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In order to deal with an increasingly complex world, we
need ever more sophisticated computational models that can
help us make decisions wisely and understand the potential
consequences of choices. But creating a model requires far
more than just raw data and technical skills: it requires a
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close collaboration between model commissioners, developers, users and reviewers. Good modelling
requires its users and commissioners to understand more about the whole process, including the
different kinds of purpose a model can have and the different technical bases. This paper offers a
guide to the process of commissioning, developing and deploying models across a wide range of
domains from public policy to science and engineering. It provides two checklists to help potential
modellers, commissioners and users ensure they have considered the most significant factors that
will determine success. We conclude there is a need to reinforce modelling as a discipline, so that
misconstruction is less likely; to increase understanding of modelling in all domains, so that the
misuse of models is reduced; and to bring commissioners closer to modelling, so that the results
are more useful.

1. Introduction
Computational models can help us translate observations into an anticipation of future events, act as
a testbed for ideas, extract value from data and ask questions about behaviours. The answers are then
used to understand, design, manage and predict the workings of complex systems and processes, from
public policy to autonomous systems. Models have spread far beyond the domains of engineering and
science and are used widely in diverse areas from finance and economics, to business management,
public policy and urban planning. Increasing computing power and greater availability of data have
enabled the development of new kinds of computational model that represent more of the details of the
target systems. These allow us to do virtual what if? experiments—even changing the rules of how this
detail operates—before we try things out for real.

Analysis and explanation are just the starting point for the utility of models. They can help us to
visualize, predict, optimize, regulate and control complex systems. In the built and engineered world,
manufactured products can be simulated as part of the design process before they are physically created,
saving time, money and resources. Buildings, their infrastructure and their inhabitants can be modelled,
and those models can be used not only to maximize the efficiency and effectiveness of the design and
build processes, but also to analyse and manage buildings and their associated infrastructure throughout
their whole working lifespan. In the public sector, policies can be explored before they are implemented,
exposing potential unanticipated consequences and suggesting ways to prevent their occurrence.

It takes time and effort to develop good models, but once achieved they can repay this investment
many times over. Just as physical tools and machines extend our physical abilities, models extend our
mental abilities, enabling us to understand and control systems beyond our direct intellectual reach. This
is why they will have such a radical impact: not just improving efficiency and planning, but extending
to completely new areas of our lives. Computational models will change the ways we can interact with
our world, perhaps allowing completely new ways of living and working to emerge.

Computational modelling is like any other technology: it is neither intrinsically good nor bad. Models
can inform or mislead. Modelling can be applied well or misapplied. It is for this reason that a better
understanding of the processes of computational modelling and a greater awareness of how and when
models can be reliably used are important. This cannot be just left to the modellers but some of the
understanding is also needed by commissioners and users of these models. Making the right decisions
when commissioning a model or when and how to use a model is as important as the more technical
aspects of model development. A hammer may be perfectly designed by its engineers and fit its
specification exactly, but be worse than useless for driving in screws.

The contribution of this paper is to bring together current thinking about, and experiences with,
computational modelling. It does not reveal new research or results, but rather aims to serve as a
guide for all those involved in modelling. It is of direct interest to a range of potential stakeholders
for modelling: commissioners, owners, developers and users, but it is also important for those who
may be affected by the insights that come from these models in the public, private, academic and
not-for-profit sectors.

Computational models are reaching into domains beyond those where they have been traditionally
applied (the physical and life sciences and engineering); they are being used for new purposes; and their
complexity means that they have different properties from simpler models (such as those which can be
completely checked using analytic methods). This extension has the potential for new application and
utility across many aspects of our collective life, but it also means there is a greater potential for their
misuse: misleading as to the current state of what is modelled and informing decisions where they are
not suited. Hopefully this paper will help educate all relevant stakeholders as to these opportunities
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and dangers, and thus help make these tools a positive force in the new areas in which they are
being applied.

This paper distinguishes some of the different purposes for a model: this has a significant impact on
how the model should be developed, checked and used. It gives an overview of some of the different
technical bases, to provide some understanding of their nature and properties. It also looks at some of
the future directions in which modelling is developing. It includes two checklists, aimed at the full range
of stakeholders: to help people ask the right questions of models and modellers and hence improve the
whole modelling process.

This paper is a condensation of the recent Blackett review Computational Modelling: Technological
Futures [1] that was initiated by Government Office for Science and the Prime Minister’s Council for
Science and Technology. It is organized into five sections covering: where models are used, why model,
making and using models, types of model and analysis and future directions. Appendix A contains two
checklists: making and using models and what users should ask about a model.

2. Where models are used
This paper aims to bring together knowledge about computational modelling across a wide range
of domains, from public and economic policy to physical systems. A few examples and observations
illustrate the current breadth and scope of modelling.

In public policy, models can enhance the quality of decision-making and policy design. They can
offer cost–benefit analyses of various policy and delivery options, help manage risk and uncertainty or
predict how economic and social factors might change in the future. There is still considerable untapped
potential in this area but also obvious dangers.

