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COMPUTATIONAL MODELLING OF 1D BLOOD FLOW AND ITS

APPLICATIONS.

V. Franke1, J. Peiró1, S. Sherwin1, K.Parker2, Wee Ling3 and N. M. Fisk3

Abstract. Pressure and blood flow waveforms in the human body can be recorded using techniques

such as sphygmomanometry and Doppler ultrasound. The presence of abnormal waveforms in arteries

may indicate a pathological state. In this paper arterial wave patterns are modelled using a simplified

one dimensional model for blood flow. The hyperbolic system of governing equations is discretised using

the discontinuous Galerkin method. Results are presented for patterns of blood flow and pressure waves

throughout a simplified arterial system consisting of the main 55 arteries. The method is also employed

to determine unusual wave patterns in monochorionic twin pregnancies where an anastomosis between

the twins is present across the placenta equator.

1. Method

As a simple approximation, the human arteries can be modelled as distensible tubes. Assuming static
equilibrium in the radial direction of the cylindrical tube and averaging the velocity across the section, the
system can be reduced to a one-dimensional problem. The equations representing continuity of mass and
momentum can be written as

∂A

∂t
+

∂Au

∂x
= 0 (1)

∂u

∂t
+ u

∂u

∂x
= −1

ρ

∂p

∂x
(2)

where the x is the axial direction, A = A(x, t) is the cross sectional area, u = u(x, t) is the velocity of the
fluid, averaged across the section and ρ = const is the density of the blood. Also an expression between the
pressure, p, and area, A, of the vessel can be specified as:

p = pext + β(
√

A−
√

A0), (3)
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where

β =

√
πh0E

(1− ν2)A0

.

In this relationship h0 and A0 = A0(x) denote the vessel wall thickness and cross-sectional area at the equilibrium
state, E = E(x) is the Young modulus, ν is the Poisson ratio (typically considered as ν = 1/2 the incompressible
limit) and pext is the external pressure.

The one-dimensional hyperbolic system, equations (1) and (2) can be expressed as an (A,u) system in a
conservative form:
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= 0 (4)
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.

2. Characteristic System

Applying the chain rule to the pressure-area relationship, equation (3), and assuming that β = β(x) and
A0 = A0(x) we get:
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By simple manipulations the system of equations (1) and (2) can be written in a quasi-linear conservative
form:
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where
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Matrix H has two real eigenvalues λ1,2 = u± c and the corresponding eigenmatrix Q is

Q =
[

q1, q2
]

= γ

[

A −A
c c

]

(6)

where γ is an arbitary scaling factor.
If HQ = QΛ then the matrix H = QΛQ−1, where Λ is the diagonal matrix formed by the eigenvalues of

H .
Substituting this into equation (5), assuming f = 0, and premultiplying by Q−1 gives:

Q−1
∂U

∂t
+ ΛQ−1 ∂U

∂x
= 0 (7)

If there exists a quantity W = W (U ) such that

∂W

∂U
= Q−1 (8)

then the characteristic variables can be determined by integrating the differential system:
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A possible choice for γ where the characteristic variables satisfy the Cauchy-Riemann condition would be
γ = 2c, since A does not depend on u. Therefore if the characteristic variables exist they must satisy:
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A
,
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= 1, (10)
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Integrating the differential form in equations (10) and (11) we obtain:

W1 = u +

∫ A

A0

c(A)

A
dA = u + 4c = u + 4

√

β

2ρ
A1/4, (12)
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β
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Since β > 0, we may write, as previously reported in [3], the variables (A, u) in terms of (W1, W2) as

A =

[

(W1 −W2)

4

]4(
ρ

2β

)2

u =
(W1 + W2)

2
. (14)

Using the relation in equation (8), equation (7) can be transformed into a decoupled system of equations for
the characteristic variables, which component wise reads

∂W1

∂t
+ λ1

∂W1

∂x
= 0 (15)

∂W2

∂t
+ λ2

∂W2

∂x
= 0 (16)

3. Boundary Conditions

The hyperbolic system requires us to impose one boundary condition at the inflow and the outflow, these are
imposed through the characteristic system. At the inlet this can be either a velocity u or area A. In vivo values
can be obtained from methods such as Doppler ultrasound. At the outlet a reflection coefficient is applied to
the waves exiting the vessels which is representative of a terminal resistance in the arterial network beyond the
terminal vessels. More details are found in [5].

4. Discontinuous Galerkin Method

The wave propagation speeds in the large arteries are typically an order of magnitude higher than the average
flow speeds, hence the characteristic system is subcritical (i.e. λ1 > 0 and λ2 < 0) for physiological conditions
and will not produce shock waves in the system. If the solution remains smooth then high-order methods
are particularly attractive due to the fast convergence of the phase and diffusion properties with order of the
scheme [6]. The discontinuous Galerkin method is an attractive formulation for the high-order discretisation
of these hyperbolic conservation laws as it propagates waves with minimum numerical diffusion and dispersion
for many periods. Following the work of Cockburn and Shu [1] and Lomtev, Quillen and Karniadakis [4] we
proceed as follows.
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To solve the system, equation (4), in a domain Ω = (a, b) discretised into a mesh of Nel elemental non-
overlapping regions Ωe = (xl

e, x
u
e ), such that xu

e = xl
e+1 for e = 1, . . . , Nel, and

Nel
⋃

e=1

Ωe = Ω,

we start by constructing the weak form of (4), i.e.

