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Abstract

As the amount of biological data in the public domain grows, so does the range of modeling

and analysis techniques employed in systems biology. In recent years, a number of theoret-

ical computer science developments have enabled modeling methodology to keep pace.

The growing interest in systems biology in executable models and their analysis has neces-

sitated the borrowing of terms and methods from computer science, such as formal analy-

sis, model checking, static analysis, and runtime verification. Here, we discuss the most

important and exciting computational methods and tools currently available to systems biol-

ogists. We believe that a deeper understanding of the concepts and theory highlighted in

this review will produce better software practice, improved investigation of complex biologi-

cal processes, and even new ideas and better feedback into computer science.

Introduction

Computer science is currently central to a huge range of scientific areas. In its early days, its

task was simply to translate a model expressed in a mathematical language into a computer

program simulating that model. The field has progressed since then, yielding new domain-spe-

cific programming languages that are able to directly model a physical process.

In both cases, the computational implementation is perceived as a necessary methodological

step for systems biologists, because the simple execution of a program provides an in silico

numerical evaluation of hypotheses, avoiding the use of complex analytical methods and con-

siderably reducing the costs of expensive in vivo or in vitro experiments.

Recently, the dichotomies between mathematical and computational models have also been

subject to a debate (see also [1,2]) about whether or not the difference between them arises

primarily from their ability to be directly executed [1] or from the different purposes and

approaches adopted by scientists [2].

The novel concepts and principles (and well-designed tools) developed within the computer

science community are accompanied by a domain-specific terminology (for example, execut-

able models, expressivity, abstraction, model checking, reachability analysis, formal verifica-

tion, and static analysis) that is scarcely known in other scientific communities such as systems

biology. The introduction and assimilation of these concepts in fields other than computer sci-

ence may back-propagate new ideas to computer scientists.

Recent works have discussed in detail how the methods borrowed from computer science

have already benefited and can further benefit various problems in biology [1–6]. With respect
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to these previous research and review papers, our effort focuses on discussing how the use of

newly developed tools could facilitate the understanding of the concepts, practice, and termi-

nology acquisition in the current language of systems biologists. Furthermore, this review will

take the further step of communicating the usefulness of using a temporal-logic framework

for systems biologists who are looking beyond correlation toward event causality or patterns

occurring in biological signals.

A nonexhaustive literature review, which is nonetheless an aid to understanding current

progress in the field, is then presented.

Computational Modeling

In the last decade, the area of systems biology has benefited greatly from computational models

and techniques previously adopted only in computer science to assess the correctness and

safety of a program. In this context, the design of a biological model becomes equivalent to

developing a computer program. Various programming languages, often biological domain-

specific, provide a means of describing the instruction sequence specifying the control flow of a

biological process.

The syntax of the language defines the ways the symbols may be combined to create well-

formed sentences or instructions. This specification is often represented in a textual way (i.e., a

process calculus, rule-based system), but in several cases (i.e., Petri nets, statecharts, etc.), a

graphical representation is also available. This helps the user to visualize the process with dia-

grams displaying the flow of the species in the reactions or the change in the internal states.

The semantics reveals the meaning of the syntactically valid instructions by describing the

behavior of the model and how it should be executed by the computer. It is also possible that a

model specified using a particular language syntax may be executed using different language

semantics: for example, a set of chemical reactions rules can be executed using a continuous

semantics (ordinary differential equations [ODEs] on molecular concentrations) or a stochastic

semantics (on the number of molecules), depending on the level of approximation and/or

complexity [7] that we may want to achieve. For example, COPASI [8,9] is a tool for numerical

simulation and analysis of biochemical networks for both their continuous and stochastic

dynamics.

In the following, we discuss the key features of the main computational modeling approaches

that have fallen on fertile ground in systems biology. Fig 1 provides simple examples, inspired

by case studies reported in the literature, of the modeling approaches considered.

Process Algebras

In recent years, computer scientists have intensively investigated the use of process algebras

(PAs) for the modeling and the analysis of biological systems [10–14]. The expressive power

of PAs (see Fig 1: first row, first column) allows formal specification, without any ambiguity

about the interactions, communications, and synchronizations between a collection of concur-

rent processes (also called agents). The reason for the interest in PAs for systems biology is that

biological systems can be considered as concurrent reactive systems, where biological species

can be modeled as processes interacting with each other. Another important feature of PAs in

the modeling of complex (often multiscale) biological systems is their compositionality, which

offers the possibility of defining the whole system, starting from the specification of its subcom-

ponents. Furthermore, PAs usually permit formal reasoning about equivalences between pro-

cesses. The leading examples of PAs in computational systems biology include Beta-Binders/

BlenX [12], SPiM [15–17], Bio-PEPA [13], sCCP [18], and BioShape [19,20]. PA specifications

are usually employed as intermediate models that are then executed or translated in other
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computational models using different semantics: continuous differential (ODEs), stochastic

(Continuous Time Markov Chains), or abstract (transitions systems).

