- X-> 0 such that u X-T

where S is an operator mollifying the normal stress distribution; e.g.
0

S (o n(u))(x) w (I- yl)(-un(u(y)))dy (5. 2.11)

where x and y are points on the contact surface r

Wle mention that nonlocal theories for other classes of problems in

solid and fluid mechanics have been put forth by ERINGEN and EDELEN [1972];

a detailed account of this work can be found in ERINGEN 11976].

5.2.3 Model of Nonlinear Friction. Both Coulomb's law and the nonlocal law

given in 5.2.10 depict perfect rigid-adhesion-sliding conditions on the

contact surface: they assert that there is absolutely no motion of points

of one body relative to those of another if the tangential stress on the

contact surface remains below some critical value T ; but when this limit

is reached, unbounded motions can occur, the ensuing tangential displace-

ment being directed opposite to the tangential stress vector. It was

pointed out in the Introduction and in Section 5.2 that in physical experi-

ments on contact, tangential displacements are produced by any nonzero tan-

gential force developed on the contact surface since elastic-plastic defor-

mations of the junctions will always accompany the application of tangential

forces (recall Fig. 1)

To model this phenomenon, we shall consider a family of nonlinear

friction laws of the form

. - . . , . . -1
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OT(U)-T !T(' Ti) U (5.2.12)

where the function (.) satisfies the following conditions:
C

1) * is a continuous, monotone, real-valued function of

the non-negative real numbers r , depending on a para-

meter C > 0, such that

0 < (r)< , r > 0 (5.2.13)

ii) lira (r) = 1 for all r > 0
C 0

iii) lim Cr) 1 1 for all c > 0
r -co

* In 5.2.12, T is a non-negative function of the displacement vector u

representing the critical value that the tangential stress cannot exceed,

i.e., T = VOn (u) for the local case and T VS (a (u)) for the non-

local case. It will also be of interest, as it will be seen

later, to consider the case in which T is a given (known) function of

the position vector x , thus no longer dependent upon the displacement u.

As specific examples, we select for C the following two functions:

l if I TI > C

A) ( = (5. 2.14)-
1uT1/C if lUTI <

B) =C(!uTI) tanh CLET [  (5.2.15)

It is readily seen that both of these functions satisfy 5.2.13. The first

example represents an "elastic-perfectly plastic" type response in which

slipping can occur only after a tangential displacement JUTI > £• On
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the other hand, the second example describes a situation in which the cri-

tical stress is approximated asymptotically as u TI Both curves

are depicted in Fig. 4. We notice that these are not the only possible

choices and that several others can also be considered (e.g. arctan, etc.).

Also, we observe that the slope of Oe at the origin, i.e., the derivative

of * at zero displacement equals 1/E. Thus C provides a measure of

the rigidity or stiffness of the elastic-plastic or nonlinear elastic junc-

tions.

Finally, we wish to coment on the combination of a nonlocal law with

a nonlinear law. A nonlocal-nonlinear law of friction will be of the

*"i
form(5.2.12)with T replaced by VS (a (u)), i.e.,

p n-

a (u) = -VS (a (u)) ! (uTI) (5.2.16)

-T P n -l-T)j -T

where S is of the form given in (5.2.11). If we allow p + 0 maintaining
p

c > 0 fixed we obtain a local nonlinear law, i.e.,

1~I() -V, ac~ (u) (5.2.17). :

On the other hand, if we allow C + 0 for a given positive p we recover

the perfect rigid-adhesion-sliding nonlocal law given in (5.2.10). Finally

if both C + 0 and p 4 0 the static Coulomb's law (local) for unilateral

contact in the contact surface r is obtained:

C

12T(U)1 < V ja n ( u )  implies u T = 0 ,2)1

IOT()I mplies the existence of I > 0

such that u -/

" o ": • • "_ '" "' " , " ", " - • ' - :. .. m= lftt r mnnmT - . ..T
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Iu I

Figure 5.4. Graphs of functions (2.14) and (2.15)
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5.3 Variational Principles for Nonlocal Nonlinear Friction

5.3.1 Signorini Problems with Nonlocal Nonlinear Friction. We consider

here the Signorini problem of contact of a linearly elastic body with a

rigid foundation on which nonlocal nonlinear friction laws hold.

We begin our analysis by considering a linearly elastic body the

N
particles of which occupy a smooth bounded domain U in R , N = 2,3,

with open interior fQ . The boundary r of the body is assumed to con-

sist of three disjoint parts, r rF and rc , where r and r are
D1 F CD F

the portions of the boundary on which the displacements and forces (trac-

tions) are prescribed respectively and rc  is the candidate contact area;

i.e. r is a portion of the boundary which contains the material surface
C

which comes in unilateral contact with a rigid fourdation F upon the ap-

plication of loads (see Fig. 5). The external forces on the body consist

of a prescribed body force field of intensity f per unit volume and of

surface tractions of intensity t per unit surface area.

We shall assume that rD is perfectly fixed, so that

u = 0 on r
- - D

u being the displacement field. On r we will have

: ffa (u)nl tj

ii . t J

where aY (u) is the stress produced by u and n1  are the components

of the unit outward normal n to r. Here and throughout our presenta-

tion Cartesian index notation and the summation convention are employed.

