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Perception of objects and motions in the visual scene is one of the basic problems in the visual system. 

There exist ‘What’ and ‘Where’ pathways in the superior visual cortex, starting from the simple cells in 

the primary visual cortex. The former is able to perceive objects such as forms, color, and texture, and 

the latter perceives ‘where’, for example, velocity and direction of spatial movement of objects. This 

paper explores brain-like computational architectures of visual information processing. We propose a 

visual perceptual model and computational mechanism for training the perceptual model. The compu-

tational model is a three-layer network. The first layer is the input layer which is used to receive the 

stimuli from natural environments. The second layer is designed for representing the internal neural 

information. The connections between the first layer and the second layer, called the receptive fields of 

neurons, are self-adaptively learned based on principle of sparse neural representation. To this end, we 

introduce Kullback-Leibler divergence as the measure of independence between neural responses and 

derive the learning algorithm based on minimizing the cost function. The proposed algorithm is applied 

to train the basis functions, namely receptive fields, which are localized, oriented, and bandpassed. The 

resultant receptive fields of neurons in the second layer have the characteristics resembling that of 

simple cells in the primary visual cortex. Based on these basis functions, we further construct the third 

layer for perception of what and where in the superior visual cortex. The proposed model is able to 

perceive objects and their motions with a high accuracy and strong robustness against additive noise. 

Computer simulation results in the final section show the feasibility of the proposed perceptual model 

and high efficiency of the learning algorithm.  

visual perception, visual cortex, computational model, receptive fields, simple cells, complex cells 

Human visual system plays an important role in 

perceiving environmental world. Natural scenes include 

very complex information such as object’s form, colour, 

texture, spatial velocity and direction of motion, and the 

visual cortex has adaptively evolved into a number of 

functional areas for perception of varieties of such 

information in a very long time. These functional areas 

have been grouped into two main pathways: ‘what’ and 

‘where’, shown in Figure 1. The former recognizes 

objects according to their forms and colours, and the 

latter responds to the spatial velocity and motion 

direction of objects. ‘What’ pathway deals with object 

features hierachically, starting from the primary visual 

cortex (V1), through V2, V4, and passing to the area TE 

(inferior temporal cortex). From V1, the size of 

receptive fields (RFs) of neurons in senior cortex 

becomes bigger and bigger, such as V1 (1.5°), V4 (4°), 

and TE (26×26°)
[1]

. These phenomena show that inform- 

ation is processed from locally to globally. The pathway 

of ‘Where’ is from 4Cα in V1 to 4B, then directly or  
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Figure 1  Two pathways: ‘what’ and ‘where’. 

 

indirectly through V2, V3, and to V5 (MT). Most of 

neurons in MT respond to motion direction and velocity 

of stimulus, and sensitively to parallax of two eyes. 

They focus on analyzing three-dimensional track of spa-

tial motion of objects, whereas they pay no attention to 

the form of objects. Although MT is the lowest area for 

selectively analyzing motion in the hierarchical visual 

cortex, there are comparative proportions of the neurons 

in V1 and V2 sensitive to direction, speed, and paral-

lax
[2]

. 

From this viewpoint, information processing of neu-

rons in V1 is vital to the information analysis of superior 

visual cortex. Hubel and Wiesel
[3]

 studied neural cells in 

V1 and found that there are two varieties of cells, called 

simple cells and complex cells. Simple cells have prop-

erties such as localization, orientation, and bandpass
[4]

, 

and complex cells respond to the oriented bar-like stim-

uli, whereas insensitively respond to phase of stimulus, 

regardless of stimulus location in the RFs. Hubel et al.
[2]

 

further proposed the hypothesis that RFs of complex 

cells are composed of that of simple cells, and form RFs 

of hyper-complex cells. That is consistent with the bio-

logical mechanism of inform- ation processing. 