The science of urban modelling is rapidly developing, and modelling is routinely used in the retail
and transport sectors. However, substantial research challenges and opportunities remain, particularly
in dynamics and in deploying new data sources. Greater research coordination, and policies that make
high-quality urban models available to local authorities, could help to realize the tremendous potential
of ‘urban analytics’.

Models play crucial roles in finance and economics, from identifying and managing risk to forecasting
how economies will evolve. Yet major changes are afoot in economic modelling, triggered by the global
economic crisis, the availability of huge datasets, and new abilities to model people’s behaviour that
overturn old certainties.

In business and manufacturing, models underpin a wide variety of activities, enabling innovative
high-quality design and manufacturing, more efficient supply chains and greater productivity. Modelling
can also improve businesses’ organizational efficiency, commercial productivity and profitability. In
manufacturing, models tend to fall into three broad categories: complex models aimed at modelling
physical reality with a high degree of accuracy, reduced physical models that capture behaviour at a
specific scale and representative models (so-called ‘black box’) models that fit data and trends.

Finally, environmental modelling, including climate change, plays an important role in guiding
government policy as well as business decisions, in situations ranging from noise reduction to flood risk
assessment and wherever there is an opportunity to enhance social resilience to severe natural hazards.
Open-access datasets are particularly useful in this domain.

3. Why model
Given the effort it takes to make and check a good model, how might one decide whether this effort is
worthwhile? For a given system, there are a number of answers to this question:

— The complexity of the system means that the risks and consequences of any choice cannot be
anticipated on the basis of common sense or experience.

— There may be too many detailed interactions to keep track of, or the outcomes may be too
complicated and interwoven to calculate easily.

— It is infeasible or unethical to do experiments with the system.
— One needs to integrate reliable knowledge from different sources into a more complex whole to

understand the interactions between them.
— There is a variety of views from stakeholders or experts about a complex system they are part of,

which needs bridging in order to come to a coherent decision or find a compromise.
— One needs to be prepared for possible future outcomes in a complex situation.
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The variety of answers are indicative of the different purposes a model may have.

3.1. Purposes
The purpose of a model affects how it should be developed and checked and, crucially, it informs
potential users as to how they should judge a model and from that what it can be reliably used for. Thus
identifying the different uses for a model is very important. Here, we distinguish five broad categories
of model purpose—there are many others (e.g. those listed in [2]), but the following five cover many of
the main scientific purposes (the first two empirical, the last three theoretical).

3.1.1. Prediction or forecasting

Almost all computational models ‘predict’ in the weak sense of being able to calculate an anticipated
result from a given set of variables. A stronger form of prediction goes further than this, anticipating
unknown (usually future) outcomes in the observed world (some describe this as ‘forecasting’). This sort
of prediction is notoriously difficult for complex systems, such as biological or social systems, and thus
claiming to be able to forecast for these systems may be misleading. If we truly do not know what is
going to happen, it is better to be honest about that, rather than be under a false impression that we have
a workable prediction. Fitting known data (e.g. ‘out of sample data’) is not prediction in this sense.

3.1.2. Explanation or exploration of future scenarios

Particularly when considering very complex phenomena, one needs to understand why something
occurs—in other words, we need to explain it. In this context, explanation means establishing a possible
causal chain, from a set-up to its consequences, in terms of the mechanisms in a model. This degree of
understanding is important for managing complex systems as well as understanding when predictive
models might work. With many phenomena, explanation is generally much easier than prediction—
models that explain why things happen can be very useful, even if they cannot predict reliably the
outcomes of particular choices. For example, a social network model may help explain the survival of
diverse political attitudes but not predict this [3].

3.1.3. Understanding theory or designs

This usually involves extensive testing and analysis to check behaviours and assumptions in a theory or
design, especially which outcomes are produced under what conditions. Outcomes can be used to help
formulate a hypothesis; but they can also be used to refute a hypothesis, by exhibiting concrete counter-
examples. It is important to note that although a model has to have some meaning for it to be a model,
this does not necessarily imply the outcomes tell us anything about real systems. For example, many
(but not all) economic models are theoretical. They might include assumptions that people behave in a
perfectly rational way, for example, or that everybody has perfect access to all information. Such models
might be later developed into explanatory or predictive models but currently be only about theory.

3.1.4. Illustration or visualization

Sometimes one wants an illustration or visualization to communicate ideas and a model is a good way
of doing this. Such a model usually relates to a specific idea or situation, and clarity of the illustration
is of over-riding importance—to help people see (possibly complex) interactions at work. Crucially,
an illustration cannot be relied upon for predicting or explaining. If an idea or situation is already
represented as a model (designed for another purpose) then the illustrative model might well be a
simplified version of this. For example, the DICE model (dynamic integrated model of climate and
the economy) is a ‘simplified analytical and empirical model that represents the economics, policy, and
scientific aspects of climate change’ [4]. This is a simpler version of the RICE model [5] that is used to
teach about the links between the economy and climate change.