Since the body is assumed to be linearly elastic, Hooke's law holds so that
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FFI

1 72

Figure 5. 5. An elastic body in c,'ntact with a rigid rough
foundat ion
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aij(u) E ijkt Uk, I

where E ijk are the usual elastic constants of the material, Uk-

aUk/ax and

E E= E Eijk = iki ktij ijRk

1 < i,j,k,t < N

Of course, particles within Q are assumed to be in static equili-

brium so that

o (u),j + f, 0 in n
ij - :

The unilateral motion of particles of the body on the material sur-

face r is constrained by the presence of a rigid "oundation which is
C

a given distance s from the body prior to the application of loads. Ma-

thematically, this constraint is represented by the requirement that the

normal displacement of boundary points cannot exceed s

u n _< s onr c  (5. 3.1)

If u • n s then contact is established, while u n n < s indicates the

existence of a gap between the support and the body. Thus 5.3.1 repre-

sents a non-penetration condition. If contact is not made (i.e., if

u • n < s) then the normal contact pressure a n(u) 0, where

a (u)=Eijk UkL i nj

n U4



Alternatively, if u • n s at a point on FC  then n !mst be non-

positive:

u • n = s Implies a (u) < 0

Thus, the unil.ateral contact conditions on the contact ilr face FC  are:

NC

u • n - < ' C o (u) 0n?
on C

( (ii)(u n-s) 0nl

Condition an (u) (u " n - s) -0 0 sgnifies that the pr(c!-mire cin only be

nor-zero h, en tLi-re is c.ntact.

There remains the characterization of friction on the contact surface

rC . In agreeme:nt with the nonlinear and nonlocal friction laws described
C

in the previous Section, we will have

If u " n. < s , (3T(U) 0

If u • n = s , on C (5. 3.2)

where S is of the f.)--S.31.] . d 11 is a nonlinear function of the

type in 5.2.13 or 5.2.14. it is important to note that always

12(701) S < s(a (11))

since ( (,.) < I for rvery > 0 .ind .itiy u (x) x in By
C &f - - C

computing the lnno-r product of both sides of the second q,,ation CS,3,2)

with "f 0 r.c. In write, oquiv.I Iuly,
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o (u) u + vS (a (u)) *(IuI) lI 0
-T- -T P n- C('-r1 I

Sunmarizing, the Signorini problem with nonlocal-nonlinear friction

consists of seeking a displacement field u , which satisfIes the following

system of equations and inequalities:

1) Equilibrium equations

(E ijk Uk),£I) i + f 0 in Ql (5.3.3)

2) Boundary conditions

a) Prescribed displacements

ui = 0 on 'D  (53.4)

b) Prescribed traction

E U n =t on r (5.3.5)
ijkU "k,t k ti F

c) Unilateral constraint

u n<s , (U) < 0,

a (u)(u • -s) 0 on r (5.3.6)

d) Friction condition

(u) = -vS (a (U)) * (Ju1) - on rc  (5.3.7)
p n-LU -T

where

S (a (u))(x) O wIp(JX - ( (y())ds
r C

and w and are given, respectively, by 5.2.8 and 5.2.14

or 5.2.15.
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5.3.2 Variational Pr inciples for Nonlocal Nonl intlar Friction. Relat ionship

with the Classical Probl-ms. We now introduce varintional principles for

the nonlocal-nonlinear Signorini problem and establish the relationship be-

tween the varlatonal and the classical for:nulations.

Using the notation introduced previously, we define

V space of admissible displaccments. A di-placement vector v

will belong to V if and only if

1) v = 0 on rD

2) v produces finite (normalized) strain energy in the sense

that the norm

= {fQ v , dx}l 2  (5.3.8)

is finite, where dx = dxdx2.dx N

K subset of V consisting of all admissible displacements v in

V for which v • n < s at all points on the contact surface rC"

a(u,v) = virtual work produced by the action of streiises ij(u) on strains

caused by the displacem.ent v

0~

f1 E u ' 
dx

j,(u,v) = virtual work done by the frictional forces on the displacement v

PIC = fr C SP(C )'C(IV TrI)ds

Here ds is an element of surface area on F andTC

is the primitivp ot : . For example,
e £ E
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( VT - C/2 if 'V T ' > C

IVT12/2E if IY-

vhen is given by (5.2.14) or

(IV 1) c Rn cosh (5.3.10)

E -T C

when E(ITI) is given by (5.2.15).

f(v) = virtual work done by the external forces on the displacement v

ff v dx + t vds

frF

With the above definitions and notations now established, we consider

the following variational boundary-value problem:

Find an admissible displacement vector u 4 n the set K

such that

a(u,v-u) + j P,:(u,v) - Jp, (uu) > f(v-u) (5.3.11)

for all admissible displacements v in K .

Inequality 5.3.11 is a statement of the principle of virtual work

for an elastic body restrained by frictional forces of the type in 5.3.2

Note that this characterizes equilbrium configurations by an inequality rather

than an equality because of the presence of the unilateral contact constraint

u * n < s on rC . We also notice that the actual contact surface de-

pends upon the solution u and is, therefore, not known in advance.

