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Preface

This document is one of a series of interpretive. or state-of-the-art. repornts prepared as a part of the Oak Ridge
National Laboratory program entitled High-Temperature Structural Design Methods {or LMFBR Components. The
goal of this program is to develop a verified design technoiogy apjlicable to the high-temperature. long-term
operating conditions expected for LMFBR vessels. components, and core structures.

In addition to contributing to the establishment of the overall state of the art of elevated-temperature design
technology, these reports are intended to assist in identifying and interpreting near-term needs i their respective
areas. They should also contribute to the identification and recommendation of potentiai paths of approach to some
of the longer-range needs associated with the gen=ration of a v=rified technology.

Professor R. H. Gallagher, Chairman of the Structural Engineering Department at Comell University. was chosen
io prepare this report because of his experience in the development of almost every aspect of the finite-element
methods currently being empioyed by a meiority of nuclear design organizations. His industrial backgiound includes
several years in the aerospace field, where many of the analysic methods avaiiable ‘o the LMFBR struc ural designer
were first developed and employed on similar protlems.

J. M. Corum
Oak Ridge National Laboratory
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Abstract

The status of the finite-ciement method s 3 Sass for design amalyses of nuclear reactor structures
for clevated-iemperature service is reviewed and assessed. First. 2 general picture is given of procedures
in analyses of the compiete structural system from the sview of the finite-clerment method. and then
reviews are presented of tvo classes of clement. important to nuchear reactor structures - sold
clements and thin-shell dements. Questions of inclasts. 2nalysis are discussed in chapters deabing with
time-mdependent plasticity and time-dependent viscoer-. sticity and creep respectively. Since the
accurzcy of Jdesign analysis for elevated-temperature coavdi. «ors is dependent upon the analysis of heat
transfer. the utilization of the finite-clement method in this conrection 5 also suiveyed. Fimally, an
examination is made of the role of the finite-eclement method in the refevant. but more peripheral,
topics of dymamic, fmnite displacement (stability;, and fracture mechanics analyses. The report
concludes with an assessment of the scope and timatations of finite-clement analysis for the intended
applications, bascd on the material covered in prior chapters.
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1. Introduction

The issuance of interim design criteria for the
FFTF/LMFBR along with recent and contemplatea
changes in segments of the ASME Boiler and Pressure
Vessel Code have intensified interest of all members of
the nuclea: structural design community in computa-
tional methods in structural mechanics. These new
sriieria and changes seek a new level of realism in the
prediction of structural behavior in design analysic that
can only be reached through application of the mosi
modera cigitai-computer-based methods of structura!
snalysis. The modernity of these methods, however,
immediately raises questions concerning both their
validity and their feasibility for the solution of the
specified 2ngincecing design problems.

Although many diverse analytical procedures may be
classed as digital-coiaputer-based (or numerical), this
report fccuses on the finite-element method. Justifica-
tion for this restriction derives mainly from the
adopdon of the method by the majority of affected
design o.ganizations in response to the aforementioned
code recjuirements. It might be contended that among
the capdidate numerical methods, only the finite-
element method can cope with the complete range of
structural geometries and behavior mechanisms, linear
and nonlinear, in a single computer program. In a less
controversial vein, it may alternatively be argued that
since other methods (e.g., finite differences, harmonic
series), being of early vintage, are already well tested
within their range of applicability, they need no further

‘The latter statement implies the question: In view of
the lateness of development of the analytical capa-
bilities rep:esented by the finite-elemer.t method, are
coaification agencies realistic in demanding the per-

formance of analysis to a degree of refinement not
possible by use of elementary meth»ds? In other words
— as stated eariier — is the method valid in performance
of the stipulated design analyses? Furthermore, if
validity of theory car. be proved, one must give serious
consideration to the economics of the analysis.

The scope of the subject problem, and consequently
of the related literature, is so great as to preclude any
detailed developments from first principles.'™* > The
purpose of this report is to define the background and
state-of-the-art assessments of the pertinent component
aspects of finite-element analysis. To certain of these
are appenced correlations of the extensive alternative
paths confronting the user and, insofar as is possibie,
the identification of recommended paths.

Turning now to a statement of the component aspect
of the problem (and report), it is well to emphasize at
the outset that the key design code requirements
mentioned earlier are essentially those demanding the
performance of inelastic analyses, both for time-
independent plasticity and time-dependent visco-
elasticity and creep. However, the technical areas
encompassed by such requirements oxtend beyond
inelasticity. The high degree of nonlinearrty of these
phenomenz and the need for numerical integration in
time in the case of creep make clear the importance of
efficiency in the analysis of the complete structural
system. The accuracy of the method in solution of the
special (inelastic) problem can be no greater than the
accuracy in linear analysis, which is governed in part by
the finite-element relationships themselves. Also, one
must consider modes of failure, whose prediction can
be accomplished with use of the finite-element method,
and thermal analysis.
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The above italicized component aspects of the
problem are discussed in this report in the following
order. Chapter 2, System Analysis Procedures, gives a
view ot the system analysis procedures in current
application, describes the theoretical bases of existing
dternztives which hold major potential for improve-
ments in this area, and delineates accomplishments in
the subsidiary problem of efficient equation-solving
algorithms.

Element formulation consideraions are discussed in
Chapters 3 and 4. Two classes o elements are identified
as being of primary importance in metal nuclear reactor
structurai design: solid elements (Chap. 3) and thin-
shell elements (Chap. 4). In each case an extremely
large number of alternative formulations confront the
practitioner. Qur objective here is to identify and
classify these alternatives and, since no single element
formulation is uniquely acceptable, to identify the
characieristics of praferable formulations by review of
published numerical results.

The central cbjective of the report is reached in
Chidpter 5, Inelastic Analysis — Time Independent. The
theoretical bases of the twn common approaches to
finite-element inelastic analysis, the tangent stiffness
and initial sirain methods, ar= given in greater detail
than are fundamentals of other topics in this report.
The pitfalls in appiaiion of these alternatives are
discussed, and an attempt is made to relate one :o the
other.

Creep analysis constitutes the subject matter ot
Chapter 6. linite-element solutions to this problem
have to date depended upon a single approach to
inelastic analysis (the initial strain method), and contri-
butions to the literature have been few. Nevertheless,
numerical results of applications to probiems with
experimental data have yielded reasonable theoiy-test
correspondence.

Problems of a dynamic nature are significant in the
design of nuclear reactor structures. The most promi-
nent of these arise due to response to earthquake
excitations, although cther environments and forms of
excitation are occasionally of concern. Chapter 7
outlines various facets of finite-element analysis for
dyramic response.

Accuracy of design analysis for thermal stress situ-
ations is ciearly dependent upon the accuracy of the

subsidiary conduction heat transfer analysis. The com-

plexities that 1ecessitate finiteelement analysis for
structural respo~ise are likewise pre-ent in analyses for
thermal response. It vould therefore be desirable to
invoke finite-elzment capabilities for the latter as well.
An additional advantage arises because the thermal and

structural models may be defined identically and no
costs are accrued in the transfer of data from one 1o the
other. Finite-element thermal analysis has grown rap-
idly to the point where it is relatively complete and
widely emploved; this progress is reviewed in Chapter 8.

Chapter 9 1reats two disparate modes of failure,
elastic instability and fracture. As will be shown,
finite-clement analysis may play an important role in
the prediction of each.

The final chapter (Chap. 10) draws upon the detailed
perspectives of the prior sections to form an overall
picture of the report subject matter. The major advan-
tages and disabilities of current practice and capabilities
are reasserted, and specific directions oi future work are
suggesied.

Before proceeding into the aforcinentioned topics,
note should be taken of recently published works that
provide an invaluable supplement and elaboration of
the contents of this document. The bouk edited by
Gill'* gives a detailed summary of the theoretical bases
of mouzsrn pressure vessel analysis. The Froceedings of
the 1971 Berlin Conference on Structural Mechanics in
Reactor Tzchnology'® contain over 300 papers on
various aspects of structural design of nuclear reactors,
many of which deal with numerical methods. Reference
16 is the proceedings of a cor.ference on large-scale
general-purpose programs in siructurai analysis with
particular reference to nuclear p:actor structures.
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2. System Analysis Procedures

In recent years there has been a tendency to neglect
consideration of the procedures for finite-element
analysis of the total structure, it bsing assumed that this
is a solved problem, and concentrate instead on the
formulation of new clement relationships or the ex-
tension of the method to cope with nonlinear problems.
This has been the diract result of the fact that one
approach to system analysis — the direct stiffness
method of matrix displacenent analysis — is almost
universally adopted in practical applications. However,
2 continuing consideration of alternative system analy-
sis procedures is of extreme importance, and this
chapter is devoted to an examination of aspects of
significance to they: procedures.

The importance of continuing consideration of sys-
tem analysis procedures stems from many factors. Of
principal -oncem to the general area under examination
is compatational efficiency in the face of repetitive
linearized anaiyses of nonlinear problems. Even in
direct stiffness analysis there is not a single, generally
accepted scheme, but rather many forms that differ in
various ways from one organization to another. Clearly,
the relative efficiency of these versions likewise differs.
It must al<o be recognized that new theoretical deveiop-
ments have identified alternatives to direct stiffness
analysis that are substaatially more efficient for certain
applications. In addition, these alternaiives may be
more suited to the conduct of analyses for certain
phenomena, for example, viscoelastic deformation.

Motivatad by the above issues, this chapter reviews
developrnents in the three major alternative methods of
system analysis: the stiffness, flexibility, and mixed
methods. This review also constitutes an essential
background for work to be cited in later chapters. It has
been found that the alternative methods give rise to

new operational requirements. specifically in sub-
structuring and the handling of constraints; this is
discussed in Section 2.2.

The past five years have scen a remarkable inten-
sification of effort in procedures for the solution of the
algebraic equations of finite-element analysis and in the
assessment of errors in the overall solution process.
Both are motivated by the coming of age of general-
purpose programs and the emergence of the third
generation of computers. Section 23 is therefore
devoted to equation-sclving methods, with a division
into direct and iterative methods, and Section 2.4
discusses sources of emror and methods for their

identification.

2.1 BASIC METHODS
2.1.1 Potential Energy (Stiffness) Formukations

The displacement method of finite-element analysis
consists in the fornmiation of algebraic equations
relating known applied loads to the unknown parame-
ters which define the displaced state of the structure.
Once these equations are solved, the evaluated displace-
ments are substituted into separate equations to deter-
mine internal forces, stresses, and support reactions.
Althoigh the method may be established by direct
reasoning, it is common to invoke energy concepts in
the form of the minimum potential energy principle.
Thus the method 15 alternatively termed the stiifness,
equilibrium, or potential energy method.

The most popular form of the displacement method is
the “direct stiffne.s” scheme.!-2 In this approach, a set
ot stiffness equations is calculated for each element in




the analytical model.
[k} {a%)= {F}+ {F}} . (1)

where (k] is the element stiffness matrix, {A°} are the
element displacements, and {F} and {F'} are joint
internal and initial forces respectively. The initial
forces, which are known quantities, result from initial
strains and are essential to the analyscs of phenomena
such as thermal stress, creep, and time-independent
plastic deformation. The stiffness equations for the
complete structure are established simply by adding all
terms with like subscripts; for example, for the system
coefTicient Kijv

e=r
Ki = L K )
e=1

where 1 is the total number of elements with stitffness
coeficients possessing the y subscripts. Thus the term
*“direct stiffness method” derives from ti» formation of
the system stiffness equations by direct addition of the
element stiffness coefficients. The system equations
may now be written in the form

(K] {A} = {P}+ {P'} (3)

where now {A} lists all displacemants, or degrees of
freedom, in the system, {P} lists the applied loads, and
{P'} is the vector of system initial forces. The solution
is

{a} = (K]~ { {P}+ {P)}}. @)

The designation above of the inverse is symbolic, any
method of solution being acceptable. The solution for
stresses and internal forces is obtained by first con-
structing a system stress m trix [S] defined by

{o}=[S] {4} . (5)

where {o} lists the internal stresses and forces. The
desired results are obtained after insertion of Eq. (4)
into (5).

Other methods for establishing the stiffness equations
in a displacement formulation include the “‘congruent
transformation™ and “‘energy search” methods. Both
depend upon work and energy considerations, and their
description gives the opportunity here to define the
relaticnship between the stiffness-displacement method
and potential energy concepts. According to the poten-

tial energy principle.® of all “admissible™ displacement
states of a defcrmed structure, the cne that causes the
potential encrgy (11,) to assume 3 stationary value is
the correct equilibrium state. For stable equilibimun,,
the stationary value is 2 minimum, in which

,=U-V . (6)

and

U~ strain energy of defornation = % f Le
[E] {e}dV. v

V = potential of applied loads=f q-AdS,
S

Le_i=row vector of strains €, . .. -.?hz .

{E] = matrix of elast.c constants .

Sq = surface upon which the loads are prescnibed
q = prescribed loads on surface S, .
A = displacement corresponding to q .

An admissble displacement satisfies the boundary
conditions on displacemen. and is differentiable to a
degree governed by the specific form of the strain-
en2rgy expression. For fmite-clement representations it
is necessary to satisfy the admissibility condition withic
the element and on the bouscary of elements aputting
actual physical boundaries. Along boundary lines with
adjacent elements, it is necesssty that the element
displacement fields meet similar conditions for a rigor-
ous potential energy formulation, for example, coti-
nuity of the displacements and in certain cases their
normal derivatives, etc. This is termed the interelement
continuity condition. and displacements that meet it
are termed conforming displacement fields.

Much attention is given to estaoiishing conforming
displacement fields in the development of element
formulations, but it must be emphasized that a system
poteatial energy forruiation can be constructed using
nonconforming element formulations. Indeed, a2 vari-
ational statement of finite-clement structural analysis
which relaxes the interelement continuity requirement
can be formulated* and various levels of satisfaction of
the requirement can be constructed within this ap-
proach. The solutions obtained with nonconforming
displacement fields may prove to be of satisfactory
numerical accuracy but will not conmstitute a rigorous
application of the stationary potential energy principle.

in the finite-element potential energy procedure, the
assumed displacement fields 2re differentiated in ac-
cordance with the pert:. ent strain-displacement equa-
tions. and, after appropriate substitutions, integrations,

x




and other operations. the following discretized func-
tional is established:

n, = LA')J lilrﬁk‘. faj {a}
< |

LA @) T Py -Laa{Pr, (D

where

S
k*
e

represents ihe “unassembled” master stiffness matrix
and |a] is the system * kinematical™ or “compatibility™
matrix. The latter serves to tie together the elements to
form the complete analytical model. By imposing the
condition of stationary potential energy. one obtains

I,]Tr‘ ¢ iA}= P T JFii
K [a) {a}={P}-[a]) " {F'}, (8)

so that

K] = laltr;k‘,—l fa) . )
and

{P;=[a]T {F'}. (10)

Now {F'; represents a list of all element initial force
veclors.

The procedure represented by Eq. (8) < termed here
the conjugate transiormation potential energy meth-
od.5 Although this method appears to be less efficient
than di-ect stifiness analysis, the effort in constructing
the unassembled siiffness matrix is minimal and there
are advantages resulting from the exclusion of rigid-
body degrees of freedom from the element stiffness
matrices. The terms of [a] are unit values, direction
cosines. or structural dimensions. The algorithm for
eftecting the matrix pioduct need not be the con-
ventional algorithm for this purpose. but may exploit
the advantages of the structural system format. as
indicated below.

It is useful, at this point, to illustrate the formulative
procedure for element relationships established by
means of the minimum potential energy principle, since
thi« procedure is referred to directly or by implication
n the chapters to follow. The cornerstone of the
fornmladve process is the choice of a functional
representation for the element displacement field,

A= zn; N4, =LN_J {A}, (1)
1=1

where A symbolizss a displacement (e.g.. u, v, or w for
dircct stress problems in cartesian coordinates), 4, is
the ith displacement parameter, the specific value of a
displacement component at a joint of the element or
altematively a “‘generalized” value, and N, is a function
of the spatial coordinates which gives the spatial
variation of A resulting from a unit value of A; with all
other specific displacement components held fixed. The
vector of such functions, LN_L is termed the “shape
function” vector.

The strains are related to the displacements through
the appropriate strain-displacement differential equa-
tions (e.g.. €, = du/dx), and by differentiation of Eq.
(1) in accordance with these conditions, one obtains

{ex= [D] {A}. (12)

Note that the strain-displacement equations require
differentiation with respect to spatial variables and that
only the shape functions { N_j involve these variables.
Thus |[D] derives exclusively from operations on the
terms of LN_L

The constitutive relationships of linear elasticity,
including initial strains ( {e'} ), are of the form

{o} = [E] {e} - [E) {¢'} . (13)

where all terms are as defined below Eq. (6). By
substitution of Egs. (12) and (13) into Eq.(6), we have
for the potential energy of an element (with appro-
priate modification of the expression for strain energy
of deformation to account for a distinction between the
tutai strains {€} and initial strains {€'}):

LA
Il; =

2

(K] {A} -LAJ{F} - LAJ{F} , (14)
where

=1 = f [DI7 (E] (D] av, (15)

element stiffness matrix, and

(F} = f ID]" [E) (¢} av, (16)

element initial force matrix. The vector {F} represents




the force parameters corresponding to the displacement
parameters {A}. and the volume V represents here the
element volume.

The potential energy is a scalar value. so that the
potential energy of the system is simply the sum of the
element potential energies supplemented b:- the poten-
tial of the applied loads,

| 4
m, = e2=:1 n;-LA_J{P}

e_’p e T e ¢ e
=== L 17K (69
e=]

+LA] ﬁ [a€]T {F} -Lad{P}. (1D
e=1

for a system composed of p elements. where now all
quantities with the superscript e refer to individual
clements. The matrices [a°] are the kinematical matri-
ces defined on an element basis and serve to connect
the respective eiements to the remainder of the system.
In this form, which is altemative to Eq. (8), it is feasible
to apply one of the numerous available methods for the
minimizztion of a function of many variables. A large
share of such methods are in the class of “search”
schemes. where a search for the minimum point is
conducted through a “hyperspace” whose coordinate
axes represent the respective variables. Thus, in appli-
cation to finite-element potential energy problems,
these methods are termed “energy search™ procedures.
Fox and Stanton.® for example. exploit the conjugate
gradients search algorithm? in structural analysis appli-
cations.

A major advantage of the erzrgy search approach is.
apparently, the avoidance of formalized assembly of the
system equations and a special utility in the treatmert
of nonlinear problems. On the other hand, experience
in use of the approach is needed to insure numerical
accuracy and convergence.

2.1.2 Complementary Energy (Flexibility)
Formuktions

The *classic” approach to finite-element comple-
mentary energy analysis is through the “‘redundant
force method,”®~'® which differs markedly in form
from the direct stiffness method. However, the comple-
mentary energy counterpart of the “direct flexibility™
method has recently gained clarification and is espe-
cially significant in inelastic analysis. Therefore we first

describe the classic redundant force procedure. in order
to identify its shortcomings. and then outline the
procedure for direct flexibility analysis in a direct
flexibility format.

We define. at the outset, the element flexibility
matrix [5°] as the inverse of the element stiffness
matrix with imposed statically determinate stable sup-
port conditions. The unassembled flexibility matrix for
the system is denoted as r“6,_| and is merely a
diagonal matrix of submatrices, each of which is an
element flexibility: all element flexibilities of the
compiete structure are inciuded herein.

All member forces and support reactions are listed in
the vector (S}, and it is assumed that these values can
be obtained as the sum of two systems of forces, {Sy }
and {Sp}. The forces {Sx} derive from redundant force
systems, whose amplitudes are listed in the vector {x}.
Hence,

{Sx}=1Ibs] {X}, (18)

where each column of [b,] represents a self-equili-
brating system of forces. The redundants {X} are the
basic problem unknowns. The forces {Sp} are in
equilibrium with the applied loads {P} but are com-
puted without regard to conditions of compatibihity.
Thus

{Sp}=Ibe] {P} , (19)
where each column of [bg] represents a system of
forces in equilibium under the application of the

corresponding component of {P}. We therefore write
for {S}.

{S}= {Sp} + {Sx}=[bo] {P}+[b,] {X}. (20)
With this representation, and with introduction of the
complementary energy integral and the imposition of

the principle of least work. 1t can be shown that the
soluticn for {X} is given by

Xb=-1GI " 61T 5., 1] B}, (21)

and the el»ment forces and support reactions are

1= 1ol - 161" 6,7 ™ 5, (6] | ).
(22)




where
161 =1b 7™ 5. b} (23)

Clearly this approach requires more extensive matrix
operations than direct stiffness analysis. Far more
serious, however, is a need for computer-based proce-
dures for the construction of the [by} and {b,]
matrices from the basic data of a problem. Procedures
for the automation of this operation, termed “structure
cutting.” have been established! -2 but are expessive
in application and there is no agreement on a “pest
method.” Another problem in classicsl redundant force
method analysis is the scarcity of element formulations:
nearly all types of structures must be described by
means of axial force members and shear panels rather
than continuum elements.

In forming 2 method of direct flexibility analysis. the
most widely used scheme is to employ stress functions.
rather than redundant force systems. as the p.oblem
unknowns '3~ '5 Analogies exist in certain forms of
elastic behavior (¢.g., plate bending vs plate stretching)
between the homogeneous differential equations of
equilibrium in one form, where displacements are
unknowns. and the compatibility differential equations
of another form, where stress functions are unknowns.
The Airy stress function for plate stretching and
Southwell’s stress functions for plate bending exemplify
these situations. For other cases there is no analogy. but
stress functions aie nevertheless definable (cg.. Finzi's
stress functions' ® for three-dimensional stress analysis).

One difficulty in the direct flexibdity method of
complementary energy analysis is the presence of
constraint equations. Complementary energy. Il is
defined as

_1 -1
nc-z_[;u_usl {o} dv
- f alas.
Sa

where now the surface integral is taken over the portion
of the surface on which the displacements A are
prescribed. Thus no account is taken of the applied
loads, and to do so one must append constraint
conditions. Methods of accounting for comstraints are
explored later in this chapte:.

The introduction of stress furctions is not essential to
the proper formulation cf a direct flexibiiity comple-

mentary energy analysis. Stresses have recently been
used for this purpose by Hodge and Belytschko'? for
tlane stress and Anderheggen'® for bending.

2.1.3 Mixed Methods

Mixed methods of system analysis are as old as the
topic of matrix structural analysis itself. and although
they have found only limited use in the intervening
years. they are presently the subject of considerable
research interest. The reasons for this growth of interest
include the expangion of mixed variational principles, a
special suitability of mixed methods for shell analysis
problems. and the desirability in certain situations of an
output that gives directly both the stresses and displace-
ments.

The Reissner variational principle'® is perhaps the
most widely employed basis for mixed formulations.
Nevertheless. alternative forms of this variational princi-
ple are readily constructed?®-2! and other. more
general. “two field” principles®2-23 have been delin-
eated.

The earliest popular approaches to mixed anmalysis
were the transfer matrix method?* and Kiein's?*
smple matrix method of structeral analysis. Both are
based upon direct reasoning pertinent to equilibrium
and displacement continuity conditions. neither em-
ploys variational or energy concepts. The transfer
matrix method was devised principally for framed
structures and for attempts to exploit their topology so
as to permit analysis with operations on small-order
matrices. Klein's approach is devised principally with
continvum structures in mind and in final format is
readily iwcntified with the procedures based on vari-
ational principles.

Reissner's variational principle?® in finite-element
analysis gained attention in 1965. The special ad-
vantages of the method come to the fore in plate
bending. where the more common displacerrent-based
potential energy method taces considerable ditTiculty in
the establishment of interelement-compatible represen-
tations and it is essential to use complicated displace-
ment fields. Simple linear fields arc employed in
representation of both stress and displacement when a
mixed variational principle is adopted. More recently, in
shell analysis.2! advantage has been taken of 2 mixed
representation.

