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Abstract: Quantitative structure-retention relationship (QSRR) analysis is a useful technique capable of relating chromato-

graphic retention time to the chemical structure of a solute. Using the sub-structural molecular fragments (SMF) derived

directly from the molecular structures, the gas chromatographic relative retention times (RRTs) of 209 polychlorinated

biphenyls (PCBs) on the SE-54 stationary phase were calculated. An eight-variable regression equation with the correlation

coefficient of 0.9945 and the root mean square errors of 0.0134 was developed. Forward and backward stepwise regression

variable selection and multi-linear regression analysis (MLRA) are combined to describe the effect of molecular structure on

the RRT of PCB according to the QSRR method. To quantitatively relate RRT with the molecular structure MLR analysis

is performed on the set of 163 sub-structural molecular fragments (SMF) provided by the ISIDA software. The eight

fragments selected by variable subset selection, all belonging to the sub-fragments, adequately represent the structural factors

influencing the affinity of PCB to SE-54 stationary phase in the separation process. Finally, a QSRR model is selected based

on leave-one-out cross-validation and its prediction ability is further tested on 42 representative compounds excluded from

model calibration. The prediction results from the MLR model are in good agreement with the experimental values. By

applying the MLR method we can predict the test set with squared cross validated correlation coefficient (Q2
ext) of 0.9913

and root mean square error (RMSE) of 0.0169.
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I. INTRODUCTION

Polychlorinated biphenyls (PCB) that were widely used

in industry as dielectric fluids in transformers and capacitors,

as hydraulic and heat transfer fluids, and as plasticizers, are

now of concern as prevalent, persistent, and toxic pollutants

[1, 2]. PCB produced widespread global contamination of

water and soil and bio-accumulated in food chains due to

their high hydrophobicity and chemical stability [3, 4]. The

following examples emphasize the importance of bioaccu-

mulation of PCB and their high impact on different aspects

of the biosphere pollution. Contamination of surface soil by

PCB remains a serious problem in Dalian, Liaoning Province,

China [5]. Not only are surface soils exposed to PCB con-

tamination, but various aquatic species are endangered as

well used isotope dilution HRGC/HRMS method to deter-

mine polybrominated/chlorinated biphenyls (Co-PXB) in 18

different Japanese fish fillets [6]. The eggs of San Francisco

Bay aquatic birds contain high PCB concentrations [7]. PCB

congeners are adversely affecting sediments and the crab

population density in mangroves near Rio de Janeiro, Brazil

[8]. PCB concentration can be used to assess risks related to

the exposure to other persistent bio-accumulative and toxic

compounds. Mori et al. [9] showed that the total PCB con-

centration in human blood is potentially a reliable indicator

of the total dioxin concentration, which is of special con-

cern in Japan because of the Kanemi Yusho tragedy [10].

Polychlorinated biphenyls (PCBs) are a class of discrete or-
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ganic compounds with one to ten chlorine atoms attached

to a biphenyl nucleus and a general chemical formula of

C12H10−nCln, where n = 1÷ 10 [11]. A general chemical

structure of polychlorinated biphenyls is shown in Fig. 1.

Fig. 1. General structural formula and substitution positions
of the PCBs

The composition of PCBs is summarized in Tab. 1 [12].

PCBs are hydrophobic compounds with low volatility, and the

highly chlorinated ones have poor water solubility. Moreover,

they are resistant to acids, bases, and (generally) environ-

mental degradation processes. They are, therefore, highly

persistent in the environment. A series of properties and activ-

ities of PCBs have been investigated by QSPR/QSAR model-

ing: aqueous solubility [13], gas/particle partitioning in the

atmosphere [14], photo degradation half-life in n-hexane so-

lution under UV irradiation [15], n-octanol/water partition

coefficients [16, 17], vaporization [18, 19], and sublimation

enthalpy [20]. The retention time of PCB congeners has also

been previously investigated and reported [21-24]. Due to

the need to control the PCBs level in the environment, one

of the most commonly used methods for their analysis in

environmental samples is gas chromatography coupled with

an electron-capture detector, because of its high sensitivity

toward halogenated compounds [25, 26], but easy identifi-

cation of individual congeners remains unresolved for the

moment [27,28]. Retention in chromatography is the result

of a competitive distribution process of the solute between

mobile and stationary phases, in which the partitioning of

the solute between these phases is largely determined by the

molecular structure. Based on this approach, many authors

have described multiple regression models for predicting gas-

chromatographic relative retention time [RRT] on a SE-54

stationary phase using different kinds of molecular descrip-

tors [29-31]. A range of empirical and semi-empirical tools

have been developed for the prediction of retention behavior

of different classes of compounds under various chromato-

graphic conditions. Many of these predictive models fall into

the category of quantitative structure-retention relationships

(QSRR) which derive relationships between chromatographic

parameters and molecular structure properties (descriptors)

of the analytes. These quantitative structure property rela-

tionships (QSPR) are generally used to correlate the biolog-

ical, chemical, or physical property of a compound with its

physico-chemical characteristics. In some of our previous

papers, we reported on the application of QSPR techniques

to develop a new, simplified approach to prediction of com-

pound properties [32-41]. For the first time we applied the

sub-structural molecular fragment (SMF) method for mod-

eling gas chromatographic relative retention times of PCBs.

The goal of this study is to develop an SMF method and

the related software tools to model relationships between the

structure of 209 polychlorinated biphenyls and their relative

retention times on the SE-54 stationary phase. This method is

based on to represent a molecule by its fragments and on to

calculate their contributions to a given property. It uses two

types of fragments: (i) the sequences of atoms and/or bonds

(atom and/or bond paths up to specified maximal length) and

(ii) ”augmented“ represented by a selected atom and/or bonds

with its environment. In fact, it represents an extension of

empirical methods used to calculate physical or chemical

properties of molecules using atomic or bond increments.

II. DATA AND METHODS

To undertake QSRR studies two kinds of input data are

needed. One is a set of quantitatively comparable retention

data (dependent variable) for a sufficiently large (for the sta-

tistical reason) set of analytes. The other is a set of quantities

(independent variables) assumed to account for structural

differences among the studied analytes. Through the use of

chemometric computational techniques, retention parame-

ters are characterized in terms of various descriptors of an-

alytes (and/or their combinations) or in terms of systematic

knowledge extracted (learnt) from these descriptors. To ob-

tain statistically significant and physically meaningful QSRR,

reliable input data are required and a stringent mathemati-

cal analysis must be carried out. The great advantage of the

QSRR analysis over other quantitative structure property re-

lationship studies is that chromatography can readily produce

a large amount of relatively precise and reproducible data. In

a chromatographic process all conditions may be kept con-

stant and hence the structure of an analyte becomes the single

independent variable in the system.