Our first major result is stated in the following proposition, the

proof of which is given in the Appendix:
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Proposition 3.1: Let u be a sufficiently smooth solution of the

Signorini problem with nonlocal nonlinear friction 5.3.3 - 5'.3.7. Then

u Is also a solution of the variational Inequality 5.3.11. Conversely,

if u is a solution of 5.3.11, then u also satisfies the system 5.3.3 -

5.3.7 if these relations are Interpreted in a %.,eak or distributional sense.O

5.3.3 Other Related Friction Problems. Several friction problems can be

obtained as special cases of the nonlocal nonlinear problem discussed in

the previous Sections by allowing p - 0 or E - 0 or both p,e- + 0 or by

restricting the dependence of the friction functional to its second vari-

able. Results similar to those established in Proposition 3.1 can also be

stated. Moreover, if vS o(on(u)) is prescribed on rc , and, hence, is in-

dependent of the displacement u , the static friction problem thus ob-

tained becomes equivalent to a constrained minimization problem involving

a functional representing the associated potential energy. Thus, we have

the following cases:

Case I (p = 0). The friction law, which is now of a local type, is

given by 5.2.17. Thus the system5.3.3 - 5.3.6 together with condition

5.2.17 will produce a Signorini problem with local-nonlinear friction

which can be shown to be equivalent to the variational principle 5.3.11

with the functional j P, c&) replaced by

j (U'v) =IC (1) (I IlT )ds

~ ~ r C
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Case II (c 0). For this case, the friction law is given by 5.2.10

If we add this condition to the system 5.3.3 - 5.3.6 we will obtain a

Signorini problem with nonlocal friction which may be seen to be equiva-

lent to the variational inequality 5.3.11 if we replace j , (- , ) in 5.3.11

by the functional

j (uv) = j spGn()) '!Tds

C

The proof of this equivalence differs in some aspects from the one given

in the Appendix; it can be found in the unpublished report by ODEN and

e' PIRES [1981].

Case III (p E 0). When both p = 0 and = 0, the corresponding

friction law is given by the conditions 5.2.18. The system 5.3.3 - 5.3.6

and 5.2.18 will then correspond to the Signorini problem with Coulomb

friction. DUVAUT and LIONS 11976] derived a variatoItal principle charac-

terizing this problem which is given by 5.3.11 if we replace the func-

tional j P .,-) by the functional

j = Jr " no(Z) I tIds

Finally we mention as a last special case, an auxiliary problem

that proves to be useful in the next Section when we establish the con-

ditions for the existence of solutions to the nonlocal-nonlinear friction

*problem. This auxiliary problem involves a friction law for which the

critical or limiting value of the tangential stress is prescribed rather

than being determined by the equilibrium displacement field u . We will

then have in the nonlinear case (c > 0) , a law of friction of type 5.2.12

where now T is given on the contact surface r . In the case C 0 ,I".
. . .•*- . ,• ain"
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this friction law assumes the form:

ITu)l < T Implies uT-- I

10T - T implies the existence of X > 0 on rC (5.3.12)

such that u =,
-T -T)

Thus, depending on e being strictly positive or zero, we have

Case IV (T fixed, C > 0). The corresponding Signorini problem now

consists of5.3.3 - 5.3.6 together with the friction condition 5.2,12 (T

given on r ). The equivalent variational formulation of this problem is
C

Find a displacement field u in K such that

a(u,v-u) + jO(v) - Jo (u) > f(v-u) (5.3.13)

for all v in K

where

JOC r Am(IVTI)ds (5.3.14)

Also, it is not difficult to show that in this case(5.3.13) is equivalent

-4 to the constrained minimization problem of finding u in K such that

I(u)<I(v) (5.3.15)
C- -

for all v in K , where the energy functional I () is defined by

1

I (v) - a(v,v) - f(v) + (v) (5.3.16)
C 0

0E

*i
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Case V (T fixed, 6 = 0). The law of friction is now of the form (5.3.12)

which, when added to the system 5.3.3 -5.3.6 , gives the corresponding

Signorini problem. We emphasize here that condition 5.3.12 represents

a law of friction different from Coulomb's law. It is easy to establish

the equivalence between 5.3.3 - 5.3.6 together with 5 .3.1 2 and 5.3.13 if

we replace in 5.3.13 J0 C.) by the functional
C

jo (v f -rl ds (5.3.17)

The energy functional for this case is defined by

1
I(v) = a(vv) - f(v) + jo(V), v in K (5.3.18)

Then problem with jO ) replaced by jO(-) is equivalent to the prob-

lem of seeking minimizers of the functional in 5.3.18 which satisfies the

unilateral constraints.