3.1.5. Analogy

Playing with models in a creative but informal manner can provide new insights. Here, the model is
used as an aid to thinking, and can be very powerful in this regard. However, the danger is that people
confuse a useful way of thinking about things with something that is true.
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If the purpose of a model is unclear or confused, this can lead to misunderstandings or errors. To give

two examples, a theoretical model might be assumed to be a good way of thinking about a system, even
though this might be crucially misleading, or a model that helps establish a good explanation be relied
upon as a predictive model. Making clear the purpose of a model is good practice and helps others know
how to judge it and what it might be reliable for.

4. Making and using models
Models have many technical aspects, such as data, mathematical expressions and equations, and
algorithms, yet these are not sufficient for a model to be useful. To get the best out of a model, model users
and commissioners must work closely with model developers throughout its creation and subsequent
application.

4.1. Asking the right question
It is important to make sure that a model is dealing with the right issue and helping to ask the right
question. Even a high-quality model will not be helpful if it relates to an issue that is not the main
concern of the user. Conversely, asking a model to answer more and more detailed questions can be
counterproductive, because it would require ever more features of the real system to be included in the
model. In other words, models need to be ‘requisite’—they must have an identified context and purpose,
with a well-understood knowledge base, users and audience, and possibly developed within a particular
time constraint [6].

4.2. Who does what?
Although a very simple model might be the work of one person, usually a team of people will be
involved, and it is important to be clear about the individuals’ roles. There will be at least an owner, or
commissioner: the person whose responsibility it is to specify what the model is expected to do, provide
the resources needed to get the model built, and sometimes monitor how the model is used. There will
be model developers, whose job is to design, build and validate the model; and analysts who will generate
results from the model. Developers and analysts are often, but not always, the same people. There will
also be the model’s users: those who have the problem or question that the model is designed to answer.
And it is good practice to have a reviewer or quality assurer, someone independent from the team whose
task is to audit the model and the way it has been developed to ensure that it meets appropriate quality
standards and is fit for purpose—standards will vary according to the importance and risk of the area.
Each of these roles may be carried out by several people—a large model might need a team of developers,
and the review might be carried out by a group of peer reviewers, for example. In all but the most modest
models, however, there should be at least one person for each role, because the skills required for each
are different.

4.3. Specifying a model
Sometimes it is possible to be precise about what a model should contain, before the model is created.
One can then write a specification and hand it over to a group of professional model developers.
This situation can arise when dealing with a logistical or operational question, where there is a
great deal of certainty about the system and clarity about what the model should output. Much
more often, however, the situation to be modelled is complex; the processes to be modelled are
uncertain; and the questions to be answered are vague. In such cases, model commissioners need to
stay very close to the modelling process, getting involved in an iterative process of deciding what
should be included and how it is represented. Such models will often produce a range of results
and may identify possible tipping points. This is usually the best approach if one is concerned with
strategic or policymaking questions; dealing with one-off issues; addressing uncertainty about the
consequences of actions; or is unclear about appropriate ways of judging what a system does. In
these cases, those involved in the process need to exercise their collective judgement when interpreting
the results.
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4.4. Finding the data and assessing quality
All too frequently, one does not discover exactly what data one needs until the model has been built,
so it often becomes an iterative process of finding data and developing the model. However, there are
a few helpful distinctions to be made that will enable a model commissioner to ask model developers
the right questions. The first distinction is between the data needed to specify and build the model; the
data that will be used to check the model’s output; and the data needed for day-to-day use of the model.
The second distinction concerns the levels at which the model operates: the micro-level, describing how
the smallest components of the model behave (for example, the cars in a traffic model); the meso-level,
describing how the components are linked together (for example, the road layouts); and the macro-level,
covering the properties of the system as a whole (for example, the funding for new road infrastructure).
The micro-level may be determined by the science behind the model, by qualitative evidence, or by
‘big data’ analyses. The meso-level might reflect the structure of the system. And the macro-level may
include data such as aggregate statistics over a long period of time. Sometimes it is acceptable to use
closely related proxies for these data.

For models that are intended to explain or predict the outcomes of processes that take place over
time, we usually need data that have been collected over a period (referred to as time-series data, or
longitudinal data). However, such data are often difficult to obtain, not least because of the time it takes
to gather the dataset, but also because definitions may have changed in the intervening period, making
data points measured at different times not strictly comparable. Also, if one is using data collected at two
points in time from the same individual or organization, one must consider the effects of those who stop
participating during the data collection period, which may lead to a biased sample.

4.5. Building a model
Designing and building a model has some of the characteristics of software development and many of the
same techniques and tools can be used. There are two basic approaches: either one can attempt to specify
in detail what the model should do and then construct it to match that specification; or one can build the
model in a much more iterative fashion, starting with a basic model at an early stage and incrementally
improving it, meanwhile checking that it matches the users’ requirements. These requirements may
themselves change as the users improve their understanding of the problem.