On the other hand, natural scenes include infinite in-

formation, and visual system has limited neural com- 

puting resources. How to compromise the contradiction 

is a difficult problem. By analyzing the relationship be- 

tween the statistics of natural scenes and neural re-

sponses, researchers have proposed many efficient theo-

ries and models for neural coding. For example, Bar-

low
[5]

 proposed in 1961 Efficient Coding that an impor-

tant constraint in information coding is that a group of 

neurons should make use of limited resources to code 

information as much as possible. Olshausen and Field
[6,7]

 

presented Sparse Coding according to the fact that 

probability distribution of natural scenes obeys non- 

Gaussian distribution and that only minor neurons re-

spond strongly to the environmental stimulus, whereas 

most neurons do weakly. They proposed that natural 

scenes can be constructed by linear combination of 

many bases which are adaptively learned from natural 

scenes. These basis functions resemble the RFs of sim- 

ple cells and the corresponding coefficients are super- 

Gaussian. Similar study is that statistical independence 

is imposed on neural responses. For instance, Bell and 

Sejnowski
[8]

, van Hateren and van der Schaaf
[9]

, Lewicki 

and Olshausen
[10]

, Hyvarinen and Hoyer
[11]

 used inde-

pendent component analysis (ICA) to obtain similar re-

sults: learned basis functions are localized, oriented and 

bandpassed. These properties resemble the RFs of sim-

ple cells in V1 and responses of neurons are super- 

Gaussian. 

From the viewpoint of computing, there are many 

models overseas that simulate the perceptual mechanism 

in visual cortex. Hyvarinen and Hoyer
[11]

 proposed a 

two-layer network that modeled RFs of simple and 

complex cells and obtained a self-organized spatio- 

topological map. Grimes and Rao
[12]

 presented a bilinear 

generative model that studied objects and location of 

stimuli. Bednar et al.
[13,14]

 applied the HLISSOM model 

to learning face selectivity in the visual cortex of new-

born, helped understanding development of face percep-

tion, and interpreted that coaction between environment 

and gene comes into being the self-adaptively complex 

brain perception system
[13]

. The LISSOM model consid-

ers lateral connection between neurons in visual cortex 

and applies Hebbian rule to learning SOM maps of ori-

entation selectivity, direction selectivity, and ocular 

dominance from motion images
[14]

. Serre and Stringer
[15]

 

proposed a multi-layer model that recognized objects 

using manual RFs and Max pooling. Rolls et al.
[16]

 pro-

posed a VisNet network that modeled the pathway of V1, 

V2, MT, MST and recognized in-plane rotation invari-

ance. Grossberg proposed an aFILM
[17]

 model to explain 

mechanisms of how to self-adaptively process lighting, 

spatial contrast, and surface filling. Their another model 

LIGHTSHA FT
[18]

 applied one-eyed texture to percep-

tion of 3D surface and make clear how the areas of V1, 
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V2, and V4 convert from 2D images to 3D form. Bhatt 

proposed a dARTEX
[19]

 model to interpret that coaction 

between laminars in cortex was able to learn and recog-

nize object texture and form boundary.  

In our country, researchers have reaped rich harvests 

about the mechanism of visual perception. Yang et al.
[3,21]

 

studied simple and complex cells in V1 and proposed 

sparse coding strategy of simple cells and the spatio- 

temporal coding model of complex cells. They have 

constructed a spatiotemporal coding model of complex 

cells based on the spatiotemporal filter windows of sim-

ple cells. The model is especially concerned with the 

coding representation in cortex of visual input. The finer 

structure of spatiotemporal integration coding series of 

complex cells in visual cortex could represent visual 

inputs. Tian and Lu
[22]

 proposed a four-layer feedfor- 

ward network which is characterized by modifying the 

Hebbian learning rule through introducing the asym- 

metric time window of synaptic modification found re-

cently in neurophysiology. The model can generate by 

self- organization more diversified spatial-temporal re-

sponse characteristics of neuronal RF. Wei
[23]

 proposed a 

self-organized and adaptive model of hyper column in 

primary visual cortex
[24]

, which realized hierarchical 

processing input pixels from retina. Mei and Zhang
[25]

 

proposed a model of simple cells which found out the 

relationship between ICA bases and RFs of simple cells. 

And the model could simulate how environments influ-

enced development of RFs of simple cells when infant 

animal is at vital growing age. Chen
[26]

 studied cell’s 

orientation selectivity influenced by integration fields, 

and explained that integration fields could promote effi-

ciency and capability of processing information in visual 

cortex. Shi and Shi
[27]

 presented a spatiotemporal coding 

model, which made clear that neuron population would 

be formed by co-promotion and competition when given 

some stimulus. 

On the basis of the idea that perception of complex 

information can be from that of simple information, we 

consider the internal sparse neural representation in V1 

and further construct the superior perceptual network 

that perceives objects and motion direction.   

