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• fMRI – functional magnetic resonance imaging 

• ECoG – Electrocorticography (electrical recordings from intracranial electrodes) 

• Visual field map (retinotopic map) – Spatial representation of the visual field within visual 

cortex 

• Visual receptive field - The region of space in which the presence of a stimulus elicits a 

response  

• Striate cortex – V1 

• Extrastriate cortex – Visual cortex outside of V1, including V2, V3 and so forth 

• Stimulus-referred – Experimental designs that characterize the neural response with 

respect to the stimulus properties  
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Synopsis 

A new generation of models and experimental designs are clarifying the computational 

principles in human visual cortex.  Over the first two decades of functional magnetic resonance 

imaging, steady progress in measuring visual cortex led to the identification of more than twenty 

retinotopically mapped cortical areas. New models are being developed to predict responses in 

these maps and thus clarify their functional roles. Many of these models are based on a 

stimulus-referred approach, so that the computational principles can be tested using multiple 

types of measurements - spanning functional MRI, intracranial recordings, and single-unit 

measurements. The stimulus-referred approach promises to build an integrated view of neural 

computations measured across temporal and spatial scales. 

Introduction  

Many fields of investigation, spanning medicine, science, and humanities, have an interest in 

the spatially localized measurements of human brain activity provided by functional magnetic 

resonance imaging (fMRI). These fields use a diverse array of experimental, statistical and 

computational methods to analyze and interpret fMRI responses, and this diversity reflects the 

questions of interest to each field.   

 

The approach in vision science differs substantially from that taken in most other fields. Most 

disciplines use neuroimaging designs based on between-group or between-condition 

comparisons; the primary aim in these experiments is to find statistically significant group 

differences that localize function by combining weak signals. But the fMRI signals in visual 
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cortex are relatively strong, so that experiments can be performed in individual subjects using a 

wide range of stimuli. Further, the spatial organization and high degree of connectivity across 

visual cortex is clear, so that localization is not a driving factor. Instead, the principal goals of 

neuroimaging in vision science are (a) to develop computational models that predict the fMRI 

responses for a wide range of stimuli, and (b) to integrate neuroimaging measurements with 

data from other techniques (psychophysics, intracranial recordings, single-unit physiology, and 

so forth). To support these goals, neuroimaging designs for vision science use parametric 

variations of the stimulus and computational models that compute the mapping from stimuli to 

fMRI time series. In vision science, computational modeling is central and statistical analyses 

are secondary.  

 

We illustrate and explain the approach in the following sections.  First, we introduce visual field 

maps (also called retinotopic maps). This background section provides the reader with a sense 

of the cortical locations where we measure fMRI responses and the quality of the fMRI time 

series in visual cortex. Second, we describe the importance of stimulus-referred measurement 

in vision science. This approach is critical for integrating different types of measurements. Third, 

we describe the current generation of computational models of the fMRI time series. These 

models extend conventional visual field mapping and analyze the time series more fully. Finally, 

we illustrate how these models and stimulus-referred methods have clarified the relationship 

between fMRI and intracranial data obtained from human visual cortex. 

Visual field maps  

In the mid-1800s, biologists began examining the responses in animal brains to localize various 

stimulus-driven responses. Visual cortex was localized rather early, though not without some 

serious disputes (1-3). The biologists were joined in the late 19th and early 20th centuries by 

neurologists and ophthalmologists (4-7).  The clinicians treated soldiers who had occipital head 

wounds that caused blindness in restricted regions of the visual field. By mapping 

correspondences between the wound location and the visual field loss, Inouye, Holmes and 

others showed that the position of the wound corresponded to the location of the visual field 

loss. They correctly concluded that there is at least one topographic map of the contralateral 

visual hemifield in each hemisphere. 

 

In the 1940s, electrophysiology in animal brains revealed that there are multiple sensory maps. 