Model building is often out-sourced to consultancies or is the responsibility of specialized teams of in-
house developers. The downside of out-sourcing is that barriers to communication may arise, especially
when the commissioner and the developer are in different organizations with different cultures and
different priorities. Regardless of the development approach and the location of the developers, it is
essential that design decisions are logged and the development process is documented (not just the final
modelling outcomes). This documentation will be an important input into the model’s quality assurance
review. It is important to establish, at the start, to whom the resulting model code belongs.

4.6. Documenting a model
A model will be all but useless if it lacks appropriate documentation. Several different kinds of
documentation are needed:

— Documentation of the model code, sufficient to explain in detail what it does and how it does it.
Some of this will be integrated into the code as comments, but there will also need to be separate
documents intended for developers.

— Documentation aimed at analysts, who may want to change model parameters but not the model
code. Such documentation will need to explain how to run the model, the computing system it
needs, supporting software if any, and the various files that the model requires as inputs and
generates as outputs.

— Documentation for users. This may include presentations, tutorials and user guides aimed at
people who want to use the model but do not need to know about its mechanics. While the
documentation should be comprehensible to non-experts, it should include an explanation of
the assumptions on which the model is based, as well as its objectives and limitations.

Documentation takes time to prepare, often more time than building the model itself. But it is essential,
because the original developers, reviewers, users and even the commissioner may move on to other
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roles, taking their knowledge and expertise with them. Moreover, if a decision that relies on the model
is challenged, internally or externally, by public opinion or judicial review, the documentation may have
legal significance.

4.7. Quality assurance
Validation asks the question: have we built the right model, i.e. is the model a suitable representation
of what is being modelled? This often involves testing the model against known data or behaviours, to
demonstrate that the model is faithful and gives the expected outcomes. Verification asks the question:
have we built the model right? This means checking the model itself, for example, checking we have the
correct formulae in all the spreadsheet cells, or checking how errors and uncertainties propagate and for
which inputs the results are undefined.

4.8. Uncertainty
There are many ways in which uncertainty can arise. These include: errors in measuring or estimating;
inherent chance events in the system being modelled; an underappreciation of the diversity of events
in a system; ignorance about a key process, such as how people make decisions; chaotic interactions in
the system such that even a small change can switch behaviours into another mode; and the complexity
of the model’s behaviour itself, which model developers may not fully understand. It is important to
consider the uncertainties in the data that underpin a model, and the level of uncertainty that might be
acceptable in the model’s answers. In addition, there may be considerable uncertainty about the basic
mechanisms that are being represented in the model and about whether alternative models using quite
different mechanisms might be better. Moreover, a complex model can sometimes act as an ‘uncertainty
amplifier’, so that the uncertainty in the results is much greater than the uncertainty in the setup of the
model and the data it uses. Just as there are different kinds of uncertainty that affect a model, there are
different kinds of uncertainty in model outcomes. The answers a model gives might be basically correct,
but somewhat prone to a degree of error. In other cases, the outcomes might suddenly vary sharply
when the inputs change, or shift from a smoothly changing continuum to an ‘on/off’ outcome. The
kinds of uncertainty in model outcomes affect how it can be used reliably. Consequently, it is vital that
the uncertainty in a model’s results is communicated together with the main results.

4.9. Communicating a model
While the process of modelling can greatly increase one’s understanding of a problem, the true value
of a model only becomes apparent when it is communicated. The communication of model results is an
important part of the modelling process: the user interface or visualization is the only contact those not
directly working on it will have with a model. A visualization should encapsulate all that is important to
know about the underlying model. It must somehow communicate the model’s results and (ideally) its
assumptions to the intended audience, who may base important decisions on their understanding of the
visualization. Consequently, even at the scoping stage it is crucial to consider who the user of a model
will be, and how they will want to interact with it.

Making educated simplifications and assumptions is an inherent part of the modelling process, as
is the presence of some uncertainty in model results. Given the compelling nature of well-designed
visualizations and user interfaces, it is vital that they do not misrepresent the reliability of the results they
communicate, just as an executive summary should be representative of the conclusions and caveats of
the underlying report.

4.10. Maintenance
As the Review of quality assurance of government models (commonly known as the Macpherson review)
found in 2013 [7], once a model exists, it may be used for purposes beyond that for which it was originally
designed, and it may continue to be used long after the time when it should have been replaced. There
are at least three reasons for this:

— Users are reluctant to abandon the model. Unless appropriate maintenance activities have not
been put in place, the model’s results may become less and less accurate because the system
being modelled has changed. The fact that the model has been successful in the past can bolster
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confidence in its credibility, without anyone realizing that the model no longer fits what it is
modelling.

— The model’s use has changed. While the model would have been tested to give good results for
its original purpose, the quality assurance may not guarantee its validity following ‘creep’ in the
way it is being used. In addition, as staff involved in the model move on to other projects, the
original understanding of the model’s assumptions, scope and limitations may get lost.