1  Perceptual model 

In this section, we propose a three-layer perceptual 

model, shown in Figure 2. The first layer, called retinal 

layer, is used to receive stimuli from natural environ- 

ments. The second layer, called internal neural represen- 

tation, is designed for representing the internal neural 

information and each neuron responds to stimulus 

through its RFs that are learned adaptively from natural 

scenes. And the third layer is the perceptual layer that 

perceives objects and motions from stimuli. We now 

introduce the perceptual model in detail.  

In the retinal layer, each neuron represents the pixel 

gray value of environmental stimuli as its activity, de-

noted by ,
kt

u  where tk denotes time k. The activities of 

neurons or pixels are considered as the input pattern to 

the second layer. 

The second layer, called internal neural representation 

layer, has neurons of size M×N. The neurons are con-

nected with the first layer through their RFs in the fol-

lowing way ,i i

kk
tt

X u
τ τ=A  where iτA (i=1, 2, 

…
, K) 

denotes the K groups of basis functions perceiving mo-

tion (Figure 4). In general, neurons fire actively when 

stimuli are similar to their RFs and only a small number 

of populations are activated by a natural image at a time. 

The activity is referred to as the internal neural repre-

sentation. Due to the influence of natural environment, 

visual system evolves itself to adapt to the statistics of 

natural images. Therefore neural RFs can be learned 

from natural scenes
[6,8,11]

. 

The third layer, called perceptual layer, is used to 

perceive objects and motions based on internal neural 

representation. There are two kinds of neurons in this 

layer. One is used for object perception, denoted by YC 

(totally M×N), and the other for motion perception de-

noted by YD (K×K), respectively. The relationship be-

tween YC/YD and the second layer is described as fol-

lows: 

1 2

( , ) ( ( , )), (1 )

( , ) ( ) ( ), (1 , ),

k

ji

C

D t t

Y m n MAX X m n k K

Y i j MAX X MAX X i j K

τ

ττ

=

= ∩

≤ ≤

≤ ≤
(1) 

where MAX denotes an operator which selects the neu-

ron with maximal activity as the winner one
[30,31]

, ∩ 

indicates that ( , )DY i j  fires when 
1

( )i

t
MAX X

τ
 and 

2
( )j

t
MAX X

τ
 are satisfied at the same time. Using the 

strategy of ‘winner takes all’, winner neuron YC is the 

one that maximizes the activities of its connected neu-

rons in the second layer. And the winner neuron will be 

considered as the output of the perceptual layer. For 

perceiving motion, consider two stimuli at time t1 and t2,  
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Figure 2  Perceptual model of objects and motions. 

and estimate two winner neurons’ positions (xi, yi) and 

(xj, yj) through bases iτA  and .jτA  Then we estimate 

the relative distance of the two winner neurons via their 

Euclidian distance 2 2( ) ( ) ,i j i jd x x y y∆ = − + −  and 

the motion direction can be also obtained through the 

two locations at time t1 and t2. 

2  Learning algorithm 

According to the model presented in the previous sec-

tion, the RFs of neurons in the internal neural represen-

tation layer should have ability to perceive motion. In 

order to obtain such RFs, we apply the independent 

component analysis (ICA) model to train the neural 

network from natural images. First, we introduce the 

learning rule based on Kullback-Leibler divergence and 

Natural Gradient
[28,29]

. Then, we provide in detail im-

plementation of learning algorithm for internal repre-

sentation and perceptual algorithm for objects and mo-

tions perception. 

2.1  Learning rule 

On the basis of Efficient Coding proposed by Barlow
[5]

, 

Olshausen and Field
[6]

 presented Sparse Coding for 

natural image representation. To this end, we apply ICA 

to learn basis functions from natural images. For the 

standard model of ICA: x=Wu, using the derivation 

procedure of learning rule in the literature
[32]

, we derive 

a cost function from Kullback-Leibler divergence as 

follows:  

 
1

1
( , W) log | det(WW ) | log ( ),

2

n
T

i i

i

R x E q x
=

= − −∑  (2) 

where qi(xi) takes the Laplace probability distribution 

because independent components of natural images fol-

low non-Gaussian distribution
[7]

. 