It is challenging to measure visual field maps using single-unit electrophysiology.  The 

experiment requires a series of electrode penetrations through the folded cortical sheet, 

followed by a histological reconstruction so that the electrode positions might be integrated with 

the responses.   Hubel and Wiesel characterized the work as “a dismaying exercise in tedium, 

like trying to cut the back lawn with a pair of nail scissors (p. 28 (8)).” Even so, good progress 

was made, and by the early 1990s electrophysiologists and anatomists identified dozens of 

maps in various species (3, 9).    
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Figure	  1.	  Visual	  field	  maps	  in	  occipital	  cortex.	  The	  small	  inset	  at	  the	  upper	  right	  is	  a	  smoothed	  rendering	  

of	  the	  surface	  boundary	  between	  gray	  matter	  and	  white	  matter	  in	  a	  right	  hemisphere,	  and	  the	  dotted	  

rectangle	  is	  shown	  in	  the	  magnified	  and	  further	  smoothed	  images.	  The	  dark	  and	  light	  gray	  shading	  

indicates	  sulci	  and	  gyri,	  respectively.	  	  The	  two	  main	  images	  show	  visual	  cortex	  rendered	  from	  a	  point	  

behind	  the	  occipital	  pole.	  The	  underlying	  anatomy	  is	  the	  same	  for	  the	  two	  meshes,	  differing	  only	  in	  the	  

color	  overlays.	  The	  color	  overlays	  show	  the	  most	  effective	  angle	  (left)	  or	  the	  most	  effective	  eccentricity	  

(right).	  Colors	  are	  shown	  only	  for	  voxels	  where	  the	  data	  are	  well	  fit	  by	  a	  population	  receptive	  field	  

model,	  as	  explained	  below.	  The	  solid	  black	  lines	  and	  labels	  indicate	  the	  positions	  of	  ten	  visual	  field	  maps.	  	  

The	  view	  and	  data	  were	  selected	  to	  provide	  a	  large	  field	  of	  view	  spanning	  most	  of	  the	  occipital	  lobe.	  

Additional	  maps	  have	  been	  identified,	  including	  some	  on	  the	  intraparietal	  sulcus	  (IPS)	  and	  anterior	  

ventral	  surface	  (10-‐14).	  The	  uncolored	  region	  on	  the	  ventral	  surface	  is	  close	  to	  a	  large	  sinus	  that	  limits	  

the	  ability	  to	  measure	  the	  BOLD	  signal	  (15). 

 

The first human fMRI experiments measured cortical responses to visual stimuli that covered a 

large part of the visual field (16, 17). These stimuli elicited responses in a broad swath of 

occipital cortex. Shortly thereafter, fMRI measurements clarified the relationship between 

stimulus visual field position and cortical responses (18-21). In one widely adopted method, the 

experimenter presents a contrast pattern within a series of concentric rings of, say, increasing 

inner and outer diameters (22). Such an expanding ring stimulus generates a traveling wave of 

activity that begins at the occipital pole when the ring diameter is small and travels to the 

peripheral representation as the ring diameter increases; these responses define the 

eccentricity dimension. In a separate experiment, the experimenter presents a contrast pattern 

within a wedge that rotates around fixation. This stimulus elicits responses that are specific to 

certain angles and these responses define the angle dimension. Together, the ring and wedge 

measurements determine the most effective visual field position for each voxel. 
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The images in Figure 1 show fMRI eccentricity and angle maps in the most posterior portion of 

occipital cortex. The color overlay specifies angle on the left mesh and eccentricity on the right 

mesh. There is a single, integrated eccentricity map near the occipital pole.  A great deal of the 

cortical surface area at the pole represents the fovea, and there is a systematic shift toward 

more peripheral representations in the posterior-to-anterior direction. The integrated eccentricity 

representation includes V1, V2, V3 and hV4, although the hV4 part of the map is a bit 

compressed. Based on the eccentricity data alone, one would have no basis for segregating the 

activated cortex into different regions.   