It should be noted that the basic form of the element
and system equations in the mixed approach is as




follows:

RLY

Wl -
L:O A bj ’ -
where {o} and {A} are the pertinent stress and
displacement parameters. Due to the presence of zeros
in the lower right portion of this partition, care must be
exercised in the seleciion oi an equation-solving algo-
rithm.

2.2 SPECIAL SYSTEM OPERATIONS

Certain aspects of finite-clement analvas may require
that operations ot a special type be performed on the
complete system of equations representing the finite-
element model of the total structure. Two of the more
important such operaticns concern the treatment of
constraint equations and substructuring. Constraint
equations must be taken into account in comple-
mentary cnergy amaiysis. as noted above. Constraint
equations appear in numerous cther situations of
importance to fmite-element arzlysis of nuclear reactor
structures. As shown in Fig_ 1, it is sometimes necessary
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to form an aralytical model composed of shell and solid
elements. In order to form the juncture of these two
types of elements. the joinis of the solid exments must
be conustrained to obey the condition of linear variation
of displacement across the juncture. Constraint equa-
tions also arise when dealing with incompres:ible
materials.?®

Methods for handling constraints include:

I. elimination of certain degrees of freedom in terms of
others on the basis of the constraining equations:

"~
.

a method of matrix ma.ipulation, devised by
Moriey: *

3. ihe method ot Lagrange metitipliers.

Method | is easily described algebnaically. Thus. if m
constraint equations exist in an (n + m) order system
and the const:aint equations are of the fcrm

{ :— - ] Al = M
[C] 4} lcﬂxm°c|2-x-] {Az} b . (26)

we can solve for {A,}.

{A:1=-(C] 7 (G A3+ (G (B}, (2D

and write the transformation of degrees of freedom,

3
{A.}= L {,_\,;w[-?._] {}.(28)
—Cz—lcli cz_l

L ¥

This expression must be substituted into the relevant
energy expression bzfe-2 the variation is taken. It s
clear that each constraint =quation represents an Ooppor-
tunity to eliminate a degree of freedom from the
problem. However. a very great amount of matrix
manipulation is invo. ed; so although the method is
high advantageous because of the consequent re-
duction in sizes of the system of equations to be sow=d,
it is illsuited to most of the wellcstablished finite-
clement analysis programs. A discusston of this ap-
pfoach:isp'ven in Ref. 27.

Morley's approach'® ako requires a very great
amount of matrix manipulation and results in a system
of equations that is unchanged in size relative to the
original system. The details oi the method are relatively
complex and are bevond the scope of this report.
Howcver, it can be concluded that this method is
confronted with the same difficuities as the approach
d'ucussg;l above.




The method of Lagrange multipiiers is the classical
procedure for accounting for constraints. In this meth-
od, one simply multiplies each constraint equation by a
parameter A;, the Lagrange mmltiplier, and adds the
result to the functional to be minimized, resulting in a
new “‘augmented” functional. Hence in view of Egs.
(7)1 and (26), the augmented potential energy
functiona: 11, is

=22 () (A} -Lat ) - Lo P

+LJ[C] {Al-1La {b}=0, (29)

where LA_] lists the Lagrange multipliers, and the
functional is varied with respect to both the degrees cf
freedora and the A;’s. The resulting algebraic equations,
in the case of a potential energy formulation, are of the
form

st B0y o

which are solved directly to yield all values of A and A.
Substructuring refers to a process in which the total
structure is divided into a relatively small number of
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component structures, each of which is generally
composed of many finite elements. Solutions are first
obtained for each substructure independently sup-
ported at the joints which connect to adiacent sub-
structures. Then the substructures are analytically tied
together at these joints.

Evidence points toward a major role for sub-
structuring in very large-scale finite-element anaiysis.
The significance of substructing in acrospace design is
described quite clearly by Grisham?2? and for ship
structure design by Rorem.2® The efficiency of sub-
structuring versus one-pass analysis is the subject of
much debate, but th: importance of substructuning as a
means of keeping track of data and identifying sources
of analysis errors is widely accepted. Also, in inelastic
analysis, the region of plastic deformation may be quite
localized and, by isolating this region in a pre-
doininantly elastic structure, the iterative portion of the
solution process can be reduced 0 deal only with the
degices of freedom in the inelastic region. Finally, as
will be noted in Chapters 7 and 8, substructuring may
play a subsidiary rose in the formation of efficient
solution processes fcr time-dependent pnenomena.

The theoretical basis of substructuring is quite simple.
Consider the situation shown in Fig. 2 where sub-
structures A, B, and C are adjacent to each other. In
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o PTINTS ¢ (POINTS OF CONNECTION OF SUBSTRUCTURE A WITH
SUBSTRUCTURES 8 AND C).

® PO'NTS ¢ (POINTS WTERIOR TO SUBSTRUCTURE A).

Fig. 2. Represeatative srrangement for subsaucturing.




developing the necessary relationships for substructun:
A. we designate all degrees of freedom on A which
attach to B and C by the subscrint ¢ and all re:naining
ones by a. We can hen write the stitiness equations for
A in the partitivned form,

{“‘" "“] {""L [P’}_ 1)

Kea kee | 1Ac)  LFe

The forces at degrees of freedom c are as yet internal
forces and are designated by F¢, while those at a are
external and are denoied by P,. 3civing the top
partition for A, and substituting into the lower
partition, we obtain

[kee) {ac} = {Fc}- {F2}. (32)
where

[kee) = [kee ~ ea ki Kacl (33)
and

{Fe} = lkea Kg'] {Pa}. (34

[kcc] is now a stiffness matrix which applies only to
the degrees of freedom of the connection points of A,
and {F2} is a vector of known values. Such stiffness
matrices are construcied for each substructure, formed
to define a system stiifness matrix which refers only to
substructure juncture points, and this is solved to give
the displacements at these points. The displacements at
all other points are obtained by back-substitution in Eq.
(31) for each substructure.

2.3 SOLUTION ALGORITHMS
2.3.1 Dire:t Methods

Direct methods are those thai yield a solution to a
system of simultaneous equations in a fixed number of
operations. In discussing the most efficient procedures
in this class, it should first be observed that the central
efficiencies derive from accounting for the sparseness
and symmetry found in finite-elemeni equations. All
effective schemes, whether direct or iterative, must
incorporate recognition of these factors. Second, it may
prove desirable to integrate the process of forming the
equations with the sHlution process. In this approach
there are generally questicns of hardware configuration
to be taken into account.

The basic form of direct soluiion is the Gavssian
elimination process, which firs: triangularizes the coetfi-
cient mutnx of tae system of eguations to te saived.
Melosh and Bumtord’® have observed that Gaussian
elimination is "»cth reliabie and efiicient but that
decompasition methods (e.g.. Choleski decomposition)
result in more cflicient computer storage. They con-
tend, however. that Choleski decompeositicn is a source
of error and theretors introduce a spzcial form of
decomposition.

“Wave front” processing is also a feature of the
Melosh-Bamfuord papr, and of the paper by lroas?! as
well. In this approach, a single element is formulated
ard all exterior degrees of freedom are immediately
eliminated. The contiguous elements are then formed,
add2d to the reduced stiffness, and any resulting
extesior degrees of freedom are eliminated. The process
continges in the manner of @ wave progressing across
the structure, and it is clear that full account is taken of
the sparsity of the system of equations being solved and
that the matrix-assembly and solution processes hawe
been integrated.

Another group of direci methods, based essentially on
Gaussian elimination but pursuing more traditional
paths, is represenied by the papers of Gatewood and
Ohanian3? Whetsione >> Jensen ard Parks>3* and
cthers. These authors divide the joint or element
stiffness relationships into “blocks™ which are operated
upon in the manner of single terms. An efficient
triangularization scheme is described by McCormick,
and also by other authors. in the proceedings of a
conference on the solution of sparse matrices.>’

Finally, note shouid be taken of the Choleski de-
composition approach. which directly calculates upper
and lower triangular matrices. The report by Klein>®
represents the most recent work in this direction. It
should be cbserved that one study of solution accu-
racy’” coutends that the square-root operation in
Choleski decompnsition is a source of significant error,
for certain machines. in large-scale applications.

2.3.2 lterative Methods

Two noteworthy iterative methods are the conjugate
gradient procedure described by Fox and Stanton® and
the altemating iterative component method of
Rashid.?*

The basis of the conjugate gradient method was
discussed in Section 2.1. One can identify the structurzl
analysis problem when cast in potential ur comple-
mentary energy forms for stable structures as requiring

e
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the ninimization of a quadratic function. Given this
objective, the analyst may employ any one ot a large
numt er of available algorithms pertinent to the mini-
mizaiion of a quadratic function of many variables; one
of thase is the conjugate gradient method introduced by
Hest:nes and Stéifel.” The method had been little used
until recent years because of the iniluence of rounding
errors on solution accuracy, but Fox and Stan*on®
show that these difticulties can be neutralized through
proper operations on the system stiffness coefficients.

2.4 SOURCES OF ERROR

The prodlem of error prediction and elimination in
linite-element analysis looms as one of the most
important topics in this field because, if the method is
capable of producing a soiution to probleins for which
no alternative solutions exist, procec’ures for estab-
lishing confidence in thc computed results must be
established. Although a substantial number of recent
stedies will be cited in the following, this area of
in.estigation is in its infancy and is only beginning to
have impact in practical applications.

The sources of error in finite-element analysis can be
grauped as follows:

1. Input data emrors. These result both from outright
ntistakes in the definition of problem data and from
random errors or uncertainty in the input data. The
former have been reduced considerably by the checking
capabilities associated with computer graphics devices.
Errors due to uncertainty in the input data may prove
sgnificant when the analytical model is itself numeri-
cally ill-conditioned, bu¢ the case for this has not been
well estabiished as yet.

2. Discretization errors. These are due to the replace-
ment of the continuum by the finite-element model
‘with its attendant »ssumed displacement and stress
Tields. Each type of element is usually given close study
in the developmental phase, insuring that the associated
discretization errors are acceptably siall for realistic
grid refinements. Discussion of this aspect of the topic
appears directly or by reference in the chapters to
follow. (See also Ref. 38.)

3. Numerical menipulation errors. These errors are
represented by truncation and round-off. Studies re-
lated to this topic are the principal concern of this
secticn and are delineated below.

4. Output interpreation errors. These constitute the
approximations made in representing and interpreting
the svlved-for stresses and displacements. There is no
unique basis for these operations, and the prcblem is
especially acute for triangular element fields. The reader

is advised 10 consult Refs. 39 through 41 for alternative
views of this topic.

The basis of <tudies of numerical error is the concept
of examining the change in the solution 8A due to a
change in the stiffness 8K:

K1 +15kl | {tahefoa) =@ ©9)

Then, by taking norms of both sides and assuming
IS KII/IK) < 1, we find

15 All - s Kil

1Al NK 1 </ (36)
where N(K) is the “condition number” of [K]. The
norm of a vector or matrix is a scalar value obtained
through the performance of simple operations on the
coefficients of the vector or matrix. The A Euclidian
norm is the square root of the sum of the squares of the
natrix coefficients, and for this choice the condition
number is the ratio of the maximum to minimum
eigenvalues of [K].

It should be noted that the existing studies are
directed toward two subsidiary sources of error: the
conditioning of the system stiffness matrix and the
accuracy of equation-solving algorithms. Studies of the
latter have been pursued by Rosanoff,*2-43 Rashid, 44
and Melosh and Palacol.3” The contribution of the role
of the element stiffness matrices to this problem has
been studied by Tong,*® Fried,*® and Kelsey et al.47
More general studies have been published by Roy*® and
by Shan.??
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3. Solid Elements

Although solid. or three-dimensional. elements are
not teasible for representation of the major parts, or
regions. of metallic reactor structures. they have
assumed considerable importance in the solution of
problems in local regions. Problems of pipe-cylinder
intersections that have drawn attention'™ are intrin-
sically three dimensional, as are problems relating to
flanges and certain thick-walled pipes. It is therefore of
interest to examine, in brief outline, progress to date in
three-dimensional elements.

The original solid elements were merely three-
dimensional generalizations of the trianglc and rectangie
in plane stress. in the forms of the tetrahedron (Fig. 3)
and the hexahedron® or rectangular parallelepiped (Fig.
4). Alternative forms, such as pentagonal- or wedge-
shaped elements. have emerged: but the predominant
practice has concentrated upon the tetrahedron and
hexahedron, and our attention will be fixed on these in
Section 3.1.

An important specialization of the 3-D element is the
axisymmetric solid, or annulus, which is mainly tn-
angular or quadrilateral in cross section, as would be
expected of the generalization of pianar behavior. This
element is reviewed in Section 3.2.

Questions of analysis efficiency are of critical impor-
tance in 3-D finite-element analysis. since when gencral
elements are employed problems in this class suffer
from the “curse of dimensionaliiy,” a consequence of
the expansion from two to three dimensions. This
problem has fumished the largest share of motivation
for improvements in equation-solving algorithms (dis-
cussed in the previous chapter) and for automation of
the input data procedures. Efforts in improvement of
equation-solving algorithms have reflected upon the
element formulation considerations, since it can be
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shown that certain of the many altematve forms of
solid elements are more suited to efficient equation
solving than others.
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A remarkably large number of papers have surveyed
3-D finiteelement analyiis (excluding axisymmetric
representations) in recent years.*™® These papers com-
bime examinaticns of altemative publications with
details of individual element formulations, comparisons
of accuracy. demonsirations of practical applications.
and discussions of key aspects of practical application.
Since the cited surveys do not reach unified conclusions
with reference to optimal practice, a consultation of
their aggregate contents is essential io an understanding
of appropriate directions to be taken under specific
circunistances.

Table 1. Tetrahedronal finite clements
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3.1 GENERAL 3-D ELEMENTS

3.1.1 Tetrahedra

Tetrahed:onal elements in common practice, repre-
senting work described in Refs. 1, 3, 4, and 610, are
summarized in Table 1.*

The fundamental element (entry a) is the three-
dimensional generalization of the basic plar. - stress

sFor convenience. the table incluces element acronyms
empioyed by various authors.

Number Degrees of freedom
Represeatation Element of Per Per Remarks
jomts joint element
a TETRA & 4 3 12 Complete lincar displacement fields (con-
CSTh? stant strain); for details see Refs. 1,
T12¢ 3,4, and 8; u, v, w degrees of freedom
at each node |
b TETRA 10* 10 3 30 Compilete quadratic displacemcnt fields
LSTh® (linear strain variation); for details
T30 see Ref_4; u, v, w degrees of freedos.
at each node
c TET 20° 20 3 60 Complete cubic displacement fields; for
QSTH? details see Ref. 10
d TEA 8¢ 8 60 Compiete cubic displacement fields; for
_ details see Ref. 10; 12 degrees of
- freedom at vertices and along edges (u,
v, 'v “,! vxv "' uyv v » wyv uzv vzo
w,) and 3 degrees of frgedom at
ceatroid of faces (u, v, w)
e TET 16* 16 3 48 incomplete cubic displacement field; for
details sce Refs. 6,9,and 10
f TEA 3¢ 4 12 48 Incompilete (conforming) cubic displacement
T 43¢ fields; for details see Refs. S, 8, and
10; displacements and displacement de-
rivatives a, degrees of freedom (u, v, w,
ux, v” 'x! uy, vyv wy' uz' vzv 'z)
@ Argyris notation. dClough notation. °Fjeld notation.
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triangle. possessing linear displacement and constant
strain fields. The requirements of practical analysis. in
which considerable grid refinement is needed for
geometric and stress fie'd representation, have sub-
merzed the value of this element. with preference being
given to “higher-order™ elements.

Two directions are apparent in “higher-order™ ele-
ment representation: the use of the dircct displacement
component (u, v, w) degrees of freedom, which carries
the requirement for many node points, and the use of
displacement derivatives as degrees of freedom, with
these being collected principally at the vertices.

Eniries b, ¢, and e are representative of higher-order
tetrahedronal element formulations with only direct
displacement components. Entry b represents use of
quadratic displacemnent fields, but this scheme has been
indicated to be less efficient than the complete cubic
(entry c) or incomplete cubic (entry e). In theory, itis
possibl> to continue the expansion in degrze of the
displacement fields simply by adding tiers ¢ joints and
interior node points. In fact, there are no numerical
results available for e'ements of higher order than
entries c and e.

The two elements with displacement derivatives as
jont degrees of freedom are portrayed as entries d and
f. Entry d is based on complete cubic polynomials in
representation of the displacement fields, while entry f
is incomplete in this regard. Three formulative ap-
proaches have been taken in establishment of the
stiffness matcix for entry f, and these are not identical.
Reference 5 chooses complete cubic polynomials that
are subsequently contracted by application of con-
straint equations. References 8 and 11 develop dis
placement fields airectly in terms of tetrahedronal
coordinates. General formulas for shape functions in
tetrahedronal coordinates and for the integrals of these
coordinates in a tetrahedron are given by Sylvester.'?

The important advantage of the use of derivatives as
eiement vertex degrees of freedom lies in the minimi-
zation of the number of physical joints to be specified
and in good bandwidth properties. On the debit side,
however, certain negative factors may counterbalance
this advantage. Continuity of displacement derivatives is
synonymous with continuity of strain, a situation that
might not always prevail. especially for nonhomo-
geneous materials and discontinuous geometry. The full
set of derivatives is relatively large at each vertex in the
general case, and the mere construction of appropriate
transiormations from the element to system levels and
the imposition of continuity requirements may prove
complex. Also, limitations are placed on the combi-
nation of constant strain and higher-order elementsin a
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single representation. although it would appear that
such limitations can be removed without great diffy-
culty when spauvial constraint conditions are imposed on
the higher-order elements. These same commcats apply
also to the hexahedronal elements.

It is generally agreed that it is unfeasible to employ
tetrahedronal element: without spec:al provision for the
input specification of the analytical mode!. An essential
capability is the generation of fundamental elements
(e.g.. hexahedrons) from the tetrahedrons. with the
former being the basis for the specification of the
analytical model.

3.1.2 Hexabedna

Hexahedronal =lements. representing work described
in Refs. 2,4.7.8.11. 13. and 14, are shown in Table 2.
Here the fundamental element (entry a) is based upon
simple Lagrangian interpolation between vertex points
(a linear displacement field) and involves 24 degrees of
freedom. In contrast with the basic tetrahedronal
element, this icrmuiation is of great utfity, and studies
reported by Clough® assert that this is the preferable
form of element for practicai applications.

Lagrangian interpolation permits the expansion of the

_ hexahedronal representation to any order of poly-

nomial, and although this expansion can be progressed
in an orderly manner with interior nodes, prefesence
has been given to functional representations which
exclude these interior nodes. Entries b and c are in this
class for quadratic- and cubic-order displacement fields
respectively. The HEXE 64 element (Argyris notation)
represents a compeete third-order Lagrangian interpo-
lation in three dimensions.

As in the case of the tetrahedron, attempts have been
made to formulate a higher-order element with degrees
of freedom exclusively a: the vertices. This representa-
tion, the H9%6 or HERMES 8 element (entry e¢), has
been applied successfully in the solution of a classical
problem, but no practical applications have as yet been
reported.

3.1.3 Isoparametric Representation

The concept of isoparametric representation of ele-
ment geometry, that is, the use of displacement shape
functions for the modeling of element boundaries,
assumes special importance in the case of solid ele-
ments. It has already been noted that a fundamental
problem in 3-D finite-element analysis is economic
feasibility in the face of the need to employ large
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Table 2. Hexahedrons! finite clements

Number Deyrees of freedom
Representation Element of Per Per Remarks
joimts joint element
a7 H24® 8 3 24 Linear displacement fields: u, v, w
T HEXE 8% degrees of freedom at each node (for
K rAl ¥ details see Refs. 2 and 4)
- s prLsY
b T Z1B 20° 20 3 60 Quadratic displacement fickds; u, v, w
c T Heo* degrees of freedom at each node;
. o, extermal nodes only (for aetails see
— - Refs. 2 and 4)
¢ = Z18B 32¢ 32 3 % Incomplete cubic displacement fields; u,
fz‘{:’—:’/’ 9%6D* v, w degrees of freedom at each node
d @? HEXE 64 64 3 192 Complete cubic displacement fields with
A, intermal nodes; u, v, w degrees of
. — freedom at each node; lumina element
_.__.._/ when isoparametric (see Ref. 13)
e . 7 H9¢* 8 12 96 Incomplete quintic displacement ficlds
“— HERMES 8° (Ref. 8) or Hermitian polynomial inter-
; polation (Ref. 11); displacements and
- derivatives as dogrees of freedom (u, v,
W, UL, V. W, U, Vy» Wy Uy Vg, wz);
isoparametric representations discussed in
Refs. 7 and 11
®Fjeld potation ®
b A rgyris motation !
“Clough motation.
9STRUDL! notation.>®

numbers of degrees of freedom. When curved bound-
aries are present and straight-sided elements are em-
ployed, it is necessary to use many eclements for
geometric representation. Thus a large share of the
degrees of freedom merely represent the curved sides
without any gain in representation of the stress and
deformational behavior. The isopaametric represen-
tation concept eliminates the expenditure of degrees of
freedom merely for geometric modeling purposes and
thereby helps to achieve a given level of solution
accuracy with a minimum number of degrees of
freedom. This is done at the expense of increased
complexity in element formulation.

Isoparametric representaiion concepts were intro-
duced by Ergatoudis, lro:s, and Zienkiewicz.'*

Zienkiewicz et al.”'* discuss at length the application
of these concep’s to solid hexahedronal elements (Fig.
5b). The hexahedron in curvilinear (isoparametric)
coordinates is also described by Argyris' ® and Clough.*
Hughes and Allik® emphasize the isoparametric repre-
sentation of the tetrahedronal element (Fig. 5a).

It is important to recognize that isoparametric ele-
ment cornicepts do not obligate the user to the same
degree of shape function representation for geometry as
for displacements. Zienkiewicz et al.” term a represen-
tation where the geometric shape function is of lesser
order than the behavior shape function as “subpara-
metric.” Moreover, based on studies of computational
costs, these authors conclude that a refinement beyond
the quadratic representation of element edges is not
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justified, whatever the level of refinement in description
of the element displacement field.

In practice, the complexity of isoparametric element
concepts obligates the user to numerical integration in
the numerical evaluation of the element stiffness
matrix, and the costs of this operation must be
minimized. The most recent summary of progress in the
formulation of quadrature expressions for this operatic -
is given in Ref_ 15.

3.2 AXISYMMETRIC SOLIDS
3.2.1 Triangular Cross Section

The triangular cross-section ring element was intro-
duced in papers by Wilson'® and Clough and Rashid' ’
in the form of a generalization of the plane stress
triangle. Thus all considerations of higher-order repre-
sentation and choices for degrees of freedom (i.e., linear
displaceinents alone vs displacement derivatives as
degrees of freedom) are applicable here. The major
differences between this element and the plane stress
triangle arise due to integration in cylindrical coordi-
nates, in which a variabie (the radius) often appears in
the denominator of the function to be integrated, and
in treatment of elements with joints on the axis of
symmetry (zero radius).

Exact integration of the stiffness coefficients tor the
triangular element is given by Utku.-* This work
includes representation of the zero-radius case. Similar
results are given in Refs. 19 and 20. However. if the
element is remote from the axis of symmetry then the
approximate integrals presented in Ref. 21 are appl-
cable.