Minimizing the above cost function leads to the fol-

lowing natural gradient
[28,29]

 algorithm: 

 

( )

( )[I [x( )]u ( )W ]

( )[I [x( )]x ( ) ] ,

T

T T

T

R
t

t k k

t k k

η

η ϕ

η ϕ

∂
∆ = −

∂

= −

−=

W W W
W

W

W

 

(3)

 

where ( ) ( ) / ( )i i i i i ix q x q xϕ ′= − , η(t) is the learning rate, 

which approaches to zero during iteration, ⋅  denotes 

the batch mean. 
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ICA learning algorithm generates basis functions 

trained from natural images, resembling the RFs of sim-

ple cells
[6,7]

. The standard ICA provides two inherent 

uncertainties. One is no order of independent compo-

nents and the other is that amplitudes of ICs are normal-

ized to unity. Thus, although the learned basis functions 

have similar properties as RFs of simple cells: localized, 

oriented, and bandpassed, they have no spatio- topo-

logical structure. This result is not consistent with the 

characteristic of RFs found in experimental results in 

physiology. Neurophysiologic experiments show that 

neighboring neurons have similar RFs and their orienta-

tion changes periodically in clockwise or counterclock-

wise. In order to achieve such a feature map, we exam-

ine the relationship between two ICs. 

ICs from standard ICA are not completely independ-

ent, but two-order correlated. This result is in accord 

with the explanation in physiology that a group of neu-

rons are activated together when given stimuli with 

some feature. From this physiological finding, we make 

use of two-order residual dependence to organize the ICs 

in the form of the self-organization map of RFs of sim-

ple cells. Such characteristic is similar to the RFs of 

complex cells. The result is consistent with hierarchical 

RFs of cells constructed by Hubel and Wiesel
[3]

. Now, 

we will derive the learning rule for self-organization 

map of RFs of simple cells based on Natural Gradient. 

Assume that xi and xj are responses of two neurons. If 

xi and xj are spatially adjacent, 2 2cov( , )i jx x { }2 2E ,i jx x=  

{ } { }2 2E E 0i jx x− ≠ . Due to the second order correlation 

of neighboring neuron responses, activity of each com-

plex cell is represented approximately by square root of 

sum energy of activity of neighboring simple cells
[11]

. In 

other words, RFs of simple cells constitute that of com-

plex cells, and size of RFs of complex cells is larger than 

that of simple cells. In the mathematical equation, that is 

( )1/ 2
2

1
| | ,

n

i ij jj
y h x

=
= ∑  where hij is the ith weight be-

tween a complex cell and its connected simple cell j. 

Assume that the probability distribution of neuronal re-

sponses follows the Laplace function:  

 

2

1

2 | |1
( ) exp

2

1 2
exp ,

2

i
i

n

ij j

j

y
q y

h x

σσ

σσ =

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞
⎜ ⎟= −
⎜ ⎟
⎝ ⎠

∑
 

(4)

 

where σ 2 is the variance of responses. We can obtain: 

 
21

1

2( )
( ) .

( )

n
ij ji i

i i
n

ji i
ij jj

h xq y
y

q y h x

ϕ
=

=

⎛ ⎞
′ ⎜ ⎟

= − = ⎜ ⎟
⎜ ⎟
⎝ ⎠

∑
∑

 (5) 

For all yi, rewrite in the matrix form: 

 [ ]1 2(y) ( ), ( ), , ( ) .MNy y yϕ ϕ ϕ ϕ=  (6) 

Substituting the right side of eqs. (6) to (3) leads to 

the batch updating learning algorithm with self-organi- 

zation as follows: 

 ( )[I (y( ))x( ) .TW t k k Wη ϕ∆ = −  (7) 

According to eq. (7), W is adaptively updated, result-

ing in the topographical map of RFs of simple cells. 

Neighboring RFs with the topographical map constitutes 

larger RFs as new superior neurons. Such neighboring 

RFs possess the same properties as complex cells, that is, 

they are sensitive in orientation, but insensitivity in 

phase. Now, we have obtained RFs of neurons in the 

second layer
[6,7]

, which will be used for perceiving ob-

jects and motions from stimuli. 

2.2  Algorithms for perception 

According to the learning rule in subsection 2.1, the RFs 

of neurons in the internal neural representation layer can 

be learned from natural images. Based on the learned 

connected weights, we propose a computational model 

for perceiving objects and motions from stimuli. For 

object perception, only one stimulus is necessary. For 

motion perception, two consecutive stimuli are needed. 

In the next subsection, we will present algorithms of the 

model for perception of objects and motions. 

(i) Algorithm for learning basis functions.  Training 

data set is first preprocessed by centering and whitening. 