 

The segregation into multiple maps becomes clear from examining the angle representations.  

The V1 map has a continuous angle representation of the contralateral visual field, spanning the 

lower vertical meridian (green in the pseudocolor map) to the upper vertical meridian (red). The 

angle representation reverses at the vertical meridians, and this marks the boundary with V2. 

The V1 map is surrounded by a dorsal and ventral section of V2, which represent the lower 

(green-cyan) and upper (red-blue) visual field. The V2 map is, in turn, surrounded by dorsal and 

ventral sections of V3.  This nested organization for V1-V3 is typical of non-human primates. But 

the confirmation that this organization is present in human was only made in the early 1990s by 

a combination of neurology and fMRI (20, 21, 23-25). 

  

Visual stimuli elicit activity in about twenty percent of the human brain, covering the entire 

occipital lobe and extending into portions of temporal and parietal cortex (26). It is likely that 

occipital cortex is completely covered by maps, though some regions have proven difficult to 

measure (15). Identifying the organization within human visual cortex is essential for interpreting 

fMRI data from visual cortex and for building meaningful computational theories of vision. This 

project has had excellent progress. Measurements like those in Figure 1 show that the general 

spatial layout of early human visual maps - V1, V2, and V3 - is similar to non-human primate. 

However, research has revealed substantial differences in the size, spatial layout and 

responsiveness between human and non-human primate extrastriate maps (e.g., V3, hV4, 

V3A/B, VO-1). These findings have been reviewed recently, and we refer the reader to those 

reviews to learn more about this work (27-29).  

Stimulus-referred measurements 

It is worthwhile to step back and consider what exactly is measured when a visual field map is 

defined: the map specifies which stimulus position most effectively drives the response at each 

cortical location. Thus, the map characterizes cortex in terms of the stimulus. Such stimulus-

referred (also called input-referred) descriptions of neural responses play a key role in vision 

science. The great majority of visual neuroscience measurements use a stimulus-referred 

approach to characterize neural responses.  

 

Receptive field measurement is a classic and particularly clear example (30). Suppose one 

measures the response of a V1 neuron to a small spot presented at different locations in the 
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visual field.  The cell will respond when the spot is within a small region of the visual field, and 

this region is called the receptive field (RF). Note that the RF is a description of the stimulus 

properties (locations) that evoke a response. There is no description of the proximal inputs to 

the cell - lateral geniculate neurons, other V1 neurons, feedback signals from extrastriate cortex, 

and inputs received from the pulvinar.  Stimulus-referred descriptions are a theoretical 

construct; a V1 neuron lives and dies in the dark, never being directly stimulated by photons. In 

describing the RF of a cell, the optical components of the eye and the extensive neural and glial 

network that gives rise to the RF are not explicitly characterized.  

 

Stimulus-referred descriptions can be applied to many properties in addition to visual field 

position, such as orientation, direction, and wavelength (31). Stimulus-referred measurements 

summarize neural circuit responses without requiring the construction of a circuit model. This 

capability is important because such circuit models are presently beyond the reach of 

neuroscience methods.  

 

Perhaps the most valuable aspect of stimulus-referred measurement is that it supports the 

coordination of insights from many parts of vision science - including optics, retinal processing, 

cortical circuitry, local field potentials, scalp recordings, and perception.  Integration across 

these measures is challenging because each samples the nervous system in its own way and 

produces outputs with different units. For example, microelectrodes measure voltages or spike 

rates, calcium imaging measures photons, fMRI measures modulation in blood oxygenation, 

and perception measures subject reports. The stimulus is a unifying framework for vision 

science; the stimulus representation serves as a common ground where results from very 

different measures are compared. 

 

The use of stimulus-referred measurements is very common in vision science, just as input-

referred measurements are very common in engineering (31).  They are so ubiquitous that the 

beauty and value of the approach is rarely taught. One objective of this chapter is to make the 

idea and its value explicit. 