Rule-based Systems

Rule-based modeling (see Fig 1: first row, second column) has gained a lot of attention among

biologists, because its notation is very similar to the chemical reaction representation used in

Fig 1. Most relevant examples of computational modeling approaches introduced with toy examples. Related tools are listed in Table 1. References
for the examples are as follows: process algebras [12], compartment-based systems [21], rule-based systems [22], statecharts [23], hybrid systems [24],
Boolean networks [25], Petri nets [26], agent-basedmodels [27], lattice-based models [28].

doi:10.1371/journal.pcbi.1004591.g001
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systems biology to model biochemical interactions between molecular species. Consider, for

example, the classical enzymatic reaction where an enzyme (E) binds a substrate (S) and pro-

duces a product (P) by releasing the enzyme (E). This can be expressed in a very compact and

concise description by using two simple rules:

1. E þ S ⇆ ES

2. ES ! E þ P

One important feature of this modeling technique is that rules, unlike equations, are inde-

pendent units, so they can be easily changed or modified. Furthermore, the simple syntax of

rule-based models can be stored in a file as a human-readable text and can be edited and visual-

ized using a graph representation. This makes rule-based modeling friendly for users without

specialized mathematical or computer science skills. Rule-based models can then be translated,

using different semantics, to generate other computational models in order to provide a quanti-

tative (i.e., the amount of a species in time) [22,29] prediction or a qualitative (i.e., where time

is abstracted away) understanding of the system’s emergent behavior. For these reasons, many

rule-based modeling languages and tools, such as BIOCHAM [30,31], Kappa [32], BioNetGen

[22,33], have become very popular among systems biologists in the recent years and have been

intensively utilized in concrete case studies [34–36]. We refer to [3] for a more exhaustive

review of rule-based modeling.

Petri Nets

A Petri net (see Fig 1: first row, third column) is a directed graph whose vertices can be divided

into two disjointed sets (bipartite graph), a set of nodes called “transitions” (meaning events

that may occur, i.e., reactions), graphically represented by bars, and a set of nodes called

“places” (meaning the conditions for a reaction to occur, such as the presence of a molecule),

graphically represented by circles. Arrows interconnect these nodes, showing the direction of

flow, with this main rule: a place node can be connected only to a transition node and vice

versa. The data (i.e., species) are generally represented as “tokens”, signified by black marks.

The tokens are consumed from the input places through the transitions and then created in the

output places. A transition “fires” whenever it is enabled by the presence of some tokens in one

of the places directly connected to it. A concurrent semantics specifies the evolution in time of

the token distribution. This modeling framework was introduced by Carl Adam Petri in 1962

with the purpose of describing chemical processes [37], but then was also intensively employed

in computer science to specify and analyze concurrent and distributed systems. It is not sur-

prising that this intuitive and graphical modeling style is popular among computational sys-

tems biologists [26,38–40] to describe biochemical reaction systems, where the tokens are

interpreted as single molecules of the species involved. The Petri net formalism, as shown also

in [41], provides a natural framework in which both qualitative (given by the static structural

topology of the Petri nets) and quantitative (given by the time evolution of the token distribu-

tion) analysis are tightly integrated. Important tools for Petri nets used in computational biol-

ogy are Snoopy [26], MARCIE [42], GreatSPN [43,44], and Pathway Logic Assistant [45,46].

Boolean/Qualitative Networks

Boolean networks (see Fig 1: second row, first column) were first introduced by Kauffman [25]

and then by Thomas [47,48]. They are often used to approximate the dynamics of genetic regu-

latory networks by considering genes either activated (true state) or deactivated (false state). A

Boolean network is defined in terms of Boolean variables, each one updated by a Boolean func-

tion that determines the next truth value state given the inputs from a subset of those variables.
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This modeling technique, even though it usually introduces a coarse approximation by neglect-

ing intermediate states, is widely employed to analyze the robustness and stability of genetic

regulatory networks. For instance, by generating initial random configurations, it is possible,

by executing this model, to detect singleton attractors (also called fixed points), where the sys-

tem is stable. Relevant tools for Boolean networks analysis in systems biology are GINsim [49–

51], BoolNet [52], and BNS [53,54]. Qualitative networks, introduced recently in [55], extend

the Boolean network, allowing its elements to assume a finite number of possible values. This

feature provides biologists with more flexibility than just Boolean values and enhances the vari-

ety of behaviors that it is possible to model with this formalism. The tool for modeling and

analysis of qualitative networks is Bio Model Analyzer (BMA) [56].