The QSRR model for the estimation of the RRT of PCB con-

geners is established in the following six steps: the molecular

structure input and generation of the files containing the chem-

ical structures is stored in a computer-readable format; quan-

tum mechanics geometry is optimized with a semi-empirical

(AM1) method; sub-structural molecular fragments are com-

puted; molecular fragments are selected; and the molecular

fragments – RRT model is generated by the multi-linear re-

gression analysis (MLRA), and statistical approval techniques

and prediction analysis.

II. 1. Data set

The relative response times of all PCBs obtained by using

temperature-programmed, high resolution gas chromatogra-

phy on a capillary column of SE-54 (Methyl 5% Phenyl
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Tab. 1. Composition of PCBs by homologs

Homolog Molecular formula Chlorine(%by weight) Number of isomers

Monochlorobiphenyl C12H9Cl 19 3

Dichlorobiphenyl C12H8Cl2 32 12

Trichlorobiphenyl C12H7Cl3 41 24

Tetrachlorobiphenyl C12H6Cl4 49 42

Pentachlorobiphenyl C12H5Cl5 54 46

Hexachlorobiphenyl C12H4Cl6 59 42

Heptachlorobiphenyl C12H3Cl7 63 24

Octachlorobiphenyl C12H2Cl8 66 12

Nonachlorobiphenyl C12HCl9 69 3

Decachlorobiphenyl C12Cl10 71 1

Total congeners - - 209

poly-siloxane, non-polar), reported by Mullin et al. [29,42]

served as experimental data in this study. The values were

used as a dependent variable in the following analyses and

the values ranged from 0.1544 to 1.0496. The names of the

compounds used in this study with their relative retention

times are listed in Tab. 2.

Tab. 2. Experimental data of relative retention times of polychlorinated biphenyls

No Molecule RRT(exp) No Molecule RRT(exp)

1 2-chloro-1,1’-biphenyl 0.1544 2 3-chloro-1,1’-biphenyl 0.1937

3 4-chloro-1,1’-biphenyl 0.1975 4 2,6-dichloro-1,1’-biphenyl 0.2243

5 2,2’-dichloro-1,1’-biphenyl 0.2245 6 2,4-dichloro-1,1’-biphenyl 0.2566

7 2,5-dichloro-1,1’-biphenyl 0.257 8 2,3’-dichloro-1,1’-biphenyl 0.2709

9 2,4’-dichloro-1,1’-biphenyl 0.2783 10 2,3-dichloro-1,1’-biphenyl 0.2785

11 3,5-dichloro-1,1’-biphenyl 0.2973 12 2,6,2’-trichloro-1,1’-biphenyl 0.3045

13 2,4,6-trichloro-1,1’-biphenyl 0.3165 14 3,3’-dichloro-1,1’-biphenyl 0.3238

15 3,4-dichloro-1,1’-biphenyl 0.3298 16 3,4’-dichloro-1,1’-biphenyl 0.3315

17 2,5,2’-trichloro-1,1’-biphenyl 0.3378 18 4,4’-dichloro-1,1’-biphenyl 0.3387

19 2,4,2’-trichloro-1,1’-biphenyl 0.3398 20 2,3,6-trichloro-1,1’-biphenyl 0.3508

21 2,6,3’-trichloro-1,1’-biphenyl 0.3521 22 2,3,2’-trichloro-1,1’-biphenyl 0.3625

23 2,6,4’-trichloro-1,1’-biphenyl 0.3636 24 2,3,5-trichloro-1,1’-biphenyl 0.377

25 2,3’,5’-trichloro-1,1’-biphenyl 0.3782 26 2,6,2’,6’-tetrachloro-1,1’-biphenyl 0.38

27 2,4,5-trichloro-1,1’-biphenyl 0.382 28 2,5,3’-trichloro-1,1’-biphenyl 0.3911

29 2,4,3’-trichloro-1,1’-biphenyl 0.3937 30 2,4,6,2’-tetrachloro-1,1’-biphenyl 0.4007

31 2,5,4’-trichloro-1,1’-biphenyl 0.4024 32 2,4,4’-trichloro-1,1’-biphenyl 0.4031

33 2,3,4-trichloro-1,1’-biphenyl 0.4135 34 2,3’,4’-trichloro-1,1’-biphenyl 0.4163

35 2,3,3’-trichloro-1,1’-biphenyl 0.417 36 2,5,2’,6’-tetrachloro-1,1’-biphenyl 0.4187

37 2,4,2’,6’-tetrachloro-1,1’-biphenyl 0.4242 38 2,3,4’-trichloro-1,1’-biphenyl 0.4267

39 2,3,6,2’-tetrachloro-1,1’-biphenyl 0.4334 40 3,5,3’-trichloro-1,1’-biphenyl 0.4375

41 2,3,2’,6’-tetrachloro-1,1’-biphenyl 0.445 42 3,5,4’-trichloro-1,1’-biphenyl 0.4488

43 2,4,6,3’-tetrachloro-1,1’-biphenyl 0.451 44 2,6,3’,5’-tetrachloro-1,1’-biphenyl 0.4554

45 2,5,2’,5’-tetrachloro-1,1’-biphenyl 0.4557 46 2,3,5,2’-tetrachloro-1,1’-biphenyl 0.4587

47 3,4,5-trichloro-1,1’-biphenyl 0.4593 48 2,4,2’,5’-tetrachloro-1,1’-biphenyl 0.461

49 2,4,2’,4’-tetrachloro-1,1’-biphenyl 0.4639 50 2,4,6,4’-tetrachloro-1,1’-biphenyl 0.4643

51 2,4,5,2’-tetrachloro-1,1’-biphenyl 0.4651 52 2,3,5,6-tetrachloro-1,1’-biphenyl 0.4671

53 2,3,4,6-tetrachloro-1,1’-biphenyl 0.4685 54 3,4,3’-trichloro-1,1’-biphenyl 0.4738

55 2,4,6,2’,6’-pentachloro-1,1’-biphenyl 0.4757 56 2,3,2’,5’-tetrachloro-1,1’-biphenyl 0.4832

57 3,4,4’-trichloro-1,1’-biphenyl 0.4858 58 2,3,6,3’-tetrachloro-1,1’-biphenyl 0.486

59 2,3,2’,4’-tetrachloro-1,1’-biphenyl 0.487 60 2,5,3’,5’-tetrachloro-1,1’-biphenyl 0.4984

61 2,6,3’,4’-tetrachloro-1,1’-biphenyl 0.4989 62 2,3,4,2’-tetrachloro-1,1’-biphenyl 0.499