Population receptive field models 

The success in the parcellation of visual cortex into maps provides a foundation for a new phase 

of investigation: building computational models of fMRI responses to visual stimuli. The goal of 

this work is to precisely express and test neural processing principles. Stimulus-referred 

computational models offer the best hope for coordinating different types of visual measures 

into a unified theory. This new phase of modeling could not take place without the first phase. 

Response properties differ across maps; interpreting the measurements is problematic unless 

one knows which map is the source of the measurement. 

 

In an early step towards theory, Tootell et al. (32) observed that reducing the width of a contrast 

pattern, such as an expanding ring contrast pattern, substantially reduced the duration of the V1 

on-response but had little effect on the V3A on-response.  They explained the difference by the 
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hypothesis that V3A receptive fields cover more of the visual field than V1 receptive fields. 

Qualitatively, the on-response in V1 was governed by the stimulus width but in V3A the on-

response was governed by the receptive field width. Smith et al. (33) systematically investigated 

this idea, quantifying the proportion of the time that the fMRI response is elevated compared to 

baseline (the duty cycle) as thin rings or wedges traversed the visual field.  The duty cycle 

differs substantially between cortical locations, and they explained these differences in terms of 

the size of the receptive field of neurons in each cortical location.  

Construction of a linear population receptive field (pRF) model  

Dumoulin and Wandell (34) built upon the prior work in several ways.  First, they defined an 

explicit computational model to predict the fMRI response at each voxel. The key element of the 

model is the concept of the population receptive field (pRF), named by Victor et al. (35) who 

used the approach in local field potential measurements in macaque. The pRF summarizes the 

collective receptive fields of all the cells giving rise to the response within a voxel. 

 

The initial models approximated the pRF by a two-dimensional Gaussian, characterized by a 

center position, (x,y), and spread (σ).  These parameters are specified in the visual field relative 

to the gaze location (fixation). By using a stimulus-referred description, Smith et al. (33) and 

Dumoulin and Wandell (34) were able to compare fMRI measurements with data obtained using 

other brain measurement methods. For example, the pRF spread measured using fMRI could 

be plotted against the single-unit receptive field size measured using macaque 

electrophysiology. 

 

Second, Dumoulin and Wandell implemented a computational model of the fMRI time series.  A 

model of the fMRI time series is possible in visual cortex because the response amplitude in 

individual subjects is large and there is no need to average across subjects. Implementing a full 

model provides the investigator with an opportunity to predict fMRI time series to different types 

of stimuli. Dumoulin and Wandell took advantage of the model implementation to measure maps 

using a new type of stimulus. The model also made possible the quantification of a new stimulus 

feature (pRF size) within maps. 

 

Figure 2 shows a pRF analysis tool, implemented by Rory Sayres, that several groups have 

used to examine and interpret fMRI time series.  The three panels show responses and 

analyses for voxels in V1, V2 and V3A.  The stimulus was a set of oriented bars that moved 

slowly across in the visual field along eight different trajectories.  Occasionally, the bars were 

removed so that the observer simply viewed a zero contrast field (34). The estimated pRF and 

the predicted and measured time series responses are shown for each voxel. Plainly, the 

predicted time series are in good agreement with the measurements. The estimated pRF sizes 

differ substantially across maps, confirming the prior work.  

 

What does a pRF measure? 

Human cortex contains 50,000 neurons per mm3 so that a typical 2 mm isotropic voxel contains 

about 400,000 neurons (36); the 1 mm isotropic voxels depicted in Figure 2 contain about 
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50,000 neurons each. A subset of these neurons, as well as the local glial cells, respond to any 

given stimulus, and it is this population response that determines the voxel’s receptive field. 

Furthermore, pRF parameters will depend on the specific population of neurons stimulated by 

the pattern that defines the texture within the moving bar. Features such as the temporal 

frequency, wavelength composition, and so on may excite different populations and influence 

the pRF parameters.  