Statecharts

Another natural way to model the dynamics of a biological system is to specify the sequence of

the states characterizing its behavior [23]. For example, when a phosphate group is added to

some proteins, their functional behavior can change to a phosphorylated state, enabling other

potential protein—protein interactions. A system remains in a state until the occurrence of

some event (e.g., the activation or inhibition of a gene) moves its internal behavior from one

state to another. This characteristic makes a biological system a multiscale reactive system in

which event-driven concurrent interactions, occurring at different levels (molecular, cellular,

tissue, organ, or population level) or between levels and with different timing and order, deter-

mine its emergent behavior. The statecharts notation (see Fig 1: second row, second column) is

then a suitable formalism to present, in a graphical representation, the interdependence among

the states of a reactive system. Several slightly different versions of these state diagrams have

been proposed with different semantics.

The statecharts introduced by Harel [57] have been the most popular among biologists

because they offer appropriate constructs (hierarchy of states with transitions, events, condi-

tions, orthogonal regions, etc.) to handle the complexity of modeling biological systems. The

classic statecharts notation, in fact, would require one to specify any possible combination of

parameters as a distinct state, leading to an explosion of the number of states. Among the tools

for statecharts, the most relevant in systems biology is IBM Rational Rhapsody [58,59].

Hybrid Systems

Hybrid systems [60] (see Fig 1: second row, third column) extend the state-based discrete

representation previously mentioned with a continuous dynamics (generally ODEs) in each

state (or mode). Hybrid modeling techniques [24] are gaining more and more attention in sys-

tems biology [61] for their ability to capture the behavior of biological systems that exhibit

clear switching characteristics. In particular, sigmoidal switches occur everywhere in biological

models: molecular (an example is the sigmoidal behavior exhibited by Hill-type kinetics), cellu-

lar, tissue, organ, and population models. Hybrid modeling is generally suitable to combine

qualitative (given by the discrete state) and quantitative (given by the continuous dynamics)

information [62]. In the last decade, several hybrid system identification (hybridization) meth-

ods have been proposed in the literature [63–66] to approximate complex nonlinear dynamics

with piecewise-linear [67,68] or piecewise-multi-affine functions [66,69–71], making such

models amenable to formal analysis [60,66–71] and improving large-scale simulation of multi-

cellular ensembles [72–74]. It is noteworthy that widely used mathematical platforms, such as

Matlab [75] and Simulink [76,77], enable the user to model and simulate hybrid systems.

Other relevant tools for hybrid systems modeling in biology are Rovergene [71], BioDivine

[69,78,79], Breach [80,81], dReach [82,83], and S-TaLiRo [84].

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004591 January 21, 2016 5 / 22



Spatio-temporal Models

Continuous state deterministic spatiotemporal systems (see Fig 1: third row) are generally for-

mulated in terms of “reaction-diffusion” systems taking the form of semilinear parabolic partial

differential equations (PDE). In the discrete state setting, compartment-based models (i.e.,

membrane computing), agent-based models, and lattice-based computational models (i.e., cel-

lular automata, cellular Potts) have been employed to simulate the collective behavior of cellu-

lar structures. All of these models display a wide range of behaviors emerging from local and

nonlocal interactions such as traveling waves (i.e., cardiac tissue) [85], Turing patterning

[86,87], and spirals [88,89].

Compartment-based models. Biological systems are generally organized in compart-

ments (i.e., cell membrane, cell nucleus, organelle), exchanging molecules between them

according to certain rules. Compartment-based models (see Fig 1: third row, first column) are

specialized to capture several biological characteristics, such as the dynamic rearrangements of

the compartments (a typical behavior observed in the mitochondria) and the transport of mol-

ecules between them.

The study of the membranes separating the compartments has also initiated a new area

within computer science called membrane computing, which aims to discover new bio-

inspired computational paradigms, such as the P Systems [90]. However, these models are

more suitable for the theory of computation than for modeling in systems biology.