For the zero-radius case. apart from the use of exact
formulations. approaches that have proved satisfactory
are the use of 2 small norzero core radius in the
analy.cal representation'® and the use of specially
formulated core elements.'®

With respect to nonaxisymmetric loadings. an ap-
proach based upon representation of the loading in
Fourier series is feasible. and such an approach was
indeed introduced in the original paper by Wilson.'® A
more compieie approach to this representation. which
admits both asymmetric and symme tric components of
loading, is detailed by Argyris et al.2? It is important to
obseive tiat each harmonic is representable in terms of
an uncoupled, independent element stiffness matrix.
Thus, ~xisting; general-purpos: finite-element analysis
programs may be employed for such analysis, with a
different element for eack needed hanmonic.

The above type of representation is, of course, limited
by nonaxisymmetric gecometry and circumferential
temperature-depen-eni material properties and also by
the number of haimonics needed for accurate repre-
sentation of load. At some point :n the latter it is
preferable to revert to a general 3-D element represen-
tation, in the class descrited earlier i~ this chapter. An
interesting alternative, which is midway between the
axisymmetric solid and the general 3-D element, is the
“sector” element described by Argyris et al.2?

It should be noted tha. higher-order triangular ele-
ments, in the form of the conventional nigher-order
plane-stress triangles. are described by Argyris et al.
This work extends to the use of isoparametric concepts
in representation of curved boundaries for the elements
and also to the representation in series of circumfer-
ential variations of loading.

3.2.2 Quadrilateral Cross Section

Very little explicit attention has been given in the
literature to the quadrilateral axisymmetric solid ele-
ment. The derivation for an element with linear edge
displacements and with the shape of an arbitrary
quadrilateral through use of isoparametric formulation
concepts is easily established. Reference 23 gives
formulations for higher-order quadrilateral elements.

I Y




3.3 APPLICATIONS EXPERIENCE

Published descriptions of experieace in application of
3D elements to practical problems are concentrated
upon the problems of dams, piping intersections, and
puclear reactor structures. Reference 24 contains a
number of papers relating to dam analysis with 3-D
finite elements. The pipe-cylinder int2rsection problem
is discussed in Refs. 22 and 25. Analyses of nuclear
reactor structures are described in Refs. 26 and 27, and
applications 10 other arear are discussed in Refs. 28 ard
29. Refereace 26 is noteworthy for the inclusion of
analysis-test comparisons. A variety of applications of
the Xisymunciric svidd elzments is given in Refs. 30
through 32.

Experience in application of 3-D elements to special
phenomena, such as thermal stress, inelasticity, and
keat transfer, is quite limited. Thermal stress was the
subject of the initial pcper relating to 3-D elements,’
but few analyses of this type of problem have since
been discussed. A 3-D inelastic analysis, emplcying
constant “strain tetrahedra and the tangent stiffness
approach of Yamada?® has oveen published by
Miyamoto.’? Lesy and Marcal®** have performed frac-
tute mechanics analyses of solids using a distorted cubic
clement and the tangent stiffness approach to inelastic
analysis.

Zienkiewicz and Parikh®* have developed conduction
heat transfer formulations for isoparametric solid ele-
ments and bave performed analyses of turbine blades.
As will be emphasized in Chapte:r 8, a thermal analysis
situation in which structural design is influenced by
thermal stress requires integrated thermostructural anal-
ysis capabilities.

3.4 SUMMARY

There are pumerous, significantly different ap-
proaches to element representation for 3-D stress
analysis, each with demonstrated advantages. The
comparison data and viewpoints of the respective
authors are contradictory, as would be expected in a
topic of maximum complexity. Regardless of the form
of representation chosen, success in application is
critically dependent upon a high degree of efficiency in
solution of the formulated equations.

Development and application of 3-D finite-element
representations for other than linear static analysis is in
its early stages. This probably is due to the preoccu-
pation of analysts up to the preser.t with the establish
ment of economic teasibility for linear static analysis. A
simiiar condition exists with respect to use of other

than displacement functions and ‘he principle of
minimum potential erergy as the basis for element
rormulation.

Many of the widely available zeneral-purpose analysis
programs have been implemented with solid elements:
SAFE-3D.*¢ MARC-2,*” STRUDLAI,>®* ASKA,*? ana
FESS, ANSYS, and ELAS etc. Implementation is in
progress for other systems, such as NASTRAN *°

An important factor inachieving economic feasibility
in 3-D finiteclemcnt stress analysis is the maximum
utilization of computer graphics capabilites. both in
the automatic generaticn of meshes from basic problem
data and in cutput data inierpreiation. Discussion of
this topic is beyond the scope of this report, but the
interested reader will find useful information in Refs.
27and 41.
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4. Sheli Elements

We have already emphasized in Chapter 3 that the
major influence on solution accuracy in finite-element
analysis of any type of problem is likely to be the
adequacy of the element formulation. The formulation
depends upon the underlying thecretical relationships
and the merit of the choser geometric and assumed
behavior representations. Only the assumed behavior
representations were of rmjor importance for solid
elements. but for shell elements, all the above factors
play a significant role in solution accuracy.

Pressure vessels are in whole or in part doubly curved,
and the difficulties of geometric representation of such
forms often give rise to approximations. These struc-
tures are generally thin shells, and the appropriate form
of underlying theoretical relationships continues to
gencrate controversy: many alternative relationships
have been proposed through the years. As will be
shown, the difficulties in defining behavior represen-
tations, especially displacement fields, for doubly
curved shell elements are more severe than for other
types of elements.

With these complicating factors in mind, it is readily
accepted that the literature of finite-elemeni shell
analysis is quite extensive. Fortunately, a major demar-
cation of activity can be identified with respect to
axisymmetric vs general thin-shell elements, and this
division is followed here.

4.1 AXISYMMETRIC SHELL ELEMENTS
4.1.1 Background

The developmental history of axisymmetric thin-shell
elements was reviewed in the papers by Brombolich and

Gould' and by Dawe.’ For present purposes. it is
convenient to consider a division of developmental
efforts into conic elements (Fig. 6) and th¢ more
general meridionally curved elements (Fig. 7).

Published formulations for conic segments repre-
senting work described in Refs. 3—8 are summarized in
Table 3. The initial formulations for axisynmetric thin
shells*® were for conic segments. It was aaticipated in
these studies that satisfactory representations of general
meridionally curved shells could be obtained by repre-
sentation as a series of conic segments. Subsequently,
numerical results’ demonstrated that this approach wa«
not reliable, and many separate efforts have been
devoted to the formulation of meridionally curved
elements. The causes for deficiencies in the representa-
tion by conic elements and the difficulties iri accom-
plishing satisfactory curved elements are related to
questions of geometric and displacement field repre-
sentations. These topics are discussed below, and an
outline is given of the pertinent application experience
using axisymme tric thin-shell elements.

4.1.2 Geometric Representation

As noted above, conic elements are generally unsatis-
factory for geometric representation of meridionally
curved axisymmetric shells. If a shell is actually
composed of a sequence of conic segments (as in Fig.
8), meridional bending moments (discontinuity stresses)
exist at the juncture lines of the respective conic
elements; the finite-element representation will predict
these stresses. These stresses do not exist, however, if
the shell is continuously curved and in a membne
state of stress, and they are generally small except at
the juncture of different geometric forms.




24

ORNL - DWG 72 - 1839

AXIS OF ROTATION

Y 3 )
3 !
/ =3
I' / 3 L + r
!
)
/!
[
’ ]
7 !
0 1
YN )
!
o !
. ! ’
s L
Fig. 6. Truncated cone elemeri.
Table 3. Axisymmetric conic thin-shell dements
See Fig. 6 for element geometry
Reference Displacement function Remarks
34 Exact solution to governing differential Stiffness coesTicients are in terms of Bessel functions
equation
5 U is basically linear and W is basically cubic, i and W are defined as radial and axial system displacements
but both are coupled via trigonometric
functions to satisfy rigid-body m.otion
6 uzaggtajpstagasdragesde. . ajy,...ayq are found in usual way in terms of the six
W=ag) +a338+a235% agesd 4. .. nodal displacements; additional coefficients are evaluated
by minimizing potential epergy
7 Linear variations of u, w, 8, and M, Mixed-method approach (definition of independent displace-
ment and moment fields)
8 Linear variations of u, w,and g8 Transverse shear strain is made to vanish at the midpoint of

each element, thus defining relationships between the
coeffic’ents of w and 8

T o -
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Fig. 7. Meridionally curved clement.
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Fig. 8. Meridional moments in shell modeled with conic
elements. (From Ref. 9.)

It should te noted that the above difficu:liy can be
circumvented .f the solved-for dispiacements are sub-
stituted into st.-ess-displacement equations written for
the curved shell (e.g., by use of finite differences).'®
This approach may be awkward, however, and recent

developments in axisymmetric thin-shell finite-element
analysis have given attention to the representation of
meridional curvature.

Table 4. comprising work described in Refs. 11 to 20,
summarizes these efforts under the heading ““geometric
representation.” Two categories of geometric represen-
tation can be identified. One group, the final three
entries,' 7"2% anticipates availability of an exact func-
tional representaticn of shell geometry and defines the
stiffness formulations in integral form. Thus numerical
integration is invoked in the evaluation of element
stiffness coefficients. In the second group (all other
entries), it is ~ssumed that the given geometric data
must be transformed into a single type of functional
representation. This enables formulation of explicit
matrix coefficients, although the product of a series of
such matrices may be needed to construct the complete
element stiffness matrix. As indicated in Table 4, the
levels of sophistication vary widely among the respec-
tive developments.

4.1.3 Displacement Representations

Since the axisymmetric thin-shell element is “one
dimensional” in the meridional coordinate, no diffi-
culties are encouniered in the construction of inter-
element-compatible displacement fields. Application of
such fields to conic elements is straightforward. How-
ever, difficulties arise in the case of meridionally curved
elements in satisiaction of rigid-body motion require-
ments, as discussed below.

For conic elements, reference is made to Table 3,
which shows that two :ypes of ¢:splacement fields are
employed. In one, the fields represent the exact
solution of the homogenecus forms of the gceming
differential equations. Such solu‘ions are feasible but
involve Bess2! functions that ada considerably to the
complexity of programming and cost of stiffness
coefficient evaluation. Also the situation to which they
apply is the lineJoading of th: edges of the elem=nt;
this is not the usual situation in practice, where the
structure is under pressure lcadings. The other type of
conic element dispiacement field is the counterpart of
the axial-flexure behavior of prismatic members.

Use of the uncoupled radial sand meridional dis-
placement fields, of the form employed for conic
elements, may introduce errors due to deficiencies
under rigid-body motion. The situation is described in
Fig. 9, which shows the arc of an axisymmetric shell. It
is clear that if the displacements are described in
curvilinear coordinates, a rigid-body motion in the axial
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Tabile 4. Mezidionsi?; Cirved axisymmetric thin-shell clements
S Fig. 7 for element geometry

Reference Geometric represemtation Displacement fields
11 Quadratic for ¢ u=a; +ast
(0=cytcrt+ C;tz) w= 33+I4E+35E2 +3¢E
12 Quadratic for ¢ u=above+a,sing+ag cOsP+ag|(x - X) cos® — (1 — 1) sin ¢}
w=2above — 257 cOs@+agsing rag((x — X)sine + (r - 1) cos ¢}
13 d=tU - i) (cy +ct+ CgEz + Cgta) u=a2a, +ast
(d = distance from chord) w= a3+a4t+ ast +a‘t3
14 Torispherical segment u=2; +a;t*a;t +a.£
w=ag+aghtagt’ +agt’ +agt vapt’
i5 Cubic for r and z (4-point inteipolation)  Same shape functions as for geometry
16 Cubic for r and z (beam shape functions) u= a.sn0+a1reoso+agt+£b‘zt'”
W =2; COS@+arsing+ank+ash® +agt’ + sttt
17 Exact (nimerical integration) u= ta't' 1
v = same as for u
18 Exact (numerical integration) u=ag+tatt a;tz + qu-‘
v and w of corresponding form
19.20 Exzct (numerical integration) Same as Ref. 17

ORNL -DWE ~2 - 3292
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DISPLACEMENT COMPONENTS
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Fig. 9. Segment of axisymmetric shell showing dispk.ce-
MRt components.

direction requires that the radial and meridional dis-
placements be coupled. Thus, certain formula-
tions' 2! 4:'®  modify the beam-type displac:ment
fields to accomplish this coupling and the satisfaction
of the no-strain-under-rigid-body-motioa condition. The
condition can also be met if the uncoupled displace-
ment fields are written in terms of a local rectilinear
coordinate system.'!® Other formulations,'*''-'220
however, disregard satisfaction of this condition and
define the uncoupled displacement fields in curvilinear
coordinates.

Haisler and Stricklin?! examine the strain energy
content during rigid- body motion of an element that
sustains strain during rigid-body motion. They demon-
strate numerically that the correct result is obtained in
the limit; these results are confirmed in Ref. 22. The
convergence is relatively slow, however, and a more
recent note?* demonstrates that the addition of a single
term to the membrane displacement field greatly
enhances the convergence characteristics.

The significance of addi**»nal * rms in the displace-

ment expansions has been de:sonstrated clearly in
numerical results presented in Refs. 17, 18, and 20. The



approaches in Refs. 17 and 20 define the displacement
expansions in infinite series and eraploy various num
bers of terms in comparison studics of solution accu-
racy.

In conclusion, it should be noted that the stra.n-
displacement equations presented by Novozhilov?* are
generally accepted as the basis for construction of the
strain-energy expression for meridionally curved
axisymmetric, thin-shell elements. Special developments
use different theories (e.g., Ref. 17 employs the
strain-displacement equations of Washizu?%), while
other formulations establish pertinent strain-
displacement equations from basic considerations.

4.1.4 Applications Experience

Experience in application of axisymmetric thin-shell
elements is extensive and is described adequately in the
review by Brombolich and Gould.' A large amcunt of
solution data has been correlated with classical solu-
tions and with test data for problems of linear elastic
analysis. The attention of this section is restricted to
elastoplastic analysis experience.

Elastoplastic finite-element analyses of axisymmetric
thin shells have been reported only recently. Fowder?®
and Witmer and Kotanchik?” describe the use of the
initial strain approach with incremental plasticity
theory. This work is noteworthy because it treats
relatively complex sheli cross sections, including
bonded double layers with foam cores, and because it
correlates analysis results with test data for an asym-
metrically loaded flat plate.

In another group of papers and reports, Khojasteh-
Sakht' 3-2® apg Popov et al.2? present tangent-stiffness
elastoplastic analyses of axisymmetric plates and shells,
in which incremental relationships are based upon the
vcn Mises yield condition and the associated flow rule.
Reference 29 is of particular interest in that 16 ASME
standard torispherical heads, attached to cylinders, were
analyzed for elastoplastic behavior under internal pres-
sure and the results compared with the provisions of the
ASME Code.?® The results of the calculation indicate
that the maximum elastic stresses predicted by the code
are underestimated, a considerabie redistribution of
stresses occurs during the customary water pressure
test, and high compressive stresses may exist in certain
regions. A computer psogram is given in Ref. 28.

The work of Zudans,' * which has not beer. published
as of this writing, appears to be the most complete
theoretical exposition to date. In his work, an incre-
mental virtual work principle is established, enabling the
treaiment of both finite displacements and plastic

deformation, and constitutive relationships are defined
for both isotropic and kineriatic strain hardening
Isoparametric function concerts are applied in repre-
ser:tation of the geometry ar . displacements, and, with
the ensuing requirement for numerical integration of
the element stiffness mairix, variation of shell thickness
along the meridian is easily handled. The numerical
results presented include analyses of a torispherical shell
studied by Khojasteh-Bakht.2®

4.2 GENERAL SHELL ELEMENTS
4.2.1 Basic Comsiderations

A comprehensive review of finite-element formula-
tions for flat piates and curved shell elements was
presented by the author?' other reviews are given in
Refs. 2 and 32. The following is largely a restatement of
the portion of Ref. 30 dealing with curved shell
elements, with additional commentary regarding work
published in the intervening period of time.

Well-established flat-plate clement formulations are
capable of representing shell structures simply by
superposition of membrane and flexural behavior and
application of coordinate transformations. This ap-
proach has been described extensively®?3¢ and used
by design offices for some time. Howcver, this method
hac various difficulties and shortcomings, as follows.

1. The slope discontinuities between adjacent ele-
ments may produce large calkculated bending moments
in regions where these are small or nonexistent. This
effect was described above for axisymmetric sheli
problsms and must be anticipated as a source of
difficulty for general shell problems.

2. The coupling of membrane and flexural behavior
within the individual elements lacks representation.

3. The difficulty in achieving interelemern.t continuity
is heightened.

For these reasons, the preferential avproach to
analysis of general curved shell structures is by use of
general curved-shell finite elements. This approach is
not flawless, however, and includes problems related to:
(1) choice of an appropriate shell theory, (2) descrip-
tion of eleme at geometry, and (3) sele:tion of element
displacement fields.

The basic considerations and implications of these
three items is discussed more fully below, after which a
review of published formulations is presented for
quadrilateral and triangular elements.




4.2.2 Choice of Suell Theory

In discussing shell theories for finite-element analysis
it is necessary to distinguish between “nonshallow™ and
“shallow” formulations.

The usual approach in nonshallow shell theory is to
describe behavior with refererce to curvilinear cocidi-
nates (a;, @,) in the middle curface of the shell. One
may then describe the stress and defomwational be-
havior in terms of “membrane™ stress resultants and
strains (Ny ;, N2, Ny 2, €,,, €2, €,2) and mement-
curvature parameters (M, ;, Mz, M3, k14, K22, Ky 2),
which are defined with respect to the curvilinear
coordinates.

The basic complexity of the shell analysis problem led
early theorists to establish strain-displacement relation-
ships with different types of approximations, and to
date no one of these formulation: has received exclusive
acceptance. The significant diferences between the
respective shell theories for linear conditions arise in
conjunction with the strain-displacement expression for
the twisting curvature k,,. A thorough examinaiion by
Koiter®? of available theories discloses that certain
formulations do not properly account for the condition
of zero strain under rigid-body motion in the represen-
tation of this term. These formulations include the
work of Love’® and certain forms published by
Donnell*® and Flugge.*® The same question is studied
in the comext of finite-element analysis by Cantin*’
for the restricted case of the circular cylindrical shell.

It is essential that the strain-displacement equations
for finite-element shell analysis meet all conditions
related to rigid-body motion. This is a requirement
apart from that associated with rigid-body motion
existing in the choice of displacement fields, and errors
in the satisfaction of one will reinforce eirors in the
other. Hence, theories that satisfy these requirements
should be chosen. Popular choices huve been those due
to Novozhilov,2* und Koiter,>” or Budiansky and
Sanders.*? It should also be noted that the designation
“best first-order” or “consistent” shell theory has been
applied to the latter formulation because it is consistent
with respect to the basic Love-Kirchoff hypotheses (i.e.,
rormals remain normal, etc.). Koiter®” shows, however,
that the “inconsistency” of other formulations is
manifest in terms of order t/R ¢t = shell thickness, R =
radius of curvature) which have no significance on
numerical results. Kraus*? presents a lucid development
and summary of these aid other aspects of thin-shell
theory.

The situation in shallow-shell analysis parallels that of
deep-shell theory. Alternative formulations of the

strain-displacement equations have appeared which
differ in the expression for twisting curvature. Again
certain theories (e.g., Marguerre*®) arc not free of
strain under rigid-body motion, but this dves not
appear to be as significant as in deep shell theory if the
element is indeed shallow. Brebbia and DebNath*? give
a discussion of finite-element shell analysis exclusively
from the view of shallow-shell theory.

423 Geometric Representation

The problem of gecmetric representation in finite-
clement shell analysis is one of its most important
aspecis and yei has drawn very little attention to date.
Many shell element :owmulations pertain to specific
geometric configurations (e.g., cylindrical shell ele-
ments) where no considerations arise with respect to
definition of geometric parameters or the transforma-
tions needed to connect elements with differing curva-
tures, etc. In the general case, however, the problem
does arise of defining not only the x,y, z coordinates at
the element nodes but also the physical slopes and
curvature parameters.

This probiem has been examined by Key and
Beisinger*>*¢ and Lien.*” Both developments employ
bicubic polynomial interpolation and apply to the
arbitrary quadrilateral shell element. Key and
Beisinger's work is formulated in the context of
isoparametric element concepts and utilizes bicubic
interpolation in represemation of geometric parameters.
Lien’s work*? is similar but is phrased in terms of
Coons’ “surface patch” concepts*® and presents the
formulation of all necessary relationships and coordi-
nate traasformations in considerable detail. It should be
noted that problems of curved surface represeniatior.
via computer methods first drew importance in the
early 1960s in comjunction with computer graphics
(cathode-ray-tube applications), where the most ex-
tensive published work is due tc Coons and his
associates.

Isoparametric element concepts have also been
applied to a triangular thin-shell finite element by
Dupuis.*?-5¢

Problems reiated to geometric representation are
reduced when the element formulation is based upon
shallow-shell theory. This eliminates difficulty in the
establis:ment of curvilinear coordinate transformations.
Nevertheless, care must be taken in the definition of
proper coordinate transformations so that deep-shell
behavior is reflected by the complete finite-element
representation (see Ref. S1 for details), and the
question of specifying slope and curvature parameters




on the basis of given problem data remains as it is in
deep-shell analysis.

4.2.4 Quadrilateral Shell Elements

Four-sided shell elements have been formulated urder
a variety of restrictions, ranging from rectangular
cylindrical segments to general shapes, as portrayed in
Tables S and 6. A discussion of these tables, which
pertain to developments in Ref. 45 to47 and 52 to 61,
is given below.

The cylindrical shell elements are described in Tablc
5. Olson and Lindberg®? formulace the stiffness matrix
for such an element using Love's strain-displacement
equations. A 12-term polynomial is chosen to describe
the radial displacemment, while the membrane (tangen-
tial) displacements are each described by 8-term poly-
nomials. The degrees of freedom at each joint are u, v,
w, ow/ox. dw/dy, du/dx, dv/dy, a total of 28 for the
entire element. The rigid-body mode requirements are
satisfied, but the displacement compatibility conditions
are not.

The 12-term representation of radial displacement,
together with bilinear functions for tangential displace-
ments, is employed by Megard®? in the formulation of
a series of cylindrical elements. Strain-displacement
relationships due to Donnell*® are invoked. The defi-
ciency of the laiter, with respect to the condition of
zero strain under rigid-body motion, has already been

observed.
In order to achieve interelement compatibility of

displacement for flat-plate elements together with
inclusion of all constant strain states, a 16 degrees-
of-freedom transverse displacement field is required.
This function, which is a complete Hermitian poly-
nomial expansion in two directions and is termed
“bicubic,” has been applied to the definition of radial
displacements for cylindrical shell elements in Refs. 47,
54, 55, and 60-6..

Reference 54 formulates a cylindrical element with
functions that are essentially linear in the axial and
circumferential cocrdinates. The latter are modified in
sich a way, however, as to satisfy the requirement of
zero strain under rigid-body motion for the element as a
whole. Compatibility of displacement is not satisfied
due to the disparity in the orders of polynomials used
for radial and membrane displacement respectively. A
careful numerical study is given to the significance of
the rigid-body mode requirement, and the results show
that element formulations that do not meet this
requirement demcnstrate poor convergence character-
istics, although eventual convergence to the correct

solution is demonstrated. This conclusion was recently
substantiated by study of curved-element represen-
tations in arch analysis.

Bizner et al®® employed the complete bicubic
expansion for all three displacement components. re-
sulting in a 48 degrees-of-freedom formulation. This
element comes close to meeting all rigid-body motion
requirements and achieves excellent results in numerical
compansons. A furthe: development of these concepts
for sandwich cylinders appears in Ref. 62.