 

The RF measured using single-unit physiology has a related theoretical status.  Each neuron in 

V1 is contacted by about 10,000 other neurons, and cells in their neighborhood in turn contact 

these neurons.  When a small point is presented in the visual field, voltage sensitive dye 

measurements show that activity in the superficial layers of cortex spreads over a distance of 

several millimeters, commensurate with the size of an fMRI voxel (37).  Hence, the receptive 

field measured in a single V1 cell in layers 2/3 reflects the pooled activity of its inputs and its 

role in the neural circuit.   

 

The principal difference between the single-unit RF and the pRF is that the RF measurements 

taps into the circuit activity at a single point within the neural plexus, while the pRF is a mean-

field measurement of the circuit activity. The key limitation of mean-field fMRI measurements is 

obvious - spatial resolution.  However, an advantage is that fMRI measurements provide a 

much larger field of view and can reveal coordinated activity in remote sites. The fMRI 

measurement is also sensitive to signals that are missed by single unit RF measurements. In 

some cases where BOLD and single unit measurements diverge, the BOLD signal correlates 

best with perceptual judgments (38). The BOLD signal is also sensitive to glial responses (39), a 

cell class often neglected in electrophysiological measurements in animals. Finally, fMRI 

provides direct information about human, while single-unit physiology is carried out in animal 

models whose circuits may differ. 
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Figure	  2.	  A	  tool	  to	  analyze	  the	  population	  receptive	  field	  (pRF).	  	  The	  fMRI	  time	  series	  were	  measured	  

with	  a	  7	  Tesla	  scanner	  at	  a	  resolution	  of	  1	  mm
3
	  voxels.	  The	  stimulus	  was	  a	  contrast	  pattern	  within	  a	  

slowly	  translating	  bar	  aperture.	  	  The	  aperture	  swept	  through	  the	  visual	  field	  at	  different	  angles;	  

occasionally	  the	  contrast	  pattern	  was	  turned	  off.	  	  The	  three	  plots	  show	  the	  fMRI	  signal	  measured	  at	  

voxels	  located	  in	  three	  different	  locations	  (white	  circles	  in	  V1,	  V2	  and	  V3A;	  upper	  right	  image).	  The	  

dashed	  black	  lines	  are	  measurements	  and	  the	  solid	  blue	  lines	  are	  pRF	  model	  fits.	  	  The	  estimated	  pRF	  for	  

each	  voxel	  is	  shown	  in	  the	  image	  panels.	  	  The	  three	  time	  series	  responses	  to	  the	  same	  pattern	  differ	  in	  

timing	  and	  width.	  	  This	  time	  series	  difference	  is	  modeled	  by	  the	  center	  position	  and	  size	  of	  the	  pRF.	  The	  

tool	  is	  part	  of	  the	  open	  source	  vistasoft	  package	  (http://github.com/vistalab).	  Data	  obtained	  in	  

collaboration	  with	  E.	  Yacoub	  and	  K.	  Ugurbil. 

	   

The pRF framework has been applied usefully in a number of studies.  For example, the 

framework has been used to clarify certain visual field maps (10, 15, 40) and to compare pRF 

sizes between controls and subjects with neurological conditions (41, 42).  The method has 

been applied to measure plasticity (43) and the effect of task-demands (44). It has been used in 
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fMRI studies of visual cortex in animal models (45, 46) and to elucidate the relationship with 

anatomy (47). 

Improving the linear pRF model 

It is a truism that all models are wrong, but some are useful (48). The first pRF models are 

useful, but they are inaccurate in several ways.  Our group and others continue to work to 

identify and reduce the model deficiencies (49-51) 

 

The model failures become apparent when we use the pRF model to predict the fMRI time 

series response to a larger range of visual stimuli.  Returning to the original measurements by 

Tootell et al. (32), Winawer set out to use the pRF model to predict responses to both thin and 

thick bars.  It became apparent that the Dumoulin and Wandell pRF model could not account for 

even such a modest increase in the range of stimuli.  