63 2,3,6,4’-tetrachloro-1,1’-biphenyl 0.4999 64 2,4,3’,5’-tetrachloro-1,1’-biphenyl 0.504

65 2,3,6,2’,6’-pentachloro-1,1’-biphenyl 0.5057 66 2,3,2’,3’-tetrachloro-1,1’-biphenyl 0.5102
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Tab. 2 – continued:

No Molecule RRT(exp) No Molecule RRT(exp)

67 2,4,6,2’,5’-pentachloro-1,1’-biphenyl 0.5142 68 2,3,5,3’-tetrachloro-1,1’-biphenyl 0.5155

69 2,4,6,2’,4’-pentachloro-1,1’-biphenyl 0.5212 70 2,4,5,3’-tetrachloro-1,1’-biphenyl 0.5214

71 2,3,3’,5’-tetrachloro-1,1’-biphenyl 0.5267 72 2,3,5,4’-tetrachloro-1,1’-biphenyl 0.529

73 2,3,4,5-tetrachloro-1,1’-biphenyl 0.5331 74 2,3,5,2’,6’-pentachloro-1,1’-biphenyl 0.5331

75 2,4,5,4’-tetrachloro-1,1’-biphenyl 0.5341 76 2,5,3’,4’-tetrachloro-1,1’-biphenyl 0.5407

77 2,3’,4’,5’-tetrachloro-1,1’-biphenyl 0.5408 78 2,3,2’,4’,6’-pentachloro-1,1’-biphenyl 0.5415

79 2,4,5,2’,6’-pentachloro-1,1’-biphenyl 0.5431 80 2,3,5,6,2’-pentachloro-1,1’-biphenyl 0.5437

81 2,4,3’,4’-tetrachloro-1,1’-biphenyl 0.5447 82 3,5,3’,5’-tetrachloro-1,1’-biphenyl 0.5464

83 2,3,6,2’,5’-pentachloro-1,1’-biphenyl 0.5464 84 2,3,4,6,2’-pentachloro-1,1’-biphenyl 0.5486

85 2,4,6,3’,5’-pentachloro-1,1’-biphenyl 0.5518 86 2,3,6,2’,4’-pentachloro-1,1’-biphenyl 0.5549

87 2,3,4,3’-tetrachloro-1,1’-biphenyl 0.5562 88 2,4,6,2’,4’,6’-hexachloro-1,1’-biphenyl 0.5666

89 2,3,3’,4’-tetrachloro-1,1’-biphenyl 0.5676 90 2,3,4,4’-tetrachloro-1,1’-biphenyl 0.5676

91 2,3,5,2’,5’-pentachloro-1,1’-biphenyl 0.5742 92 2,3,6,2’,3’-pentachloro-1,1’-biphenyl 0.5744

93 2,3,4,2’,6’-pentachloro-1,1’-biphenyl 0.5779 94 2,3,5,2’,4’-pentachloro-1,1’-biphenyl 0.5814

95 2,4,5,2’,5’-pentachloro-1,1’-biphenyl 0.5816 96 2,3,6,3’,5’-pentachloro-1,1’-biphenyl 0.5862

97 2,4,5,2’,4’-pentachloro-1,1’-biphenyl 0.588 98 3,4,3’,5’-tetrachloro-1,1’-biphenyl 0.5894

99 2,4,6,3’,4’-pentachloro-1,1’-biphenyl 0.5968 100 2,3,6,2’,4’,6’-hexachloro-1,1’-biphenyl 0.5969

101 2,3,5,6,3’-pentachloro-1,1’-biphenyl 0.5986 102 2,3,4,6,3’-pentachloro-1,1’-biphenyl 0.6016

103 3,4,5,3’-tetrachloro-1,1’-biphenyl 0.6024 104 2,3,5,2’,3’-pentachloro-1,1’-biphenyl 0.6029

105 2,3,5,6,2’,6’-hexachloro-1,1’-biphenyl 0.6062 106 2,3,2’,4’,5’-pentachloro-1,1’-biphenyl 0.61

107 2,3,4,5,2’-pentachloro-1,1’-biphenyl 0.6105 108 2,3,4,5,6-pentachloro-1,1’-biphenyl 0.6132

109 2,6,3’,4’,5’-pentachloro-1,1’-biphenyl 0.6142 110 3,4,5,4’-tetrachloro-1,1’-biphenyl 0.6149

111 2,3,4,6,2’,6’-hexachloro-1,1’-biphenyl 0.6149 112 2,3,5,6,4’-pentachloro-1,1’-biphenyl 0.615

113 2,3,4,6,4’-pentachloro-1,1’-biphenyl 0.6171 114 2,3,4,2’,5’-pentachloro-1,1’-biphenyl 0.6175

115 2,3,5,3’,5’-pentachloro-1,1’-biphenyl 0.6183 116 2,3,4,2’,4’-pentachloro-1,1’-biphenyl 0.6224

117 2,3,5,2’,4’,6’-hexachloro-1,1’-biphenyl 0.6243 118 2,4,5,3’,5’-pentachloro-1,1’-biphenyl 0.6256

119 2,3,6,2’,3’,6’-hexachloro-1,1’-biphenyl 0.6257 120 3,4,3’,4’-tetrachloro-1,1’-biphenyl 0.6295

121 2,3,6,3’,4’-pentachloro-1,1’-biphenyl 0.6314 122 2,4,5,2’,4’,6’-hexachloro-1,1’-biphenyl 0.6349

123 2,3,4,2’,3’-pentachloro-1,1’-biphenyl 0.6453 124 2,3,5,6,2’,5’-hexachloro-1,1’-biphenyl 0.6499

125 2,3,5,2’,3’,6’-hexachloro-1,1’-biphenyl 0.6563 126 2,3,4,6,2’,5’-hexachloro-1,1’-biphenyl 0.6563

127 2,5,3’,4’,5’-pentachloro-1,1’-biphenyl 0.6584 128 2,3,5,6,2’,4’-hexachloro-1,1’-biphenyl 0.6608

129 2,3,4,3’,5’-pentachloro-1,1’-biphenyl 0.6626 130 2,3,5,3’,4’-pentachloro-1,1’-biphenyl 0.6628

131 2,4,3’,4’,5’-pentachloro-1,1’-biphenyl 0.6658 132 2,3,6,2’,4’,5’-hexachloro-1,1’-biphenyl 0.6672

133 2,3,4,5,3’-pentachloro-1,1’-biphenyl 0.668 134 2,4,5,3’,4’-pentachloro-1,1’-biphenyl 0.6693