Another relevant modeling framework is BioAmbients [91], a process algebra enriched with

special operators able to specify merging, splitting, and communication between compart-

ments. BAM [92,93] is a tool for executing stochastic BioAmbients. BioAmbients evolved into

Brane Calculus [94], which offers a specially designed language to describe the dynamic behav-

ior of membranes. Whereas, in BioAmbients, the ambient (i.e., compartment) plays an active

role in dictating which processes may enter or exit from it, Brane Calculus offers a different

perspective, in which the membranes have the control and play the role of coordinators. To the

best of our knowledge, there is not yet an implementation available for it.

Agent-based models. Agent-based models [95,96] (see Fig 1: third row, second column)

consider a collection of autonomous decision-making entities, called agents, which individually

sense the environment and make decisions on the basis of a set of rules. Although, at the sim-

plest level, an agent-based model consists of a system of agents and the relationships between

them, it can still exhibit complex behavior patterns in terms of changes and adaptation in

response to environmental challenges or to neighboring agent behaviors (for example, compe-

tition or collaboration).

Because all individuals in a population are explicitly represented, they can have unique his-

tories and behaviors. More complex agent-based models sometimes incorporate sophisticated

learning and adaptation rules based on neural networks, evolutionary algorithms, or other

techniques. The single-cell-based models represent one of the most promising aspects, in

which agents have many cellular functional and structural features and behavior, inching

toward reality and enabling the detection of phenomena at different intermediate scales of

biosystems.

Cell-based models can express important behavioral characteristics of a cell, such as the

dynamics of its replication and information on each stage of its development (i.e., cell geome-

try, size, and mechanical properties).

A single-cell-based model should be able to understand how stage-dependent cell—cell

interactions at microscopic scale will lead to cell—tissue interactions and stage heterogeneity at

mesoscopic level and mechanical properties of the tissue at macroscopic level. Models could be

implemented using FLAME [27,97] and REPAST [28,98], for example.
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Lattice-based models. A lattice (see Fig 1: third row, third column), which defines a regu-

lar repeated graph, formed by identical n-dimensional closed grid sites and characterized by

periodic or fixed boundary conditions in each direction, is particularly suited for systems

description of interconnected processes at the molecular, cellular, and the tissue or organ level.

These natural levels can approximately be connected to a microscopic (molecule motion and

interactions), mesoscopic (cell division and motion, cell—cell interactions, cell-matrix), and

macroscopic scale (tissue and organ mechanical properties), respectively.

Cellular automata [99] are discrete dynamic systems—discrete in space, time, and state. Cel-

lular pattern formation can be seen as arising from short-range (such as adhesive forces and

cell—cell signaling) and long-range (such as mechanical stress fields or diffusing chemicals)

interactions. A Bethe lattice (or Cayley tree) [100] is a hierarchically ordered, cycle-free net-

work without ends that has been applied to immunological (idiotypic) networks.

In multiscale lattice-based models, we can observe what happens at almost all scales, from

the whole organism down to the molecular level; however, putting things together in order to

obtain real understanding is much more difficult and involves scaling up and homogenization

of models across multiple spatial scales and related asymptotic techniques for the analysis of

multiple time scales. This problem could be overcome by using energetic considerations, such

as in the cellular Potts model (also termed the Glazier Graner-Hogeweg model), which are

based on the stochastic Monte Carlo method on a regular lattice [101,102]. The objects, either

discrete generalized cells (unicellular organisms, clusters of cells, individual cells) or continu-

ous fields (such as gradients of nutrients or small molecules), are associated with an energy

description of processes such as cell—cell adhesion or cell—nutrient interaction. Lattice rear-

rangements, which simulate the evolution of the system, are driven by the energy minimization

of a Hamiltonian function.

A very general and flexible framework for Potts model development is CompuCell3D

[103,104], which has been used to model a variety of anatomical and pathological conditions at

cell, tissue, and organ levels. This framework succeeds in combining both a rigorous energetic

and mechanical treatment of the process with an intuitive and insightful biological description.

There is growing interest in network ensembles approaches. Multilayer networks and, in par-

ticular, multiplex networks (in which different networks share the same nodes) could be

analyzed using network entropies to evaluate and quantify the correlations between interde-

pendent networks. For example, in biological systems, gene, protein, and metabolite networks

have strong correlations and interdependencies that cannot be fully pictured in terms of single

graphs [105].

Formal Analysis

The modeling languages presented in the previous section play a key role in supporting the

rigorous specification of the mechanisms observed experimentally, helping scientists in the

formulation of new hypotheses. Once a model is constructed, a suitable tool can parse the syn-

tax of its specification and interpret it according to the semantics of the chosen modeling lan-

guage. A model can also undergo a process of compilation that automatically translates it into

a computer program simulating the biological process under investigation. The generated

program can be used to predict the emergent behavior of a system with certain initial condi-

tions. This contributes to the testing procedure and to reducing the number of costly experi-

ments, concentrating all efforts and resources only on those that promise to reveal novel,

interesting mechanisms.