Remark 3.1: It is interesting to note that when C = 0 the functional

jOG .)defined in 5.3.16 is non-differentiable while the nonlinear fune-

tional J() given by 5.3.14 is differentiable on all of V . Its

derivative Djo () at the point u , in the direction v is given by
0

Dj 0 (u) fr T (JuI)--j- ds (5.3.19) .-

C
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It is then possible to show that the variational inequality 5.3.13 is equi-

valent to the variational inequality

a(u,v-u) + Dj (u) (v-u) > f(v-u) , for all v in K (5.3.20)

C

The differentiability of the functional Jo ( ' ) has important implications
C

- when we wish to consider finite eleinent approximations of the friction

problems discussed so far. In fact, the direct approximation of the varia-

tional problem considered in Case V (C 0) by finite elements through the

minimization of the functional defined in 5.3.18 leads to a discrete sys-

tem for which the most popular methods for solving nonlinear variational

inequalities do not apply, owing to the non-differentiability of j 0
' ) .0

5.3.4 Estimate of the Difference Between the Solutions of the Friction

Problems with C > 0 (Nonlinear) and C = 0. We wish to record here an

estimate of the difference between the solutions of problem 5.3.11 and of

the problem considered in Case II (C 0) of the previous Section, as a

function of e . The first result is concerned with the approximation of

the functional j (-,-) by the functional j ,.).
P P

Proposition 3.2: For a given element u in K for which a (u)

is well defined there exists a constant c > 0 independent of c , such

that

Ii (uv) - J(uv) < c C (5.3.21)

for all v in K . Thus, Jp,C approximates jp arbitrarily

closely as C + 0 .0



137

This result constitutes the basis for the proof of the following

estimate:

Proposition 3.3: Let uC denote a solution of 5.3.11 for fixed

c > 0 and let u be a solution of the corresponding variational in-

equality obtained by setting c = 0 in 5.3.11. Then, for a sufficiently

small coefficient of friction V, there exists a constant k > 0 , in-

dependent of E, such that

Hu - < k (5.3.22)

where I1"1 is the norm given in 5.3.8.0

Results similar to 5.3.21 and 5.3.22 can be easily derived for the

cases p = 0 and T fixed (given) on PC

5.4 Existence and Uniqueness of Solutions to the

Nonlocal Nonlinear Friction .robklem-

We shall now establish conditions sufficient to guarantee the exis-

tence of solutions to the nonlocal nonlinear problem 5.3.11 as well as ad-

ditional requirements which provide for uniqueness of solutions.

We begin by considering an important preliminary result concerning the .
auxiliary problem5.3.13 introduced in the previous Section.

Proposition 4.1: Given T > 0 on rC , T smooth enough,

() there exists a unique solution u to 5.3.13;

(ii) the correspondence that gives for each T the corresponding

solution u of 5.3.13 defines a continuous, nonlinear map B, B(r) u ;

(iii) the normal contact stress produced by the displacement u
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Son (u) = E1j. Ukt, n nJ  is well defined, and is continuous as a function

of u .03

We next state our second major result which concerns the existence of

solutions to the nonlocal nonlinear friction problem:

Proposition 4.2: For the smoothing operator S defined in 5.2.11

which transforms the normal contact stresses n into regularized ones,n

there exists at least one solution u in K of the nonlocal nonlinear

friction problem 5.3.11 for each choice of smooth enough data f and t .0

One method of proof of this proposition was suggested by DUVAUT [1980].

A complete proof for the nonlocal friction problem (C = 0) is given in

ODEN and PIRES 11981]. Only the general structure of the proof is of in-

terest here since it suggests a means for actually calculating solutions

of the Signorini problem. The key steps in the proof are outlined as

follows:,

1. Pick an arbitrary smooth enough T > 0 on r.
C

2. By Proposition 4.1, for each such T , there exists a unique

solution to

a~ ,v-u) + brj C 1 ) YI!TI))ds (5.4.1)

> f(v-u)

for every v in K

3. Let u = B(T) , where B is defined in Proposition 4.1.

4. Compute %n(U)

5. Calculate vS p( n(B(T))) and check if it is equal to T . If so,

we can write
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a(u,v-u) + JrVSp(a (u)) O I - 1)(Iu rJ)ds > f(v-u).c . n -C ~( l - _T

for every v in K . If not, we go back to step 2 and replace

in 5.4.1 T by the new value VS (O (B(T))). An iterative

scheme is therefore obtained by repeating in this way, steps 2

through 5.

6. Obviously, step 5 describes a fixed point problem for the operator

T = vS 0 o B

p n

We must therefore show that there exists at least one element

T* such that T(T*) = T* . Then u* - B(T*) will be a solution

of the contact problem with nonlocal nonlinear friction.

For small V , the composition T defined above, becomes a contrac-

tion and the fixed point is unique. Hence, we can state the uniqueness

result:

Proposition 4.3: If the coefficient of friction is sufficiently

small, the nonlocal nonlinear friction problem 5.3.11 possesses a unique

solution. 0

Future Work. Numerical solutions of the nonlocal-nonlinear friction 7
problems considered in this paper are currently under investigation.