135 2,3,4,6,2’,4’-hexachloro-1,1’-biphenyl 0.6707 136 2,3,4,2’,4’,6’-hexachloro-1,1’-biphenyl 0.6707

137 2,3,4,5,2’,6’-hexachloro-1,1’-biphenyl 0.6789 138 2,3,5,6,2’,3’-hexachloro-1,1’-biphenyl 0.6796

139 2,3,4,5,4’-pentachloro-1,1’-biphenyl 0.6828 140 2,3,4,5,6,2’-hexachloro-1,1’-biphenyl 0.6848

141 2,3,4,6,2’,3’-hexachloro-1,1’-biphenyl 0.6853 142 2,3,3’,4’,5’-pentachloro-1,1’-biphenyl 0.6871

143 2,3,5,2’,3’,5’-hexachloro-1,1’-biphenyl 0.6871 144 2,3,5,6,3’,5’-hexachloro-1,1’-biphenyl 0.692

145
2,3,5,6,2’,4’,6’-heptachloro-1,1’-

biphenyl
0.692 146 2,3,5,2’,4’,5’-hexachloro-1,1’-biphenyl 0.6955

147 2,3,4,6,3’,5’-hexachloro-1,1’-biphenyl 0.6968 148
2,3,4,6,2’,4’,6’-heptachloro-1,1’-

biphenyl
0.7016

149 2,3,4,2’,3’,6’-hexachloro-1,1’-biphenyl 0.7035 150 2,4,5,2’,4’,5’-hexachloro-1,1’-biphenyl 0.7036

151 2,3,4,3’,4’-pentachloro-1,1’-biphenyl 0.7049 152 2,4,6,3’,4’,5’-hexachloro-1,1’-biphenyl 0.7068

153 3,4,5,3’,5’-pentachloro-1,1’-biphenyl 0.7078 154 2,3,4,5,2’,5’-hexachloro-1,1’-biphenyl 0.7203

155
2,3,5,6,2’,3’,6’-heptachloro-1,1’-

biphenyl
0.7205 156 2,3,4,2’,3’,5’-hexachloro-1,1’-biphenyl 0.7284

157
2,3,4,6,2’,3’,6’-heptachloro-1,1’-

biphenyl
0.7305 158 2,3,4,5,2’,4’-hexachloro-1,1’-biphenyl 0.7329

159 2,3,4,5,6,3’-hexachloro-1,1’-biphenyl 0.7396 160 2,3,5,6,3’,4’-hexachloro-1,1’-biphenyl 0.7396

161 2,3,6,3’,4’,5’-hexachloro-1,1’-biphenyl 0.7399 162 2,3,4,2’,4’,5’-hexachloro-1,1’-biphenyl 0.7403

163
2,3,4,5,6,2’,6’-heptachloro-1,1’-

biphenyl
0.7416 164 2,3,4,6,3’,4’-hexachloro-1,1’-biphenyl 0.7429



Computational Model For CRRT of PCBs Using SMFs 45

Tab. 2 – continued:

No Molecule RRT(exp) No Molecule RRT(exp)

165 2,3,4,5,2’,3’-hexachloro-1,1’-biphenyl 0.7501 166 3,4,5,3’,4’-pentachloro-1,1’-biphenyl 0.7512

167
2,3,5,6,2’,3’,5’-heptachloro-1,1’-

biphenyl
0.7537 168 2,3,4,5,6,4’-hexachloro-1,1’-biphenyl 0.7572

169
2,3,4,6,2’,3’,5’-heptachloro-1,1’-

biphenyl
0.7611 170

2,3,4,5,2’,4’,6’-heptachloro-1,1’-

biphenyl
0.7653

171
2,3,5,6,2’,4’,5’-heptachloro-1,1’-

biphenyl
0.7654 172 2,3,4,5,3’,5’-hexachloro-1,1’-biphenyl 0.7655

173
2,3,4,6,2’,4’,5’-heptachloro-1,1’-

biphenyl
0.772 174 2,3,5,3’,4’,5’-hexachloro-1,1’-biphenyl 0.7737

175 2,3,4,2’,3’,4’-hexachloro-1,1’-biphenyl 0.7761 176 2,4,5,3’,4’,5’-hexachloro-1,1’-biphenyl 0.7814

177
2,3,4,5,6,2’,5’-heptachloro-1,1’-

biphenyl
0.7848 178

2,3,4,5,2’,3’,6’-heptachloro-1,1’-

biphenyl
0.7965

179
2,3,4,5,6,2’,4’-heptachloro-1,1’-

biphenyl
0.7968 180

2,3,4,2’,3’,5’,6’-heptachloro-1,1’-

biphenyl
0.8031

181
2,3,4,6,2’,3’,4’-heptachloro-1,1’-

biphenyl
0.8089 182

2,3,5,6,2’,3’,5’,6’-octachloro-1,1’-

biphenyl
0.8089

183 2,3,4,5,3’,4’-hexachloro-1,1’-biphenyl 0.8105 184
2,3,4,5,6,2’,3’-heptachloro-1,1’-

biphenyl
0.8152

185 2,3,4,3’,4’,5’-hexachloro-1,1’-biphenyl 0.8184 186
2,3,4,6,2’,3’,5’,6’-octachloro-1,1’-

biphenyl
0.8197

187
2,3,4,5,6,2’,4’,6’-octachloro-1,1’-

biphenyl
0.8217 188

2,3,4,5,6,3’,5’-heptachloro-1,1’-

biphenyl
0.8269

189
2,3,4,5,2’,3’,5’-heptachloro-1,1’-

biphenyl
0.8278 190

2,3,4,6,2’,3’,4’,6’-octachloro-1,1’-

biphenyl
0.8293

191
2,3,4,5,2’,4’,5’-heptachloro-1,1’-

biphenyl
0.8362 192

2,3,5,6,3’,4’,5’-heptachloro-1,1’-

biphenyl
0.8397

193
2,3,4,6,3’,4’,5’-heptachloro-1,1’-

biphenyl
0.8447 194

2,3,4,5,6,2’,3’,6’-octachloro-1,1’-

biphenyl
0.8494

195 3,4,5,3’,4’,5’-hexachloro-1,1’-biphenyl 0.8625 196
2,3,4,5,2’,3’,4’-heptachloro-1,1’-