Another advantage is the possibility of inheriting several methods and tools that are com-

monly developed and employed within the computer-aided verification community to
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formally check the correctness of a program’s behavior. In the context of systems biology, these

methods are becoming very useful for reasoning and analyzing models, validating new experi-

mental results, automatically checking behaviors of interest, and identifying the inputs or

parameters of the system enforcing a desired behavior.

The formal verification of a program consists of proving that its execution satisfies a given

specification of the possible behaviors it should display. In the following, we will first present

some logic-based languages used to specify temporal behavioral properties rigorously and

concisely.

These languages, first developed within computer science, are now also employed in several

case studies of systems biology to model recurrent patterns in biological signals or simply the

order of relevant biological events. We will then discuss three well-established formal verifica-

tion techniques designed first to verify programs and now widely employed to analyze biologi-

cal models: model checking [6,70,71,106–110], runtime verification [80,111–116], and static

analysis [93,117–119].

Temporal Logics

Temporal logics [120–123] are very concise languages for rigorously specifying the occurrence

of specific temporal behaviors. One of the most popular temporal logics is Linear Temporal

Logic (LTL), introduced by Pnueli in 1977 [120] to reason about the order of events occurring

during the execution of a program. The LTL syntax is given by the grammar shown in Fig 2a.

The basic proposition p indicates a Boolean value that may express the relationship between a

state variable of the system and a value for a particular time instant. For example, we can spec-

ify that the concentration of the specie x1 is greater than or equal to a certain threshold r (x1 �

r) or that a specific biological event e (e.g., phosphorylation) should occur. More complex logi-

cal formulas can be obtained by combining propositions using logical operators such as or (_)

and not (¬). The other classical logical operators such as and (^) and implication (!) can be

derived by combining the previous two, as shown in Fig 2b.

The LTL syntax also includes two temporal operators: the next (�) operator, which means

that a formula φ should hold in the next step (see Fig 2c), and the until (U) operator, which

requires a formula φ1 to hold until a formula φ2 becomes true (see Fig 2d).

From the until operator, it is possible to derive other very suitable temporal operators: the

eventually (�) operator specifies that a formula φ will finally become true at some point (see

Fig 2e), and the always (□) operator states that a formula φ should remain true forever (see Fig

2f). The combination and the nesting of the basic propositions with the logical and temporal

operators allow the specification of several different types of temporal behaviors.

The most common temporal patterns are:

1. Reachability properties, in which an event will finally happen. For example, we can express

the property "the event of protein A production (event A") will finally occur" with the LTL

formula φ = �A". This specification does not guarantee that the same event will happen

again after it has occurred.

2. Liveness properties, in which an event will always finally happen. This specification guaran-

tees that the same event will also happen again after it has occurred. For example, the property

"always the event of the degradation of protein A (event A#) implies eventually the activation

of gene B (event B")" [124] can be specified with the LTL formula φ = □(A#!�B").

3. Safety/invariant properties, in which a system will always satisfy a certain requirement. For

example, the property "the number of the osteoclasts, the cells degrading/digesting the bone
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matrix, xoc during bone remodeling will be always less than a particular concentration c"

[107] can be specified with the LTL formula φ = □p with p = (xoc �c).

4. Stability properties, special cases of liveness properties, in which eventually an invariant

property will hold. For example, the property "finally the skin cell proliferation xc will reach

a stable level l" [125] can be expressed with the LTL formula φ = �□p with p = |xc −l|�ε.

5. Oscillatory properties. For example, the property "the concentration of a protein xp is oscillat-

ing between two levels ta, tb with ta< tb" can be written as the LTL formula φ = □((p1 !�p2)

^ (p2 !�p1), with p1 = xp � ta and p2 = xp�tb

Fig 2. Examples of temporal logics. Comparison between the main features of the LTL (left) and Signal Temporal Logic (STL) (right) in terms of syntax
(top), operators (middle), and semantics (bottom); the black circles represents a propositional state, and the arrows represent the next step in time.

doi:10.1371/journal.pcbi.1004591.g002
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LTL operates on a single path of the model execution, and a temporal property can be for-

mulated only for one possible trajectory of the system. Other temporal logics such as computa-

tional tree logic (CTL) [126] and CTL� [127] have in their syntax special quantifiers that

enable the specification of properties over all the possible trajectories or branches in time: uni-

versal quantifier (8) specifies that a nested formula should be true for all the possible trajecto-

ries, while the existential quantifier (9) requires the formula to hold in at least one of the

possible trajectories.