General quadrilateral shell-clement formulations are
summarized in Table 6. References 60 and 61 describe
the development of a doubly curved shell element.
lacking Gaussian curvature, using Novozhilov's strair -
displacement equations and a bicubic field for radi.d
displacement and a bilinear field for tangential displac >-
ments. Neither interelemsnt displacemznt continuity
nor the rigid-body motion requirements are met. More
recently,*” this work was extended to the choice of
bicubic fields for all displacements (48 degrees of
freedom as in Ref. 55) and to a general geometric form.
The results obtained in numerical comparisons appear
to be the most accurate yet achieved by quadrilateral
thin-shell elements for a given grid refinement.

Connor and Brebbia*® employed a2 12-term poly-
nomial to represent transverse displacements and
bilinear representations for the tangential displace-
ments. Reissner’s shallow-shell theory®? is invoked.

Wempner, Oden, and Kross®? derived a linear theory
for the deformation of thin shells, including transverse
shear deformation, in terms of middle sarface displace-
ments and the rotations of normals to the middle
surface. These displacement parameters, for a curvi-
linear quadrilateral element, are then represented by
simple bilinear polynomials in the curvilinear surface
coordinates. Continuity of displacement is imposed by
matching the displacements and rotations at four points
on the boundary of the element, while a discrete
equivalent of the Kirchoff hypothesis is introduced to
assure that the Kirchoff theory is approached in the

limit. Thus the method has been termed a “‘discrete-

Kirchoff”” approach.

Another approach to the general quadnlateral thin-
shell element is due to Key and Beisinger,**'*® who
derive a potentia] energy functional that includes
transverse shear effects. In Ref. 46 they chuse 12-term
polynomials in representation of radial and tangential .
displacements and a biquadratic polynomial in descrip-
tion of fiber rotations; conditions of interelement
displacement continuity and on rigid-body motions are .

satisfied.

el



Table 8. Circular cylindrical shell dements

Reference Joint degrees of freedom Anumaed funcilons Remarks
Olson and Lindberg®? U, v, W, Wy, Wy, Ux, Vy w - 12-term pulyiiominl includes vibrational frequency
(28 terms) analysis
Meurd” U, V, W, Wx, Wy Busically u, v - biiinear,
(20 12rmy) w - 12-term polynomisi,
but coupted to sutisty
rigid-body motion con-
ditions
tow Cantin and Clough®* U,V W, Wy, Wy, Wyy w - bicubic polynomial, Satisfies rigid-body motion

(24 terms) u, v — bilinear polynomicls  requirements
(plus coupling termy)
Bogner et ul 5% U, v, W, g, Uy, Uxy, Uy, w
Yy, ¥xy, Wy, Wy, Wy u ¢ bicublic polynomiulx
(48 terms) v
Table 6. Quadrilateral shell elements
Reference Degrees of freedom Assumed functions Remurks

w -~ }2-term polynomial

Connor and Brebbia®* U, v, W, Wy, Wy

(20 terms) u, v - bilinear polynominl
Wempner otal. 37 UV, W, Wy Wy u, v, w - bilineur polynomials
(20 termy)
Ahmad et a1.%® Numerous representutions Dependent upon chosen repre-
Pawsey and Clough®® ure given sentation
Key and Beisinger“ 40 W, v, w - |2-term polynomiuls
plus biquadratic ungular
displacement fields
Gallagher."o u, v, W, Wy, Wy, Wxy w -- bicubic polynomial,
Gallagher and Yang“ {24 terms) u v - bilineur polynomial
Lien*? (48 termy) u, v, w — bicubic polynomials

Rectangulur (includes Ry, Ry,
und Ryy); Reissner shaltow-
shell !heory° :

Devalops shell theory to include
trunsverse shear

Isopurymetric element concept;
obtains shell clement by
upplying special conditions
to solid elements

Washizu?$ shell equations (in-
cludes trunsverse sheur)

Principul curvatures (Ry and
Ry) ouly; Ref. 61 covers
lineur instatility

Includes all curvatures




Greene. Jones. and Strome®* describe an approach to
shell analysis based on the “generalized vanational
principle.”®* Strain-displacement equations are tzken
from Novozhilov's??® nonshallow-shell theory. and the
displacements are represented by cubic polynomials in
two variables.

The iscparametric element concept in shell analys:s is
exploited fully by Ahmad et al.*® and aiso by Pawsey
and Clough.®® This is accomplished by degenerating the
isoparametric solid element fonnulations by introduc-
tion of assumptions that original normals to the middle
surface are inextensibie and straight and that the eiastic
modulus in the nomal direction is sero. These assump-
tions allow retention of a measure of the transverse
shear deformation. Since prior developments for solid
elements are drawn upon, a wide variety of functional
representations for displacement (with appropriate
definitions of joints at the comers and along the sides)
are immediately available. The approach adopted in
Ref. 58 yields poor results for thin shells. Recent
work,’%*¢® however, demonstrates that his problem
may be resolved via a scheme of “reduced order™
integration in the evaluation of the element stiffness
coefficients.

The above element formulations are based exclusively
upon assumed displacement fields. Since interelement
displacement continuity, which is a principal motiva-
tion for a displacement-based (potential energy) formu-
lation, is rarely achieved, a “‘mixed method™ of element
formulation is attractive. Mixed methods permit the
selection of simple forms of displacement representa-
tion and introduce assumed stress fields as well.

A variational principle for mixed formulation has
been defined by Herrmann®’ who subsequently
employed it for a doubly curved shell element repre-
sentation.®® Similar developments have been advanced
by Eatcock-Taylor®? and by Atluri.”®

4.2.5 Triangular Shell Elements

Triangular shell element formulations are summarized
in Table 7 and described as follows. Utku’' incor-
porates representations of linear displacement fields for
the coordinate displacements u, v, and w and for two
angular displacements as well. Shallow-shell theory is
employed, and transverse shear deformations are taken
into account. The resulting stiffne:s matrix is algebra-
ically simple, and extensive r.umerical results are pre-
sented.

" The displacement field originally proposed in Ref. 84
for flat-plate flexure is employed by Strickland and
Loden? for a description of the radial displacements in
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a shallow-shell theorv?* formulation of a triangle. The
tangential displacements are described with use of linear
displacement fields.

Cowper et al..>'"7? using both shallow- and deep-
shell theory. describe the transverse displ:cement with
use of an incomplete quintic, and the tangeniial
displacement fields by complete cubic, polynomials.
The element feaiures 36 degrees of freedom, is con-
forming, and includes al' rigid-body modes and fienda-
mental strain states. Tra:usformation of the relationships
to cylindrical shell theory is presented in Ref. 74.

The complete quintic polynomial is adopted in
representation of all three displacement fields in the
SHEBA-6 element of Argyris and Scharpf.”® Non-
shallow-shell theory and a special ““natural™ coordinate
system is employed. The element is presented in terms
of 63 degrees of freedom — 18 at each vertex (the
function and all of its first and second derivatives for
each of the three furctions) and 3 at the midpoint of
each side (the angular displacement in the direction of
the nomal to the side for each function). The
formulation is quite gene-al with respect to the descrip-
tion of geometry.

The approach to the formulation of a triangular shell
element ihat incorporates transverse shear deformation
via the “discrete-Kirchoff™ hypothesis is presented by
Dha“.76,7‘l

The formulation of Bonnes et al.,”® based on
shallow-shell theory, divides the element into three
triangular sabregions and describes the radial and
tangential displacement fields with complete cubic
polynomials within the subregions. This approach is a
generalization of the procedure employed by Clough
and Felippa’® for the flat triangle. Upon elimination of
all interior degrees of freedom, the element stiffness
matrix contains 36 degrees of freedom — @ at each
comer and 3 at the midpoints of each side. Neither
interelement displacement compatibility nor rigid-body
mode requirements are satisfied completeiy.

A triangular element that meets the requirements
associated with interelement continuity of displacement
and rigid-body motion is presented by Dupuis and
Goel*® and by Dupuis.*® This development is based on
the relatively sophisticated Koiter-Sanders shell
theory>’**? and, together with the SHEBA eclement
formulation of Argyris and Scharpf.”® is generally
regarded as the most sophisticated triangular shell
element formulation.

Hermann and Campbell®® employed flat triangular
elements, drawing the flexural behavior representation
from Ref. 67. An interesting feature is the description




Table 7. Triangular shell elements

Joint degrees of

{x\y.z') COORDINATES’

Visser‘ 3

u, v, W, mix, My, ingy  Quadratic u, v, w;
linear m

Reference freedom Assumed function Remarks
Utku?' u,v,w, 6y, 0y Linear u, v, w and lineur Marguerre*# shallow-shell
2 9x. Oy theory
# Strickland and u, v, W, Wy, Wy w - same s Buzeley et ul** Novozhilov?* shatlow-shell
auw Loden’? for flat plate; u, v, linear theory
2 Cowper et a)31:73,74 u, v, W, Uy, Uy, vx, vy, W - complete quintic poly- Two-shell theories are
Wy, Wy, Wy, Wyys nomial; u, v - cubic func- uvuilubjlg as options:
/ Wyy tions Koiter (gzczwrul).
Novozhilov®” (shallow)
Argyris and Sch:.u'pf"s u, v, w, and all fi:st Cumplete quintics
-y and second derive-
tives ut vertices plus
angular displaceinent
(@) CURVILINEAR at midpoint of s.des
COORDINATES Dhatt”%*?7 u, Uy, Wy, ¥, Vx, Vy, W, Variety of assumptions in Shallow-shell theory
Bx. By respective papers in
framewoih. of discrete
Kirchofr®? approuch
Bonnes e al.”® u, v, w and all first Complete cubics for u und Reissner®?® shallow-shell
H derivatives at ver- v and subregion”? theory
4 tices plus u, and representuation
v,, at midpoints
of sides
i Dupuis“"o U, Uy, Uy, Uxx, Uxy, Option of zationat func- Koiter-shell theury‘.‘"
Uyy, Vi Vxi Vy, ¥xx,  tlons or quintic polynomial rigid-body motion condi-
+ Vxys Vyys W, Wy, Wy, tions are satisfied exactly
Wxx» Wxy: Wyy
Sy Connor and Will®? u, v, w, my, my, mxy Vurious combinations of Hellinger-Reissner varia-
linear and quudratic tionul principle and
functions for u, v, und w Rclungrjshallow-shcll
(&) BASE - PLANE theory

Hellinger-Reissner varia-
tional principle und
Koiter-shell thcoryJ ?

A3
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of applications to complicated practical problems.
Prato®' effects a modification of Herrmann's varia-
tional principle®” and treats a triangle based on linear
expansions in all variables. Connor and Will*? utilize
shallow-shell theory** and gencrate five different tri-
angular clements based on different assumed stress and
displacement fields.

Another mixed formulation has been presented by
Visser,®? based on Koiter's strain-displacement relation-
ships®” reduced to shallow-shell form. Parabolically
varying displacement fields are combined with lineasly
varying moment distributions.

4.2.6 Summary

The requirements for valid minimum potential energy
solutious in thin-shell finite-element analysis are ex-
tremely difficult to satisfy. For this reason the develop-
ment period has been very long and has involved many
contributions, and the satisfactory formulations are
relatively complicated. The most reliable and sophisti-
cated triangular shell element fomulations are those
due tc Dupnis,*® Cowper et al.,*' and Argyris and
Scha-pf,”* but it should be noted that not all of these
adhere completely to the principle of minimum poten-
tial eneizv. It should also be observed that recent
work333¢€ gives greater confidence in the usefulness of
the well-established flat elements for thin-shell represen-
tation, and siill other recent work®®+*® has delineated
the manner in which isoparametric solid elements can
be adapted to thin-shell analysis.

Because of the relative sophistication of displacement-
based shell 1.presentations of any type — curved thin
elements, flat elements, or iscparametric solids — a
great deal of attertion has been drawn to mixed
variational principles, which permit the use of simpler
assumed fields in the form of either stresses alone or
both stresses and displacements. The accuracy and
reliability of these schemes have also been verified, but
a principal difficulty in practical application at this
point is their amenability to incorporation in existing
large-scale general-purpose programs.

There are a number of unfulfilled requirements in
finite-element shell analysis, cuite apart from the
1oatter of basic theoretical formulation of elements, as
follows:

1. Continued study is needed of geometric represen-
tation for curved-shell elements, although there has
been substantial progress in this respect as outlined in
Section 4.2.3.

2. The problem of representation of discrete stiff-
eners, including eccentricity effects, has not yet been

given sufficient attention. Experience in numerical
applications is particularly important here. since there
are numerous alternative approaches and simpiifi-
cations.

3. The need for experimental data for verification of
finite-element analysis continues to grow, with only
small progress toward the satisfaction of such require-
ments. Finite-element formulations are traditionally
verified by comparisons with classical solutions. It is
presumed. nevertheless, that the method is a tool for
solutior of complex problems where no altemative
solution procedures are applicable. Verification must
therefore be accomplished in appiication to such com-
plex structures and the test procedures and arrange-
ments must be of a form appropriate to the finite-
element solution format.

4. Tradeoffs between element formulative effort
(sophistication in the definition of element behavior
and geometry) and the number of equations to be
solved (simplicity of element formulation) are not yet
clearly established. Comparisons of these alternatives,
to ve valid, must include not only the operational costs
to reach a desircd level of solution accuracy, but must
also reflect an amortization of costs to develop the
associated software.
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5. Inelastic Analysis - Time Independent

Inelastic analysis, which during the formative years
of the finite-element method drew little attention,
has emerged as one of its foremost capabilities. This
results from the recogrition that the method, rp-
resented by lavge-scale general-purpose programs, is
the only workable procedure for inelastic analysis of
practical structures. Coincidentally, design require-
ments have emerged for such aralyses, especially in
the subject area of nuclear reactor structures.

The principal challenges in the extension of linear
finite-element analysis to inelastic problems have
concerned the establishment of a proper relationship
with classical plasticity theory and the formulation
of efficient and reliable algorithms for solution of
the associated large-order systems of algebraic equa-
tions which are at least implicitly nonlinear. Explicit
consideration of incremenial plasticity theory in
finite-element analysis dates from only 1965. Algo-
rithins for solution of the associated nonlinzar alge-
braic equations are still being develcped and refined.

Siz.ce the constitutive relationships are basic to
finite-element elastoplastic analysis, the matrix
format of such relationships and their transformation
to elemer. equations will be discussed first. The
element formulations are discussed only from the
view of stiffness (displacement method) relaiionships,
since all but the most recent work and all experi-
ence in practical application are phrased in terms of
this approach.

The general approaches (systern algorithms) for
finite-element elastoplastic analysis are discussed
next. Two principal approaches have enjoyed in-
dependent development and application: (1) the
tangent stiffness method and (2) the initial strain
procedure. The ‘.ngent stiffness method involves a

redefinition of the system stiffness matrix in each
analysis cycle. The initial strain method preserves the
system stiffness matrix (if temperature remains con-
stant as load is changed) and represents the inelastic
effects in the manner of initial strains.

A special section is devoted to finite-clement elas-
toplastic analysis via flexibility (complementary
energy’ concepts. Only research work has been pub-
lished in this direction, but the approach appears to
have considerable promise for a number of reasons.
The approach makes direct reference to as-measured
constitutive relationships, is simpler in formulation
for plate flexure, and possesses a poicntial for upper
bound solutions of the limit analyss type.

The final section of this chapter ¢xamines applica-
tions experience. The accompanying tabular represzn-
tations are divided into considerations of tangent
stiffness and initial strain applications, respectively,
which indicate a somewhat even division of popular-
ity in prac:ice.

General reviews of finite-element elastoplastic anal-
ysis have been published by Oden,' Marcal,? and
Argyris et al.> A more general review of computa-
tional considerations in elastoplastic analysis of pres-
sure vessels is found in the text edited by Gill.*
Hodge® also discusses plastic behavior with reference
to pressure vessel design, but without consideration
of computational approaches.

5.1 CONSTITUTIVE RELATIONSHIPS

Basic relationships in plasticity theory are de-
veloped in detail in many texts, includirg Refs. 6
through 8. A particularly good basic treatment is
preserted by Johnson and Mellor,® and readable de-
velopment has also been prepared by Merkle!® A
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detailed description of constitutive equations to be
used on an interim basis for analysis of liquid-metal
fast breeder reactor components has been presented
by Pugh et al.'' This section merely outlines con-
stitutive relation considerations to an extent neces-
sary for identification of related facets in element
stiffness formulation.

In constructing the relationships between stress and

strain in the inelastic range for multiaxial states of

stress, one must at least establish the condition for
yielding the general form of the desired stress-strain
law and a criterion for work hardening.

Consider first the yicid criterion. Aithough aiterna-
tive forms are available and have been employed in
finite-element analysis, the nearly universal choice is
the relationships due to von Mises for the increment
in plastic strains {de,} in relation to the yield <u.-
face. Based on the ﬁow rule of von Mises, equiva-
lent stress and strain concepts, and the use of the
von Mises formulation for the yield, or plastic
potential, function, the following relationship is ob-
tained:

r a-o- l
where € is the equivalent plastic strain and o is the

equivalent stress. We note also the incremental form
of the von Mises yield criterion.

— | %
do
do = la{ }\ {do} = , (2)

{de,) =

where H' is the slope of the equivalent stress—
equivalent plastic strain (0 — €,) curve. This curve,
established by testing of a uniaxial specimen, is the
link to multiaxial behavior. The relation between
increments of stress and strain can always be written
in the form

(do) = [E} { (de} ~ {de} )

and by suitable operations and combination of (1)
through (3), one obtains

o () )
BERE

{do} = | [E] - {de} , (4a)

or
(do} = [[E] - [E,]| (de} = [E] ide}
- [E;) {de},  (4b)
= [Ecpl {de} , (4)
with
e {3 }|5 | i

IE,] = —— — .
" e )

The matrix [E,;] is termed the elastoplastic, or
tangent, material stiffness matrix. It will be noted
that the symmetry property of 2 material stiffness
matrix is preserved and that perfect plasticity (H' =
0) presents no special difficulty. It is pertinent to
note that original efforts in formulating a valid
incremental plasticity finite-element procedure'? es-
tablished the strain vs stress form of the constitutive
relationships (their basic form). The inverse form,
required in any displacement-based procedure, was
then obtained via numerical inversion.

In cases where a function other than the effective
stress defines yield, Eq. (5) is generalized simpiy by
replacing o by the appropriate yield function f. As
in the case of elasticity, specific forms of Eq. (5)
are established for specific circumstances such as
plane stress and plane strair. Detailed representations
of these are given in Refs. 13 through 15, which
also include specific deveiopments for orthotropic
materials in accordance with Hill's postulate.®

More recently, attention has been given to the
extension of the above concepts to a continuum
representation of the infiuence of temperature on
yield. If the yield function is now taken to be a
function of both the accumulated plastic strain and
temperature T, we have, for the differential of the
yield function,

o0 00
f=— + — (6)
d ae dep 3T dT,

and the conventional procedure for establishment of
incremental stress-strain equations leads to a relation-
ship with a redefined H'. This development is
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presented by Yanuda.'®” Another treatment of this
topi- has been published by Radaj'? and by Argyris
et al’®

The problem of representation of strani hardening
is a key aspect of the constitutive law. Two forms
of s'rain hardening law are commonly employced: the
isotronic hardening law, wherein the loading surface
expands during loading. and the kinematic hardennig
law, where it translates as a rigid body. The fore-
going treatment is referenced to isotropic hardening.
Incremental stress-strain representations for kinematic
hardening are detailed by Kamel and Sack.'® Armen
et al.'®?® Zudans?' and Jordan??

Kinematic hardening, introduced by Prager,?® has
been modified by Ziegler.2* and it is the latter form
that has been adopted by finite-element theorists
cited above. It would appear that if a har'ening
representation which is referenced to the concept of
a yield potential is at all realistic, then actual mate-

rial behavior will lic somewhere between the limits
of isotropic and kinematic hardening. A combined

hardening law can be constructed for tinite-element
analysis, but to the writer’s knowledge, no numerical
application of such a law has beer published.

The objective in constricting the material tangent
stiffness matrix is to form an element stiffness
matrix. As outlined in Chapter 2, this follows
directly, in displacement-based element stiffisess
formulaticns, via the expression

kp) = f, IDIT [E.,) D) @V )

where [k.,] is the element elastoplastic stiffness
matrix an(r [D] is the appropriate strain-node dis-
placement transformation matrix.

To establish the form of element equations fo:
initial strain analysis, reference is made to Eq. (4b),
from which [E. ] = [E] - [Ep]. Substituting this
expression into Eq. (7), we have

lkepl = f:, [D]T [E] "D} dV
— [, DIV [E,] D] aV . (7a)

The first term on the right-hand side is the linear
elastic stiffness matrix [k] (see Eq. 15, Chap. 2).
The second term on the right-hand side gives what
may be termed the element plastic stiffness matrix,

(k) = - J, D17 [E,) D] av, (7h)

and the product of [k,] by the element displace-
ments gives a vector of forces

(Fp} = [k,) (Al (8)

In the initial strain approach an estimated value of
{A} (or, synonymously, of plastic strains, since {ep}
= [D] {A)) is employed to construct the vector
{Fp}. and this vectos is treated as if it were the set
of initial forces arising froni “initial strains” {ep}.

An interesting question that arises in conjunction
with E3. (8) is the approach to evaluation for com-
nlex elements. In the case of the basic triangle in
plane stress, the analyst will adopt the concept of a
fully plastified element due to the assumed constant
strain state, and the evaluation of Eq. (8) presents
no difficulty. For complex elements, for example,
woparametric solids and Righer-order elements, the
oroper approach to evaluation is i0ov so clearly de-
fined. In such cases the analyst is confronted with
the problem of partially plastified elements. These
considerations have been discussed in detail by
Argyris et al.> and by Zienkiewicz and Nayak.?®

In the same vein, the distribution of irelastic
stresses throughout plate and shell bending elements
represents a complicated numerical evaluation prob-
lem. Displacement formulations for such elements
are inherently higher order (see Chap. 4), and, in
addition, one must account for variation of plastic
deformation across the thickness. Some authors {e.g.,
Refs. 2, 26, 27) prefer to divide the thickness into a
number of layers, each of which acts as a plane in
plane stress with respect to the growth of plasticity.
Others (e.g., Refs. 3, 28} assumne a variation of the
plastic zone throughout the thickness and across the
surface of the element.

The foregoing comments mainly apply to for-
malized descriptions of the material constitutive rela-
tionships. Thz manner of representation of the uni-
axial data for the purpose of defining the effective
stress-strain law must also be considered. The
Ramberg-Osgood?® functional representation has
enjoyed utilization (Refs. 30—32), while other au-
thors deal with piecawise®? or other representations
of tabulated data. Actually, only a bilinear stress-
strain representation can lead to a thecretically con-
sistent kinematic hardening formulation.!!
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5.2 FORMULATIVE APPROACHES
5.2.1 Tangent Stiffness

The most apparent form of finiteelement analysis
for elastoplastic analysis would seem to be an ap-
proach that revises the elastic element stiffness
matrix to account for the inelastic material prop-
erties. Such a revision is possible if inelastic constitu-
tive relationships are available which define a lin-
earized stress-strain behavior at any point in the
loading history. As shown in the previous section,
these relationships arc available in classical plasticity
theory, and their direct transformation to (fimite-
element analysis comprises the tangent stiffness ap-
proach.

Since the tangeni stiffness approach is a dirrct
utilization of classical plasticity concepts, it is some-
what surprising that the approach appeared for the
first time only in 1965. Relatei concepts were intro-
duced by Pope3* amplified and improved upon in
1967 by Marcal and King'? and by Yamada,'?® and
have since been expanded ana applied by many
analysts whose contributions will be discussed in
Section 5 4.

The basic scheme in tangent stuffness analysis
proceeds as follows:

1. An elastic analysis is performed for an arbitrary
load intensity, and this intensity is scaled to the
level at which the yield criterion is satisfied.