biphenyl
0.874

197
2,3,4,5,6,3’,4’-heptachloro-1,1’-

biphenyl
0.874 198

2,3,4,5,6,2’,3’,5’-octachloro-1,1’-

biphenyl
0.8845

199
2,3,4,5,2’,3’,5’,6’-octachloro-1,1’-

biphenyl
0.8875 200

2,3,4,5,2’,3’,4’,6’-octachloro-1,1’-

biphenyl
0.8938

201
2,3,4,5,6,2’,4’,5’-octachloro-1,1’-

biphenyl
0.8938 202

2,3,4,5,3’,4’,5’-heptachloro-1,1’-

biphenyl
0.9142

203
2,3,4,5,6,2’,3’,5’,6’-nonachloro-1,1’-

biphenyl
0.932 204

2,3,4,5,6,2’,3’,4’-octachloro-1,1’-

biphenyl
0.9321

205
2,3,4,5,6,2’,3’,4’,6’-nonachloro-1,1’-

biphenyl
0.9423 206

2,3,4,5,2’,3’,4’,5’-octachloro-1,1’-

biphenyl
0.962

207
2,3,4,5,6,3’,4’,5’-octachloro-1,1’-

biphenyl
0.9678 208

2,3,4,5,6,2’,3’,4’,5’-nonachloro-1,1’-

biphenyl
1.0103

209
2,3,4,5,6,2’,3’,4’,5’,6’-decachloro-1,1’-

biphenyl
1.0496

II. 2. Computer Hardware and Software

All calculations were run on a Dell Inspiron N5010 laptop

computer with Intel R© CoreTM i7 processor with Windows 7

operating system.

II. 3. Computational Procedure

II. 3. 1. Sub-structural Molecular Fragments

The ISIDA/QSPR program realizes the sub-structural

molecular fragments (SMF) method [43-49] which is based

on the splitting of a molecular graph on fragments (sub-

graphs) and on the calculation of their contributions to a given

property Y. Two classes of fragments are used: “sequences”

(I) and “augmented” (II). Three sub-types AB, A and B

are defined for each class. For fragments I, they represent

sequences of atoms and bonds (AB), of atoms only (A),

or of bonds only (B). The shortest or all paths from one

atom to the other are used. For each type of sequences, the

minimal (nmin) and maximal (nmax) number of constituted

atoms must be defined. Thus, for the partitioning I (AB,
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nmin − nmax), I (A, nmin - nmax) and I (B, nmin - nmax),

the program generates “intermediate” sequences involving

n atoms (nmin ≤ n ≤ nmax). In the current version of

ISIDA/QSPR, nmin ≥ 2 and nmax ≤ 15. An “augmented”

represents a selected atom with its environment including

both neighboring atoms and bonds (AB), or atoms only (A,

without taking hybridization of neighbors into account, or Hy,

where hybridization of neighbors is accounted for), or bonds

only (B).

II. 3. 2. Variable Selection Procedures

The generated pool of descriptors is generally much larger

than the number of compounds in the training set; therefore

procedures for selecting variables should be applied to build

statistically significant multi-linear regressions. In ISIDA,

a combination of forward and backward stepwise variable

selection procedures is used.

1). Filtering stage. The program eliminates variables Xi

which have small correlation coefficient with the property,

Ry,i < R0
y,i, and those highly correlated with other variables

XjPi,j > R0
i,j), which were already selected for the model.

In this work, the values R0
y,i = 0.001, . . . and R0

i,j = 0.75,

. . . were used. Fragments always occurring in the same com-

bination in each compound of the training set (concatenated

fragments) are treated as one extended fragment.

2). Forward stepwise pre-selection stage. The suite of for-

ward and backward stepwise algorithms has been used for

variable pre-selection in ISIDA/QSPR studies by the vari-

able selection suite (VSS) program. Three algorithms for

forward stepwise variable selection are based on the calcula-

tions of correlation coefficients and subtractions. This is an

iterative procedure, on each step of which the program selects

one Xi (two Xi and Xj or three variables Xi, Xj and Xk)

maximizing the correlation coefficient Ry,j (Ry,ij or Ry,ijk)

between Xi (Xi and Xj or Xi , Xj and Xk) and dependent

variable Y . At the first step (s = 1), the modeled property

for each compound is taken as its experimental one Ys = Y .

At each next step s, as the property value Ys is used residual

Ys = Ys−1−Ycalc, where Ycalc = ciXi(Ycalc = ciXi+cjXj

or Ycalc = ciXi + cjXj + ckXk). is the calculated property

by the one-variable (two- or three-variables) model with se-

lected variable Xi (variables Xi and Xj or Xi, Xj and Xk).

This loop is repeated until the number of variables k reaches

a user-defined value; in this work, k was analyzed from 0.1n

to 0.9n, where n is the number of the molecules in the training

set.

3). Backward stepwise selection stage. The final selection is

performed using backward stepwise variable selection pro-

cedure based on the t statistic criterion. Here, the program

eliminates the variables with low ti = ci/si values, where si
is standard deviation for the coefficient ci at the i-th variable

in the model. First, the program selects the variable with the

smallest t < t0, then it performs a new fitting excluding that

variable. This procedure is repeated until t ≥ t0 for selected

variables or if the number of variables reaches the user’s

defined value. Here, t0, the tabulated value of the Student’s

criterion is a function of the number of data points, the num-

ber of variables, and the significance level. Default value of

the t0 is 1.96; it can be analyzed from 1.96 to 3.9.

II. 3. 3. Multi-linear Regression Model

The modeled physical or chemical property Y can be quan-

titatively calculated accounting for contributions of fragments

using linear (1) fitting equation.

Y =
∑

i

Ai ×Ni, Additive Model, (1)

where Ai is a fragment a contribution, Ni is the number of

fragments of i type. Contributions of Ai are calculated by

minimizing a functional

U [ai] =

n
∑

i=1

wi (Yexp,i − Ycalc,i)
2
=> min, (2)

where n is the number of compounds in the training set, wi

the weight accounting for the accuracy of the experimen-

tal data, Yexp and Ycalc are, respectively, experimental and

calculated according to property values. The equation (1)

represents calculation of property Y by using additive con-

tributions of fragments. The coefficients of the equation (1)

being optimized at the training stage are then used to esti-

mate Y values of the compounds from the test set or to screen

external databases of real or virtual compounds.

Using the singular value decomposition method (SVD),

ISIDA/QSPR fits the ai terms in equation (2) and calculates

corresponding statistical characteristics (correlation coeffi-

cient (R), standard deviation (s), Fischer’s criterion (F ), cross-

validation correlation coefficient (Q), standard deviation of

predictions (Spress), Kubyni’s criterion (FIT), RH -factor of

Hamilton and matrix of pair correlations (covariation matrix)

for the terms ai) and performs statistical tests to select the

best model. The prediction ability of the model is charac-

terized by leave-one-out correlation coefficient Q2 and by

leave-one-out standard deviation(SDEP), as well as by dis-

persions of predicted values of 〈Ypred〉 averaged over several

models.