These include studies of behavior of the solution for various values

of the major parameters; the coefficient of friction V, the nonlocal

contact parameter p, and the tangential stiffness of the junctions C

This work is to be the subject of a forthcoming paper.
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APPENDIX

PROOF OF PROPOSITION 1

Let u be a sufficiently smooth solution of the Signorini problem

with nonlocal nonlinear friction (3.3) - (3.7) . Then, the following

inequality holds for every admissible displacement v

(u) • (v - u T ) + VS (c(U))(P (IV T) - 'P(lUT) > 0 on r c  (A.1)

T- -T -T p n - E -T E '-Tl

In fact, since the function 'P(.) is convex and differentiable,

''(12UTl) (vT - uT ) < Pc(jv T) - (IuTl)

or

UT%C(!UTl) 1 V - uT ) < % VT -'T

T-TT

Hence, since u is such that (3.7) holds,

uT -
aT(U) (VT - U T) = -vSP(an(u)) *s(1 UT') ( " T - T

> I 'PC I1-T1) - T)

or

!T -T C(i) '(IuTI) > 0

Since we assume u to be sufficiently regular (e.g. u E H 2(Q) f K),

2 2 2
iH( ) fl K =intersection of the Sobolev space H2( ) =(H2(a))N =

H2 () x H2 (9)x ... xH2 (Q) with the set K. For the definition of the space

H 2() see ADAMS, R. A., Sobolev Spaces, Academic Press, New York, 1975.

-
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the following Green's formula holds for every v in K

a(uv-u) - JOij(u)(vl - u )dx

fi.j

(u), (V - u)dx

+.frij (2)nj (v i - u i)ds

But O (u) = -f in Q by (3.3) and
Irij (uj ( i i d F

fraij i ( Vn. C. - u )ds J ti(v - ui)ds +
r fr F

S+ JCij (u)nj (Vi - i ) Is

for any v in K since u =0 on rD by (3.4) and ij(u)n j = t, on

rF by (3.5). Therefore

a(u,v-u) - f(v-u) = fr (u)n (v i - ui)ds

C

=f r ( ( -(T u + Cn(u)(Vn - u )]ds

Here vn = v • n and similarly for u n Hence for every v in K

a(u,v-u) + J VS (n())(q(IVTI) -W)CUTIV))ds - f(v-u) =

C

-J () ( - T + VS (n)ds

4C(ITI)+an~)( - un)]dB
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But

On(U)(V n - un) = On(U)[V n - s - (Un-S)]
= o (u)V - s)

(vn S)

>0

by (3.6) and the definition of the set K . Hence applying inequality

(A.1) we finally obtain

a(u,v-u) + j P(uv) - j P(uu) > f(v-u)

for every v in K , i.e., variational inequality (3.11) and the first

part of the proposition is proved.

Conversely, let u in K be a solution of the variational inequality

(3.11). Followingthe proof given by ODEN and PIRES [1981, p. 20-22] for

the case E = 0 and omitting algebraic manipulations, we are led to con-

ditions (3.3) - (3.6) if we interpret them in the sense of distributions.

Then, variational inequality (3.11) will be reduced to

frcIon(U) (vT - T + VSp(n(u)) (W(IV T 1)-

-ECIUTI))]ds > 0

for every v in K. If we let vT to be of the form

vT m uT +(w - u)

where 0 belongs to the open Interval (0,1) and wT is the tangential

component on IC of an arbitrary disp" cement w in K , we obtain

, mm-= -'' mmm~ mmmmmmlm ml, m mm lm ..C
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OT(U) - (T - T  + \SonU))C(l uT + O(WT-T) )

-4)E( JuT1))lIds > 0

Dividing through by 8, taking the limit as 8 0 and noticing that q#

is differentiable gives

[a (T -(w ) + vS (a (u)) OEITI) I • ( T - UT)]ds > 0

for every w in K . Finally taking first w -uT  and then wT  2uT

produces

y(u) " uT + VSP(on(u)) C(UT') 1T' = 0 on re

which we have seen in Section 3.1 to be equivalent to the law of friction

(3.7). 0

<1
~-1
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6. SUMMARY OF STABILITY RESULTS FOR REDUCED-INTEGRATION-

PENALTY METHODS

A discussion of the -,-curacy and numerical stability of several

reduced-integration-penalty methods for the analysis of Stokesian

flow in two dimensions is presented. A summary of results on analytical

studies of the LBB condition is recorded. Recommendations on which

elements provide good accuracy and stability for use in computational

fluid dynamics are given.

6.1 Introduction

In this communication, some of the numerical and theoretical

results we have obtained over the last several years on reduced-

integration-penalty (RIP) methods shall be summarized. Complete proofs

and more detailed discussions can be found in references ODEN et al [1980,

1981, 1982].

The basic problem to be considered here is Stokes' problem for

steady confined flow of a viscous incompressible fluid, which can be

characterized by the following variational boundary-value problem:

Find a velocity field u C V and a hydrostatic pressure

field p - Q such that

a(u,v) - (p,div v) = f(v)
. .... (6.1.1)

(q,div u) = 0

for all admissible velocities v in V and all admis-

sible pressures q in Q

- , --a. . .l I mk ~ m m - ~ m m ~ m a -:. .
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Here,

V space of admissible velocities

= {v = (Vlv 2) I viE Hl() , a regular open bounded domain in IR2

a(u,v) = the virtual work, a continuous bilinear form on V

V vJ grad u grad v dx

2

f .:
= 1 dx; dx dx d

~X. X. 1x2
i,j=l "

V being the viscosity (V > 0)