2. An increment of loading is selected for the first
passage into the inelastic range.

3. An estimate is made of the strain increments
caused oy the load increment of step 2, plastified
elements are identified, and tangent stiftnesses are
calculated for such elements and incorporated in ihe
system s*_ffness matrix.

4. The load increment of step 2 is applied to the
revised system stiffness matrix of step 3, and stress
and strain increrents are calculated.

S. Stresses and accumulaied plastic strains are up-
dated consistent with the results of the prior step.

6. Another increment of load is selected and steps
2 through 5 are repeated. The process of load in-
crementation is continued until the maximum value
of load is reached or until limited by collapse or
some similar phenomena.

The determination of a collapse situation has been
interpreted by some authors'2'® to occur when the
change in effective plastic strain is nogative.

In the case of ihe general nonlinear hardening
situation, it is in theory necessary to iterate within 2

given load incremment (steps 3 and 4) to establish a
consistency of the tarngential stiffness of yielded ele-
ments. It is normally sufficient, however, to work
with an estimated tangent stiffness for the interval.
This bears a relationship to the chosen size of load
increment, which is discussed below.

A major aspect in the definition of load incre-
ments is the manner in which new plastified ele-
ments are introduced into the stiffness matrix.
Yamada et al!? present a careful procedure in
which the load increment is adjusted tu bring in
plastified elements one at a time. Marcal and
King,'!? on the other hand, apply relatively large
increments and delineate an approximate way of
accounting for the “transitional” elements, those
which enter the plastic range during a load incre-
ment.

Although nearly all the theoretical developments
and aprlications of the tangent stiffness approach
have favored the von Mises yield condition and iso-
tropic hardening, departures from these have been
recorded. The Tresca yicld condition has been in-
voked by Anand et al33 As previously noted,
kinematic hardening has been employed by the au-
thors of Refs. 18—-22, among others.

5.2.2 [Initial Strain

Mendelson and Manson®* were perhaps the first to
characterize the inelastic analysis of multi-degree-of-
freedom problems as initial strain procedures. Their
analytical model emerged from finite-difference ap-
proximations to the governing differential equations.
Subsequently, Gallagher, Padlog, and Bijlaard®® de-
fined an approach to finite-element analysis through
initial strain concepts. This approach, which did nc:
incorporate considerations of incremental plasticity
and implied cnly a single iteration within each load
increment, received acceptance a.uong practitioners
in the period 1963 to 1967 :.id has been the sub-
ject of careful convergence studies by Lansing et
al.,?® Mentei3? and Argyris and Scharpf.®® The
appearance of the tangent stiffness method, phrased
in terms of classical plasticity concepts, drew atten-
tion away from the initial strain method, although it
was at first assumed that the latter was incapable of
accommodating such concepts.

The basic concept of “initial strain” procedures is
to define a reference elastic modulus, with reference
clastic strains, and to treat the depurtures from
linearity as initial strains. The essentials of this




concept in the format of the constitutive relation-
ships and element force-displacement equations were
discussed previously. We now consider the algorithm
for the complete system. The most elementary form
of initial strain analysis, mentioned above, proceeds
as follows (see Fig. 10).

1. Consider the application of a load {P;} of an
intensity sucin that an initial excursion is made into
tte plastic rangz. From Eq. (4), Chapter 2. {A} =
(K] ™' {P,}, with elastic strains and stresses {€,} =
[D] (A} and {o,} = (S| (&} [Eas. (12) and (5),
Chap. 2}.

2. By reference to tabular information regarding
the inelastic stress-strain law, the Ramberg-Osgood
format,2® or any other analytical representation,
comoute the stress {n, '} corresponding to the strain
{ec )

3. Compute, elastically, the strain {¢ '} cor-
responding to {0} '} through application of the Lnear
constitutive relationships, {¢;'} = [E] ' {5, '}.

4. Determine initial strains as {e}} = {¢,} — {g'}.

5. Increase load to {P,,,}, compute initial force
{P'i[} based on {e{}, and compute the associated
displacements, stresses, and strains:

{Ak+|}= [K] - {Pk+l}+ [K] - {P'k} ’
{°k+|}= [S] {Ak+|}" [E] {G'k} ’

fexar}=[E) " {04, )+ (i} .

o
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6. Referring again to constitutive equations, the
stress for {€,,,} is determined as {0, ,,} The new
accumulated plastic strain is {Gitn} = {eg,,} —
[E)™" {of,,} = ‘5.,} — {g,,} The proces con-
tinues via repetition of steps 5 and 6.

A key operation in the above prccedure is the
calculation of the stress level for a given strain. the
so-called “‘constani strain” form of initial strain anal-
ysis. Alicmatively, one may calculate the strain for a
given stress. furnishing the “constant stress” method
that is shown schematically in Fig. 11 and descrived
in detail in Ref. 30.

The constant stress and constant sirain aitematives
were originally published®® without recommendation
of one in preference to the other. Subsequenty
applications in praciice disclosed serious difficulties
in the constant stress method in achieving con-
vergent solutions. This is not unexpected, as seen in
Fig. 11, since the nature of real materials in the
inelastic range is such that very large initial strains
result from small joad increments.

A simple computer program for elastoplastic plane
stress analysis based on the above has been published by
Salmon et al.>' This program operates in the initial
strain mode but refers to incremental plasticity con-
stitutive relationships, employs a Ramberg-Owgood??
representation of the effective stress-sirain law, and
itorates within each Yoad increment.

A more sophisticated form of iritial strain procedure,
which accounts for incremental plasticity theory di-
rectly and provides for iteration within the load

ORNL- DWG 72- 1042

- q

ACTUAL
STRESS- STRAN LAW ~

’
€ho1 Crey

(5) SECOND ({k+1)th) LOAD INCREMENT

Fig. 10. Com"tmt strain algorithm.

|

I P

Wt v iy Ay YOI Y08 e, B PPy e S

A




42

o

¥ acrua steess-
STRAN LA —__

— €

€x

(o) FRST EXCURSION INTO
PLASTIC RANGE

o ORNL- DWG 72~ 1843

ACTUAL STRESS -STRAN

- €
€

td
hef

hel

(6) SECOND (ik+1)th) LOAD INCREMENT

Fig. 11. Comstant stress aigorithm.

ORNL- DWG 72-1844

__ACTUAL STRESS - STRAIN LAW
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Fig. 12. Initial stress algorithm.

mcrement, is given below (see Fig 12). It is assumed
that the load level at which inelastic defurmation is
initiated Has been identified and that an increr.ent of
load has bern selected for the first excursion into the
plastic range.

1. Apply load ‘ncrement and determine {Ao'}, and
(A€’}, elastically (in the following, primes denote an
elastic computation).

2. Add {Ac'} to stresses at start of interval ({0,}) to
form {0"},, where {0}, = {0o}+ (A0'},.

3. Calcuiate a first estimaie of the stress change due
to elastoplasiic behavior within the intcrvai, using a
representative  elastoplastic material stitfaess matrix
[Eep] and the aiready-calculated strain increment
{ac} = [Ep] {A€').

4. Correct the prior solution to account for the
discrepancy between the elast.c stress aad the stress
estimate of step 3. Thus, evaluate stress that can be
regarded as being supported by *“body forces,” {Ao"'},
= {Ad’}, — {Ao},. Also define the current stress and

e e e Pt
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strain:
{0}, = {0'}, - {40"'}, = {0}, + {Ac}, .
{€}, = {€}o + {A€'}, .

5. Using Eqgs. (7b) and (8) and noting that for this
computation {Ac”} = [E,] [D] {A}, compute the
element initial forces {Fi}, due to the stress supported
by body forces,

{Fi}, = ,/: [DIT {Ac"} dV .

Form a “‘system” vector of such forces. {P},.
6. Calculate the changes in displacement. stress, and
strain due to {Pi},:

@h =Kl P}, ,
[Ac'), = {S] {8} - {Ad"}y,

{A€'), = (D] {a}, .

Steps 2 through 6 are repeated until the stress change
computed in step 6 is acceptably small, and the load is
then incremented again.

The above concepts, presenied in Ref. 39 by
Zienkiewicz et al. (a simpler, one-dimensional form
appears in Ref. 40) have revitalized the initial strain
concept as an approach to finite-elenicnt elastoplastic
analysis and have assisted in the establishment of the
approximate balance between tangent stiffness and
‘aitial strain applications that now exists. Reference 39
terms this scheme an “initial stress > procedure, since it
is referenced to the coirelation of un unequilibrated
stress distribution and because the initial forces (step 5)
are computed directly from stress parameters.

Care must be excrcised in the above to establisk
[E. ] in step 3 ch a realistic basis. Reference 39
spec:ﬁes a choice based upcn the elastic stress, {0'},.
Clearly, this is a1 overestiy1ate, and it is desirable to
base [E, ] on ar average value within the interval. This
cannot be done in closed form, but an approximate
scheme can readily be dcvised.*!

No difficulty is occasioned in the above procedure
due to cyclic plasticity. Reference 39 describes a cyclic
analysis, and the work of Armen et ».'® describes
further applications to such phenomena.

Many attempts have been made to correlate the initial
strain approach and the tangent stiffness method.
Marcal*? succeeded in establishing the relationship

between the simpler form of initial strain analysis and
the tangent stiffness approach; further comments on hi.
work are offered by Salmon.*? Argyris and Scharpf®®
and Zienkiewicz and Nayak®S also examine this ques-
tion.

5.3 COMPLEMENTARY PROCEDURES

Complementary procedures in finite-element analysis,
that is, procedures that are founded principaly in
assumed stress fieids, have not riade significant inroads
into the practice of elastic finite-element analysis.
(Their theoretical base is discussed in Chap. 2.) Never-
theless, since these procedures hold certain promise for
inelastic finitc-element analysis, they have recently
drawn considerable interest.

As noted in Chapter 2. a complementary energy
formulation in which tress functions are chosen as
primary (joint) unknowns has special advantage because
of the cormespondence of the assumed functions and
resulting equation coefficients with particular as-
pects of displacement-based formulations. Rybicki and
Schmit*# are apparently the first to have applied these
ideas to elastoplastic analysis. They deal with ortho-
tropic piane stress and employ the Prandtl-Reuss
incremental stress-strain relations in an imtial strain
format.

The element represented in Rybicki and Schmit’s
development is a rectangle with a 36 degrees-of-freedom
representation of the Airy stress function (fifth-order
Hermitian polynomial interpolation). Clearly, the strain
field in ary such element can vary from elastic to
plastic in a complex manner and must be treated via
numerical integration of the element initial forces. The
use of an element with this many degrees of freedom
enables direct treatment of all brundary conditicns out
is likely to be more sophisticated than is required by
overall structural idealization requirements.

A simpler represeniation, defined also for plane stress
and in terms of the Airy stress function, has been
presented by the writer ard Dhalla.*! This formulation
of the rectangular element, with 16 degrees of freedom,
requires careful attention in the treatment of stress
(force) boundarv conditions.

An alternative complementary approach, based upon
direct representation of stress parameters, has been
explored by Belytschko et a1.*57*7 in a series of papers
pertaining to both plane stress and flexure. The
advantage of element matrices that are identical to
those in conventional stiffness analysis are lost in this
scheme, but the matrices required are nevertheless
simple in form.
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5.4 APPLICATIONS EXTERIENCE

In this section analyses of simple problems with
known solutions are given for comparison purposes and
for use in conducting practical analyses.

Very few comparison solutions of sufficient accuracy
and detail are available for verification purposes. The
test data of Theokaris and Marketos*® for a rectan-
gular, uniformly loaded plate with central circular hole,
of Swedlow and Yang*® for a similar problem, and of
Percy et a.5° for a plate with nonuniform stiffener
subjected to a concentrated load are the most signifi-
cant and most widely employed such comparison bases.
Among classical solutions, the cantilever beam prob-
lem®! and the simply supported beam problem?®
fumish substantive data. These problems ire employed

continually in the vestigations summarized in this *

section.

In discussing applications experience it is useful to
summarize available references through the medium
of a tabular representation. Tables 8 and 9 give this
information for publications related to the tangent

stiffness and initial strain methods respectively. The

types of elements employed, the constitutive law a

invoked, and the problems solved are delineated. It
is nci possible to represent each entry with the
same detail. In the work of Argyris et al., referred

to in Table 9, for example, the full range of ele-
ments, methods of approach, and applications is ex-
plored, but the interested reader must consult the
cited Refs. 3, 35, 55, and 56 tor relevant details,

Table 8. Finite-element elastoplastic analysis — tangent stiffness method

Constitutive law

Authors and reference Types of element and solution algorithm Problems solvcd — remarks
Pope” Plane stress triangle von Mises vield, Prandtl- Edge-stiffened rectangular plate
Reuss flow, isotropic under nonproportional loading
hardening
Marcal and King' 2 Plane and axisymmetric Same as above Notched plate, thick cylinder
triangles
Yamada etal.!¥!$ Plane and axisymmetric Same as above Notched plate, represented in
and Mivamoto®? triangles, tetrahedren plane stress (Ref. 13) and a5
solid (Ref. 52)
Swedlow and Yarz*® Plane stress triangle Same as above Cracked plate
Richard and Plane stress triangle von Mises yield, Prandtl- Comparison with plate test data
Blacklock?3* Reuss flow, use of of Ref. 5!

Kamel and Sack'®

Zudans?'

Hofmeister et al.5?

Anand e1 al.3?

Avrag®4

Popov and Khojastch-
Bakht?’

Axial (also describes formulation
of triangular and tetrabedronal
-lements)

Axisymmetric thin shell

Plane ané axisymme!ric triangles
(linear strain fields), triangle in
bending

Plane stress triangles
Isoparametric quadrilateral rirg

Axisymmetric thin shell

Ramberg-Osgood for
effective stress-strain law,
Runge-Kutta numerical
integration

Wide range of yield condi-
tions and flow rules

von Mises yield, isotropic
and kinematic hardening

von Mises yield, Prandtl-
Reuss flow, isotropic
hardening

Tresca yield

Same as Ref. 12, MARC!
program

Incremental plasticity
theory

Five- and ten-bar irusses (hypo-
thetical); discussu's suzbstructuring
to isnlate region at plasticity

Attachment of two cylinders and
torispherical head

Introduces variztional principle
for tangent stifrness models,

inclwies finize strains; numerous
problems

Deep beam (Ref. 51) and notched
tensile specimen (Ref. 48)

Pressure vessel nozzle for pressure
and thermg] strain

Fressure vessel heads; discusses
initial strain procedure
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Table 9. Firite-element elastoplastic analysis — initial strain method

Authors and reference

Types of element

Constitutive law
and solution algorithm

Problems solved — remarks

Gallagher et al.*®

Lansing et al.3°

Percy et a1’

\\fhang2 ¢

- .38.55§,
Argyris et a 3+38:55:56

Zienkiewicz et al.3®

Zienkiewicz and
N:Ayak2 s

Schultz and van
Fossen®’

Salmon et al.3!

Triangle, tetrahedron

Bar and shear panel elements

Plane stress triangles

Rectangular shell element

Wide range of eleme ats

Plane stress and plane <irain
triangles

Wide range of isoparametric

elements

Axisymmetric quadrilateral

Plane stress triangle, bar

Experimental data for stress-strain
law: simplified analytical repre-
sentation

Ramberg-Osgood stress-strain
representation; methods of Ref.
36 studied in detail

Same forms as Ref. 36

von Mises yield criterion, Prandtl-
Reuss flow, isotropic hardening

Extensive review of alternative
representations

General form of yield condition
and flow rules, detailed for
isotropic hardening

Discusses variety of flow rles and
constitutive relationships

von Mises yield, Prandtl-Reuss
flow, isotropic hardening

Same as above, with thr2e choices
for stress-strain law

Plate with circular hole

Compares data of Ref. 50

Develops significant test
data for finite-element
elastoplastic analysis

Work applies also to tangent
stifiness (Table 8), canti-
lever beam, flat plate,
curved shell

Ref. 38 gives comparison of
initial strain a2nd tangent
stiffness

Plates with hole, notch;
tunnel cross sa2ction,
strip foundation

Bellows, thick cylinder,
axisymmetric extrusion

Pressure vessel ivead ard
nozzle; discusses heat
transfer and creep analyses

Truss and comparison with
Ref. 50 test data; includes
computer program listing

It ic of interest to note from these iables that
nearly the full range of element types is represented.
On the other hand, with respect to constitutive rela-
tionships, use of the von Mises yield cordition and
associated flow rule predominates. Representation of
isotropic hardening also predominates, although the
rumber of efforts employmg kinematic hardening is
increasing. Actual performance of analyses for cyclic
plasticity is similarly limited.

Comparison studies of the tangent stiffness and
initial strain methods are included among the above.
The most detailed of those appear to be the papers
by Argyris and Scharpf,>® Zienkiewicz and Nayak,?*
Marcal,? Kamel and Sack,'® and Whang.?® In his
examination of relative efficiency, Whang®® con-
cluded that the tangent stiffness method accom-

plished a given level of accuracy with slightly less
computational effort than the initial strain method.
It is certain that differences in coding strategy and
in the detailed aspects of the respective approaches
could have reversed this conclusion. Thus, although
comparison efficiency studies are badly needed, it
appears that the choice of n approach will be
govermed by a bias born of experience and the
specific circumstances of the problem at hand.

As a final note, it should be observed that certain
recent finite-element papers have exrl.red the use of
the simpler deformational theory of plasticity, which
is valid under conditions of proportional loading.
These papers include the theorerically oriented
studies of Egeland®® and Stanton and Schmit??® and
the practical applicaticn described by Chan et al.5?
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6. Time-Dependent Viscoelastic and Creep Analysis

The distinction betweci linear and nonlinear forms
of time-dependent naterial behavior is crucial in any
discussion of the background of related analysis
capabilities. The linear form of tim:-dependent r:ate-
rial behavior, which is conventionally termed visco-
elasticity, has been studied analyiically for more
than a century, and the development of related anal-
ysis tools has progressed continuously to the present
high level of capability. On the other hand, non-
linear time-dependent material behavior. or nonlinea
cieep, has been identified in analytical form only
since 1910 (Ref. 1), and progress toward gencral analysis
capabilities is measured from the late 1950s.

The time-dependent behavior of metals is char-
acterized vy nonlinear creep. This does not entirely
discount an interest in finite-element-based solutions
of viscoelastic deformation, since procedures for-
mulated for viscoelasticity form a basis for creep
analysis procedures. Certain other viscoelastic analysis
procedures may prove useful for future creep anal-
ysis developments.

The following section is devoted to viscoelastic
analysis, after which the problem of creep analysis is
examined. Both sections are divided into reviews of
the available constitutive equations and outlines of
specific finite-element analysis procedures. A final
section describes applications of the finite-eilement
method to creep analysis.

6.1 LINEAR VISCOELASTICITY
6.1.1 Constitutive Relationships

Linear viscoelasticity attempts to deal with time-
dependent material behavior by establishing mathe-

ratical torms of the constititive relationships involv-
in: time (t) and derivative; with respect to time that
ate linear in the s'resses and strains. Many thorough
accounts of this topic, including both the representa-
tion of the constitutive relationships and methods of
structural anilysis based on these relationships, are
availabie ™ The following is a brief outline of con-
siderations in representation of viscoelastic constitu-
tive eqiations, which are important to the methods
of viscoelastic finite-element analysis to be described
subsequentiy.

Before discussing specific forms of viscoelastic con-
stitutive relationships, it is essential to distinguish
between such expressions when written for stress in
terms of striin, and vice versa. When stress is writ-
ten in terms of strain, strain rates, and time, the
variation in stress with respect to time for constant
str=in can be established. This variation, portrayed
schematically in Fig. 13a, is termed relaxation, so
that the terms relating stress to strain are col-
lectively designated as the reclaxation modulus. Con-
versely, when strain is expressed in terms of stress,
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derivatives of stress with respect to time, and time,
the case of constant applied stress (Fig. 13b) pio-
Juces creep behavior and the constitutive relation-
ships define the creep compliance.

Measured (experimental) data are usually obtained
in. the creep compliance format. The principle of
minimum potential energy, the almost universally
employed approach to finite-element analysis, in-
volves the relaxation modulus format for the con-
stitutive relationships. This presents no practical dif-
ficulty for the usual approach to finite-element
viscoelastic analysis (the time increment—initial strain
method), since the coefficients of the constitutive
relationships are defined “instantaneously” as numer-
ical values determined separately by reference to the
functional (differential or integral) form of ihese
relationships.

Viscoelastic constitutive relat:caships may be as-
sumed to be represented bv mechanical models con-
sisting of springs and dashpots. This leads directly to
the differential form of the constitutive relationship.
The simplest representations are those due to Max-
well and Kelvin, respectively (sce Fig. 14).

€ed -REMOVAL
147 oF LOAD

L

50

The Maxwell model consists of a spring ar-
dashpot in series, representing the following analyt-
ical expressicn for strain vs stress and time (Fig.
14a):

+

t. N

(1]
€= —
n

mia

Deficiencies of this representation include the linear-
ity of the strain vs time variation and a failure to
represent any “‘recovery” of viscoelastic strain upon
removal of load. Recovery is an experimentally ob-
served phenomenon. By combining a spring and
dashpot in parailel (Fig. 14b), the behavior is
represented as

de
0°E€+ﬂ;- 2

This representation is also deficient because it does

not account for the initial elastic strain, as was done
in the Maxwell model. Thus, to obtain features of
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both models it is feasible to tie together four ele-
ments (Fig. 14¢), to yield

oo o d*o de d’e 3)
ot+tp,—— dat tp2 3 i = q m q: a \
where p,. ... q; are material constants.

Successively more sophisticated and realistic visco-
elastic constitutive relationships can be formed by
combining still more springs and dashpots The mosi
general viscoelastic relationship is then of the form:

m do 2 dke
— Y& . (4)
k
§ dik o dt
where po, - Px» -~ Pm» Q0> - Q. - G, arc material
constants.

For the purposes of analysis one seeks a direct
viscoelastic relationship in either the creep com-
pliance [e(t) = J(t)oe] or relaxation modulus [o(t) =
Y(t)eo} format, each referring to an injtially applied
stress (0g) or strain which is held constant. rather
than the differential form of Eq. (4). This is con-
veniently accomplished by use of Laplace transform
techniques. The analysis problem requires considera-
tion of a time history of stress and strain inten:itics,
however, and for these cases the concept of the
hereditary integral is ‘ntroduced. As in the case of
constant strrss or strain, either creep or relaxation
fo-mats of this integral may be written. For creep
we have

"= ' J(t )
et = o0 10 + [ o) TE=Ldar (9
where t' is e time parameter to measure the stress

variation and t measures time from the start of
visww2lastic deformation.

Any attempt to introduce computational econ-
omies by direct use of the functional form of the
constitutive relationships in the stiffness equations
and integration thereof in time presents formidable
Jdifficulties. Inversion of the creep compliance to
define the relaxation modulus is extremely costly.
Procedures for this are given in Refs. 7 to 10, and
an jllustration of the related computational expense
is presented by White.'!

To avoid the difficulties of the formalized repre-
sentation of viscoelastic constitutive equations and
still retain the hereditary nature of the phenomenon,

Sl

while d-aling with a form appropriate to finite-
element analvsis. the scheme employed in Ref. 12
can be considered. With reference to the Kelvin
model [Eq. (2)] for a single element (element i), we
have

dec
¥ _o B
at n m

(2a)
Here, since the elastic strain is not represented, we
have set € = €. For a series of Kelvin models (1. ..
i, .. 1) and a flinite increment of ume (At), the
increment of crezp strain is

(2b)

and the values of o and ¢ for this interval are
taken as those existing at the start of the mterval.

The generalization of the above to multiaxial states
of stress is straightforward, adopting the assumption
that linear creep occurs only for the deviatoric com-
ponents of stress, so that Poisson’s ratio equaks 0.5
(see Refs. 1-6, 12).