II. 3. 4. Validation of QSRR Model

In ISIDA/QSRR calculations, each initial data set was

split into two sub-sets: training (167 compounds) and test

(42 compounds) sets. The QSRR models were built on the

training set followed by “prediction” calculations for the test

set. Before a QSRR model is used to predict the properties for

new compounds, it should be validated both internally and

externally to ensure that the built model is robust, reliable, sta-

ble and predictive. In the current work, several statistic terms
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Tab. 3. Set of fragments, Coefficients (Ai) of the equation, standard deviations for coefficients and their t-Test for RRT =
∑

(Ai ×Ni)

No Variable[i] Contribution (Ai) Standard deviation (∆A) t-Test

1 C-C=C-H 0.0050 0.0005 10.63

2 Cl-C=C-H 0.0587 0.0025 23.58

3 Cl-C-C-H 0.0635 0.0024 26.06

4 Cl-C-C=C-C-H 0.0133 0.0012 11.37

5 Cl-C-C=C-H 0.0171 0.0013 13.03

6 Cl-C-C-Cl 0.1380 0.0044 31.57

7 Cl-C-C-C=C-H 0.0184 0.0030 6.06

8 Cl-C=C-Cl 0.1274 0.0044 29.07

such as squared correlation coefficient R2 for the training

set fitness and Q2
ex for the external predictive ability, leave-

one-out (LOO) cross-validated Q2
LOO and root mean square

error (RMSE) were used to assess the internal and external

predictive ability of the proposed model. The corresponding

statistical parameters were defined as:

R2 = 1−

∑n

i (yip−yie)
2

∑n

i (yie−y
training
mean )

2 (3)

Q2
LOO = 1−

∑n

i (yip − yicv)
2

∑n

i (yie − y
training
mean )

2 (4) (4)

Q2
ext = 1−

∑n

i (yip − yie)
2

∑n

i (yie − ytestmean)
2 (5)

RMSE =

√

∑n

i (yip−yie)
2

n
, (6)

where i represents ith molecule, yie is the desired output (ex-

perimental property), yip the actual output, yicv is the output

of leave-one-out cross-validation, ymean
training and ymean

test are the

mean values of yip for the training and test sets, respectively.

N is the number of compounds in the training or test set. In

addition, the built model was also validated externally using

the test set compounds due to the fact that the best way to

evaluate the predictive ability of a QSRR model is its valida-

tion using compounds not included in the training set with

known properties.

III. RESULTS AND DISCUSSION

The ISIDA program has been developed to establish

structure-retention relationship based on the SMF partitioning.

The program inputs data in the SDF format [50] containing

structural and properties information. The graphical interface

of ISIDA allows to attribute data to the learning or validation

sets, and to set up the parameters of calculations (type of

fragments, minimal and maximal number of atoms/bonds in

the sequences, type of equation). A QSRR is a mathemat-

ical relationship between a property of a chemical, in this

Fig. 2. Plot of predicted RRT and residuals versus experimental RRT of training set
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Fig. 3. Plot of predicted RRT and residuals versus experimental RRT of test set

case relative retention times, and molecular fragments of the

chemical. The fragments are obtained from the structure of

the chemical. First, a training set of 167 compounds is used

to statistically establish the relationship between RRT and

the molecular fragments. The QSRR can then be used to

predict the retention times of test set (42 compounds) for

which the fragments are known. Thus the fragments selected

to describe this process in a QSRR should be able to describe

the relative affinities of chemicals for the stationary phase.

To establish relationships between the structure of PCBs and

their retention times, we used the recently developed sub-

structural molecular fragments (SMF) method which is based

on the representation of the molecular graph by fragments

and on the calculation of their contributions to a given prop-

erty. The sequences fragments represent sequences of atoms

and bonds (AB), of atoms only (A), or of bonds only (B).

The length of sequences varies from 2 to 15 atoms. For any

sequence containing from nmin to nmax atoms, all fragments

of nmax, nmax−1, nmax−2, . . ., nmin length are considered.

In this work, the I (AB, 4-6) decomposition scheme corre-

sponds to eight sequences containing 4, 5 and 6 atoms and

linking bonds are selected. To select the most relevant frag-

ments to the RRTs, 15 groups of fragments calculated by

ISIDA for each compound were used as the inputs for step-

wise regression. The optimum subset size was reached when

adding another fragment did not significantly improve perfor-

mance of the model. Through this procedure, the 8-parameter

model was selected as the best model. It can be described in

Tab. 2. The quality of a QSRR model is generally expressed

by its fitting ability and prediction ability, and the latter one

is more important. Statistical parameters for the test set were

Q2
ext of 0.9913 and the standard deviation error of prediction

(SDEP) of 0.0139. When a compound is split into constitu-

tive fragments, the fragments contributions to the RRT or to

any other physical or chemical property are calculated using

linear fitting equation:

RRT =
∑

(Ai ×Ni). (7)

Here, Ai is contribution of fragment, and Ni is the number

of fragments of i type. The fragments contributions as fitted

coefficients in the equation (9) at the learning stage are used

to predict RRT for the compounds from the validation set.

The set of fragments, coefficients of the equation, standard

deviations for coefficients and their t-test for equation (9) are

shown in Tab. 3.

The experimental, predicted and residuals data for the

training set (167 compounds) and the test set (42 compounds)

are shown in Tab. 4 and 5. The plot of predicted RRT and

residuals versus experimental RRT of the training set and the

test set are showed in Fig. 2 and 3.

Tab. 4. Data of experimental, predicted and residual for training set (167) of PCB compounds

No RRT(exp) RRT(pred) Residual NO RRT(exp) RRT(pred) Residual

2 0.1937 0.1906 0.0031 3 0.1975 0.1944 0.0031

4 0.2245 0.2282 −0.0037 5 0.2785 0.2856 −0.0071

7 0.2566 0.2612 −0.0046 8 0.2783 0.2783 0.