Such a preprocessing facilitates to explore high-order 

statistical analysis regardless of first- and second-order 

correlation, and another advantage is to improve learn-

ing speed of convergence. According to eq. (7), update 

W and normalize it to unity, till norm (∆W) is less than a 

given threshold. The final step is to project learned basis 

functions from whitening subspace to original subspace, 

and basis functions A and spatial filters W are obtained. 

The algorithm is described in detail as follows:  

1, Generate training data set; 

2, Use PCA to center and whiten training set as the 

input to the learning algorithm; 

3, Calculate x by equation x =Wu; 

4, Update and normalize W by eq. (7); 
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5, If norm(∆W)≤ε (threshold), go to step 6, other-

wise go to step 3; 

6, Stop and output filters W and bases A. 

(ii) Algorithm for perception of objects.  Perceiving 

objects is based on the neural representation. After basis 

functions for neural representation are trained, we can 

calculate the neural responses in the second layer given 

a stimulus. The perception layer is to find out the maxi-

mal activity. The object perception algorithm is as fol-

lows:   

1, Stimulate the perceptual mode with ,
kt

u  and cal-

culate responses of neurons in the internal neural repre-

sentation layer: ;i

kt
X

τ   

2, Calculate the response of YC using eq. (1); 

3, Find out the winner neuron with the maximal ac-

tivity; 

4, Output the corresponding representation of the 

winner neuron. 

(iii) Algorithm for motion perception.  For percep-

tion of motion, two consecutive stimuli are necessary. 

We first calculate responses of motion neurons, then find 

out the locations of neurons with the maximal activity 

with two stimuli. Next, we calculate the distance and 

motion direction. The procedure for motion perception is 

rewritten as follows: 

1, Given two stimuli 
1t

u  and 
2
,tu  calculate the re-

sponses 
1

i

t
X

τ  and 
2

i

t
X

τ  in the second layer; 

2, Calculate two maximal responses of YD1 and YD2 by 

eq. (1); 

3, Find the corresponding locations of YD1 and YD2 as 

the start point and the end point, respectively; 

4, Calculate the distance and direction between two 

points;  

5, If time interval is given, motion speed can be ob-

tained;  

6, Output direction and speed as the final results. 

From the description of algorithms, we see that the 

model has two-stages. The first stage is to learn basis 

functions from natural images as the RFs of simple cells. 

The second stage is to perceive objects and motions 

from stimuli. The next section will demonstrate com-

puter simulation results. 

3  Computer simulations 

Basis functions for image representation can be learned 

from patches sampled from natural scenes published by 

Olshausen and Field
[7]

. In the learning process, connect-

ing weights are randomly initialized. After the receptive 

fields for neural representation are obtained, the neural 

response of the network will be used for perceiving ob-

jects and motion direction. 

3.1  Data preprocessing  

The human visual system has been evolving with the 

environments in which natural scenes possess plentiful 

oriented information. Therefore, the visual system has 

the exceptional ability of perceiving information in 

natural images. It is reasonable to use natural images as 

training data. The natural images we used were pub-

lished by Olshausen and Field
[7]

. It should be noted that 

more experiments have shown that similar results can be 

obtained from any natural images with abundant orien-

tation information. It is convenient to make comparisons 

with other work by using the same image data, avoiding 

any specialty of training data. 

We select ten natural images of size of 512×512 pix-

els. Training patches are generated by the method shown 

in Figure 3. Select randomly a number of big images, 

sample patches with size 10×10 pixels, and vectorize 

them from top left to bottom right. The arranged data is 

considered as one sample similar to refs. [33,34]. The 

total number of patch samples is 10000, denoted by U. 

Then we use principal component analysis (PCA) to 

center, whiten, and reduce dimensionality to 100 com-

ponents. The resulting data of size 100×10000 is the 

training data. 

3.2  Learning basis functions 

First, the ICA learning rule is applied to the training data 

set to obtain the basis functions in the whitening sub-

space according to subsection 3.1. It is necessary to pro-

ject them into the original image space. 

Figure 4 shows the spatio-organized topological map 

of RFs of neurons in the internal neural representation 

layer. Here, we consider 5×5 small blocks as one neu-

ron’s RF of the corresponding neuron in the first layer. 