6.1.2 Anslyst: Procraures

Published finite-element viscoelastic analysis pro-
cedures are in eaci. case cast in the form of the
stiffness approach, but a variety of distinct treat-
ments are repressnted. The treatments discussed here
are (1) the iime increment—initial strain method, (2)
the correspondence principle, and (3) the integral
approach.

The time increment—initial strain method is appli-
cable to all classes of finite-element analyses for
time-dependent material response and is almost ex-
clusively the basis for nonlinear creep analysis. Thus
it is given close attention in the following. This
nrocedure was first introduced for the nonlinear
creep problem'? and was subsequently employed by
Zienkiewicz et al.'? for viscoelasticity.

In this procedure the time history of loading (and
temperature, if this also varies with time) is repre-
sented by a series of constan: load intervals, as
shown in Fig. 15. The viscoelastic deformation accu-
mulated at the close of a given interval is treated as
an initia) strain in a determination of the stres.
prevailing in the subsequent interval.
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Fig. iS. Repicsentation of time-varying loads and temperatures.

The compleic algorithm, from time zero (t,),
proceeds as follows:

(a) Caiculate the elastic stress distribution {7}y at
te, based on {P}y = [K] {A}, and any imtial strain
due to temperature, if present.

(b) Refer to the constitutive relationships [eg.,
Eq. (2b)] and calculate the change in time-depend-
ent strain {Ae€}, in the first interval At; assuming
{o}e to be constant within this interval.

(<) Solve the elastic problem at the close of the
first interval, at t;, = o + Ay, using {AeS}; to
form an initial force vector {Fi} (and for tempera-
tures T, , if present):

P} = K] [ah — P - (6)

Calculate the elastic stresses {0}, from this solution.

(d) Calculate the increment in time-dependent
strain {Aec), for the second time interval At, by
reference to the constitutive relationships and add to
the already sustained time-dependent strain.

(e) Employ step (c) for the close of the second
interval, using the total time-dependent strain to cal-
culate {Pi},.

(7) Repeat steps (d) and (e} for succeeding inter-
val:.

[v is important to note the significance of the
selection of the time interval with respect o solu-
tion accuracy, even for a viscoelastic analysis. The
above procedure implies that stress does not change
during the selected interval. One may approximate
the change in stress, however, and form an average
stress for the interval in order to minimize the error.

1

Questions of interval selection will again be taken up
in Section 6.2.2.

The viscoelastic constitutive relationship 1epre-
sented by Eq. (2b) is the basis for steps (b) and (d)
in Ref. 12. The problems of a prism and a rein-
forced concrete cylinder, for which exact solutions
are available, and the more practical cases of a solid
propellant rocket eaxgine and a tunnel lining, for
which no comparison solutions are available, are
solved in Ref. 12.

The comrespondence principle of viscoelasticity is
employed by Webber!* ii. the finite-element analysis
of rectangular plates. In accordance with this princi-
ple, a iuplace transform is taken of the elastic
solution and the elastic constants are replaced by
certain combinations of the elastic and viscoelastic
constants that are dependent upon the chosen form
of the viscoelastic constitutive law. The Laplace in-
verse of the resulting relationships gives the visco-
elastic solution. ‘

The success of this approach depends upon a spe-
cial form >f the element relationships, which in Ref.
14 comprise the conforming rectangle in plane stress.
The constitutive relationships are of the Maxwell
form. Thus the approach is of limited value, espe-
cially in view of the inapplicability of the corre-
spondence principle for nonhomogeneous transient
temperature distributions. Reference 14 compares the
numerical solution with the results of a rectangular
plate test performed especially for this purbose.

Integral forms of finite-element viscoelastic analy-
sis, as defined here, operate upon the integral form
of the constitutive relationships. The latter are in



the class of Eq. (5). References 15 to 19 develop
procedures based upon constitutive relationships of
the specific form of Eq. (5) or its inverse but
differing principally in the manner of approximation
of such integrals. Taylor and Chang'® and Lynch'?®
describe analyses that attempt to account for the
complete history represented by the integral. The
papers by Taylor. Pister. and Goodreau.'”’ Zienkie-
wicz and Watson'® and White'' each introduce
major simplifications of the evaluation of the inte-
gral in time.

62 CREEP
6.2.1 Creep Laws

Although many efforts have been launched by
material scientists in recent years to gain a more
complete understanding of creep behavior in
metals.’® many questions remain unanswered and
reliable theoretical procedures are not yet available
for the calculation of creep representations from
more fundamental physical properties. Thus depend-
ence is placed upon mathematical representations
drawn from test data.

Comprehensive studies of both the creep response of
materials and of procedures for structural analysis in
the presence of this response are given in Refs. 21 to
29. In the latter context these references deal almost
exclusively with classical analysis procedures whose
results are of extremely limited applicability. Neverthe-
less. common considerations underlie both classical and

STRAIN
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numerical methods. and dependence :nust be placed by
the reader on these references for detailed development
of that which will be sketched in the following.

Three questions require stuy of the defiition of
appropriate constitutive relationships for creep analysis:
(1) the form of uniaxial creep data and its dependence
upon such factors as time and temperature, (2) the
generalization of uniaxial creep data to multiaxial states
of stress. and (3) the manner in which creep strains are
accuinulated under varying stress and temperature
histories.

In discussing item 1, it is useful ‘o refer to the original
representation of Costa de Andrade.! shown in Fig. 16,
where the creep strain is plotted as a function of time
for a given stress level and temperature. This behavior is
approximated by an expression of the form

€ =/tM + 9t )

where 8, 7. and m are material constants. By differentia-
tion with respect to time.

de<
a—=é¢=mﬁt“"+1=éf+é§- 3)

The exponent m is less than 1, so that for short times
the first expression predominates while for long times
the second term, v, is of greatest value. The early
portion, governed by St™  is termed the primary phase
of creep. The portion governed by 7yt is characterized as
secondary creep. The third, or tertiary phase, leading to
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creep rupture generally represents a highly nonlinear
form of behavior in which the usual engineering
definition of strain does not suffice for valid charac-
terization. Due to the high cost of creep analysis it is
usually not feasible to conduct analyses inio the
tertiary phase with representation of phenomena en-
countered in this phase.

For analysis purposes it is necessary to express the
material constants m, §, and ¥ as functions of stress
and, if possible, temperature. This is desirable even for
finite-element analysis. which does not require such
functional representation, because of the extensive data
tabulations needed to account for all ranges of behav-
ior. One of the most popular basic forms oi the
steady-state creep rate &, is that due to Norton,*°

& =Bo" . (9)

where B and n are material parameters. (If this equation
is emaployed as a representation of primary crecp, then
8 is a function of time.)

Bailey generalized Eq. (9) to account tor temperature
dependence by defining B as follows (see Refs. 2628
for discussion of this work):

B =DebT(ec)-P (10)

where ¢ is the base of natural logarithms, T is the
absolute temperature, and D, b, and p are material
constants. Generally, the information available for
representation of temperature variation has been so
limited that the form of Eq. (9) has been used.

A number of alternatives to the above have been
proposed and will contiiie to be explored. A long-
standing alternative is Soderberg’s formula,**

éE=Alede — 1], (11)
while other authors have employed
€S =A;sinhdo, (12)

where again A and d are material constants (different
for the two formulas).

Although terms such ac B in Eq. (10) are defined in a
form that has physical significance, the actual func-
tional dependence upon stress must at the present time
be established from experimental data. The information
avaiiable is extremely limited. Thus the more com-
plicated creep laws [Egs. (10—12)] have often los.
favor to the simpler expression givern by Eq. (9). It
should be noted, howsever, th1t any expression is

theoretically acceptable for finite-element numerical
analysis. so that new developments in material repre-
sentation may be incorporatea as they appear.

The comm« nly accepted procedure for dealing with
item 2, the generalization of uniaxial creep data to
multiaxial states of stress, is in direct analogy to the
procedure used for time-independent plastic deforma-
tion, that is. the concepts of effective stress 3) and
effective creep strain (€©) are introduced. The following
assumptions are made in establishing stress-strain rela-
tionships phrased in terms of these parameters:

1. Creep deformation occurs under constant volume.

. Hydrostatic stress has no influence on creep rate.

i~

b.n

. The principal directions of the stress and creep strain
rate tensors c¢oincide in an isotropic mecium.

Under these conditions, the desired relationships are, in
indicial notation,

3 A€€
c — e e—
where
3
©@)?==S..S (14)

2Tty

Thz incremental effective creep strain (A€ ) is
2 2 C C
zC = —
(A€°) 3 AfijAEij , (15)

and the deviatoric stresses Sij are

1

whe.. by is the Kronecker delta. In the special case of
axisymmetric solids, for examyle, these relationships
take the specific forms

£C
De; = --2—6—(20r - 0g — G,),

E’C

Acg =_2%—(200 =0, -0;),

(17)
= C
Aeg = = (20, - 0 - 05).

3 d¢*
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Finally. to consider item 3. the manner in which
creep strains are accumulated under varying stress and
temperature histories. we examine Fig. 17, which plots
the creep strain vs time for various stress levels in the
primary phase of creep. Assume that the stress history
is as described in Fig. 17b. After progressing along the
6, curve for time t,, a question arises regarding the
point on the o, curve at which accurnulation of creep
strains should be initiated for the second time interval.
If one moves directly at constant time (path A) from
the 0, to 0, curves, the accumulation procedure is
termed “time hardening™: if the move is made at

constant creep strain (path B). it is termed “strain
hardening.”
Other possibilities have been explored (see

Rabatnov?® ), and more recently a formulation has been
proposed®? that includes features of both time and
strain hardening. The limited amount of experimental
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data in this area and the even more limited data relating
to the significance of the respective rules of numerical
solutior results place the more sophisticated rules in the
academic realm for the present. Finite-element analysis
programs may easily accommodate either strain-harden-
ing or time-hardening rules. with preference usually
being given to the former because of superior accuracy
recorded in limited past studies.

The question of a hardening rule does not arise in the
secondary creep phase. As Fig 17¢ demonstrates,
application of either rule produces the same creep rate.

6.2.2 Analysis Procedures

In contrast to time-independent plasticity and to
linear viscoelastic analysis, only the time incremental—
initial strain method has been employed in finite-
element creep analysis. This work is summarized in
Table 10 and is discussed below.

The earliest application of the finite-clement method
to creep analysis appears to have been that of the
writer. Padlog, and Bijlaard,'? although it must be
noted that the concepts for solution of the established
algebraic equations are identical to those presented
earlier by Mendelson et al.>? This approach has been
carried through to the present in the references to be
discussed.

Chronologically, the next significant contribution to
finite-element creep analysis was made by Lansing,
Jensen, and Falby >* This work, based on the matrix
force method and the representation of a stiffened
sheet in plane stress subjected to time-varying loads and
temperatures by means of axial force members and
shear panels, is noteworthy for its coniribution of the
most significant test data yet reported. The data, which
involved strain gage readings and supplementary mate-
rial property test information, should be useful in the
verification of future developments in finite-element
creep analysis.

The extension of the subject procedures to axisym-
metric solids, together with useful information regard-
ing convergence of the solution process in time, is given
by Greenbaum and Rubenstein®* and by Sutherand.¢
Both papers employ the simplest form of axisymmetric
solid element, the triangle with linear displacement
fields (joints only at the vertices). (See Sect. 3.2.)

References 35 a. d 36 identify two limitations on the
time-step length in finite-element creep analysis and
establish tolerances for each of these within the
confines of the problem they study. The first limitation
pertains to change of stress within the time interval.
First-order crecp analysis features the assumption of
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Table 10. Applicatioas of time incremental -initial strain method of finite-clement creep analysis

Problems solved

Remarks

Authors and reference Creep law Types of element
Gallagher et a!? €€ = Bo™. strain
hardening in plane stress
Lansing et al*¢ €€ = at7(eBo)), Axial member and
strain hardening shear panel
Greenbaum and €€ =80>%" strain Triangle:
Rubenstein’® hardening and time axisymnextric
hardening
Sutherland3® & =Bo% 3% strain Triangle:
hardening axisymmetnc,
plane strain,
plane stress
Swanson a;g €= Cleczﬂ‘
Patterson (sinh C5 ol‘l‘)—c‘
C; = material constants
Chan et al.** Not specified (arbitrary), Triangle:
strain hardening and plane strain.
time hardening plane stress
Schultz and €€ =at? ¢, strain Axisymmetric
Van Fossen*’ hardening and time triangle and
hardening quadrilateral

Trangle and rectangle Finite-width plate with

central hole

Stiffened rectangular
plate

Thick-walled cylinder

Axisymmetric cylinder,
flow duct, beam

LMFBR fuel duct

Longitudinal pipe weld

Pressure vessel

Includes temperature
vartation with time;
careful study ot theory
Vs test

Exdudes theory: de-
voted to description
of large-scale amalysis;
includes tim:-
independent phsticity

Same comment as for
Ref. 44

constant stress within the time interval. To keep the
error due to this source within acceptable bounds, it
would appear appropriate to limit the change in stress
to 5%. Sutherland®*® employs both S and 10% as the
upper limits in the creep analysis of a flow duct using
the creep lzw €° = Bo®-35_ The differences in the resuits
did not prove significant.

The second limitation applies to the change in creep
strain in a given increment in time. It has been tound®*
that if the change in crecp strain equals the elastic
strain, the solutions for succeeding inwervals oscillate
and diverge. Thus the change in creep strain is limited
to some fraction of the elastic strain.?5"3® Alterna-
tively, upon attainment of constancy of the stress neid
with time, extrapolation may be attempted in order to
estimate the displacements for a subsequent time.

A key aspect of any creep analysis program is the
automatic selection. of time increments, subjec® to the
above critena. The program described in Ref. 39 asks
for an arbitrary initiai estimate of the time interval.
This is doubled in the next increment if the above

critevia are met, or halved (and the increment repeated)
if they are not.

Only limited attention has been given to the problem
of creep behavior of thin plates or thin shells in flexure.
As in the case of the lime-independent plasticity
analysis of the same structures. retention of the
Kirchoff hypothesis demands a numerical integration of
behavior across the thickness of the plate.

Hell2n®*®# * discusses the finite-element analysis of a
rectangular plate in flexure. He bases his development
on a simplified rectangular element with quadratic
transverse displacement field, the use of “initial stress”
concepts in the treatment of accumulated creep strains,
and Norton’s creep law.>® Analyses are performed for
only a uniformly loaded plate with 21 divisions across
the thickness of each clement and a2 7 X 7 grid of
elements. Comparisons are inade with only the known
stationary solution. Neveriheless, the results presented
are the most extensive numerical computations yet to
be performed for this class of problem. Similar studies
have been performed by Lin*? and Lin and Ganoung*?



57

for circular and rectangular plates. using the finite-dit-
terence technique.

6.3 APPLICATIONS EXPERIENCE

This section considers only those published descrip-
tions of analysis that refer to large-scale structures with
design significance, as opposed to examples which apply
to simple structures. and are intended for the purpose
of verifying basic concepts in finite-element creep
analysis.

It is fair to say that reported experience in the
application of finite-eiement analysis to large-scale
creep problems is guite limited. and for this re. ;un the
interested reader is advised tc also include the work on
finire-diffccence analysis of rotors as described by
senaelson et ai.>?

Greenbaum and Rubenstein®*® analyzed three types
of pressure vessel closures: the spherical. elliptical, and
flat head. A total of 520 elements and 301 nodal points
were used. An interesting facet of the results was the
prediction of change of location of the point of
maximum stress intensity as creep deformation pro-
gresses

Sutherland®® examined a hexagonal flow duct: this is
an application of triangular elements in plane strain.
The creep law employed is of the form

€C= (5.6 X |0—54.0$) |00.0|97T 0©-35 _

The solution parameters studied include the changes in
elastic stress concentration as time progresses and the
amplitude of maximum creep strain as compared with
elastic strain.

Chan, Manjoine, and Visser** analyzed the stress
distribution in the vicinity of a longitudina! pipe weld,
including both time-independent plastic deformation
(on the tasis of deformation theory of plasticity) and
creep. A total of 279 plane strain triangular elements
comprised the idealizaiion. Schultz and Van Fossen*
analyzed a pressure vessel for creep and time-independ-
ent plasticity using an analytical model compcsed of
796 quadrilateral and triangular elements.
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7. Dynamic Analysis

Analys:s for dynamic phenomena have become in-
creasingjy important in the design of nuclear reactor
structures in recent years. The prime motivation for
interest in this topic stems from the concem of
struciural integrity in the presence of earth tremors.
Oiher sources of excitation exist, however, including
the impacting of nuclear power plants by aircraft and
tornados, as well as the mundane mechanical sources of
excitation.

It is reasonable to expect that if a finite-element
representation is necded for design analyses for the
phenomena of principal interest to this report —
inelasticity, creep, thermal strain — then the same
representation is essential for calculation of the re-
spense to dynamic loading. In other words it would
appear to be efficient to devise an analy tical model that
could be used for representation of all behavior
mechanisras of interest, that is, for static, dynamic, and
thermal phenomena. A practical limit to this objective
intervenes, however, due to the expense of analysis in
temporal, as well as spatial, ccordinates.

This chapter deals only with the relationship of the
finite-element method to dyi:amic analysis. For the
overall considerations in dynamic analysis the reader is
referred to Biggs,' Hurty and Rubenstein,2 Miero-
vitch,> and Rogers.* An excellent development of
finite-element dynamic analysis procedures from funda-
mental principles is given in the {atter chapters of the
book by Przemieniecki.$

This chapter begins with a brief outline of the sources
of information segarding dynamic excitation of nuclear
reactor structures. The next two sections examine basic
questions in the formulation of element relationships
for dynamic analysis, without reference to dynamic

analysis of the complete system for specific forms of
response. These two sections pertain to the inertia and
damping representations respectively. Finzlly, a review
is giver of relevant considerations in the solution of
large-order systems of equations for dynamic phe-
nomena. This aspect divides itself naturally intc the
topics of frequency determination and analysis for
transients.

7. DYNAMIC ENVIRONMEN?

It has already been noted that in dynamic analyses of
nuclear reactor structures the principal source of
excitation is earthquakes. The compendium edited by
Wiegel® gives a good account of the gen:ral ..... of
knowledge with respect to earth tremors. An even more
recent account of the availability and form of eaith-
quake data for the United States has been presented by
Seed.” These documents demonstrate that ihe infor-
mation regarding earthquakes that have occumed is
indeed quite limited.

Measured earthquake data must be arranged in a form
that is suitable for analysis inpui. This undertaking, in
itself, constitutes an analysis effort. The generally
accepted format for shock-typ2 excitation is the re-
sponse spectrum, which is the plot of the maximum
value of a response parametér (e.g., acceleration) for a
single degree-cf-freedom system subjected to the rele-
vant excitation.

Thorough expositions of the above transformation
and its role in nuclear reactor structural design is “=n
in Refs. 8 through 10; further views of these quesiions
for the general readership are presented by Sharpe.'’
The extent to wh':h available data are deficient for



nuclear power plant design was rcently discussed by
Housner* However, overriding the considerations of
data accumulation are the philosophical and probabilis-
tic questions of a design criteria. A review’ ? and a more
recent paper'? by Newmark define progress in this
direction.

Tomados, as well as earthquakes, have come to be
recognized as sources of environmental hazards to
nuclear reactor structural integrity. The present state of
knowledge regarding the intensity of tomados is well
summarized in Ref. 14.

7.2 INERTIA REPRESENTATIONS

Fcr approximately eight years, since Archer'® intro-
duced the concept of “consistent” mass matrix repre-
sentation into finite-element analysic ~ontroversy has
existed regarding the relative merit of consistent vs
“lnmped” representations. The product of the element
mass mztrix [m] and the vector {A} of accelerations of
the element degrees of freedom constitutes the inertia
force in the element equations of motion (without
damping):

[m] {A}+ [k} (A}= {F(v)}, (1)

where {F(1)} represents the time-dependent joint
forces. For 2 complete system, upon assembly of the
element relationships,

(M] {A}+ [K] (A} = {P(1) ). )

During the early period of numerical analysis of
multi-degrees-of-freedoin  systems, the mass matrix
(inertia representation) was calculated simply by assign-
ing the mass physically subtended by a particular
degree of freedom to that degree of freedom. This is the
socalled lumped mass approach, which yields a diag-
onal mass matrix. The work of Archer,' S however, and
simultaneous efforts by Leckie and Lindberg'® called
attention to the fact that as the stiffness matrix may be
derived from strain energy, so also may the inertia term
be regarded as being derived from kinetic enargy V,
where

V=4 [, &)Ppdv, 3)

and p represents the material mass density. Assuming
that the usual finite-element procedure of employing
shape functions is adopted, as described in Chapter 2,
we have

A=|NJ{A}, (4)

where, in analogy to the discussion in Chapter 2, {A}
lists the time derivatives of the degrees of freedom (i.c.,
dA,/dt, dA,/dt, . . . for t = time), and |N] gives the
spatial variation of displacement (N} = |N,(x.,y.2),
N2(x,y,z), etc.]). Thus, by substitution in Eq. (3),

v=L2 (m ), (s)
with
i) =p[ [IN}IN] dV], (6)

where now [m] is the consistent mass matrix, which is
so designaied because the consistent shape function has
been employed in derivation of both the mass and
stiffness matrices.

Przemieniecki® gives a complete account of explicit
consistent mass matrices for the elements he considers.
Many papers give both stiffness and consistent mass
matrices in presenting new element iomiulations. With
the trend toward numerical integration in element
numerical evaluation, however, the requirements for
explicit formulations of consistent mass matrices are
diminished.

Consistent mas- matrices are widely thought to have
three advantages: (1) the validity of the pertinent
variational principle employed is preserved allowing, for
example, the calculation of “upper bound” vibrational
frequencies; (2) the solution is expected to be more
accurate for a given grid refinement than the solution
with lumped or other inconsistent element mass
matrices; and (3) the element formulative procedure
and the mode of assembly of the complete system
equations are unified for both static and dynamic
tcrms.

Advantage (1) is difficult to realize for practical
stiuctures. Departures from the conditions for the
validity of the pertinent variational principle are diffi-
cult to avoid in practical circumstances. These depar-
tures are due to such factors as the approximate
representation of applied loads and the approximation
of geometry, as well as the familiar problem related to
lack of interelement continuity of displacement. Galla-
gher and Lee' 7 made a numerical study of the effect of
approximations to geometry on the upper-bound char-
acter of finite-element vibrational analy ses.

Advantages (2) and (3) are more a,parent than real.
Clough'® discussed the question of c:nsistent vs
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lumped mass matrices in g:eater depth and found, in
certain numerical studies, that the lumped mass model
furnished greater solution accuracy at a given level of
grid refinement. It is important to rote, however, that
this conclusion in itself is not general. Consistent mass
matrices are more accurate in the classical case of
uniform beam vibration and many cases of flat-plate
vibration. It should be added that such advantages raust
be of a scale that would justify the added costs of
formulating consistent mass matrices. With respeci to
item (3). it is, of course. possible to construct element
fcrmulation algorithms that develop iumped mass
matrices in an automatic manner.

A clear disadvantag. of consistent mass mat.ices
stems from their nondiagonal nature. The diagonal form
of lumped mass matrices allows major computational
efficiencies in the analysis of the complete system.

7.3 DAMPING REPRESENTATIONS

Damping phenomena in real structures are difficult to
describe analytically. The forms of representation in-
clude viscous, coulomb, and structural damping. but
even these often faii to account for the effects that arise
from joint slippage, special frictional effects etc. De-
tailed examinations of damping may be found in the
special publication edited by Ruzika'® and the text by
Lazan}o

In view of these factors the simplest representation of
damping in the viscous form is gener-lly adopted. This
choice allows for retention of the linear analysis form,
and for the finite-element model we have the governing
equation

[M] {A}+[C] {a}+IK] {A}={P(D}, )

where now [C] is the matrix of viscous dam>ing
coefficients.