(
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Ω
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,ψ

)

Ω

= 0 i = 1, 2 (17)

where

(u,v)Ω =

∫

Ω

u v dx.

is the standard L2(Ω) inner product. Decomposing the integral into elemental regions we obtain
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Integrating the second term by parts leads to
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To get the discrete form of our problem we choose U to be in the finite space of L2(Ω) functions which are
polynomial of degree P on each element. We indicate an element of such space using the superscript δ. We also
note that Uδ may be discontinuous across inter-element boundaries. However to attain a global solution in the
domain Ω we need to allow information to propagate between the elemental regions. Information is propagated
between elements by upwinding the boundary flux in the third term of equation (19). Denoting the upwinded
flux as Fu, the discrete weak formulation can now be written as

Nel
∑

e=1

(

∂Uδ

∂t
,ψδ

)
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−
(
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)
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+
[
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]xu

e
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e

= 0, (20)

Following the traditional Galerkin approach, we choose the test function within each element to be in the same
discrete space as the numerical solution Uδ . At this point if we define our polynomial basis and choose an
appropriate quadrature rule we would now have a semi-discrete scheme. However, from an implementation
point of view, the calculation of the second term can be inconvenient and consequently we choose to integrate
this term by parts once more to obtain
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e
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e
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We note that the information between elements is transmitted by the third boundary term as the difference

between the upwinded and the local fluxes,
[

ψδ · [Fu − F(Uδ)]
]xu

e

xl
e

. This method can be considered as a penalty

method with an automatic procedure for determining the penalty parameter.



52 V. FRANKE, J. PEIRÓ, S. SHERWIN, K.PARKER, WEE LING AND N. M. FISK

Finally we select our expansion bases to be a polynomial space of order P and expand our solution on each
element e in terms of Legendre polynomials Lp(ξ), i.e.

Uδ
∣

∣

Ωe

(xe(ξ), t) =
P
∑

p=0

Lp(ξ)Û
p
e(t).

where, following standard finite element techniques, we consider ξ in the reference element Ωst = {−1 ≤ ξ ≤ 1}
and introduce the elemental affine mapping

xe(ξ) = xl
e

(1− ξ)

2
+ xu

e

(1 + ξ)

2
.

We note that the choice of discontinuous discrete solution and test functions allow us to decouple the problem
on each element, the only link coming through the upwinded boundary fluxes. Legendre polynomials are
particularly convenient because the basis is orthogonal with respect to the L2(Ωe) inner product and equation
(21) turns out to be equivalent to solving, componentwise, for all elements e

Je

∂Ûp
i,e

∂t
= −Je

(

∂Fi

∂x
, Lp

)

Ωe

−
[

Lp [F u
i − Fi(U

δ)]
]xu

e
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e

= 0, p = 1, . . . , P, i = 1, 2 (22)

where Je is the Jacobian of the elemental mapping, Je = 1
2
(xu

e − xl
e). To complete the discretisation we require

a time integration scheme. Here we have adopted an Adams-Bashforth scheme. This upwinding process can
also be used to impose the characteristic boundary conditions through the flux at the ends of the global domain
Ω.

5. Results
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Figure 1.Time history plots of (a) pressure, (b) velocity and (c) and (d) the characteristic variables W1 and
W2, respectively, taken at the mid-point of the ascending aorta.
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A simplified arterial network containing the 55 largest arteries in the human body was proposed and modelled
using electric circuits in 1969 by Westerhof [10]. Modifications have been made to this data by Stergiopulos [7]
and Wang and Parker [9]. We have used this modified data to compute the pulsatile one-dimensional blood
flow through the arterial system. The flow in the 55 arteries is assumed initially to be at rest and a periodic
half-sine wave is imposed through the W1 waveform at the ascending aorta. The half-sine wave occupies the
first 0.3 seconds of the cycle and for the rest of the cycle the heart acts as a reflector which has been modelled by
setting W1 = −W2. A lower terminal resistance has been used than in the Wang and Parker [9] model, because
there was too much reflection from the terminal vessels and the waveforms did not appear to be physiologically
correct.

The time history of pressure, velocity and the characteristic variables are shown in figure 5 over one cycle
for the ascending aorta. The pressure waveform shows the characteristic diacrotic notch and the flow waveform
shows a small period of flow reversal and then near zero flow for the rest of the cycle, which are similar to
in-vivo measurements in the human body.

The one-dimensional model has also been applied to the calculation of waveforms in monochorionic twin
pregnancies where twin fetuses share a single placenta. If there are anastomoses in the placenta between
arteries and veins of the two fetoplacental circulations this can result in a transfer of blood from one fetus to
the other with one fetus receiving too much blood to the detriment of the other twin. This medical condition
is called twin-to-twin transfusion syndrome (TTTS) and can be fatal. Arterio-arterial anastomoses are present
in 85% of monochorionic pregnancies, but this is not necessarily associated with a bad outcome. Indeed there
is some evidence that the existence of these anastomoses may be protective, leading to a better outcome than
in the TTTS cases with only arterio-venous anastomoses [2, 8].

(a)
Figure 2.An ultrasound doppler flow waveform in a twin-to-twin anastomosis.

(b)
Figure 3.Predicted results from the one-dimensional mathematical model.

Figure 5 shows a Doppler ultrasound flow-probe waveform in an arterio-arterial anastomosis of a twin-to-twin
pregnancy and figure 5 shows the results from our mathematical model. The fetuses often have slightly different
heart rates, which produces a wave flow pattern that is repeated every few cycles. Also the flow alternates
directions which is not seen in arteries in the normal placenta.

6. Conclusion

It has been shown that flow and pressure waveforms throughout different vascular networks can be predicted
using a one-dimensional model. This model is inexpensive to compute and predicts accurately wave patterns
and average velocities and pressures. Computer codes based on this approach could prove a valuable tool for
assessing the suitability of medical interventions.
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