(p,q) - pqdx L (Q)-inner product

2
Q = space of hydrostatic pressures = L (SI)

= space of Lagrange multipliers corresponding with the constraint

"div u = 0 in ";

f(v) = virtual work of body forces f (f'f 2)

f v dx, v an arbitrary "virtual" velocity in V

We endow V with the energy norm,

2 =2 ;v av -.v V f a dx

i,j=l i

and Q with the usual L2 -nocm,
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iq 11 2 (q , q ) - q 11 

.2

0° Q

When the bilinear form a(-,-) satisfies the conditions

_ ivI ;av '> i
a(u,v) < M flu _ 11v 11V; a(v,v) 1(.1.2)

for arbitrary velocities u,v in V (with M and a positive constants)

and if there exists a constant > 0 such that

I(q,div v)[
s II 'Q/IR < sup (6.1.3)

V llvlV
.:4

for all q in Q , then we are guaranteed the existence of a unique

solution u in V and p in L2 (2)/R to problem (6.1.1) [here

2
L R()/1R Q/R is the quotient space of classes of square-integrable

functions "modulo constants"; i.e. the hydrostatic pressure can be

determined only to within an arbitrary real constant].

Under suitable conditions on the data, solutions of (6.1.1) are also

solutions of the classical Stokes' problem.

-Au + Ap = f in 1
u = 0 in Q (6.1.4)

div u =0 in £2

I

It has been observed by many authors (see in particular REDDY [1978,1979],

HUGHES [1977], HALKUS [1977], and the works of ODIYJ and associates [1979-19801)

4| that considerable computational effort might be saved by employing an ex-

terior penalty approximation of the constraint

II



147

div u = 0

In fact, many ideas of convex optimization surface when we consider the

fact that problem (4) is equivalent to the problem of minimizing the

functional

1
J V FR ; J(v) = - a(v,v) - f(v)

on the linear subspace,

K = fv in V div v = 0 (in Q))

One can relax such constraints by appending to J a convex, differentiable

-1
penalty term P(v) = (2c) (div v, div v) so as to produce the penalized

functional, for C > 0 , given by

J V- . ; J (v) = (v) + d -divvI 0  (6,1.5)

Minimizers u of J are characterized by,

-1u - V a(u ,v) + C (div u, div v) =f(v)

for all v in V (6.1.6)

It is informative to note that an alternative way at arriving at

the same formulation (6.1.6) is to use the so-called perturbed Lagrangian

method. The Lagrangian associated with J and the incompressibility

constraint is
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L V x Q IR ; L(v,q) = J(v) - (q, div v)

The perturbed Lagrangian is defined by

L(vq) = L(v,q) - (q,q)

and its saddle points (u ,pc) are characterized by the system

a(u 'v) - (PC , div v) f(v) for all v in V

£ (6.1.7)

(Ep£ + div u ,q) 0 for all e in Q

Then one immediately has

P - divu in Q (6.1.8)

and, hence, the first member of (6.1.7) reduces to

a(u ,v) + e (div u , div v) = f(v) for all v in V

which is precisely (6.1.6). Hence (6.1.7) and (6.1.6) are equivalent

formations, but (6.1.8) provides a method for also calculating approxi-

mations of the hydrostatic pressure from the penalty approximation of

the velocity field.

6.2 Full-Integration Penalty Methods

To construct a finite element approximation of problem (1) for,

equivalently, of (4)], we proceed in the usual fashion by replacing SI

by a mesh Sh consisting of a collection of E finite elements.
h

S7
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Continuous piecewise polynomial approximations of the velocities over

Sh are denoted v If Q is polygonal, we can usually construct S1

so that the approximate velocities vh be in a finite-dimensional subspace

Vh of the space of admissible velocities V . We generally denote by h

the mesh parameter

h = max h ; h e dia( )-
l<e<E e e e

where e is a finite element in Q h and by regular refinements of the
eh

mesh we generate a family fV h of subspaces, the union of which is
h>O

everywhere dense in V

It is, of course, also possible to introduce a space QhCQ of

approximate hydrostatic pressures qh defined oer the mesh h these

being piecewise polynomials not necessarily continuous across interelement

boundaries. But the spaces Qh are not generally explicit in a penalty

approximation of (6.1.1). We shall show below that, in fact, these spaces

are always inherently defined by the manner in which one approximates

the penalty functional.

The first method that one uses to approximate (6.1.1) is as follows:

For given E > 0 , find uEh such that

a( u h) + E-1 (div u div vh) = f(v (6.2.1)

for all v in Vh

tor (h

Mast engineers seem to think method (6. 2. 1) "will not work" and that



150

it leads to a "locked solution" (uh 0 as F_ 0) but this is not

the case. The problem is that if the terms in (6.2.1) are integrated exactly,

then the stability of the method is conditional, depending on the re-

lationship between c and h . For instance, Falk [1975] and Falk and

King [1975] have considered finite element approximations of the type

(5.2.1) with a penalty parameter of the form

= y hT

where y and a are positive constants, with a to be chosen so that

an optimal rate of convergence is obtained. It is interesting to note

that no such a exists and that post processing using an extrapolation

technique is needed to achieve the optimal rate. However, without

extrapolation, the best choice of a for their method is a = 3(s-l) ,

where s = min(B,k) and the body force data f is in (H -2(Q))
2

> 2 , and k is the degree of the complete polynomial approximation

of the velocities. The point is that these methods can converge, but

only if E is taken as a special function of h and even then at a

suboptimal rate.