— Model accretion. If extra parameters or routines are added to the model to deal with new
demands or new data, the model may eventually become so complicated that it is difficult for
anyone to understand it and use it correctly.

These dangers can be avoided, or at least ameliorated, by scheduling regular reviews of the model to
check that it remains fit for purpose, and to ensure that the documentation remains relevant. The review
may conclude that the model should be retired or re-written. To ensure that such reviews do take place,
models should have long-term owners with responsibility for their continued maintenance.

4.11. Preserving a model
An important aspect of documenting and maintaining a model is to ensure that it is properly preserved
for later access, regardless of institutional and personnel changes and the evolution of computing
infrastructure. One increasingly popular solution is to make the model and documentation open source
and lodged on a platform such as GitHub (https://github.com/) or CoMSES (https://comses.net/).
‘Open source’ means that the model code is freely available and publicly accessible, under an open
licence. Open sourcing a model also means that others can modify and use the model for their own
purposes (including, depending on the licence conditions, for commercial purposes). The advantages of
open source include that what the model does and how it does it is freely accessible and ‘transparent’;
other users and modellers can assist in the development and maintenance of the model, and that the
platform takes over responsibility for the model’s long-term preservation. On the other hand, opening
up a model in this way can raise issues of commercial confidentiality and individual privacy and data
protection. The latter can be especially tricky if the model depends on data provided by individuals for
its calibration.

5. Types of model and analysis
One might not need to know anything about the mechanisms inside a very well established and
understood model. However, for other models (especially newly developed models) it is useful to have
some understanding of the basis of their construction. In this section, we give a brief summary of the
main aspects and approaches used.

Stakeholders often have very different perspectives on the key abstractions and assumptions about the
system being modelled. Frames of reference [8] are one way of articulating the variety of perspectives,
and their context. Clarity on frames allows different levels and type of concern to be balanced within
model development and analysis, driving the selection of model type and techniques. Some common
frames are the following.

Geographic: spatial and topological relationships, such as (static) locations of adjacent
underground stations and the positions of emergency exits, or (dynamic) flows in a pipeline
and networks of sensors on people, animals and objects.
Temporal: how the expected certainty of the model varies over time. For example, weather
forecasting becomes less certain the further we look into the future, and navigation models
become less precise as we move away from the position where we last verified our location.
Physical: underlying natural science, ecosystems and their governing laws, such as those that
govern water flow, heat transfer or atmospheric physics.
Security: threats and their mitigations, such as access controls, which prevent unauthorized
persons or systems from physically entering or digitally accessing a system, and encryption
methods that encode data so they can only be accessed via keys.
Privacy: anonymity, identity, authentication of personally identifiable information, and controls
on intended and unintended disclosures.
Legal: obligations, permissions and responsibilities for different components within the system
and for human users of the system.
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Social: communication and interaction relationships between humans involved in the system,
and between humans and the physical/natural world and the underlying technologies.
Economic: quantitative aspects of resource consumption, production and discovery; typical
resources are energy, money and communication bandwidth.
Uncertainty: what the acceptable bounds of uncertainty are for various aspects of the system, and
how bounds are qualified, quantified and related to each other.
Failures: relationships between components that can fail or operate incorrectly, including fail-safe
mechanisms and redundancies.

Each frame (or frames) may require a different type of model and analysis, and all kinds of framing
demand judgements about the scales to be adopted, from the coarse to the fine-grained. A model
developed to address one frame of reference may not be suitable for another frame and can be positively
misleading if this is attempted. For example, using a costing model for rail ticket sales to assess the order
in which to upgrade signals or the impact of lengthening trains by adding carriages could give very
misleading results. This is because the costing model would not include details of how signals depend
on each other, or the loads that rails are designed to withstand. It is thus helpful to make these frames of
reference explicit when developing or commissioning models.

5.1. Types of model
There are a wide range of computational modelling techniques, but they differ principally along
a few dimensions. Selecting particular points along these dimensions implies a set of abstractions
and assumptions about the system being modelled, which in turn determines how observations are
represented.