9 0.257 0.265 −0.008 10 0.2243 0.2295 −0.0052

12 0.3298 0.3349 −0.0051 13 0.3315 0.3249 0.0066
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Tab. 4 – continued:

No RRT(exp) RRT(pred) Residual NO RRT(exp) RRT(pred) Residual

14 0.2973 0.3212 −0.0239 15 0.3387 0.3287 0.01

17 0.3398 0.3454 −0.0056 18 0.3378 0.3491 −0.0113

19 0.3045 0.3136 −0.0091 20 0.417 0.4199 −0.0029

22 0.4267 0.4199 0.0068 23 0.377 0.3894 −0.0124

24 0.3508 0.3444 0.0064 25 0.3937 0.3955 −0.0018

27 0.3521 0.3638 −0.0117 28 0.4031 0.3955 0.0076

29 0.382 0.3932 −0.0112 30 0.3165 0.3295 −0.013

32 0.3636 0.3638 −0.0002 33 0.4163 0.4188 −0.0025

34 0.3782 0.3917 −0.0135 35 0.4738 0.4692 0.0046

37 0.4858 0.4692 0.0166 38 0.4593 0.4765 −0.0172

39 0.4488 0.4554 −0.0066 40 0.5102 0.514 −0.0038

42 0.487 0.4869 0.0001 43 0.4587 0.4736 −0.0149

44 0.4832 0.4736 0.0096 45 0.4334 0.4285 0.0049

47 0.4639 0.4625 0.0014 48 0.4651 0.4773 −0.0122

49 0.461 0.4492 0.0118 50 0.4007 0.4137 −0.013

52 0.4557 0.453 0.0027 53 0.4187 0.4026 0.0161

54 0.38 0.3487 0.0313 55 0.5562 0.5471 0.0091

57 0.5155 0.5237 −0.0082 58 0.5267 0.5333 −0.0066

59 0.486 0.4786 0.0074 60 0.5676 0.5471 0.0205

62 0.4685 0.4544 0.0141 63 0.529 0.5237 0.0053

64 0.4999 0.4786 0.0213 65 0.4671 0.4582 0.0089

67 0.5214 0.5275 −0.0061 68 0.504 0.5089 −0.0049

69 0.451 0.4638 −0.0128 70 0.5407 0.5446 −0.0039

72 0.4984 0.5127 −0.0143 73 0.4554 0.4772 −0.0218

74 0.5341 0.5275 0.0066 75 0.4643 0.4638 0.0005

77 0.6295 0.6145 0.015 78 0.6024 0.6108 −0.0084

79 0.5894 0.5826 0.0068 80 0.5464 0.5688 −0.0224

82 0.6453 0.6412 0.0041 83 0.6029 0.6179 −0.015

84 0.5744 0.5728 0.0016 85 0.6224 0.6141 0.0083

87 0.6175 0.6007 0.0168 88 0.5486 0.5385 0.0101

89 0.5779 0.5504 0.0275 90 0.5814 0.5907 −0.0093

92 0.5742 0.5774 −0.0032 93 0.5437 0.5423 0.0014

94 0.5331 0.527 0.0061 95 0.5464 0.5323 0.0141

97 0.61 0.6007 0.0093 98 0.5415 0.5233 0.0182

99 0.588 0.5945 −0.0065 100 0.5212 0.5308 −0.0096

102 0.5431 0.5308 0.0123 103 0.5142 0.5175 −0.0033

104 0.4757 0.4487 0.027 105 0.7049 0.6924 0.0125

107 0.6628 0.6691 −0.0063 108 0.6626 0.6605 0.0021

109 0.6016 0.5887 0.0129 110 0.6314 0.624 0.0074

112 0.5986 0.5925 0.0061 113 0.5862 0.592 −0.0058

114 0.6828 0.6619 0.0209 115 0.6171 0.5887 0.0284

117 0.615 0.5925 0.0225 118 0.6693 0.6728 −0.0035

119 0.5968 0.6091 −0.0123 120 0.6256 0.6409 −0.0153

122 0.6871 0.6886 −0.0015 123 0.6658 0.6962 −0.0304

124 0.6584 0.668 −0.0096 125 0.6142 0.6325 −0.0183

127 0.7078 0.7242 −0.0164 128 0.7761 0.7694 0.0067

129 0.7501 0.7561 −0.006 130 0.7284 0.7279 0.0005

132 0.7035 0.6947 0.0088 133 0.6871 0.7046 −0.0175

134 0.6796 0.6866 −0.007 135 0.6563 0.6713 −0.015

137 0.7329 0.729 0.0039 138 0.7403 0.7279 0.0124

139 0.6707 0.6557 0.015 140 0.6707 0.6504 0.0203

142 0.6848 0.6634 0.0214 143 0.6789 0.6653 0.0136

144 0.6563 0.6424 0.0139 145 0.6149 0.5736 0.0413

147 0.6608 0.6595 0.0013 148 0.6243 0.6271 −0.0028
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Tab. 4 – continued:

No RRT(exp) RRT(pred) Residual NO RRT(exp) RRT(pred) Residual

149 0.6672 0.6595 0.0077 150 0.5969 0.5636 0.0333

152 0.6062 0.5774 0.0288 153 0.7036 0.7083 −0.0047

154 0.6349 0.6309 0.004 155 0.5666 0.5488 0.0178

157 0.8184 0.8158 0.0026 158 0.7429 0.734 0.0089

159 0.7655 0.7754 −0.0099 160 0.7396 0.7136 0.026

162 0.7737 0.7925 −0.0188 163 0.7396 0.7378 0.0018

164 0.7399 0.7474 −0.0075 165 0.692 0.7059 −0.0139

167 0.7814 0.7962 −0.0148 168 0.7068 0.7325 −0.0257

169 0.8625 0.8795 −0.017 170 0.874 0.8843 −0.0103

172 0.8278 0.8428 −0.015 173 0.8152 0.8077 0.0075

174 0.7965 0.8095 −0.013 175 0.7611 0.7695 −0.0084

177 0.8031 0.7924 0.0107 178 0.7537 0.7733 −0.0196

179 0.7205 0.7217 −0.0012 180 0.8362 0.8428 −0.0066

182 0.7653 0.7653 0. 183 0.772 0.7695 0.0025

184 0.7016 0.6737 0.0279 185 0.7848 0.7672 0.0176

187 0.7654 0.7733 −0.0079 188 0.692 0.6774 0.0146

189 0.9142 0.9307 −0.0165 190 0.874 0.8589 0.0151

192 0.8269 0.827 −0.0001 193 0.8397 0.8612 −0.0215

194 0.962 0.981 −0.019 195 0.9321 0.9359 −0.0038

197 0.8293 0.829 0.0003 198 0.8845 0.8944 −0.0099

199 0.8494 0.8428 0.0066 200 0.8197 0.8157 0.004

The statistical results of training and external validation

of the model are shown in Tab. 6.

Before we begin to investigate stationary phase types

and their interaction with analyte molecules, it is essential

to understand the concept of molecular polarity and dipole

interactions. These interactions form the basis of fundamental

adsorption mechanisms that cause analyte retention in gas

chromatography (GC). We also classify GC stationary phase

types according to their polarity (non-polarity) and so a good

understanding is very important.