The problem with method (6.2.1) is that, from a practical point of view,

it is not satisfactory because, for a reasonably fine mesh, c must be

taken so large to produce a non-degenerate solution that the incompress-

ibility constraint is not adequately satisfied. The mesh sizes needed

to make this method attractive are so small that the computational effort

needed to extract a solution is prohibitive.
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6.3 Reduced Integration

To overcome the difficulties mentioned above, it has become common

practice to use a numerical quadrature scheme for evaluating the penalty

integral f div u div v dx which is of lower order than that

required to integrate this term exactly. Let

E
I(fg) = E I (fg) (fg (C°(2))

e=l e
(6.3.1)

G
I (fg) E W e fC gQ e)

ej=l

denote a numerical quadrature rule for integrating the product of

epiecewise continuous functions fg over the mesh, where W. > 0 are

e
the quadrature weights for element e and are the quadrature

points in element e . Suppose that a number G of such points must

h
be used to integrate the functions div uh div vh (uh'yh E Vh)

exactly and that G < G . Then a reduced-integration-penalty ap-

proximation of problem (6.1.1) consists of solving, instead of (6.2.1),

the following discrete problem:

E Vh
For e > 0, find Uh in V such that

a(uh,vh + E-lI(div 6 div v f(vh (6.3.2)

for all v in V h

Corresponding to each choice of Vh and I(') there is uniquely
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hdefined by (6.3.2) a finite-dimensional space 0 Q of hydrostatic

pressures q The unique element p in Qh defined by

IMPh + div uh)qh) = 0 for all qh in Qh (6.3.3)

or, equivalently,

P( ) -E- div u ) (6.3.4)

is the corresponding approximation of the pressure p . In fact, (6.3.2)

and (6.3.3) correspond to (6.1.7) with (',') replaced by I(*). For instance,

if Vh consists of piecewise polynomials on rectangular elements and

h
I(*) is 2 x 2 Gaussian quadrature, Q then is spanned by piecewise

bilinear functions, discontinuous across interelement boundaries, with

nodes at the four Gaussian quadrature points. If I(-) is one point

integration, Qh is then spanned by piecewise constraints, etc.

The key issue is whether or not solutions of (6.3.2) exist and, if so,

how they behave as h tends to zero. Let Div and V be discrete

divergence and gradient operators defined by

Div :Vh Qh V Qh V
h h

(6.3.5)

h h D hh h=(qhdivvh) - -[VhVh , qh] J
h h

for all vh  in V and qh in Q . Then, in view of the results listed

in Section 1, a unique solution to (6.3.2), (6.3.3) exists whenever (6.1.2)

holds for all uh'h in Vh (which is always true if (6.1.2) holds and
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1I

and V hC V) and if, in analogy with (6.1.3), the following discrete

Babuska-Brezzi condition holds:

There exists a constant ah > 0 such that for

hh
all hydrostatic pressures qh in Q

(6.3.6)

eI(qhdiv h~1

h lh Q/ker Vh sup IV Il- l -h 1

Here

ker Vh = qh in Qh I(qhdiv vh)  0

(6.3.7)

for all in V

Error estimates can be obtained in certain caser. Suppose that,

as c 0 , (6.3.2) and (6.3.3) lead to the mixed finite element problem

a(uh,Vh) - I(phdiv vh f(v h

(6.3.8)

I(qhdiv uh5  0

for arbitrary vh and q Let E1  denote a generic integration

error definpd by

E1= lPhi V) f (h div V 5
- lPdVh ) (6.3.9)

E E I(p hdiv v h) ( ~h9' i Yh I(p hdiv vh)(.39

Setting v - h in (6.1.1) and substracting (6.3.7) gives
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a(u - u vh ) - (P -P div v) - E = 0 (6.3.10)

ht ..h ...-h I

Using (6. 1. 1) and (6.3.10), we have

Ilu - h Iv < a(u - uh' - u)

=a(u - uh, u - vh) + a(uuh , vh -u h)

1 liN uh 11 -i h iv + (p -p h,hiv(+h - +

2 v

S 2 Ii 2h + lV2-h -Vh iV
li P II h  II v L .1+ I uI

Q+ li_ h IQL Iu Uh IV + --h v I

Thus,

Snu Uf iiu - vh I + - Flo + (6.3.11)

h V  
V in 

-
h i1V +1P 

Ph

But

hi - inf ip -qh 10 + IIP - h ItQ)qh in Qh

(6.3.12)

< inf h l i p
- qh 11 + -ip q /ker A

q h in Q Q h Ah

S

!S
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I Ia(u - $vh'h) + E II
P h h Q /k er V h  < h suh 1 1

<

i IEI (Pdiv h)