Non-deterministic models can deliver several possible outputs from a given set of inputs. If you
run a non-deterministic model today, and then run it again tomorrow with the same inputs, you
may obtain different answers.
Deterministic models always produce one specific output from a particular set of inputs or
initial conditions. Determinism in models is often highly valued, because it allows one to
make absolute assertions. However, many aspects of the physical world and human behaviours
are fundamentally non-deterministic, and it may not be useful to try to model them in a
deterministic way.
Static models have no inherent concept of time and so outputs do not change over time. For
instance, spreadsheets are static models, unless they explicitly encode time as an input.
Dynamic models have outputs that change over time. Ordinary [9] and partial differential
equations [10] are common mathematical dynamic models for representing the rate of change
over time; they are widely used in engineering and environmental monitoring, and also in
finance and economics. System dynamics [11] is a technique based on ordinary differential
equations that is used widely in business and government when considering new policies. It
is used to explore the possible effects of different policies and unanticipated consequences, as
well as develop understandings of the structural source of general patterns of behaviour.
Discrete models represent objects or events by values that go up in steps—a series of integers
or characters, for example. Common discrete models are based on sets of discrete states; for
instance, transition systems [12] consist of discrete states with transitions between them.
Continuous models involve representations that are ‘smooth’ and ‘dense’, using real numbers, for
example. Differential equations are common continuous models. It is possible to combine both
discrete and continuous aspects into a single model. For instance, a model may consist of a finite
number of discrete states with the rates of transition between the states being continuous.
Stochastic (also called probabilistic or statistical) models [13] have an inherent element of random,
or uncertain, behaviour and the events are assigned probabilities. This can be viewed as a special
case of a non-deterministic model in which the probabilities are known.
Individual-based models represent each individual explicitly. These models are useful when one
needs to track each individual through a system, or individuals vary significantly in their
behaviour, or together the individuals form a complex and emergent system whose behaviour
cannot be derived from simple aggregation. Typical examples include social insects, extremely
large telecommunications networks (including the Internet), transportation networks, and stock
markets. These systems are often tackled using agent-based models [14], typically containing a
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large set of autonomous agents that each represent individuals that interact with each other
based on their individual attributes and behaviours.
Population models collectively represent large groups of individuals and are useful when
individuals do not vary and an individual-based model is not tractable. When individuals
do vary, but according to a small number of attributes, a population model based on counter-
abstraction [15] that records the number of individuals with each trait (or combinations thereof)
may be suitable.
Logic models are statements in a formal logic, which may range from classical predicate logic [16],
to temporal logics [17] for future behaviours, and probabilistic temporal logics [18] for future
certainties/uncertainties.
Automata and process algebraic models [19,20] allow simple and elegant representations of events
occurring in multiple processes that send messages to each other. The underlying languages are
algebraic, which means there are laws that define how the different operators (a sequence or
choice between events, for example) relate to each other.
Black-box models fit data and trends without revealing internal workings. Machine learning [21]
is a common technique based on algorithms that, in effect, learn directly from past examples,
data and experience. Machine learning is most valuable where there is little prior knowledge or
intuition about how a system works, but where there is considerable available data. This opens
up the possibility of making predictions about the future by extrapolating patterns in the data,
in domains where that has not previously been possible. At present, the results may be difficult
to interpret or explain; and the models may be robust only within relatively narrow contexts.

Common example combinations of techniques include stochastic partial differential equations and
hybrid automata [22]. The latter have discrete states and transitions between them, and each state is
a set of differential equations that describes the continuous behaviour that applies during that state.
A drawback of some combinations is that analysis can be difficult and may be poorly supported by
automated tools.

5.2. Ensemble modelling
Ensemble modelling is an important approach to model combination that involves running two or
more related (but different) models, and then combining their results into a single result or comparing
them. When results within the ensemble disagree, this can contribute to an understanding of whether
uncertainty is present as a result of the type of model (and so the choice of model is crucial), or exists
within the system. As an example, ensembles are widely used in weather forecasting, to show the
different ways in which a weather system can develop.

5.3. Analysis
Just as there are many types and techniques, there are also different ways to ask questions and obtain
answers from models. Often the questions one can ask are fundamentally linked to the modelling
technique. One of the most common types of analysis is simulation, usually over a time period, often
called ‘running’ the model. If the model is deterministic, there is only one simulation result; the output
of a static model depends entirely on the values assumed for any input parameters. But if the model is
non-deterministic (i.e. has a random element) then there are many possible answers—each time you run
it you will get a different answer that reflect random elements in the choices or in the environment. If
you have such a model it will require many runs to achieve a representative picture of what happens.

Another type of analysis uses logic to formulate questions and reasoning techniques to answer them.
For instance, questions about the performance of a modelled telecommunications service such as after
a request for a service, is there at least a 98% probability that the service will be delivered within 2 s? can be
expressed in a probabilistic temporal logic. Automated reasoning tools such as theorem provers and
model checkers can be used to derive the answer.

5.4. Role of data
Data are observations that can provide evidence for a model. The exact role of data depends on how
they were obtained, and the purpose of the model. For example, if the model aims to offer rigorous
explanations or predict future outcomes of an existing system, then data are necessary to validate the
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model. If, on the other hand, the purpose of the model is to specify a system design, or define how an
intended system is required to behave, then data are used to validate the system against the model. In
other words, after the system has been implemented, one checks it behaves as it should.

There is a further role for data when we are confident about the essential structure of the model,
but do not know the bounds of some parameters. In this case, data are used to fine-tune parameters
such as the duration or speed of an event. In all cases, care and expert judgement about interpreting
validation results is required, especially when the model has been determined mainly by data with few
structural assumptions imposed by the modeller, or if the data are sparse, or when it is not possible
to experiment with the deployed system. For example, air traffic systems are so crucial to modern life
that one cannot experiment with various parameters—such as frequency of landings or proximity of
aircraft—to comprehensively check the system against the model.