If Eq. (7) is solved in time by use of numerical
mtegration, wide latitude is available in the represen-
tation of the coefficients Cij- (Methods of numerical
integration are discussed in the gext section.) In
practice, however, the direct definition of Cj; is
genenlly not feasible cince, as noted above, the
analytical-based sources of damping are not those that
actually predominate.

Perhaps the most realistic approach to the establish-
ment of damping is through testing of the actual
structure or from test data of similar structures. The
structure is successively excited in the various natural
frequencies. For each response frequency a study is
made of the decay of amplltude and from this it is
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possible to estimate thi modal danping coefficient
(C;;). that is, the coeflicient in a d.agonalized represen-
tion of the equations of motion. Only a limited
numrber of the lowest modal terins can he established in
this manaer.

With the above information in hand. two routes open
to the analyst; he may either transform the complete
analysis representation to modal torm and proceed with
analysi; in time using the modes for which damping
data are now available, or he can attempt to “expand”
analyiically the modal damping data into a full matrix
[C]. A procedure for the latter can be devised and is
detailed by Clough.'®

The difficulties and sources of data in establishing
dampir; properties in nuclear reactor structural analysis
are documenied in Ref. 10 and in the recent paper by
Hadjian.® Also. Yeh?! has recently presented one of
the few numerica! studies of alternatives in the repre-
sentation and analytical treatment of damping.

7.4 SCLUTION PROCEDURES

7.4.1 Frequency Determination

The tasic system calculational problem in structural
dynamics is die determination of the frequencies cof
unaamped vibration (eigenvalues) and the associated
mode shapes (eigenvectors). This information is of
design value per se when the circumstances of design
require that certain frequencies not appear in order to
avoid resonance. In general, the interest in the fre-
quencies and mode shapes stems from the use of th-~
latter as bases for the transformation of coordinates to
uncouple the equations cf motion. Thus, in contrast to
such eigenvalue problems as elastic instability analysis,
the problem of frequency detemmination involves the
calculation of many of the frequencies and mode shapes
rather than the single lowest value of frequency.

A Jefinition of the eigenvalue problem, in algebraic
terms, is useful to the present discu:sion. In free,
undamped vibration the forcing function {I(t) }of Eq.
(2) is zero, and motion is assumed to be described by
the function (i.e., harmonic motion)

{A}={A¢ Jcos wt, (8)

where {A,} is the mode shape {eigenvector) of the
motion and w is the natural frequency in cycles per
second (Hertz). By substitution of Eq. (8) into Eq. (2),
we obtain

| —w?M] + [K]] {8 }=0, ©)
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| .
17 (A} = [KI ™ M] {0}, (10)

vhere [I] is the unit matrix. A condition for the
calculation of w? stems from either the fact that the
determinant of [—w?[M] + [K}| must be zero for a
nontrivial solution of Eq. (9) to hold or that the
premultiplier of {Ay} on both sides of Eq. (10) must be
identical.

There are as many different values (eigenvaives) of w
a there are degrees of freedom in {A,}, and each can
be determined by application of either of the above
conditions. Also, it should be noted that each cigen-
vector represents the colu.nn of a matrix, which, when
employed as a transformation-of-coordinates matrix
operating on either |[K] or [M], will transform these
matrices to diagonal form and of an order equal to the
number of columns employed in the transformation
matrix. The diagonalization operation decouples the
degrees of freedom and permits solution of the time
history of each degree of freedom from an independent
second-order ordinary differential equation.

Many altemative algorithms for the solution of
large-order systems of equations are availuble and well
tested (see Sect. 2.3). Despite the great number of
contributions to linear equation solving, it is not
possible to designate with certainty the most efficient
procedure. At best, a limited group of promising
alternatives can be identified. The situation is less clear
in eigenvalue analysis, possibly because of the late start
of interest in this area and the greater complexity and
higher cost. It is therefore prudent to view the topic as
being in a state of intensive development with the
likelihood that important contributions are yet to be
made or assimilated into routine practice.

A thorough account of fundamental procedures and
concepts in the caiculition of eigenvalues of algebraic
equations has been given by Wilkinson.?? Much em-
phasis is placed upon the “transformation” m=thods of
Jacobi, Givens, ana Houscholder. Forms of these
methods are in fact found in widely available algo-
rithms, for example, the NROOT routine of the I1BM
System Scientific Subroutine Package.?’ Such
methods, however, are less attractive in larg.-scale
application than iterative methods, to be discussed in
the following, because they are pointed toward simul-
taneous calculation of all eigenvectors and other fac-
m. |
One of the iiiore effective and attractive approaches
to eigenvalve determination is the method of conjugate

gradients. As noted in Chapter 2, this method permits
the development of the system representation without
explicit construction of the full set of system equations.
This is highly advantageous in finite-element analysis.
The mett,>d was adapted to eigenvalue analysis by
Bradbury and Fletcher’* and has been cast in the
finite-clement form by Fox and Kapoor®® and Prato.?*

Contributions to finite-element eigenvalue analysis on
the “conventional” iteiative side have recently been
made by Bronlund,?” Whetstone and Jones?® Rosen
and Rubenstein,?® and Dong et al.,*® among cthers. As
emphasized above, the present early stage of practical
application of these alternatives prevents identification
of the pre‘erable procedures.

7.4.2 Trasients

Two general avenues of approach are adopted in
solvirg Eq. (7) in time; (1) numerical integration of the
complete analytical representation and (2) transfor-
mation of this representation to modal (diagonalized)
form followed by numerical integraticn. The forcing
functions {P(t)}imposed in practical structural design
analysis situations are nearly always too complicated to
permit explicit integration in time. Thus, for both
avenues of approach, it is convenient to divide the time
history of interest into small, finite intervals.

Methods of numerical integration of the complete
system of dynamic equations are summarized in the
text by Norris et al.>! These include the Runge-Kutta
methods and Newmark’s 8-method. The Crank-Nicolson
approach, which was originally devised for heat transfer
analysis, has been defined for dynamic analysis by
Wilson and Clough®? and by Chan et al.?3 and is
among the most popular of the numerical integration
schemes. This approach is based upon an assumed
variation of acceleration within the chosen time interval
and is an implicit scheme. Once the vnoice is made of
the variation of acceleration, it is possible to formulate
explicit equations for all solution parameters of interest
at the close of a time interval as a function of available
data from the start of the interval.

Because of the popularity of the above scheme in
dynamic analysis, we elaborate upon it as follows.
Assume that the displacement and velocity at time zero,
{40} and {Ap}, are known. On this basis, the
acceleration at this point may be directly determined
from Eq. (7). Also, assume that the acceleration varies
linearly in the time interval h =1, — tp:

A= (l--i—){&ohhi{a. }. (1)



Then, from kincmatic relationships. wa have. for the
displacement and “elocities at the end of the interval,

e i b i)
{8} ={As } +% {Ao}+6 (2{Ao}" {4, }, L(12)

@i}= Gots 2oy B} 3

Also. we have, for the acceleration at the end of the
interval [from Eq. (7)),

@)= P - 1K1 1- [ 1} )

Now, Egs. (12) to (14) can be combined to yield a single
equation in which {4, }is expressed in terms of the
acceleration, velocity, and dispiaczment at the start of
the interval. Once {A, } is snlved for, £gs. (12) and (13)
may be employed to give 1A, }and {A, }.The process is
repeated for successive time intervals. The accurscy of
this process may be enhanced by assuming a higher-
order variation of acceleration, but a considerable
increase in complexity of the expressions coresponding
to Egs. (12) to (14) is then sustained.

It is of interest to note the development of the
concept of “finite elements in time” (Fried**). In this
scheme one employs a shape function representation of
the time variation within the time interval. The n
equations of motion are transformed by this means into
m X n algebnic equations, where m represents the
number of time points spanned in the time period of
interest. Because of the associated huge expansion of
the number of equations to be solved, this approach has
been little used.

With respect to nicial methods of transient analysis,
it should be observed that the two central questions
relate to the number of modes required for adequate
representation and the manner of treatmen: of damp-
ing The number of chosen modes is often limited by
the achievable accuracy in the calculation of higher
modes of vibration. As already noted, modal damping
coefficients may be determined experimentally. When
this is not possible and the complete damping matrix
has been established by other means, thought must be
given to the form of the latter to faciliiate the desired
uncoupling of the equations of motion. Commonly, a
damping representation, which is proportional to either
stiffness or mass, or a combination of both, is selected.
This permits caiculation of the modal damping matrix
by simple transformation using the modes of natural
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vibration. Less restrictive procedures for uncoupling
the equations of motion are given by Foss.>*

Th= large cost of numerical integration in time, with
attendant costs of equation solving or inversion at each
step in time, causes the concepts of “condensation™ to
be highly attractive. Condensation refers to the elimina-
tion of degrees of freedom from the basic analytical
model prior to performance of the dynamic analysis. In
flexural situations, for example, in which the basic
analytical model includes both angular and linear
displacement components, the analyst may decide to
eliminate all angular displacemen's prior to dynamic
anaysis. It is imporiant to note that condensation
schemes do sot limit the choice of degrees of freedom
to be climinated. Since these schemes are necessarily
approximate, however, the solution accuracy is depend-
ent upon the number and type of displacement com-
ponents eliminated.

The simplest approach to condensation is the so-
caled “static” method (Guyan®® and Kaufman and
Hall®7), in which the unwanied degrees of freedom are
eliminated from the static stiffness matrix. This form of
condensation permits the establishment of a matrix that
transforms the full set of degrees of freedom to the
desired reduced number of degrees of freedom. The
trznsformation is then applied to each component
matrix ([M], [C], etc.) of the full set of equations of
motion.

A more elegant approach to condensation has been
developed by Hurty*® and refined further by Craig and
Bampton.®® Hurty terms this scheme ‘“‘component
mode synthesis,” although it may also be characterized
as “dynamic substructuring” In accordance with the
latter view, it is assumed that the structure can be
divided into major substructures fr analysis purposes.
Each substructure, excluding the degrees of freedom
which attach to adjacent substructures, is subjected to a
modal analysis. Combinatior. of the substructures then
results in a reduced systera of equations of motion in
terms of the substructire modal amplitudes and the
(comventional) substncture interface joint degrees of
freedom.

The limitaiions of coidensation methods with respect
to the number of d:grees of freedom that may be
removed are as yet ill-explored. This factor, together
with the complexity of required matrix manipulations,
has tended to restrict their application in practice.
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8. Thermal Analysis

The significance of integrated thermal and structural
analysis cannot be overemphasized. The most desirable
situation occurs when the anaytical models for tran-
sient thermal analysis and structural analysis are in
complete correspondence. Any disparity between these
representations is a source of error in an analysis
performed for an instant in time. Thermostructural
analyses are, in general, time dependent (i.e., transient),
and a complete analysis requires solutions at many
instants in time. Thus emrors in the instantaneous
solution are amplified in the integration of the tran-
sients in time. Furthermore, uncoordinated thermal and
structural analyses are highly inefficient, requiring large
costs in trarsferring data from the thermal to the
thermal stress analysis.

Prior to the introduction of digital computers, analyt-
ical procedures for therma gradient conditions in
power piant and process industry design were often
based upon integrated solutions. Examples are the
papers of Fritz' and Heisler.2 Until recendy, numeri-
cal methods of thermal stress analysis were preoccupied
with the various aspects of the structural mechanics side
of the problem. It has become recognized, however,
that_the finite-element method is valid for the solution
of a wide variety of problems in mathematical physics,
including thermal analysis.

With this acceptance of a broader role for finite-
element analysis, rapid strides have been made toward
the establishment of integrated thermostructural analy-
ss. The exient of these advances is measured in this
chapter. It will be demonstrated that progyvess in the
finite-element analysis of thermal transients has bene-
fited eroimously from accomplishments already re-

corded in finite-element analysis for structural me-
chanics.

First, a brief review is given on the theoretical basis
for finite-element thermal analysis. Attention centers
about variational principle. but comments are also
made regarding alternative forms of present: tion of the
basic theory. The extent of available element formula
tion is described, and methods for solving the time-
dependent systems of algebraic equations are reviewed.
Finally, an assessment is given of cument levels of
practice.

8.1 FORMULATIVE BASIS
AND SYSTEM EQUATIONS

Approaches to the formulation of element and system
equations for finite-element thempal analysis parallel
those of structural analysis. Thus a functional in terms
of temperature plays the role of “potential energy” and
has been termed the “therrad potential.”® Counter-
parts of the “mixed” and ‘“‘complementary” energy
principles are also definable in thenna analysis. The
complementary functional® is based upon heat flux as
an independent variable, so that the mixed functional®
employs both temperature and heat flux parameters.

Because of the expanding nature of the literature
related to the subject topic, it is important to note that
many new developments associated with “flow prob-
lems” (of which transient thermal anmalysis is one)
disregard entirely the concepts of variational principles
and functional minimization and concentrate instead
upon the “method of weighted residuals” (MWR).® The
Galerkin form of MWR yields the same element
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matrices as the variationai approach for those caxs
where the variational approach is strictly valid. MWR
also enables establishment of the goveming integrals
where variational principles do not strictly apply: such
cases are discuss2d in Refs. 6 and 7.

To date, interest in finite-element heat transfer
analysis has centered upon functionals (or integrals
produced by MWR) expressed in terms of temperature
fields. The subsequent discussions are therefore re-
stricted to this approach, which, as noted above, is the
thermal counterpart of the direct stiffness method of
structural analysis. The prevalence of thermazl potential
formulations is due, no doubt, to the popularity of the
corresponding principles in structural mechanics. Also,
an important advantage is that assumed temperature
fields for the various types of clements are readily
drawn from the vast bedy of experience in structural
mechanics.

The most commonly cited and utilized variational
principle of the above class is dve to Gurtin.® This
functional explicidy accounts for initial conditions; it is
an elegant representation that deals with time depend-
ence in terms of convolution integralc The earliest
comprehensive development of finite-element thermal
analysis, by Nickell and Wilson,® is based upon the
functional of Ref. 8, as are numerous subsequent
papers. 10— 13

However, alternative forms of the functional for
thermal analysis have Jeen employed. Most of these
define the functional at an instant of time (ie.,
questions relating to the time history of heating are not
explicitly considered in the functional), as in the
therinal potential of Visser,> the MWR-Galerkin Jevel
opment of Zienkiewicz and Parikh,'* and the diver-
gence-theorem-based formulation of Aguirre-Ramirez
and Oden.!S These alternatives yield identical defini-
tions of the finite-element represeniations for linear
thermal analysis.

With these considerations in hand, it is useful to
define the general form of the algebraic equations for
finite-element thermal analysis. As indicated, the tem-
perature fields of the respective elements are described
by shave functions in terms of node point tempera-
tures. Then, by use of the applicable variational
theorem or proper alternative, the elemert and system
algebraic equations are derived in the foom:

[C1{T}+ K] {T}={P}, n

where

{P!is the vector of (time-dependent) thermal !oads
at the element joints,

[K] is the “conductivity” matrix,
[C] is the “heat capacitance’ matrix,
{T } is the vector of element joint temperatures,

{T} represents differentiztion of {T} with respect
to time.

As in the case of structural analysis, the general form
of Eq. (1) is valid at both the element and system level.
The matrices [C] and [K] are hcrein collectively
termed the element (or system, as the case may be)
thermal matrices.

Solution of Eq. (1) for the complete sysizm for the
time period of interest yields the prediction of
element joint temperature histories. Note that Eq. (1)
represents the statement of the structural dynamic
analysis problem with the presence of viscous damping,
but lacking the inertia terms. Thus a portion of the
experience developed for the treatment of problems
of dynamic analysis can be adapted to thermal analysis.

A clearer picture of the advantages of the method
can now be drawn:

1. Equations govemning the heat transfer throughout
a complex system can be constructed automatically, as
is done in a finite-elenient structural analysis, based on
the concept of element “conductivity” and “capaci-
tance” matrices.

2. The element heat transfer matrices can be calcu-
lated as part of the process of formation of elerent
structural analysis matrices. The problem data, as well
as certain computational steps, are cummon to both.

3. Temperature distributions are identically of the
form needed for subsequent structurzl analysis.

4. The scope of the heat transfer analysis capability is
widened to account for anisotropic materials, with no
significant increase of analytical complexity or compu-
tational cost.

8.2 ELEMENT THERMAL MATRICES

Procedures for the selection of shape functions for
representation of displacement fields in finite-element
structural analysis apply directly to the representation
of tempenature fields in thermal analysis. The principal
distinction is the scalar (single degrees of freedom per




joint) character of first-order representation of tempera
ture. This can be accommodated in existing finite-
element analysis programs with little or no modification
of logic. The element algebra is. of course, simplified
consid<rably in comparison with structural anclysis.

The triangular element with linear temperature field
has been used most widely, 2nd explicit formulations
are found in Refs. 3, 9, and 16 through 18. Explicit
formulation of the first-order triangular ring element is
given by Brocci'® and by Fathoomand.'? The triangle
and the rectangle, for bewh planar ang axisymmetric
situations, are described for a large-scale operational
computer program in Refs. 20 through 24.

An extension of element relationships into the -ealm
of higher-order representations is presented by Rybicki
and Hopper,?* who describe rectangular elements with
16 and 36 degrees of freedom, where the degrees of
freedom in addition to the four joint temperatures are
values of the derivatives of the joint temperatures, and
by Skjolinstad and Cheung 2¢

Isoparametric formulation concepts, in which the
shape functions for description of the temperature field
ae used as wel! in the description of the element
geometry, are developed by Zienkiewicz and Parikh'*
for both two- and three-dimensional elements. The
complexity of such models demands use of numerical
integration in establishment of the element thermal
matrices. In genera). however, the practitioner will find
that numerical integration is applied in preference to
explicit formu.ation in lange-scale programs, even when
the latter option is present. This trend is already
apparent in finite~lement structural analysis and will be
reflecied in future developments related to thermal
analysis.

8.3 SYSTEM SOLUTION PROCEDURES

Ths common approach *o the solution of the system
equations [Eq. (1)] for arbitrary variation of thermal
loading is by subdividing the time history into many
inervals At. Impicit solution procedures, which are
unconditionally stable for linear boundary conditions,
are directly applicable. However, the simpler explicit
schemes may alternatively be employed if a diagonal-
ized capacitance matrix is formed.

An effective implicit approach io the solution of
transients is via the Crank-Nicolson method.?” This
approach was presented in the literature of structural
dynamics?®2® and was employed by Nizkell and
Wilson® in their computations. An advantage of the
method is the avoidance of the need to iterate within

each time increment and latitude in the choice of the
variation of the temperature throughout the interval,
for example, linear, quadratic, etc.

The range of solution possibilities found in structural
dynamics is applicatle to finite-clement thermal analy-
sis. Thus, Ref. 30 employs a simple step-by-step
procedure, while 2 Runge-Kutta form of numerical
integration is utilized by Guymon'2-'* wd by Aguirre-
Ramirez and Oden.'® Fujino and Ohsaka'® reduce the
algebraic equations to uncougpled forms by application
of the normal mode method. The resultirg first-order
diffcrential equations are readily solvzble by a wide
range of methods.

The accuracy and stability of finite-element vs finite-
difference numerical analyses of tr:iasients has betn
studied by Lemmon and ieaton®! and by Emery and
Carson.32 As noted above, finite-element analysis is
stable when marching in time since it is in the implicit
class of methods in numerical integration. However,
exrlicit methods of numerical integration in time,
which do not possess the property of unconditional
stability, may be more efficient. For this reason, anc
because of the costs of assembly of the [C] and [K]
matrices as well as 2 mairix representative of convective
heat transfer, Emery and Carson®? reason that finite-
difference solutions are move efiicient than finite-
element soluiions in transient thermal analysis. It must
be observed, however, that the finite-element method
may be employed in explicit numerical integration
schemes simpl/ by approximate diagonalization of the
[C] matrix, thai is, by “lumping” of the heat capai-
tance at the nodes. Also, perhaps a small percentage of
practical thermal analyses requires assembly of an
independent matrix for convective heat transfer; this
effect is generally represented by a relatively few
individual terzu: which are additive to [K] and {P}.

A new concept in numerical analysis of transient
problems is that of finite elements in time; that is, time
is represented functionally and systems of equations are
estabished for each chosen point in time. This soncept
has aiready been cited in Chapter 7. If there are n
degrees of {freedom in the spatial model and r points in
time are treated in a single computational cycle, then r X
n equations are established directly and must be solved
simultaneously. Details of this approach are presented
by Fried.3?

If a problem is sufficiendy simple, then classical
methods for the solution of first-order differential
equations may find application. Visser,? for example,
explores analytical solutior. ~ossibifities for small-order
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problems, but such schemes do not appear to be
workabie for large-order systems.

Solution difficulties, which are not cited above, are
encountered when the nonlinear boundary conditions
are present. The radiation boundary condition repre-
sents a severe nonlinearity (the affected joint tempera-
tures are raised to the fourth power), and only recently
has this been given attention in finite-element thermal
analysis. Farhoomand and Wilson,’® Richardson and
Shum,3° and Yalamanchili and Chu** perform analyses
of the problem. References 30 and 34 use the tempera-
tures from the previous time interval in constructing
coefficients for the present interval. If the time intervals
are too large for the radiation boundary condition or
for varying heat flux in the case of convective boundary
conditions, instabilities in the computation of the
surface temperature are poss.ble. Thus, time increments
cannot be too large. To avoid this oroblem, one may
define a variation of temperature within the interval
and iterate to convergence to a preassigned
toleranoe.' 1,19

Another nonlinearity arises when the temperature
dependence of conductivity must be taken into ac-
count. This problem was studied by werkers of Ref. 15,
and a numerical solution for a slab with conductivity
that is linearly dependent upon temperaturc was ob-
tained. Solutions for axisymmetric structures are devel-
oped in Ref. 19.

8.4 APPLICATIONS EXPERIENCE

Any view of this aspect of finite-clement thermai
analysis must be highly subjective, sinice conclusions
drawn from the limited amount of published informa-
tion is apt to be misleading; only a very few public
forumns for discussion of this aspect have been held to
date. Papers describing practical applications experience
include Refs. 14, 20 through 24, and 35.

From avaii.ble information, applications of the finite-
element method to nontransient heat conduction have
been remarkably widespread. In fact, practitioners
whose interests do not extend to development of
theoretical concepts or new formulations have per-
formed such analyses. All that is required is the
capability for plane stress (or plane strain or
3-D) stiffness analysis and an amenability of the pro-
gram to cope with redefined constitutive relationships.

Practical applications experience in integrated thermal
and stress analysis and in transient thermal analysis are
believed to be insignificant in comparison with the
overall scale, of actmty in thermostructural analysis.

Publi-hed papers dea! extensively with transient analy-
sis. but these largely reflect validation of the new
concepts in finiteelement heat transter analysis. The
transient analysis applications in heat transfer must
eventually confront the same aspects already dealt with
in dynamic analysis -- computational efficiency via
reduction of degrees of freedom through condensation
and other schemes. So far as is known, only Ref. 36 has
dealt with this question in finite-element heat transfor
analysis. In addition, it is important to recognize that
the general-purpose finite-element analysis programs are
only now reaching an operational level in dynamic
(time-dependent) analysis.