 

Kay et al. (52) show that the failure arises from a basic assumption: linear summation of the 

contrast across the spatial receptive field. The failure of spatial linearity can be measured in a 

simple experiment (Figure 3).  Consider a voxel that responds to contrast near the horizontal 

midline. We can present a stimulus that fills either the upper half of the pRF or the lower half.  If 

spatial linearity holds, the response to a stimulus that fills both the upper and lower portions of 

the pRF should equal the sum of the responses to upper and lower separately. This spatial 

summation prediction is somewhat inaccurate in the posterior maps, V1 and V2, and it misses 

substantially in anterior extrastriate maps (52). Kay et al. showed that incorporating a static 

nonlinearity into the standard pRF model can remedy the failure of spatial linearity. Furthermore, 

Kay et al. show that the specific form of the non-linearity fit to the BOLD signal is compatible 

with existing models of single neuron spike rates, such as divisive normalization (53). 

Connecting these two very different kinds of measurements, fMRI and single unit spiking, is 

possible because stimulus-referred models are fit in both domains1. 

 

In a separate study, Kay et al. (55) further extended the modeling effort by developing a new 

pRF model that accounts for measurements of responses to an even wider range of stimuli. The 

new model is also distributed as a full computation (http://kendrickkay.net/socmodel/). This 

model is much more complex than the Dumoulin and Wandell formulation, allowing it to predict 

the responses to a much wider range of stimuli.  

                                                
1
 It is tempting to think of divisive normalization as a circuit model rather than a stimulus-referred model 

because there has been substantial work trying to explain normalization in terms of circuit properties such 
shunting inhibition, resistance and capacitance  (54.Ferster D (2010) Diverse mechanisms of contrast 
normalization in primary visual cortex. Journal of Vision 10(15):29). But in fact divisive normalization 
model parameters are specified in the stimulus domain, including contrast and orientation.  In fact, the 
circuits giving rise to normalization are largely unknown (53. Carandini M & Heeger DJ (2012) 
Normalization as a canonical neural computation. Nat Rev Neurosci 13(1):51-62). Normalization, like 
linear filtering, is an application of the stimulus-referred approach. 



 11 

Figure	  3	  Spatial	  summation	  of	  contrast	  fails	  to	  predict	  the	  fMRI	  signal	  in	  human	  visual	  cortex.	  

The	  upper	  bar	  plots	  show	  the	  measured	  responses	  to	  a	  lower	  field	  stimulus,	  an	  upper	  field	  stimulus,	  and	  

the	  combination	  of	  the	  two.	  For	  the	  voxel	  in	  V1	  (upper	  left)	  and	  V3	  (upper	  right),	  the	  response	  to	  the	  full	  

aperture	  is	  less	  than	  the	  sum	  of	  the	  responses	  to	  the	  two	  partial	  apertures,	  and	  hence	  less	  than	  the	  

linear	  prediction	  (indicated	  by	  the	  black	  lines).	  The	  failure	  of	  linearity	  is	  more	  severe	  for	  V3	  than	  for	  V1.	  

The	  lower	  images	  show	  the	  2-‐σ	  circle	  for	  the	  pRF	  for	  the	  two	  voxels	  (dark	  line	  V1;	  light	  line	  V3).	  After	  Kay	  

et	  al.	  (52).	   

Integration of fMRI and ECoG data 

There has been remarkable progress in inventing new ways to measure neural signals. Modern 

methods range from well-isolated single units to local field potentials, calcium imaging, voltage 

sensitive dyes, and intrinsic functional measures such as fMRI. These methods provide different 

types of information about the circuitry, and there is much to be gained by understanding how to 

combine insights from different methods (56-58). 

 

The stimulus-referred measurement approach integrates the diverse measures made by visual 

neuroscientists. In a recent study we measured population receptive fields using both ECoG 
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and fMRI, and we asked whether the two data sets might be explained by the same pRF model. 