6. Future of modelling
Modelling is changing fast, due to rapid growth in computing power, an explosion in available data,
and greater ability of models to tackle extremely complex systems. In the future, there will be a
greater need for reliable, predictive models that are relevant to the large-scale, complex systems we
want to understand or wish to construct. While larger and more sophisticated models will add to
predictive capability, they will also allow us to get a better grasp on the limits to prediction, fundamental
uncertainties, and the capacity for tipping points and lock in. Some models will work closely with
(perhaps be embedded in) operational systems and derive data from them, potentially in real time. These
data may come from the many sensors and actuators that are now being added to systems, and we will
see new forms of modelling emerge as a consequence. The following offers a glimpse of the changes,
challenges and potential rewards over the coming decade.

— Large-scale availability of data about individuals will transform modelling. When we model a
population of individuals today, we often attempt to make predictions using aggregate models
based on assumptions about hypothetical, ‘average’ members of the population. In future, it may
be easier to eliminate these assumptions by modelling the individuals directly.

— Models will require more extensively linked data. Some data may be derived not from measurement
but from other models, requiring additional links to derived data.

— Modelling will span many scales, and many levels of detail. As various modelling communities come
together, bringing expertise from different disciplines and sharing approaches to model design,
we will see more sophisticated ways to link models in ways that describe systems at multiple
levels of detail.

— More models will be built by computers. Models may be constructed from data by automated or
semi-automated inference. These models will have the capacity to reveal unexpected results, but
it may be hard to guarantee that their mechanisms continue to operate reliably in the face of new
evidence.

— Models will help to train computers. When computers learn from real-world data, they need to be
exposed to both positive and negative examples. The latter can be difficult to find: models may
be able to generate verisimilar data representing failures.

— More systems will become part of models and more models will become part of systems. More components
of engineered systems will be software: that software may be incorporated into models used to
predict the behaviour of the aggregate system built from components and embedded models
may drive aspects of system behaviour. This will change the dynamic between modelling and
deployment of systems.

— New technologies will change modelling paradigms. Specialist quantum simulators will soon become
available. They may allow us to develop models that predict properties of materials or
pharmaceuticals, or make scenario planning for finance, defence and medical diagnosis more
tractable.

— Ubiquitous sensors will require new forms of modelling. Sensors, actuators and processors are
becoming more ubiquitous and more intelligent, yet sensors decalibrate and degrade over time
both individually and as networks. The unreliability of data from sensors will require more
spatial, dynamic and probabilistic styles of modelling.

— Modelling will be used more often for strategic and policy-level issues. Modelling will increasingly
be used for high-level organizational planning and systems thinking, adding more detail to
potential future scenarios, and allowing analysis of possible outcomes of policy interventions.
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— Senior decision-makers will increasingly become involved in modelling. Senior decision-makers will

participate more often in building and using models. A willingness to engage directly in
modelling, for example, by bringing modelling into the boardroom, will increasingly be seen
as a sound approach to managing complexity.

— Some models will be oriented more towards humans and their personal characteristics. We will have a
greater opportunity, as individuals, to supply (personal) data that could be used to stimulate
modelling. However, there remain deep, unresolved social and ethical issues around the
ownership of data and the use of models derived from personal data.

— Models will help to train humans. Simulators are already used to train jet pilots, Formula One
drivers and veterinary surgeons. High-fidelity models will soon be used more widely, in
conjunction with virtual reality and ‘gamification’ in training for doctors, military personnel,
police forces and school pupils, to name just a few.

— Models will become an important way to understand properties of many complex systems. We
increasingly build systems so complex that their behaviours cannot be explored in any depth.
The Internet itself is an example of a complex, engineered system on which much of our
developed world now depends, and which is continuously modelled and monitored in order
to explore its behaviours and monitor its performance.

7. Summary and conclusion
In order to deal with an increasingly complex world, we will need ever more sophisticated models.
Computational models have the potential to help us make decisions more wisely and to understand
the complicated and often counter-intuitive potential consequences of our choices. However, as with all
tools, they can be applied in wrong or misleading ways. Thus a degree of understanding of their uses
and properties is desirable. This paper brings together some of that knowledge in order to promote the
better understanding of models. This is summarized by four points.

First, it is important to be aware that models have different kinds of uses. Effective deployment
requires both the user and the modeller to be aware of their capabilities and limits. We have outlined
some broad categories of model purpose and the key role that framing plays in balancing perspectives
and getting the best out of a model. Confusing or conflating model purpose can result in the
inappropriate use of models, or a mistaken assessment of their reliability.

Second, creating and using models well involves far more than raw data and technical skills. A close
collaboration between model commissioners, developers, users and reviewers provides an essential
framework for developing and using an effective model. We have offered a guide to that process, which
is vital for building confidence in any model; the checklists in appendix A suggest some questions to aid
those developing models and to aid communication between the different actors.