All the aforementioned temporal logics consider only the temporal order of the events and

not the actual time at which they really occur. For example, it is not possible to specify that a

formula should hold after two units of time and before three and a half units of time. Even if

we decide to discretize the time, recording all the events at each time step, the syntax of these

logics is not equipped to deal directly with the specification of real-time intervals.

Real-time temporal logics [128–131] overcome these limits by using a continuous time

semantics and embedding a time interval in the until temporal operator.

The Signal Temporal Logic (STL) [131,132] is an example of a real-time temporal logic suit-

able for many biological case studies [115,116,133–135]. STL extends LTL with the continuous

time semantics and with predicates over real variables (see Fig 2g and 2h).

Fig 2i shows how the until operator of the STL syntax is enriched with the possibility of

specifying a continuous time interval [a, b] within which the first formula φ1 should hold until

φ2 holds. STL operates on a continuous piecewise representation of a sampled signal. As illus-

trated in Fig 2j and 2k, the STL semantics uses interpolation to determine the point between

two samples where the formula will start to hold or to be violated.

STL has two possible semantics: a qualitative semantics returning a yes/no answer to the

question of whether the system satisfies or violates the specification, and a quantitative seman-

tics also providing a measure of robustness [111,113] of how much the system violates or satis-

fies the specification. Negative robustness implies property violation, while positive robustness

implies property satisfaction. As we discuss later in this section, this value can be used to guide

the parameter synthesis of a biological model with unknown parameters.

Model Checking

Model checking is an automatic formal verification technique able to check the emergence of a

particular behavior in a biological model. This technique operates over a discrete time model

with a finite number of states, called a Kripke structure [136], where the execution of a model

triggers a sequence of events determining the truth value of the propositions of a temporal

logic formula. A Kripke structure is a special labeled graph in which the nodes represent the

reachable states generated by executing the biological model, and the edges represent the state

transitions. A labeling function maps each node to the set of propositions that hold in the cor-

responding reachable state. A transition relation specifies the set of possible successors for each

state.

Each node always has a successor or a loop transition starting and ending in the same state,

representing nonterminating computations where the evaluation of the atomic propositions

does not change (also called fixed point). Suitable user-friendly tools can translate the biologi-

cal models specified with one of the formalisms presented in the previous section into a Kripke

structure representation that can be analyzed with very efficient model checkers such as

NuSMV [137,138] or CADP [139]. The main drawback of this technique is that the number of

states of a model usually grows exponentially in the number of its parameters, giving rise to the

state explosion problem. In order to tackle this, the majority of model checkers do not explicitly

represent the states, but represent sets of states symbolically [140,141]. For example, the states
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and the transition relation of a Kripke structure can be encoded as a binary decision diagram

(BDD) [140], a very compact acyclic graph data structure used to represent a Boolean function

as well as sets or relations in general. The logical operations required by model checking are

then interpreted as operations over sets and implemented by polynomial-time graph manipu-

lation algorithms [140] directly on this representation of sets. The works of Bryant [140] on

BDDs and of McMillan [141] on symbolic model checking provide more details on the sym-

bolic approach.

Model checking techniques have also been extended to many other computational models

that can be regarded as Kripke structures, such as continuous- and discrete-time Markov chains

(CTMC and DTMC) (by adding probabilities) [6], Petri nets [41], hybrid systems (by adding

continuous dynamics) [142], and spatial lattice-based models (using the quad-tree representa-

tion) [88]. In the case of CTMC and DTMC, the analysis may benefit from using probabilistic

model checkers such as PRISM [6,143,144], which provide a real number in the interval of [0,1]

corresponding to the probability that the system model will satisfy the property of interest. The

algorithm used to calculate this probability can return either the exact solution [123], if it oper-

ates directly on the structure of the Markov chains, or an approximated solution, when it mea-

sures statistically [145] the probability of satisfying a property for a set of samples, generated

using a Monte Carlo simulation of the system model. This statistical approach can be applied

not only to the classical DTMC and CTMCmodels, but also to stochastic hybrid systems [146],

in which the continuous dynamics are calculated by integration and the discrete transitions are

chosen nondeterministically by following a probability distribution.