The ECoG data are a voltage time series captured at millisecond resolution, while the fMRI 

signal is a modulation in the local oxygenation sampled every second or two. By using stimulus-

referred measurements, we can compare the measurements in a common reference frame, 

bypassing the problem of incommensurate units. 

 

There were several straightforward findings (Figure 4).  First, the ECoG signal contains 

responses from at least two neural sources, broadband and stimulus-locked, and we created 

accurate pRF models of each response component. Second, the receptive field position and 

size derived from the ECoG and the fMRI responses agreed.  Third, the spatial summation 

properties of broadband, but not stimulus-locked, ECoG signals match the spatial summation 

measured in the fMRI signal.  From this stimulus-referred analysis we concluded that the fMRI 

signal arises principally from the broadband ECoG component.  

 
Figure	  4.	  	  Stimulus-‐referred	  models	  integrate	  different	  measurement	  modalities.	  (A)	  A	  stimulus-‐

referred	  pRF	  model	  (52)	  was	  applied	  to	  V1,	  V2	  and	  V3	  responses	  from	  retinotopic	  stimuli.	  

Measurements	  were	  obtained	  using	  both	  ECoG	  and	  fMRI,	  and	  we	  further	  separated	  the	  ECoG	  signal	  into	  

two	  components	  -‐	  an	  asynchronous	  broadband	  signal	  that	  measured	  a	  stimulus-‐driven	  increase	  in	  

response	  variance,	  and	  a	  stimulus-‐locked	  response	  that	  modulated	  in	  synchrony	  with	  each	  contrast	  

reversal.	  The	  CSS	  model	  fit	  the	  measured	  time	  series	  of	  all	  three	  signals.	  	  (B)	  The	  estimated	  pRF	  centers	  
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to	  the	  two	  types	  of	  ECoG	  are	  similar	  (filled	  and	  open	  signals;	  lines	  connect	  estimates	  from	  a	  single	  

electrode).	  These	  pRF	  centers	  also	  match	  the	  expected	  visual	  field	  map	  from	  fMRI	  (not	  shown).	  (C)	  The	  

estimated	  spatial	  summation	  exponent,	  n,	  from	  the	  pRF	  model	  is	  highly	  compressive	  (n	  <	  1)	  for	  fMRI	  and	  

for	  ECoG	  broadband	  responses.	  The	  exponent	  is	  close	  to	  linear	  (n	  ~	  1)	  for	  the	  stimulus-‐locked	  response.	  

Hence,	  fMRI	  spatial	  summation	  matches	  broadband	  ECoG,	  but	  not	  stimulus-‐locked	  ECoG.	  After	  Winawer	  

et	  al.	  (59).	  See	  also	  (60)	  for	  a	  stimulus-‐referred	  approach	  to	  understanding	  the	  relationship	  between	  

ECoG	  and	  fMRI	  pRF	  measurements. 

Discussion 

 

As computational models of vision increase in accuracy and power (i.e. account for a larger 

range of stimuli), they become more complex.  The original Tootell et al. and Smith et al. papers 

could reason correctly and informally about receptive field sizes. But they accounted for very 

few stimuli and relied on summary measures of the response time series. Modern computational 

models that account for a much larger range of stimuli and predict the full time series are 

significantly more complex (Figure 5). These models are not captured in a small set of formulae, 

and it is necessary to use software implementations to generate predictions. 