These RFs have almost the same orientation and 

neighboring neurons have similar and gradually chang-

ing orientation. This topological map resembles that 

found in physiological experiments. To see them more 

clearly, we enlarge them on the right side of Figure 4. In 

each block, the basis function is localized, oriented, and 

bandpassed. That is consistent with the characteristics of  
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Figure 3  Sample of patches. Select randomly a pixel in big images as the coordinates of top-left, sample a patch, shift dX pixels rightward, and sample 

the second, till the fifth. Like the way, Then return the left and shift dY pixels downward. Totally 25 patches are sampled and vecterized as a sample. 

 

 
 

Figure 4  Spatio-organized topographical map of RFs of simple cells arranged by orientation. 

 

RFs of simple cells found in physiological experi-

ments
[3]

. Each base can be fitted well by a standard Ga-

bor function
[10]

. 

The learning rule for perceiving objects is derived 

based on second-order correlation according to the 

neurobiological observation that neurons are activated 

with high-degree synchronization. Therefore, we can 

obtain similar RFs of complex cells, shown in Figure 5. 

With comparison of Figures 4 and 5, it is easily found 

that YC connected to the neuronal group in Figure 4 is to 

perceive orientation information from the stimulus, 

which is invariant to local spatial shifts. While YD, con-

nected to the neuronal group in Figure 5 is to perceive 

motion information from the stimulus, which is invariant 

to variation of its contents. In the following we will pre-

sent computer perceptual results of objects and motions. 

3.3  Perception of objects 

Because neurons respond strongly to the stimuli which 

resemble their RFs, for simplicity, we consider RFs of 

simple cells as optimal stimuli. Randomly select 1000 

out of 2500 basis functions, and add Gaussian noises 

with different covariance to them, resulting as the testing 

data set in the following simulations.  

Given image stimuli, some neurons in the first layer 

fire strongly. Adopting the strategy of ‘winner takes all’, 

the winner neuron YC is the one that the activity of its 

connected neurons in the second layer is maximized and 

the winner neuron is considered as the neural represen-

tation of the stimuli in the second layer. In other words,  
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Figure 5  Spatio-organized topographical map of RFs of simple cells arranged by orientation changing. 

 

 
 

Figure 6  Perception of objects. (a) Stimuli; (b) receptive fields; (c) perception fields; (d) differences. 

 

its RF is the resulting oriented bar-like stimulus. For 

example, Figure 6 shows the subset of the testing data, 

RFs of neurons, optimal stimuli, and the corresponding 

final fitted RFs. 

In Figure 6, (a) is the subset of testing data with addi-

tive noises to optimal stimuli. The average of SNR 

(SNR=10log(S
2
/N

2
), S

2 
is the power of signal, and N

2
 the 

power of noise) is −0.17 dB. The testing data is pre-

processed as follows. First, we randomly select subsets 

of 2500 basis functions as stimuli in the testing phase, 

and add Gaussian noises with 20% peak value of basis 

functions to form the testing data set. For example, Fig-

ure 6 shows 100 samples of stimuli in Figure 6(a). Fig-

ure 6(b) represents RFs, which are optimal stimuli to 

which neurons strongly respond and Figure 6(c) denotes 

subsets of RFs perceived. Figure 6(d) shows the differ-
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ence between perceived results and optimal stimuli. If 

the difference is not zero, the corresponding object is not 

exactly perceived with replacement of the neighboring 

oriented bar. That is because noise shifts the right orien-

tation to the neighboring, as shown in Figure 7. When 

given a stimulus, responses of all neurons are calculated 

and the neuron with the maximal activity is selected. Its 

representation is considered as the resulting perception. 

From Figure 6, the perceptual model can still achieve 

high accuracy of object perception in the case of SNR 

−0.17 dB. 

To evaluate robustness of the proposed model against 

noise, we test the perception performance with different 

SNRs. The perception results in Figure 7 show that the 

model is able to perceive contents of stimuli almost per-

fectly with lower noise. It is clear to see that with the 

increase of noise, perception of contents and phase be-

comes difficult. If the model only perceives contents 

regardless of phase, the result is very promising even in 

the case of SNR −5 dB. Otherwise, noises cause large 

offset of phase. 

 

Figure 7  Accuracy of object perception. 