Runtime Verification/Monitoring

Another way to overcome the state explosion problem of model checking is to focus the analy-

sis on a single execution trace instead of performing an exhaustive verification. Runtime verifi-

cation is a lightweight yet powerful verification technique that aims to check whether the

current execution of a program (i.e., the time series of the concentration of the protein expres-

sion during a gene regulatory network simulation) satisfies or violates a property of interest.

The emergent property is still specified in terms of a LTL formula or one of its extensions,

but in this case only a single behavior is evaluated. Monitoring does not require a system model

but only a set of observable, discrete, or continuous signals that can be collected during a wet-

lab experiment or generated by numerical simulation. As previously mentioned, in the last

decade, LTL has been extended to specify properties of real-valued variables defined over dense

real time. A pioneering example of LTL with predicates expressed in terms of constraints over

reals is LTL(R), presented in [147,148], and then implemented to monitor numerical simula-

tions of biological models in BIOCHAM [108].

In addition, STL [131] extends LTL with a continuous time semantics and with predicates

over real variables and is implemented in the Breach [80] and S-TaLiRo [84,149] tools. In these

tools, the evaluation of the STL formula robustness for a particular trajectory through monitor-

ing is used in combination with sensitivity-based analysis techniques [107,114,115,135] or sto-

chastic-based optimization techniques [116,149] to steer the simulation of a biological model

toward the parameter regions in which it would display the property of interest.

Static Analysis

As the term “static" indicates, this analysis is performed on the static description of the model

without actually executing it. The principles of static analysis originated in the field of compiler

optimization. Nowadays, this approach is widely employed in software verification, its key role

being to detect potentially vulnerable code in safety-critical applications.
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While model checking generally needs to explore all the states originated by executing the

semantics of the model, static analysis operates on the syntactic level of the specification or by

using abstract interpretation [150] over finite approximations of the possible model executions

[151]. Static analysis can reveal important information regarding the model specification (e.g.,

the control structure, the flow of species concentrations, the interactions among species), without

performing all of the underlying concrete calculations. In the last decade [117], static analysis has

also become a useful technique to analyze biological models [93,118,119]. In [93], the authors

successfully employ this technique to analyze biological pathways. Given a formal model in

BioAmbients of the LDL degradation pathway, the authors compute a fine over-approximation

of the possibly infinite reaction sequences that the model specifies. This approximation is “safe”,

meaning that all the reaction sequences that do not appear in the analysis are not possible.

Static analysis is crucial for dealing with the complexity of real systems (see also [118,119]

for other important examples in systems biology), in which model checking all the reaction

sequences will fail, owing to the state explosion problem. However, it is not as precise as execut-

ing the model: it is not possible to guarantee that all the reachable states in the over-approxima-

tion are also reachable in the original model’s behavior.

In some cases (see, for example, the Rovergene tool [71]), static analysis and model checking

techniques are combined. The first constructs an abstract domain using suitable abstractions.

The second provides a logical framework to search in the abstract domain if a set of states is

not reachable. This guarantees that they will never occur in the original model’s behavior.

Examples of this analytic approach can be found in several case studies: genetic networks [71],

loss of cardiac cell excitability [66], and bone remodeling [107]. Static analysis has also been

used in [152] to relate different semantics and formalisms used for describing reaction systems.

Tools

We now use the concepts previously discussed as a guide to choosing among the several tools

available.

Fig 3 and Table 1, though not purporting to be complete, present a selection of software

closely related to the topics discussed in this review. In Fig 3, we classify the listed tools by the

computational modeling language, the supported semantics of execution, and the formal analy-

sis that can be performed, based on the literature. We also specify if the tool supports a mecha-

nism to tune the model’s parameters, guided by the formal analysis.

While each modeling language was developed to solve a real problem, different modeling

languages may map into the same program. Knowledge of the syntax is needed in order to

carry out static analysis. The executable program, on the other hand, is no longer syntax-

dependent. Quantitative analysis (i.e., simulation), which considers the time dimension, is then

performed on the output produced by the program.

In the second column of Table 1 (main case studies), references to some applications are

presented. The large variety of tools will accommodate the current rich interdisciplinary and

multidisciplinary systems biology scenarios. Scientists with different backgrounds may have

different initial preferences and later move in various directions, generating the conditions for

extensive exchange of ideas and methodological innovations.

Conclusions and Vision

The growing availability of large amounts of data (i.e., big data) will allow models to be tested

very finely. Spatial data could be collected in three dimensions (thanks, perhaps, to microscope

imaging advances), capturing the formation of patterns, niches, molecular associations, and

multiscale features. The time dimension could range from molecular events (for example,

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004591 January 21, 2016 12 / 22



DNAmutations or epigenetic changes) to organism development, circadian, species evolution,

and other meaningful periodicities.