Tab. 5. Predicted and residual relative retention time for test set (42) of PCB compounds

No RRT(exp) RRT(pred) Residual NO RRT(exp) RRT(pred) Residual

1 0.1544 0.1441 0.0103 106 0.668 0.6619 0.0061

6 0.2709 0.2783 −0.0074 111 0.6183 0.6371 −0.0188

11 0.3238 0.3249 −0.0011 116 0.6132 0.5793 0.0339

16 0.3625 0.3697 −0.0072 121 0.5518 0.5772 −0.0254

21 0.4135 0.4128 0.0007 126 0.7512 0.7561 −0.0049

26 0.3911 0.3993 −0.0082 131 0.6853 0.6828 0.0025

31 0.4024 0.3993 0.0031 136 0.6257 0.6078 0.0179

36 0.4375 0.4554 −0.0179 141 0.7203 0.7156 0.0047

41 0.499 0.4969 0.0021 146 0.6955 0.7046 −0.0091

46 0.445 0.4232 0.0218 151 0.6499 0.6461 0.0038

51 0.4242 0.3988 0.0254 156 0.8105 0.8073 0.0032

56 0.5676 0.5652 0.0024 161 0.6968 0.7021 −0.0053

61 0.5331 0.5277 0.0054 166 0.7572 0.7136 0.0436

66 0.5447 0.5408 0.0039 171 0.8089 0.811 −0.0021

71 0.4989 0.5091 −0.0102 176 0.7305 0.7179 0.0126

76 0.5408 0.5471 −0.0063 181 0.7968 0.7806 0.0162

81 0.6149 0.6108 0.0041 186 0.7416 0.6985 0.0431

86 0.6105 0.6118 −0.0013 191 0.8447 0.8574 −0.0127

91 0.5549 0.5457 0.0092 196 0.8938 0.9207 −0.0269

96 0.5057 0.4636 0.0421 201 0.8875 0.9073 −0.0198

101 0.5816 0.5812 0.0004 206 1.0103 1.0326 −0.0223
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Polysiloxanes are the most common stationary phases. They

are available in the greatest variety and are the most stable,

robust and versatile. Standard Polysiloxanes are character-

ized by the repeating siloxane backbone. Each silicon atom

contains two functional groups. The type and number of

the groups distinguish each stationary phase and its proper-

ties. The most basic polysiloxane is 100% methyl substituted.

When other groups are present, the number is indicated as

the percentage of the total number of groups. For example,

SE-54 contains 5% phenyl groups and 95% methyl groups.

In GC, retention of solute molecules occurs due to

stronger interaction with the stationary phase than the mobile

phase. In GC, the situation is unique in that the chemical

interaction with the mobile phase is very small indeed, there-

fore the interactions between the analyte molecules and the

stationary phase are of great importance. In GC, the interac-

tion between the analyte and stationary phase can be divided

into three broad categories: dispersive interactions, dipole

interactions, and hydrogen bonding.

Dispersive interactions are most difficult to describe and

visualize, as they are caused by charge fluctuations that oc-

cur throughout a molecule that arise from electron/nuclei

vibrations. The fluctuations are random in nature and are

basically a statistical effect. Every molecule has a number

of arrangements of nuclei and electrons having dipole mo-

ments that fluctuate, resulting in an overall molecular charge

of zero. However, at any instant in time the dipoles are capa-

ble of interacting with other instantaneous dipoles of other

molecules. Dispersive forces are ubiquitous and must arise

in all molecular interactions. They can themselves occur in

isolation, but are always present even when other types of

interaction dominate.

Tab. 6. Statistical parameters of QSRR-MLR model

Training set 167

Test set 42

Multiple correlation coeffi-
cient (train set)

R = 0.9972, R2 = 0.9945

Fischer’s criterion (train set) F = 4024.77

Standard deviation (train set) SD = 0.0137

Root mean-squared error
(train set)

RMSE = 0.0134

Mean absolute error (train
set)

MAE = 0.0108

Squared correlation coeffi-
cient of leave-one-out cross-
validation

Q2

LOO = 0.9938

Standard deviation error of
prediction (test set)

SDEP = 0.0139

Squared correlation coeffi-
cient (test set)

Q2

Ext = 0.9913

Root mean-squared error
(test set)

RMSE = 0.0169

Standard deviation (test set) SD = 0.0173

There are two distinctive classes of dipole-dipole in-

teraction, those between two species containing a perma-

nent dipole (dipole- dipole interactions) and those between

a molecule possessing a permanent dipole and polarizable

molecule (dipole-induced dipole interactions). Dipole-dipole

interactions can be very strong and occur between molecules

with permanent dipole. However, the strength of the dipole-

dipole interaction will far exceed any dispersive interactions

that occur.

Dipole-induced dipole interactions occur when

a molecule containing a permanent dipole approaches

a molecule that is polarizable; most commonly these

molecules would contain π-electron systems. The strength

of this interaction lies between dispersive and dipole-dipole

interactions.

This study shows that polar molecules (more Cl atoms)

seem to be better retained onto the stationary phase than non-

polar molecules (less Cl atoms). Retention onto the stationary

phase mainly dependent to Van der Waals forces (dispersive

interactions) and dipole-induced dipole interactions (molecu-

lar structure- stationary phase of SE-54). Thus in the QSRR

here, one sees a general increase in retention times as molec-

ular size and molecular polarity increase, reflected in frag-

ments. Thus in a homologous series such as the PCBs, RRT

increases with increasing of Cl atoms and molecular size.

IV. CONCLUSION

In this work, the MLR modeling method was used to study

the quantitative structure-retention relationship of RRT on

SE-54 stationary phase for a PCBs data set. We can conclude

that: firstly, the prediction results indicate that the multi-linear

regression modeling method can improve the prediction accu-

racy significantly for this large data set; secondly, the models

developed in this work provide an accurate model that can

be used to predict the RRT from the molecular structure only.

Physical adsorption onto the stationary phase mainly involves

Van der Waals forces and polarity interactions. In this paper,

a new QSRR model has been developed for predicting the

RRT of PCBs congener from the molecular structure alone.

The obtained results show that the MLR method could model

the relationship between RRT and their sub-structural frag-

mental. By performing model validation, it can be concluded

that the presented model is a valid model and can be effec-

tively used to predict the RRT of PCBs with an accuracy

approximating the accuracy of experimental RRT determina-

tion. It can be reasonably concluded that the proposed model

would be expected to predict RRT for the test set for which

experimental values are unknown. The main advantages of

fragment descriptors lie in the simplicity of their computation,

easiness of their interpretation as well as efficiency of their

applications in similarity searches and SAR/QSAR/QSPR

modeling.
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