Many, and perhaps the large majority of, experi-
menters whose basic expertise is in heat transfer
analysis have been reluctant to employ the finite-
element method. A high degree of competence and
applicaticns experience has already been established in
finite-difference-based heat transfer analysis, and it is
widely felt that finite-difference capabilities are more
efficient than those evclving from finite-element
theory. As indicated previously, the arguments and
evidence in support of this view are detailed clearly by
Emery and Carson.>? The writer believes that this
debate vill be amplified considerably in the future.
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9. Special Problems

The conditi:ns described in previous chapters, which
relate to limit.ng magnitudes of stress or strain under
applied loads and temperatures, with due account being
taken of inelastic material behavior, continue to be of
primary importance in the design analysis cycle. In-
creasing attention is being given, however, to other
specialized modes of failure or behavior mechanisms, in
particular, the circumstances of finite displacement
behavior and predictions of fracture phenomena. Hence
the purpose of this chapter is to identify the sources »f
information for the relatively voluminous developments
in these areas 2nd to ascertain current status.

9.1 FINITE DISPLACEMENTS
9.1.1 Problem Background

Since the term “finite displacement’ covers a wide
range of seemingly different forms of structural be-
havior, it is necessary to limit the phenomena con-
sidered here. We exclude consideration of both large (or
finite) strains, thereby eliminating rubber materials
from the {ollowing discussion and any treatment of
nonconsetvative (path-dependent) situations. An excel-
lent survey of contribations in these excluded areas is
given by Oden.!

The subject matter oi interest originates in the
definition of the strain-dispiacemeni equations of a
structure to include the first-o-der nonlinzarity.2 Thus,
for axial strain, the extended definition takes the form

ou\: 1 av)2 I_(a\s\z
(‘a?) +2(&>x Y2\ /

where now the terms /2 (ad/ax)z, etc., ,upplement

e =du, 1
X ox 2

(D

the linear strain-displacement equation €, = du/dx. In
general, the phenomenon under consideration is of
practical interest in nucleai reactor structural design
only for thin shells. where only one of the three
indicated quadratic terms (that which involves ihe
transverse displacement w) is of significance; so we have

(&)
ox/ -~
This situation is illustzated in Fig. 18 from which i is
clear that for the common case of zero transverse shear
deformation, the slope (dw/dx) equals the rotation of
the normal to the neutral surface 0. Thus problems in
the subject class are frequently referred to as “‘small
strain—large rotation” problems.

The principal significance of finite-displacement
(smal! strain—1z.ge rotation) behavior in presscre vessels
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relates to the buckling phenomenon. Situations are rare
in which applied extemal loads so counterbalance the
pressurization effects that regions of compressive mem-
brane stress. which precipitate buckling, are produced.
It is well known, however.3-4 that regions of compres-
sion result solely from internal pressurization in tori-
spherical pressure vessel heads and that the risk of
buckling failure exists in such cases. Furthermore,
situations may arise in which loads are applied in the
absence of pressurization.

The “classical” buckling problem involves the deter-
mination of the distribution of intzrnal forces based on
membrane theory and the calculation of the intensity
of such forces to cause instability. The latter constitutes
a linear eigenvalue problem. It is increasingly being
recognized that the assumption of a membrane, or even
linear orebuckling state. may not be correct.5 Also,
designers are showing greater interest in recognition
and utilization of postbuckling strength. Additionally,
for load intensities less than thnse required to produce
instability, questions have been raised as to the signifi-
cance in stress analysis of finite-displacement effects.
Thus the subject phenomena include prebuckling beha-
vior which may be nonlinear, buckling (or bifurcation),
and postbuckling behavior.

An examination of the above with reference to
finite-element 2:1alysis finds a natural divisior. into the
topics of (1) elzment and system equations, (2) solution
procedures for determination of bifurcation, and (3)
solution procedures for nonlinear pre- and postbuckling
situations. These three topics are outlined in the
following; a more elaborate discussion of each may be
found in Ref. 6.

9.1.2 Element and System Equations

Publisked developments of finite-element analysis to
encompass fisiite-displacement behavior are almost ex-
clusively in terms of stiffness procedures. hience this
limitation is adopted in the disciussion tc “ollow.

In accordance with concepts detailed by Mallett and
Marcal,” the element stiffness equations for nonincre-
mental finite-displacement analysis are of the general
form

[k1{a} + [ni(3)){A} + [nz(Q)}{A} ={F} , (3)

where {F} and {A} are the joint furces and degrees of
freedom, respectively, (k] is che linear (small displace-
ment theory) stiffness matrix, [n,(4)] is the first-order
(*‘geometric” or “incremental”) stiffness matnx, where
individual terms are linear functions of the degrees of
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freedom {A}.arnd [ny(A)] is the second-order (also
“geometric”” or “incremental”) stiffness matrix, with
individual terms a quadratic function of the degrees of
freedom A}

Upon assembly of the element relationships defined
vy Eq. (3) to forin a representation of the complete
structure, the following equations are obtained:

[K}{A}+ [N, (8)}{A} + [N, ()} {A}=P} . (4)
whiere the definitions of K, N;. and N, for the system
representaiion correspond to those given above for k.
f,, and n;. The vector {P} now represents applied
loads.

In lincar stability analysis the matrix [N,(4)] is
disregarded, and certain simplifications are introduced
into [N,(A)] to eliminate dependence on the full dis-
placemsnt vector {A}. Such simplifications are gener-
ally associated with a men:brane (no0 flexure) prebuckl-
ing analysis. We designate the modified [N,(A)] matrix
as [N], so that Eq. (4) reduces to

[K}{a} + [N]{a} = (P} . (5)
Furthermore, for stability analysis, one sets the load
vector to zero and multiplies the matrix [N] by a
parameter A, which is the ratio of the load intensity for
buckling to the load intensity used in the calculation of
[N]. Thus we have

[Kj{a} +A[N]{a} =0. 6)

We will examine the solution of this relationship for A
in the next section.

It was noted above that Eq. (3) applies to nonincre-
mental sofution procedures. Incremental solution pro-
cedures are popular, however, and for these a somewhat
different form of ihe element and system equations is
needed. Such relationships are developed in Refs. 7 and
8. 1t should also be noted in conjunction with Eq. (3)
that matrix representation of the terms of N, and N, is
extremely inconvenient and inefficient. This was ob-
served by Wissman® and has more recently been
examined by Vos!® and by Morin,! ! who recommend
indicial notation.

Only limited progress has been made in the establish-
ment of N; and N, components of element stiffness
relationships. A survey of this topic has been presented
by Gallagher.!2 On the other hand, computer programs
based upon application of numerical integration algo-
rithms represent a capability for the calculation of the
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N, and N, nxtrices for all elements cortained in such
programs. The extent of shell-element formulations for
buckling analysis is discussed further below.

9.1.3 Solution Procedures — Buckling

As noted previously, in connection with Dynamic
Analysis (Chap. 7), a thorough account of procedures
for eigenvalue calculation, as of 1965, is given by
Wilkinson.!3 More recent developments were also cited
in Chapter 7. Here we discuss only the development of
fimteelement buckling procedures as they peitain to
elements for thin shells.

A previous chapter examined thin-shell elements bu
without reference to instability analysis. Again, the
division into axisymmetric and general thin-shell ele-
ments appears appropriate. With respect to the former,
Navaratna, Pian, and Witmer!'4 formelated a2 meridi-
onally curved eclement and employed this in extensive
numerical computations. In conjunction with general
thin-shell clements, Gallagher and Yang!$ dealt specifi-
cally with the doably-curved thin-shell instability prob-
lem. Curved-sheli analysis Jevelopments by Brebbia and
Connor'® and by Bogner et al.!? deal with geometric
nonlinearities, of which stability has already been noted
to be a special case.

Th= use of flat elements in representation of curved
shells is noteworthy because of the relatively Limited
experience in finite-element thin-shell instability anal-
ysis. Such applications have been described by Galla-
gher et al}®

Clearly, additional numerical evidence of the finite-
element method in linear stability analysis of thin shells
would be desirable. In particular, no finite-element
analysis has been reported of the stability analysis of
pressurized torispherical shells.

9.1.4 Solation Procedures — Nonlinear
Pre- and Postbuckling

Methods of geometrically nonlinear finite-element
analysiz fall in two genera: categories, iterative and
step-by-step methods. These are analogous to the initial
strain and tangent stiffness methods, respectively, of
time-independent inelastic analysis.

It is also useful to distingvish between prebuckling
and postbuckling analysis. In prebuckling analysis, one
operates directly on the solution of Eq. (4), and the
suitability and efficiency of a given method depends in
part upon the severity of the nonlinearity. Methods in
the prebuckling analysis regime are reviewed in detail
by Haisler, Stricklin, and Ste’)bins.!? |

The simplest approach is direct iteration, in which all
nonlinear terms in Eq. (4) are transferred to the
left-hand side and thc resulting ““initial forces” are

successively improved; that is,
X1{a} = P} - [N,(4)]{A} - jH,(A)}{A}
=P}-{P,

where {Pi} represents the pseudo-initial forces. This
method is widely regarded as inefficient, since it
possesses only “first-order”” convergence characteristics.
Also, it is usually necessary to proceed step by step in
load increments, even though the method is not a
step-by-step procedure, since convergence difficlties
are encountered when the changes in the nonlinear
terms depart too greatly from the starting point.

On ihe other hand, recent experience2® in direct
iterative analysis indicates that the character of con-
vergence is not seriously disadvantageous compared
with methods possessing second-order convergence.
Furthermore, direct iteration permits a solution of the
prebuckling “fundamental path™ behavior beyond the
point of buckling. In this way interpolation may be
employed to define the buckling point, which is
otherwise difficult to define in the presence of a
nonlinear prebuckling behavior due to the singularity of
the stiffness equations at that point.

Methods of step-by-step geometrically nonlinear anal-
ysis are reviewed by Martin.2! The majority of these
methods are based upon the tangent stiffness concept
(Ref. 7), although particuiar note should be taken of
the work of Murray and Wilson,22 which employs the
usual lirear stiffness at each step but updates the
geometry to account for changes associated with the
displaced state and for such changes as they affect the
equilibrium conditions.

The updating of geometry after one or more incre-
ments of load is essential ‘only if the displacements
sustained are truly large. The updating operation may,
on the other hand, be desirable from the standpoint of
computational efficiency, since it should cause a reduc-
tion of the number of iterations in a given increment of
load. The method of Ref. 22 is totally dependent upon
updating; that is, it supplants rather than supplements
the increnrental-iterative process.

Before outlining postbuckling analysis, some aspects
of thin-shell buckling should be discussed. It is well
known that thin-shell structures often collapse at load
levels which are less than those predicted by the linear
stability theory described in the preceding section. This
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is due to the role played by iritial imperfections and
geome tric nonlinearity.

Figure 19a is a representative load-displacement plot
for such a situation. The solid line, which applies to a
“perfect” structure, indicates buckling at point A
followed by a descending postbuckling path. The
dotted line shows the behavior of the real structure, one
possessing fabricational inaccuracies. In this case the
maximum, or “limit,” load is substantially less than the
buckling load. The difference between the buckling
load and the limit load depends upon the magnitude
and distribution of imperfections.

No logical means has yet been found to determine the
magnitude and distribution of imperfections in struc-
tures not yet fabricated (i.e., being designed), although
some progress is being made through statistical con-
cepts.23 The best that can be hoped for is a method of
determrining the slope of the initial postbucklirg beha-
vior, that is, whether the slope is negative (Fig. 19a), in
which case the actual strength is less than the buckling
load, or positive (Fig. 19b), where postcritical strength
exceeds the buckling load.

A complete theory for answering the above question
has been developed by Koiter24-25 and is the basis for
the largest share of current theoretical work in shell
postbuckling analysis. Additional theoretical coniribu-
tions have been made by Budiansky and Hutchinson,26
Sewell,27 and Thompson.28 These developments are
based on “perturbation™ concepts, in which the post-
buckling behavior is described by series expansion
about the bifurcation point. Initial imperfections may
also be taken into account, in which case the limit point
behavior (dotted line, Fig. 192) is approximated.

Extensions of Koiter’s procedure to the format of
finite-element analysis have recently appeared. This
work is reviewed by Mau angd the writer in Ref. 20. The
most general of these approaches appear to be the
development of Ref. 20 and the more approximate

“equivalent structure™ scheme of Haftka, Mallet, and
Nachbar.29

It is important to note that perturbation schemes are
valid only in the vicinity of bifurcation. Thus, if ore
seceks 2 numerical solution at points removed from
buckling, as in th: determination of displacements at
higher load in the behavior represented by Fig. 19b, or
if a recovery to a higher load level occurs in the
extension of the dotted line of Fig. 19a, then perturba-
tion sclemes cannot be employed. Such determinations
can b: accomplished in finite-clement analysis using
procedures described in Refs. 20 and 30.

9.2 FRACTURE MECHANICS ANALYSES
9.2.1 Basic Considerations

The importance of fracture mechanics analysis pro-
cedures to the verification of the stuctural integrity of
nuclear pressure vessels has grown in varallel with the
development of the fracture mechanics technology
itself. This growth extends back little more than a
decade. More recently, it has become recognized that
the finiteclement method is ideally suited to the
calculation of stress intensity factors, the basic compo-
nents of any fracture mechanics study, and many
papers have appeared in a shor* veriod of time. Each of
these advocates a somewhat different approach, and it
is by no means apparent which is the most reliable or
efficient. Indeed, the appropriate method of interpre-
ting the resulis is not clearly defined.

The finite-element analysis methods for linear frac-
ture mechanics can be grouped as (1) direct methods,
(2) energy-based procedures, (3) superposition schemes,
and (4) singularity function formulations. Each of these
methods is reviewed below: a more detailed exposition
is given by the witer ir: Ref. 30.

In the following we restrict atiention to lii. ar
fracture mechanics, which works with the results of



clastic amalysis. Progress is being made toward a2 more
realistic, imelastic fracture mechanics theory, but thas is
in the early stages. For adaitional information consult
Ref. 31.

9.2.2 Direct Methods

Direct methods involve the performance of a straight-
forward finite-clement analysis with a high degree of
grid refimement in the region of the crack tip and the
determinztion of the str-ss intensity factor by direct
imterpretation of the calkulated stresses or displace-
ments.

Kobayashi et al.32 employ the “ciack-opening
displacement™ (COD) procedure, wherein the displace-
ment at 2 point rear the crack tip is correlated with the
analytical form of t 2 geveral solution for displace-
ment. An extremely large number of degrees of
freedom are required to achizve an acceptable level of
accuracy.

In the approach of Chan, Tuba, and Wilson33 and
Cruse zad Vanburen 3* the stress intensity factor is
determined by study of many solution points via
extrapolation along a radius centered at the crack tip.
This method requires considerably fewer degrees of
freedom 10 attain a given icvel of accuracy than the
COD method and is therefore to be preferred. A choice
exists in the extrapolation method between the inter-
pretation of the solved-for displacements or stresses.
The former is found to be superior in displacement-
based fini-c-clement analysis. Results from the direct
methods have generally been approximately 5% in
ermor.

9.2.3 Energy-Based Procedures34 4!

Three subsidiary approaches are grouped under this
heading: the total energy method, the local energy
method, and the line integral method.

The total energy method?$ —3? exploits the relation-
ships between the rate of change of strain energy with
crack opening and the stress intensity factor, using
finite-clement idealization of the total structure in
calculation of the former. The strain energy is occasion-
ally represented in terms of flexibility coefficients (the
compliance form of the method) or in terms of stiffness
and solved-for displacements. In each case the rate of
change of strai energy bhas been computed from data
for two or more analyzes at different crack lengths.
Thus 2 number of large-scale analyses are required. All
results reported for the total encrgy method demon-
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strate satisfactory accuracy for solution times that are
much smaller than those for the direct methods.

In the local energy method, a classical relationship*®
between the stress intensity factor and the strain energy
contained within a region surrounding the crack tip
forms the basis for computation of tke former. The
difficulties with this method are that a high degree of
element grid refinement is needed in the vicinity of the
crack, the conventional geometric form of the indi-
vidual element does not conform to the curved (circu-
lar) boundary of the region of interest, and the solution
data for the circular region of interest must be isolated
and extracted from the total analysis. An advantage of
the method is that only one analysis is required for

tcumination of the stress intensity factor.

The line integral method depends upon a relationship
due to Rice?! between the stress intensity factor and a
line integral of a function of strain energy and edge
tractions on an arbitrarily defined region containing the
crack. Thus the method is similar to the local energy
method except that it is less restrictive in geometric
characterization of the region of interest.

9.2.4 Superposition Schemes*2-43

Approaches in this class are based upon an appro-
priate combination of a clsssical solution and the
finite-clement analysis results. Thus one defines a
classical solution that most closely represents the
problem of interest and which, of course, applies only
‘0 a regular structure in the region close to the crack.
Since the solution will not satisfy all conditions of the
actual problem, the disparities can be interpreted as
body forces and edge loadings. The latter are applied to
a finite-clement 2analysis /with relatively coarse grid-
work) in reverse direction, and the classical and
finite-element sojutions are superimposed.

The meihod, however, is awkward to apply because it
requires extensive hand computation or a highly special-
ized computer program but is perhaps the most
efficient approach from the standpoint of computer
operating costs.

9.2.5 Singularity Function Formulations44-47

One of the most appealing approaches, from both a
theoretical and computational view, is to ;ormulate a
special element containing a singularity and which may
be used in the region of the crack tip. Regions remote
from the crack tip are idealized by means of conven-
tional elements.



The most sophisticated singularity function element
formulation published to date is due to Byskov.44 who
constructs the basic element reiationships with use of
the complex stress functions of Muskhelishvili.*$ Using
stress parameters, displacements. and the hybrid ap-
proach*® to element formulaticn, Walsh*? and also
Rao, Krishnamurthy, and Raju*® derived stiffness ma-
trices for a variety of stress concentration conditions.
Levy et al. 49 established a four-sided sector element in
polar coordinates. The degenerate case of this element.
in which fwo points coalesce, is applied in representa-
ticn of the region adjacent to the crach «ip: it should be
noted that the singularitly represented here s more
descriptive of plastic behavior at the crack tip than the
presumed elastic behavior of linear fracture mechanics.

An important new development was recently pub-
lished by Pian et al.5° This approach, based upon the
hybrid method of element formulation, treats the stress
intensity factor as an independent solution parameter.
The computational costs appear to be minimal, approxi-
mately two orders of magnitude less than those for the
direct approach first advanccd in Ref. 32.
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10. Closure

This section draws upon the detailed perspectives of
the prior sections to fom an overall view of the subject.
The major advantages and disadvantages are reasserted
and specific directions of future work sugpested. For
convenience this presentation follows the divisions of
subject matter represented by the report sections.

In conjunction with methods of linear analysis of the
complete system, cornerstones of any form of nonlinear
analysis, it is apparent that a comprehensive and reliatle
approach io virtually all practiczl problems is provided
by curmrently available general-purpose computzr pro-
grams. These programs are based exclusively om the
displacement-based element stiffness formulations. In
eany areas, however, majos advantages in computa-
tional efficiency will result from procedures based on
the assumption of stress fields or mixed stress—displace-
ment fields. Existing programs zre generally imflexible
in the manipulation of large blocks of data, and this too
must be modified to gain economically feasible analy-
ses. We have in mind here such operations as substruc-
turing. condensation. the use of harmonic representa-
tions of response for geometrically axisymmetric struc-
tures. and the imposition of constraint conditions.

Solid clement formulations are of demonstrated
reliability. A dilemma arises in the choice of clement
repiesentation. that is, tetrahedronal vs hexahedronal,
regular vs isoparametric coordinates. and conventional
vs higher-order degrees of freedom. No single approach
is optimum: the choice depends principally upon the
application at hand. Caution must be exercised in the
use of higher-order representations due to potential
difficulties in numerical conditionihg.

Shell-element formulations i:ave only recently
emerged in forms that satisfy all basic requirements in

finite-clement analysis, and no single fornmlation has
received broad acceptance. These sophisticated forraula-
tions, being of iypes that are phrased in stiffmess matrix
ormmat, can be incorporated in available frite-clement
programs of reasonable genmerality. Their degree of
sophistication. however, coupled with the complexities
attendant upor analysis for imelastic deformation,
refiects unfavorably upon the economics of the solution
process. Shell-clement fornmlations based omn both
stiess and displacemer:t fields are therefore highly
promising in this regard.

The analysis of time-independent inelastic effects has
reached a plateau in both thecretical deveilopment and
practical application. The correlation of alternative
approaches (initial strain vs tangent stiffness) has been
accomplished. 2nd nearly all techniques of classical
plasiicity analysis have been exercised. If attention &
subsequently directed toward minimization of compu-
tational costs. for example, through substructaring to
isolate the region of plastic deformation and via
multimode schemes wherein imitial strain and tangeat
stiffness operations are judiciously -ombined, wider
latitude will be aviilable for needed examination of
cyclic plasticity. There is a body of opinion which holds
that the copventional representations of constitutive
laws are not the most promising bases for modeling of
observed inelastic phenomena. Thus it may be necessary
to construct such representations with use of finite
element modeling concepts themselves.

In creep analysis. the finite-element solutions have
again duplicated nearly all existing classical solutions
and available test data. In the opinion of the writer,
finite-element analysis represents the only feasible
means of solution for the practical. complex structure,



tme history, and constitutive law. The relatively few
practical circumstances that are intrinsically simple in
these respects are, of course. exempted. 1t follows then
that comparison results are not available. and the
validity of finite-eleneent solutions to creep analysis
problems mus: be measured on the basis of test data
but more often against the criterion of “reasonable-
ness.” Once again we find that engineenng judgment is
more significant in computer analyses thap s generally
supposed.

Dynamic analysis represents an increase in cost of
lmear static analysis and inevitable uncertainties in the
characterization of damping. The concepis of condensa-
tion to effect reduction in the size of the system prior
to marching in time are well established here and are
supplemented by advantages gained with ase of approx-
imate mertia force representations. Proper attenticn
must be given to the choice of time intervals in
transicnt analyses.

Thrrmal analysis via the finite-clement method has
progre:sed rapidly in terms of acceptance and codifica-
tiom and s completely reliable with respect to steady-
state conditions. Transient analysis. however, also is
confronted with all the uncertainty of rumencal
procedures fo; iitial value (transient dynamic analysis)
problems. The chowce of time interval size. as in
dymamic 2nalysis, is critical to computat:onal efficiency
and, if an explicit »oh:tion approach is adopted. to the
stability of solution. Implicit methods also present
difficultics in solution reliability as a function of
interval size. Practitioners must maintain a» awareness
of mumerical methods m the analysis of transients as
they appear i the literature.

Of the two oroblems described here as “special
problems,” those in the category of geometric nonline-
arities are the widest in scope. If the term “geometric

nonlinearities™ is construed to apply to linear elastic
instability analysis. 2 fully reliable soiution approach
now exists in finite-element analysis. Unfortunately.
linear stability predictions apply cnly to a restricted
class of situations for thin shells. Nonlinear stability
analyses have been demonstrated to be feasible. but
insufficient expenence has been accumulated in practi-
cal applications. In addition. there are open questions
with respsct 10 basic theoretical representation in the
range of severe nonhinea:ity.

The special problem of lincar fracture mechanics
fumishes 2 case study of the history of application of
finile-ci-meni concepts (o a “new’” technoiogical area.
The space of three years saw the progress in this respect
from a stryightforward utilization. which was immedi-
ately identified as cconomically imfeasible. to the
establishment of 2 novel formulation of finite-clement
analysis that was specifically addressed to the efficient
solution of the problem at hand. 1t also demonstrated
that progress of this type is possible only if computer
program capabilities are adaptable to other than dis-
pltacemert-based stiffness formulations.

In conclusion. it should be noted that widely available
general-purpose finite-clement structural analysis com-
puter programs have achieved distribution and opera-
tional status within design offices only during the past
five years. although the concept of the general-purpose
program gained acceptance many years carlier and
bilsties of this form. As a group. the currently available
programs often do not yet meet ongmnally envisioned
objectives nor account for phenromena that had not
been recognized in the mitial stages of their develop-
ment. Adaptation of the general-purpose progrzm is
feasible, however. if the associated develoomental team
continues to be active with the program.