The development of new, efficient tools will motivate others to generate new computa-

tional models or to improve the existing ones. This will increase the community of scientists

sharing their knowledge through standardized computational models reproducing numeri-

cally the behavior of the biological process under investigation. With computational model-

ing acquiring better capacity to describe biological systems and processes at a level useful for

Fig 3. Summary of the features for the selected tools. Tools are classified by the supported computational modeling language, their execution semantics,
and the formal analysis that can be performed, based on the literature.

doi:10.1371/journal.pcbi.1004591.g003
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prediction and to suggest experiments, it will trigger a useful feed-forward process with

experimental biologists.

The tools described in this paper can already accommodate different complexly structured

properties of biological processes and could be used separately or in different combinations

and architectures. This will enable biologists to answer complex questions. For example, tem-

poral logics, in particular, will have a profound impact in systems biology by helping to trans-

form cause—effect relationships into objects that can be manipulated both mathematically and

computationally. In epistatic control, temporal logics can be used to model two or more causal

factors as interacting mechanistically with respect to the observed phenomenon. Doing so will

establish powerful connections, with reasoning based on logic and statistics and the mecha-

nisms and processes that underlie the observed behavior.

One future interesting research direction that we envision is the extension of the current for-

mal analysis techniques and temporal logics to the spatial domain. For example, understanding

Table 1. Summary of the main case studies in systems biology for the listed tools.

Tool Main case studies

BAM [92] LDL degradation pathway [93]

BetaWB [12] The MAPK biochemical pathway [12], cell-cycle [11]

BIOCHAM [30] Mammalian cell cycle control [34], G protein-coupled receptor kinases [31]

BioDivine [69,78] Genetic regulatory networks [79]

BioNetGen [22] + BioLab
[33]

HMGB1 signal pathway [35]
Analysis of T-cell receptor signaling pathway [33]

Bio-PEPA WB [13] Plant circadian clock [14]

BoolNet [52] Genetic networks [52]

BMA [56] Biological signaling networks [55]

BNS [53] Cell cycle sequence of fission yeast [54]

Breach [80] Collagen proteolysis [115], Cellular iron homeostasis network [81]

CompuCell3D [103] Vertebrate segmentation and somite formation [104]

COPASI [8] Biochemical networks [9]

dReach [82] Cardiac cell hybrid models [83]

FLAME [27] Sperm behavior [97]

GINsim [49] Diversity and plasticity of Th cell types [50]

MAPK network on cancer cell fate decision [51]

GreatSPN [43] Signal transduction pathways for angiogenesis [44]

IBM Rational Rhapsody
[58]

T-cell activation with statecharts [59]

KaSim [32] EGFR signaling [36]

Mathworks Simulink [76] Heart model for pacemaker verification [77]

Pathway Logic [45] Sporulation initiation in B. subtilis [46]
MAPK signaling network [46]
EGF stimulation network [45]

PRISM [6] Biological signaling pathways [6,143,144], bone pathologies [107]

Rovergene [71] Synthetic transcription cascade [71], myocyte excitability [66], bone
remodeling [107]

Snoopy [26] + MARCIE [42] Systems and synthetic biology [41]

SPiM [15] Modeling of the EGFR network [16], MHC class I peptide optimization [17]

S-TaLiRo [84] Modeling of the insulin-glucose regulatory system [149]

REPAST [28] Bone remodeling [98]

doi:10.1371/journal.pcbi.1004591.t001
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how a spatial pattern emerges from the biochemical level acting at the cellular level (i.e., mor-

phogenesis in developmental biology) is currently very challenging because of both the high

computational complexity required by the spatiotemporal modeling and the lack of a suitable

specification language to specify the spatiotemporal patterns of interest [86,87,153].

Furthermore, the rapid progress of modern technologies for healthcare has led to a new gen-

eration of devices called medical cyber-physical systems [154], in which smart and collabora-

tive computational elements control the biological systems. Examples include pacemakers,

biocompatible and implantable devices, insulin pumps, electro-anatomical mapping and inter-

vention, robotic prosthetics, and neurostimulators. Here, the computational modeling of the

biological part is indispensable to the development of efficient and safe controlling devices.

Furthermore, the successful application of formal analysis techniques and tools to verify the

correct and safe behavior of these systems will have an economic impact on our society by

reducing warranty, liability, and certification costs. We believe that the concepts and the

computational tools described here represent core elements of computational description, par-

ticularly in the framework of systems biology, and will have some relevance to both newcomers

and experts.
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