 

 

 
 

Figure	  5.	  A	  modern	  computational	  model	  of	  fMRI	  signals	  in	  visual	  cortex.	  	  	  	  The	  model	  developed	  by	  

Kay	  et	  al.	  integrates	  an	  array	  of	  widely	  used	  visual	  neuroscience	  computations	  (energy,	  divisive	  

normalization,	  spatial	  summation,	  second-‐order	  contrast,	  compressive	  nonlinearity).	  These	  operations	  

are	  organized	  into	  two	  stages	  of	  sequential	  linear,	  nonlinear,	  nonlinear	  (LNN)	  operations.	  	  To	  develop	  

models	  of	  this	  complexity	  -‐	  which	  are	  surely	  much	  simpler	  than	  what	  will	  ultimately	  be	  required	  -‐	  

requires	  software	  implementations	  and	  the	  ability	  to	  test	  different	  forms	  of	  the	  model	  on	  multiple	  

classes	  of	  stimuli.	  After	  Kay	  et	  al.	  (55). 

 

Computational modeling is a cumulative process that expands the domain of application by 

accounting for an increasing range of experimental conditions. This differs from experimental 

work focused on hypothesis testing. Computational models are built by testing new features 

while always checking for the impact of the new features on previous predictions; new data are 



 14 

not viewed as a hypothesis test that results in accepting or rejecting the model by a statistical 

test.  Rather, computational model development is a process yields increasingly refined 

predictions from a sustained effort; we believe this is one of its great benefits.   

 

Finally, we note that even if a computational model is imperfect, it can still be useful.  For 

example, it is reasonable to use linear pRF models to estimate receptive field center positions 

when using a single bar width, even though the model does not generalize to multiple bar 

widths. The use of a model that is adequate for a given objective is common in other branches 

of science and engineering. After all, we do not calculate local travel time using relativity and the 

Earth’s curvature. 

Which brain measurements are best? 

We have emphasized the value of stimulus-referred models for integrating data from different 

types of measurements. We are aware that an alternative scientific approach is to deny the 

validity of all but one measure: 

 

Any analysis of plastic reorganization at a neuronal locus needs a veridical measure of 

changes in the functional output — that is, spiking responses of the neurons in question. 

(61). 

 

We think it is best to be open to the value of many measurement methods. In fact, we don’t 

think there is a strong alternative to this approach because it is illusory to think that even within 

a measurement domain the signals form a single, unitary class.  For example, in the retina the 

same stimulus produces different responses in different cell types, such as retinal ganglion cells 

of the parasol and midget classes. The voltage response in the ECoG signal arises from 

multiple sources with distinct properties. In cortex some spikes are relevant for only local 

calculations, while others are communicated by long-range projections to other cortical regions.  

Thus, it is incorrect to expect that the fMRI response or a perceptual judgment will match 

“spiking responses” when there are so many different types of neurons and so many different 

types of spikes. 
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Figure	  6.	  An	  integrative	  view	  of	  modeling	  visual	  brain	  function.	  	  Computational	  models	  of	  visual	  

neuroscience	  must	  take	  a	  broad	  view	  that	  spans	  the	  stimulus,	  brain	  systems,	  and	  perceptual	  measures.	  

Because	  visual	  responses	  arise	  from	  a	  well-‐characterized	  physical	  stimulus,	  we	  can	  use	  stimulus-‐referred	  

theories.	  	  Computational	  models	  and	  stimulus-‐referred	  measurements	  provide	  a	  rigorous	  means	  for	  

integrating	  information	  about	  neurons,	  glia	  and	  circuits,	  as	  well	  as	  the	  instruments	  and	  many	  types	  of	  

perceptual	  measures.	   

 

Further, the modern neuroscientist should consider the likelihood that cortical function depends 

importantly on several types of cells. There are many reasons to believe that responses in other 

brain cells, such as the many types of glia present in the human brain, are important for brain 

function (62).  If the fMRI signal informs us about these responses as well as neuronal 

responses, should we complain?  Or should we be grateful to have this additional information? 

 

We advocate for an integrative view of the visual system (Figure 6). We suggest that a goal of 

visual neuroscience is to develop models that begin with a careful description of the stimulus, 

integrate experimental observations derived from multiple measures of brain activity and 

circuitry, model these multiple types of responses, and rigorously understand the relationship 

between certain aspects of the brain activity and perception.  
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