3.4  Motion perception 

The method of generating testing data is the same as 

mentioned in subsection 3.3. For motion perception, two 

stimuli are needed. When the model is stimulated by two 

consecutive images, two neurons, located at different 

places and sensitive to the same feature, will be acti-

vated in succession. Using these perceived locations, we 

can estimate the motion direction of objects. Perception 

results are shown in Figure 8. For example, the location 

of the first stimulus is (5,1) and the second is (4,3). So, 

the motion direction is upright-ward, the angle is 26°, 

and speed is 2.2 pixels per sampling time. The bottom-

right in Figure 8 shows the RFs of winner neurons 

which have the same features as stimuli. 

Figure 9 shows the perception accuracy of motion 

with respect to the change of SNRs. Like perception of 

contents, the proposed model can perceive the motions 

almost perfectly in the case of lower noise. However, the 

performance degenerates when SNR becomes small. 

From Figure 7, if there are errors of content position 

perception at the first and second stimulus, then the ac-

curacy of motion perception is based on the first two 

position perceptions. Therefore, performance becomes 

worse rapidly. Figure 7 shows the simulation results. 

The line with circle denotes motion accuracy with per-

ceiving phase and contents, and the line with plus de-

notes motion accuracy with only contents perception. 

Thus, we draw a conclusion that the proposed model can 

achieve better motion perception accuracy if the ignor-

ing phases error. This is because the simple cell is only 

activated by its matched feature, while activities of the 

complex cell depend on the neural response of simple 

cells. Accuracy of motion perception first depends on 

that of contents perception. Due to noise, phase of neu-

ron may not be estimated correctly. Consequently, the 

model with phase estimation may degrade performance 

of motion perception. 

4  Discussion and conclusion 

Perception of objects and motions in the visual scene 

is one of the basic problems in the visual system. There 

exist ‘What’ and ‘Where’ pathways in the superior visual 

cortex, starting from the simple cells in the primary vis-

ual cortex. The former is able to perceive ‘What’: con-

tents of objects such as shapes, color, and texture, and 

the latter perceives ‘Where’, for example, velocity and 

direction of spatial movement of objects. Based on the 

physiological mechanism, this paper has proposed a 

computational and hierarchical network that models 

perception functions in superior cortex and simulates 

two visual pathways. Computer simulations have con-

firmed three main results: (1) The proposed model pro-

vides basis functions with Gabor-like characteristics 

such as localization, orientation, and bandpass. These 

features have been found in physiological experiments; 

(2) Learned topographical feature map is gradually 

changing orientation and in accord with similar results 

of physiological experiments; (3) Modeling ‘What’ and 

‘Where’ pathways for perception of objects and motions 

in visual scenes. Computer simulation results show that  
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Figure 8  Motion perception. (a) The first stimulus; (b) the second stimulus; (c) both stimuli (direction: turn up-right; angle; 26°; speed: 2.2361 pixels/ 

time); (d) the best RFs fitted. 

 

 

Figure 9  Accuracy of motion perception. 

 

the proposed model successfully simulates the mecha-

nism of two pathways and provides satisfactory results, 

verifying the efficient performance of the proposed 

model and algorithms. 

Grimes and Rao
[12]

 proposed a bilinear generative 

model to study the translation invariance by minimizing 

reconstruction errors. Their model provided horizontal 

and vertical translation invariance features. However, 

our model has three different points from theirs: (1) 

Different learning rule. Our goal is to force responses of 

neighboring neurons to be sparse and statistically ind- 

ependent. Our learning algorithm is simpler than theirs. 

(2) Our model provides objects and motion direction in 

visual scenes. And direction is omnidirectional. (3) Our 

model provides spatio-topographical maps of RFs of 

simple cells, whereas theirs cannot. 

Hyvarinen et al.
[11]

 considered the second-order cor-

relation of responses of simple cells, but the Topo-ICA 

model cannot produce overcomplete basis functions be-

cause of constrains of orthogonality. However, complex 

cells in their model had weakly smooth responses to 

similar orientation because when the size of RFs in-

creases, the translation invariance will disappear in their 

perception model. Our model provides real invariance of 

object perception because each complex connected to a 
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group of simple cells with similar orientation. On the 

other hand, our learning algorithm is based on Natural 

Gradient and has higher computing efficiency. 

Now, the proposed model is able to perceive objects 

and motions in visual scenes. But it is limited to simple 

stimuli and translation. Our future work will focus on 

extending the model to perceive complex objects and 

motions such as that in videos and image sequences, to 

perceive information nonlinearly transformed in scaling 

and rotating visual scenes. 
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