1 I ht vh (6.3.13)
h V h  

II h 1 V

etc. Again we note that the convergence and stability of the method

are strongly tied to the constant 5h  the characterization of

h h
ker Vh , and the interpolation properties of Q and V

6.4 Summary of Some Stability Results

A mathematical analysis of the discrete Babuska-Brezzi condition

(6.3.6) has been made by Oden and Kikuchi [1982], Oden, Kikuchi and

Song [1981] and Oden, Jacquotte [1982] for several finite elements for a model

two-dimensional Stokes' problem on a uniform mesh. We shall summarize

chese results here which pertain to the behavior of the "LBB-constant"

Oh and the stability of the pressure calculations. We use the

notations

P = space of complete piecewise polynomials of degree k
k

over an element -

Q= space of tensor products of complete polynomials of

degree k

qq
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18 = the eight-node isoparametric element

Results are summarized in Table 1. In this table, figures 1, 2,

and 7 "lock" at small values of the penalty parameter c This means

that for a given mesh size h , c cannot be taken arbitrarily small,

as noted earlier. Of course, for an acceptable C for reasonable

mesh sizes, E is so large that the constraint of incompressibility

is not adequately satisfied. Hence these elements should generally be

avoided. Elements 2, 4, 5, 8, 11, and 14 are unstable since h = O(h)
h]

Remarkably, these instabilities frequently are not observed on uniform

meshes when the solution is very smooth. Mild irregularities in the

solution or small perturbations in the mesh may, however, produce violent

oscillations in computed pressures the magnitudes of which increase

without bound as h tends to zero. In many cases, however, these

oscillations disappear upon "filtering" the pressure solutions (i.e.

upon averaging the pressures over one or more elements). In the case of

elements 2 and 14 it has been proved mathematically (by N. Kikuchi and

the author) that certain filtering schemes will produce a stable and

convergent method. However, it is not known if filtering can be used

to stabilize and salvage the remaining unstable elements.

Elements 6 and 10 lead to stable and convergent schemes and are

quite robust in the sense that they are insensitive to singularities in

the solution. However, they are not too accurate and converge at a

suboptimal rate.

Elements 5 and 9 are calculated using the perturbed Lagrangian

w~
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ideas discussed in Section 1: a piecewise linear approximation of the

regularized pressure pg is computed over each element. Then (6.1.7)

leads to a discrete system for each element of the form

T
Ku -Bp f +

(6.4.1)

CMp + Bu = 0

where K is the element stiffness matrix, B the non-rectangular

constraint matrix, f the load vector, 0 the "connecting" vector

(which sums to zero upon connecting elements together to form the mesh),

and M is the Gram matrix corresponding to the linear shape functions

for pg . Thus,

-1 -1 T
C= -- M B u (6.4.2)

i.e., the fact that ph is discontinuous across interelement boundaries

makes it possible to eliminate the pressure at the element level by

(6.4.2). Then th penalty approximation over an element is characterized

by

(K + e -1 BTM B)u f + ~ (6.4.3)

Thus, no reduced integration rule is actually used in constructing

elements 5 and 9.

Element 9 is clearly the superior of any listed: it is unconditionally

stable, it provides both velocity and pressure approximations which

* converge at the optimal rate, and
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ker V = ker V

Element 13 is somewhat of a novelty. While element 5 yields

unstable pressure approximations, ODEN and JACQUOTTE [4] have shown

that a composite of three Q /P elements (no. 9) and one 18/P
2 1 1

element (no. 5) is stable.

The behavior of elements 11 and 12, marked with an asterik, is

only conjectured here and has not been rigorously proven.

Extensions of these results to three-dimensional elements are

straightforward.

11
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7. SUGGESTED AREAS FOR FUTURE RESEARCH

During the course of this project, two areas have emerged as representing

important research subjects needing significant amount of additional study.

These are: 1) the study of nonlinear and non-classical friction laws in

contact phenomena in solids and structures and 2) a continued study of models

and numerical techniques for the analysis of finite elastoplastic deformations

of the type characteristic of metal forming processes.

The idea that new descriptions of friction are necessary to adequately

eescribe the phenomena of contact, impact, and wear of deformable bodies

will have a significant impact on broad areas of applied mechanics in engin-

eering. It will mean that a variety of new models and results will need to

be developed to adequately describe such phenomena as load reversal on contact

surfaces, heat generation, abrasion and wear, impact, dynamical friction ef-

fects, even fracture initiation and growth. The multitude of this phenomena

in which ver crude friction models have been used in Lhe past, must ulti-

mately be re-examined in some detail. This will represent a research effort

of very large proportion, but should ultimately have a significant pay-off

in terms of the liability of mathematical models and numerical techniques for

simulating the nonlinear behavior of complex structures.

The reliability of most of the numerical simulators of metal forming

processes is very much in doubt. Recent results seem to indicate that most

of the popular methods may be marginally stable and produce stress approxi-

mations which are very sensitive to perturbations in the mesh material pro-

perties. However, if true, this would be a very undesirable situation, since

these factors play a fundamental role In the prediction of residual stresses

in machine parts and structures. Therefore, a careful mathematical and nu-

merical study of mathematical models and numerical methods for handling these
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classes of problems seems to be in order and to represent an important

are for future research.

1

4.

U
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