Third, a little knowledge of the different technical basis on which models are built can be helpful. The
multitude of different modelling techniques can often appear overwhelming; we have offered a simple
introduction to some of these, explaining the various questions they can answer, and outlining their
strengths and weaknesses.

Last, modelling is changing fast. This presents a range of future opportunities, which could transform
policymaking and business operations. We have outlined some of those opportunities and also the fresh
challenges they provoke. There is a consequent increasing need for the new skills and collaborations that
will underpin the future of modelling.

As the power and use of modelling grows, there is increased risk that models could be poorly
constructed, misused or misunderstood. We need to reinforce modelling as a discipline, so that
misconstruction and misuse are less likely; we need to increase understanding of modelling across
a wide range of domains, from social policy to life sciences and engineering, as well as encourage
sharing of insights and best-practice across these domains; and we need to bring commissioners closer
to modelling, so that results are more useful. As computational modelling develops and extends to
new application areas, there is enormous potential for interdisciplinary and intersectoral developments.
The cross-fertilization of ideas between industries, and academia, along with a mutual appreciation of
different sectors’ needs in modelling skills, represents an exciting future for computational modelling.
Computational modelling already has an increasing impact on how science is done, but this will now
extend into other areas of our lives. Thus it is imperative that this tool is used appropriately and carefully.
We hope this paper will prompt all those involved to think about how models are used and when they
can be relied upon.
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Appendix A
A.1. Making and using models: a checklist
This checklist is inspired by the UK government’s Scope development checklist [23], and includes some of
the questions that need to be answered before and during the creation and use of a model. They could
form the basis for an initial discussion between model commissioners and model developers, to clarify
their understanding of what will be involved, and during model building and use. In addition, they can
serve as a point of departure for model reviewers.
Purpose

— What is the issue or issues under consideration?
— If there is more than one issue, how are they related?
— What is the context of the issue?
— What are the specific questions that need to be answered and can modelling address them?

Scope

— What must the model cover?
— What can be excluded from the model?
— What is the minimum viable scope that can be used as a starting point for the model?

Output and follow up

— What kind of outputs or results might answer the questions raised?
— What format should be used to present the results?
— What controls are in place to make sure the model is not used incorrectly?

Design and building

— What level of detail is needed for the model in each of its frames of reference?
— What accuracy is required in the output?
— What should the trade-off between accuracy, simplicity and robustness be?
— What modelling techniques will be used, and why those? Which alternatives were considered?
— How do the chosen modelling techniques have an impact on the accountability of decisions?

Data and assumptions

— What data are available and how robust are they?
— Are there judgements about the quality of the data that will need to be made?
— How accurate are the available data, and how does that match with the required accuracy of the

outputs?
— How will each of the assumptions be justified?
— What alternative assumptions could be made?

Quality assurance

— What verification procedures will be used to check that the model works as expected?
— How will the model be validated, and what data will be used for doing so?
— Is there a schedule of reviews to ensure that the model remains up to date?
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Who

— Who will be the users of the model?
— Who will have overall responsibility for the model, its development and its use?
— Who will provide the data and the knowledge required to build the model?
— Who will develop the model?
— Who are the stakeholders (in other words, who is interested in the issue, who could contribute,

who can influence and who will be impacted)?
— How will stakeholders be involved, and at what stage they can be most useful?
— Do the stakeholders all have the same concerns and questions about the issue? If not, what are

their perspectives, and which frames of reference are to be considered?
— Who will provide quality assurance?
— Who will determine when the model is no longer useful?

Communication

— What methods will be used to communicate with users?
— What are their needs and abilities to appreciate the model and what it provides?
— Are visualizations, dynamic graphs and movies appropriate to convey the messages of the model

and, if so, have resources been set aside to create these?

Resources

— Has anything similar been done before? If so, what can be learned from it?
— Is there a schedule of reviews to ensure that the model remains up to date?
— Are sufficient skills and expertise available and, if not, how can this be managed?
— What is the timescale for the work?
— What resources (time and money, for example) are available?
— Is it necessary and affordable to build a model, or could some other approach be used that

requires fewer resources?
— What would be the consequences if the work is not carried out at all, or the start is delayed?

A.2. What users should ask about a model: a checklist
These questions are ones that those that are contemplating the use of an existing model should ask
themselves. The checklist is based on the authors’ experience and sources such as [23].

— Does the model offer answers to the problems that I have?
— Are the assumptions it makes ones that I agree with?
— If the model offers an explanation or prediction, has the model been validated sufficiently against

empirical data (or in any way at all)?
— If the model has no or weak empirical basis, is this adequate to my needs?
— Is the model documented so that I can understand how it works?
— Is the model output clear and comprehensible?
— Does the model output seem plausible when compared with other sources of information?
— Has the degree of uncertainty in the model output been properly recorded and its implications

recognized?
— Is the model being used for its original intended purpose or, if not, is the new purpose compatible

with the design of the model?
— Have other stakeholders or users been involved in the model design and use and, if so, do they

agree that the model is useful?
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